

Motor Driver Series

REFMOT003-EVK-002 EMC Test Result Report

This document consists of the following contents.

Contents

1.	Outline of the evaluation	2
1.1.	Objectives	5
1.2.	Evaluation target.	
1.3.	Evaluation items	
1.4.	Measuring instruments used	
1.5.	Test environment	
1.6.	Measurement Conditions	
1.7.	Reference Design System Diagram / Schematic / Parts List	5
1.8.	Board Photograph	
1.9.	Reference Board Pattern	<u>c</u>
2.	Evaluation Results	13
2.1.	Conducted noise measurement	13
2.2.	Radiated noise measurement	14
2.2.1.	150kHz to 30MHz	14
2.2.2.	30MHz to 300MHz	15
2.2.3.	300MHz to 1GHz	16
2.3	Summary	17

1. Outline of the evaluation

1.1. Objectives

REFMOT003-EVK-001 is a reference design for Hall sensor driven three-phase brushless motor drivers.

REFMOT003-EVK-001 incorporates the EMC measures required for automotive market applications.

Evaluations have been done in accordance with the CISPR 25 standard, confirming the effectiveness of EMC countermeasures.

Measurement item

- · CISPR 25 conducted and radiated noise test
- · Measured in EMC measurement room

1.2. Evaluation target

REFMOT003-EVK-002 Reference Board

1.3. Evaluation items

Table 1. Evaluation Items

Evaluation Items	Frequency	antenna		
Conducted noise measurement	150kHz to 108MHz	-		
Dedicted noise measurement	150kHz to 30MHz	vertical		
Radiated noise measurement	30MHz to 300MHz	horizontality / vertical		
	300MHz to 1GHz	horizontality / vertical		

1.4. Measuring instruments used

Table 2. List of measuring instruments

measuring instrument	manufacturer	Model Number	Serial Number
Power supply	KIKUSUI	PAN16-10A	DL000958
LISN (GND side)	NETZNACHBILDUNG	NNBN8125	81251638
LISN (VIN side)	NETZNACHBILDUNG	NNBM8125	81251639
spectrum analyzer	SCHWARZBECK	ESU26	100165
antenna (150kHz-30MHz)	ETS-LINDGREN	3301C	211493
antenna (30MHz-300MHz)	ETS-LINDGREN	3110B	3376

1.5. Test environment

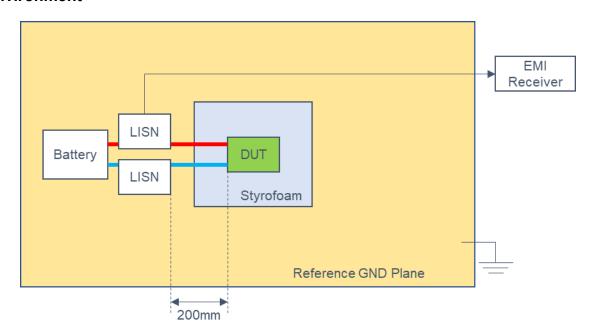


Figure 1. Conducted noise measurement system Top view

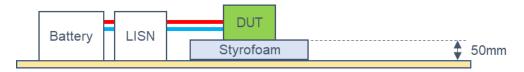


Figure 2. Conducted noise measurement system Side

LISN:Line Impedance Stabilization Network

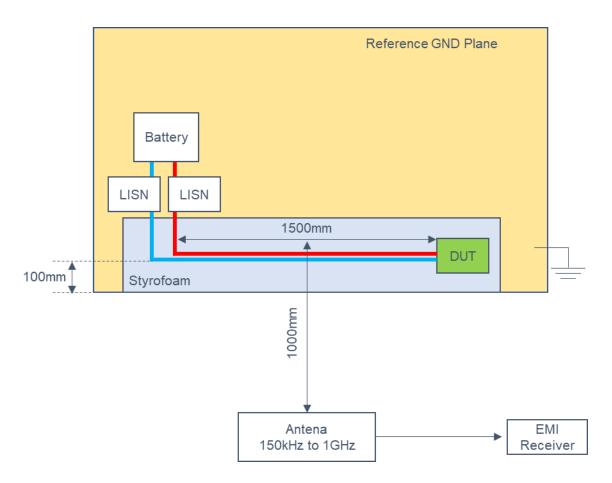


Figure 3. Radiated noise measurement Top view

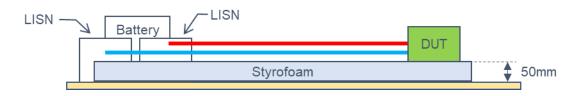


Figure 4. Radiated noise measurement Side view

1.6. Measurement Conditions

Table 3. Measurement conditions

Item	contents
Temperature Conditions	Room temperature 27°C
Input voltage condition	12V DC Power Supply
Load	Blower motor
Motor current	10Ар-р

1.7. Reference Design System Diagram / Schematic / Parts List

A system diagram of this reference design is shown in Figure 5.

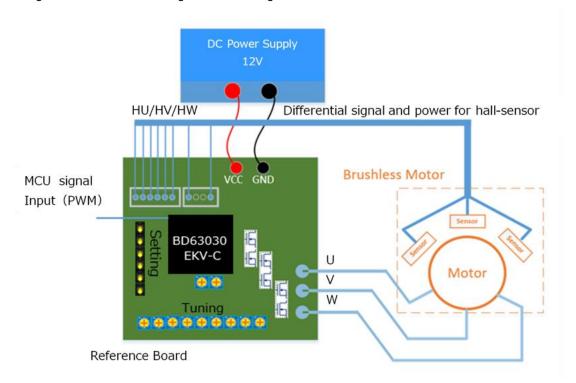


Figure 5. REFMOT003 Reference design

The schematic of the reference board REFMOT003-EVK-002 is shown in Figure 6.

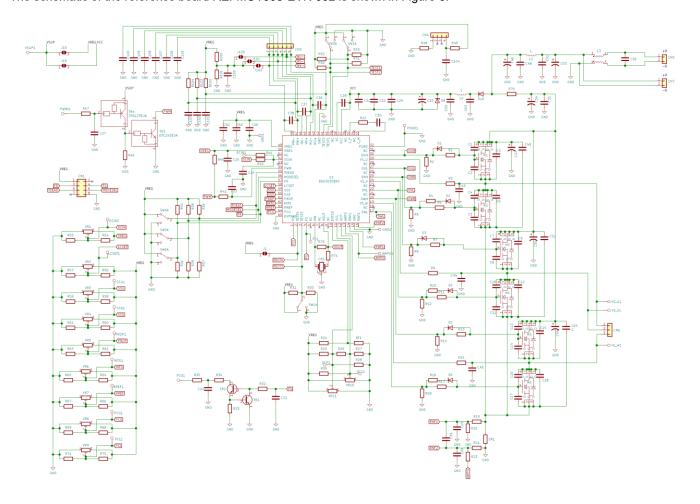


Figure 6. REFMOT003-EVK-002 Circuit

Table 4. Parts List

Designator	Туре	Parts Value	Description	Product Name	Manufacturer	Footprint
-	EVALUATION BOARD	-	Board	Evaluation board	-	-
C104	Capacitor	0.1µF	50V,±10%	CGA2B3X7R1H104 K050BB	TDK	1005
C105,C106,C10 7,C108,C109,C1 10	Capacitor	4700pF	50V,±10%	CGA2B2X7R1H472 K050BE	TDK	1005
C19, C20, C24, C25, C27, C28, C29, C30, C36, C37, C38, C49, C52, C55	Capacitor	0.1µF	50V,±10%	CGA2B3X5R1H104 K050BB	TDK	1005
C22	Capacitor	22000pF	50V,±10%	CGA2B3X7R1H223 K050BB	TDK	1005
C23, C39	Capacitor	100pF	50V,±10%	CGA2B2C0G1H101 J050BA	TDK	1005
C26,C31	Capacitor	470nF	50V,±10%	CGA3E3X7R1H474 K080AB	TDK	1608
C33	Aluminum Electrolytic Capacitor	100µF	50V,±10%	UBT1H101MPD8	Nichicon	φD×L(mm):10x20
C34,C46,C47,C 50,C54	Aluminum Electrolytic Capacitor	330µF	50V,±10%	UBT1H331MHD8	Nichicon	φD×L(mm):12.5x2 0
C40	Capacitor	1µF	16V	CGA3E1X7R1C105 K080AC	TDK	1608
C48,C51,C56	Capacitor	0.1µF	50V,±10%	CGA2B3X7R1H104 K050BB	TDK	1005
C53	Aluminum Electrolytic Capacitor	1000µF	50V,±10%	UBT1H102MHD8	Nichicon	16x31.5
CK1	OSCILLATOR	10MHz	±0.5%,40Ω,33pF	CSTNE10M0G55A	Murata	CSTCE_G_A
CN1	Header Connector	-	-	HDR 2X4	-	HDR(2X4)
CN3	Header Connector	-	-	HDR 1X6	-	HDR(1X6)
CN4	Header Connector	-	-	HDR 1X4	-	HDR(1X4)
CN5, CN7	Connector	-	-	OSTT7022150	ON-SHORE TECHNOLOGY	-
CN6	Connector	-	-	OSTT7032150	ON-SHORE TECHNOLOGY	-
D1, D2, D3, D4, D5, D6	Diode	-	-	RRE01VM4SFHTE- 17	ROHM	D_3216
D10	Diode	-	-	RR1LAM4STF	ROHM	D1F60
D9	Zenner Diode	30V	-	KDZVTF30B	ROHM	D_MCR50WLEAD
DCIN1	CHECK PIN	-	Test Pin, Through Hole	LC-2-G Yellow	-	TP/1.6/2.3
DCIN2,LCSET1, SSU1,SSD1,PR OP1,INTG1 RREF1,PCG1,P CI1,OCP1,OCL1	CHECK PIN	-	Test Pin, Through Hole	LC-2-G Yellow	-	TP/1.6/2.3
FGO1、VS_U1、 VS_V1、VS_W1	CHECK PIN	-	Test Pin, Through Hole	LC-2-G White	-	TP/1.6/2.3
J1, J16	Jumper	-	-	-	-	SS/1.5X1.5/0.5
J15	Jumper	-	-	-	-	SS/1.5X1.5/0.5
L2	Inductor	1.3µH	±20%	XAL1350-132MED	Coilcraft	14mm2
L3	Common mode choke	500Ω@10MHz	Common mode choke	PLT10HH501100PN	Murata	12.9x6.6
L4		Short				1608
M1, M2, M3, M4, M5, M6	Nch MOSFET		Ron(Max)3.0Ω 770pF	Under development	ROHM	MOSFET(3X3)
PWMI1	CHECK PIN	-	Test Pin, Through Hole	LC-2-G Yellow	-	TP/1.6/2.3
R1, R7, R13	Resistor	1.2kΩ	50V,±1%	MCR03EZPFX1201	ROHM	1608
R19, R21	Resistor	2.2kΩ	50V,±1%	MCR01MZPF2201	ROHM	1005
R2, R8, R14, R20, R23, R42, R46	Resistor	47kΩ	50V,±1%	MCR01MZPF4702	ROHM	1005

Application Note

R22	Resistor	10Ω	50V,±1%	MCR01MZPF10R0	ROHM	1005
R24	Resistor	1.4kΩ	50V,±1%	MCR01MZPF1401	ROHM	1005
R3, R9, R15	Resistor	62Ω	50V,±1%	MCR03EZPFX62R0	ROHM	1608
R33	Resistor	75Ω	50V,±1%	MCR01MZPF75R0	ROHM	1005
R34, R43, R44		Short				1005
R35	Resistor	100Ω	50V,±1%	MCR01MZPF1000	ROHM	1005
R4, R10, R16	Resistor	120Ω	50V,±1%	MCR03EZPFX1200	ROHM	1608
R47	Resistor	2.4kΩ	50V,±1%	MCR01MZPF2401	ROHM	1005
R48, R49, R74	Resistor	150Ω	50V,±1%	MCR01MZPF1500	ROHM	1005
R5, R11, R17	Resistor	620Ω	50V,±1%	MCR03EZPFX6200	ROHM	1608
R6, R12, R18, R32, R45	Resistor	10kΩ	50V,±1%	MCR01MZPF1002	ROHM	1005
R75	Resistor	1ΜΩ	50V,±1%	MCR01MZPF1004	ROHM	1005
R76	-	Short		-	-	JUMPER(B)
RT1	NTC THERMISTORS	100kΩ	Thermistor	NTCG164KF104FTD S	TDK	1608
SR1	Resistor	1mΩ/8W	Shunt Resistor	PSR400ITQFH1L00	ROHM	PSR400
SW1, SW2, SW3,SW4, SW5, SW6	3 state switch	-	Switch	FT 1E-2M-Z	NIDEC COPAL	SW_FT1E-2M-Z
TR1, TR2	SILICON TRANSISTOR	-	NPN Transistor	2SC4081U3T106R	ROHM	TR_UMT3_SC- 70_SOT-323
TR3	SILICON TRANSISTORS	-	NPN Digital Transistor	DTC143EU3HZGT1 06	ROHM	TR_UMT3_SC- 70_SOT-323
TR4	SILICON TRANSISTORS	-	PNP Digital Transistor	DTA123EU3HZGT1 06	ROHM	TR_UMT3_SC- 70_SOT-323
U1	INTEGRATED CIRCUITS	-	3 Phase Motor Driver	BD63030EKV-C	ROHM	TQFP-64V
VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9, VR10, VR11	Resistor	50kΩ	Variable Resistor	CT-6EP 50k Ohm	NIDEC COPAL	CT-6EP
VSUP1	CHECK PIN	-	Test Pin, Through Hole	LC-2-G Red	-	TP/1.6/2.3

© 2022 ROHM Co., Ltd.

No. 64AN143E Rev.001
8/17
2022.3

1.8. Board Photograph

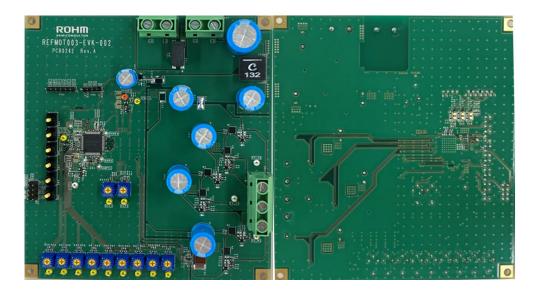


Figure 7. Reference Design Substrate

1.9. Reference Board Pattern

The board configuration of the reference design is shown in Table 5. Layout pattern is shown.

Table 5. Reference Design Board Configuration

FR-4
1.6mm
Top/Bottom layer 2oz Inner layer 1oz
4
133mm x 145mm
0.15mm
0.15mm
0.3mm

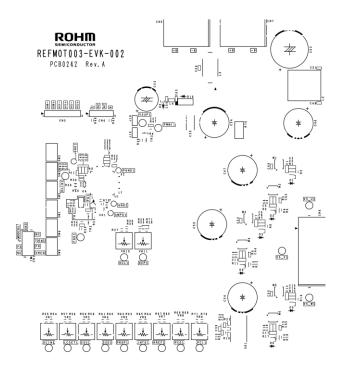


Figure 8. TOP SILK

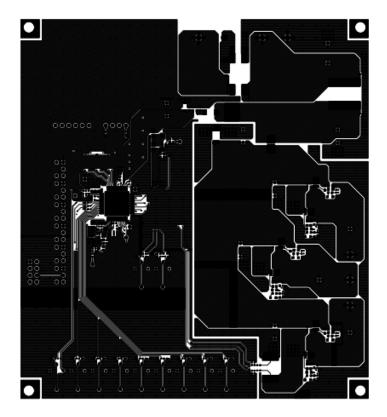


Figure 9. TOP metal

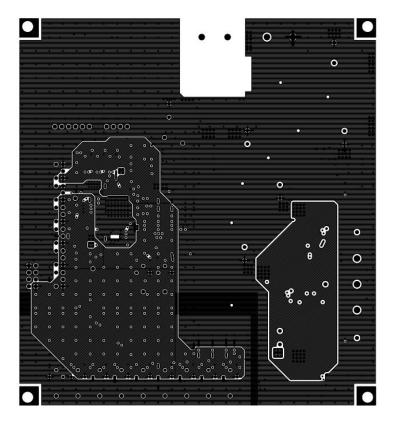


Figure 10. Inner layer 2

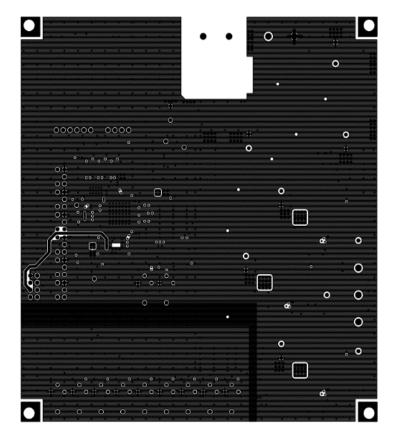


Figure 11. Inner layer 3

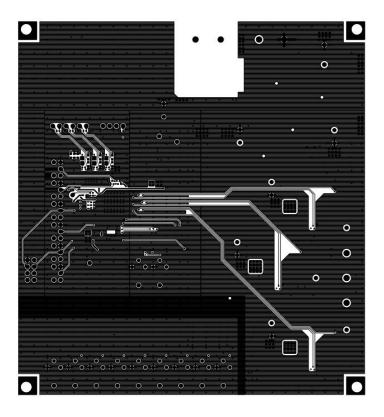


Figure 12 Bottom metal

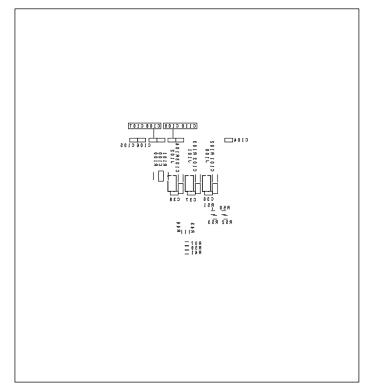


Figure 13. Bottom SILK

2. Evaluation Results

2.1. Conducted noise measurement

Common Mode Filter 500Ω

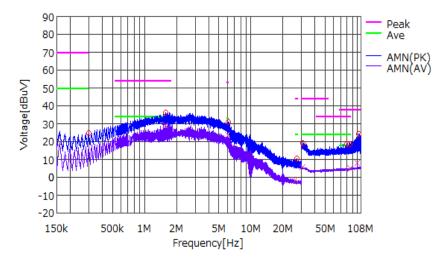


Figure 14. measurement results (waveform of common mode filter 500Ω)

Table 5. measurement results (waveform of common mode filter 500Ω)

- I	Eroguopov Manaurina			Result			Limit		Margin			
Band ID	Frequency	Measuring plane	PK	AV	QP	PK	AV	QP	PK	AV	QP	Judgment
"	[MHz]	plane							[dB]	[dB]	[dB]	
LW	0.160	AMN		19.10			50.0			30.90		OK
LW	0.300	AMN	24.70			70.0			45.30			OK
MW	1.575	AMN	36.06			54.0			17.94			OK
MW	1.575	AMN		29.28			34.0			4.72		OK
SW	6.020	AMN		23.58			33.0			9.42		OK
SW	6.160	AMN	31.01		-	53.0			21.99			OK
FM	99.700	AMN		8.14			18.0			9.86		OK
FM	103.500	AMN	24.05			38.0			13.95			OK
TV I	79.400	AMN	18.74			34.0			15.26			OK
TV I	86.000	AMN		5.12			24.0			18.88		OK
CB	26.215	AMN		-1.62			24.0			25.62		OK
CB	26.895	AMN	10.36			44.0			33.64			OK
VHF	30.750	AMN	19.16			44.0			24.84			OK
VHF	30.650	AMN		5.73			24.0			18.27		OK
VHF	86.050	AMN		5.05			18.0			12.95		OK
VHF	85.350	AMN	18.55			38.0			19.45			OK

(Note 1) The pink line shows the Peak limit of CISPR 25 Class 5.

(Note 2) The green line shows the average limit value of CISPR 25 Class 5.

2.2. Radiated noise measurement

2.2.1. 150kHz to 30MHz

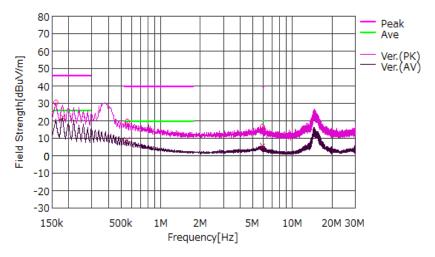


Figure 15. Measurement results (150kHz to 30MHz)

Table 6. Measurement results (150kHz to 30MHz)

Band	Frequency	quency Measuring	Result			Limit			Margin			
ID	rrequericy	plane	PK	AV	QP	PK	AV	QP	PK	AV	QP	Judgment
טי ן	[MHz]	piarie							[dB]	[dB]	[dB]	
LW	0.160	Ver.	30.61			46.0			15.39			OK
LW	0.180	Ver.		22.09			26.0			3.91		OK
MW	0.555	Ver.		8.91			20.0			11.09		OK
MW	0.560	Ver.	19.49			40.0			20.51			OK
SW	5.915	Ver.	16.44			40.0			23.56			OK
SW	5.955	Ver.		5.38			20.0			14.62		OK

(Note 1) The pink line shows the Peak limit of CISPR 25 Class 5.

(Note 2) The green line shows the average limit value of CISPR 25 Class 5.

(Note 3) Motor and wiring are shielded.

2.2.2. 30MHz to 300MHz

Antenna

Antenna

Vertical

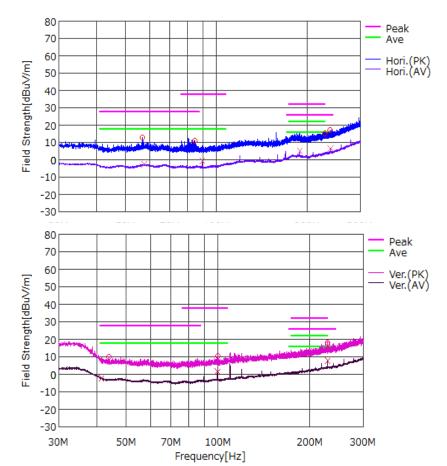
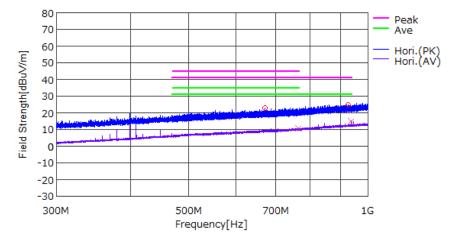


Figure 16. Measurement results (30MHz to 300MHz)

Table 7. Measurement results (30MHz to 300MHz)

	Frequency	Managemina		Result		Limit			Margin			
Band ID	Frequency	Measuring plane	PK	AV	QP	PK	AV	QP	PK	AV	QP	Judgment
	[MHz]	platie							[dB]	[dB]	[dB]	
FM	84.550	Hori.	11.10			38.0			26.90			OK
FM	89.650	Hori.		-0.58			18.0			18.58		OK
FM	99.600	Ver.		1.54			18.0			16.46		OK
FM	99.600	Ver.	10.50			38.0			27.50			OK
TVI	41.500	Ver.		-2.16			18.0			20.16		OK
TVI	43.700	Ver.	10.14			28.0			17.86			OK
TVI	56.900	Hori.	12.86			28.0			15.14			OK
TVI	57.600	Hori.		-2.54			18.0			20.54		OK
TV III	189.250	Hori.		5.05			22.0			16.95		OK
TV III	228.550	Hori.	15.28			32.0			16.72			OK
TV III	229.100	Ver.	17.31			32.0			14.69			OK
TV III	229.100	Ver.		7.83			22.0			14.17		OK
DAB III	229.100	Ver.	18.06			26.0			7.94			OK
DAB III	229.100	Ver.		7.78			16.0			8.22		OK
DAB III	237.950	Hori.	17.01			26.0			8.99			OK
DAB III	239.050	Hori.		6.52			16.0			9.48		OK


(Note 1) The pink line shows the Peak limit of CISPR 25 Class 5.

(Note 2) The green line shows the average limit value of CISPR 25 Class 5.

(Note 3) Motor and wiring are shielded.

2.2.3. 300MHz to 1GHz

Antenna Horizontal

Antenna Vertical

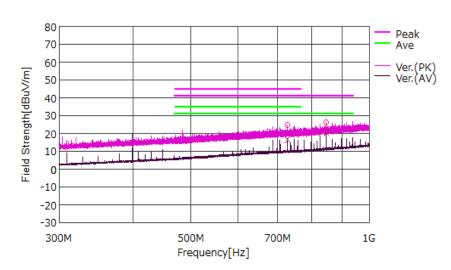


Figure 17. Measurement results (300MHz to 1GHz)

Table 8. Measurement results (300MHz to 1GHz)

Band	Eroguonov	Frequency Measuring		Result			Limit			Margin		
ID	rrequericy	plane	PK	AV	QP	PK	AV	QP	PK	AV	QP	Judgment
טו	[MHz]	piarie							[dB]	[dB]	[dB]	
TV IV	846.550	Ver.		20.39			31.0			10.61		OK
TV IV	846.550	Ver.	26.22			41.0			14.78			OK
TV IV	926.250	Hori.	24.59			41.0			16.41			OK
TV IV	936.200	Hori.		14.86			31.0			16.14		OK
DTTV	672.400	Hori.	22.79			45.0			22.21			OK
DTTV	727.050	Ver.	24.74			45.0			20.26			OK
DTTV	727.050	Ver.		16.49			35.0			18.51		OK
DTTV	764.000	Hori.		10.57			35.0			24.43		OK

(Note 1) The pink line shows the Peak limit of CISPR 25 Class 5.

(Note 2) The green line shows the average limit value of CISPR 25 Class 5.

(Note 3) Motor and wiring are shielded.

2.3. Summary

REFMOT003-EVK-002 EMC test results for both conducted noise / radiated noise were found to pass the specified values.

This test result report was conducted in our facilities using the reference board REFMOT003-EVK-002 and does not guarantee the performance under the customer's environment. Please note that it is provided as reference data.

Important Notes on the Use of Reference Designs

- 1) The contents of this document are subject to change without notice for the purpose of improvement.
- 2) ROHM provides reference designs (including, but not limited to, circuit diagrams, layout data, parts lists, reference boards and their evaluation results, etc.) and all materials related to evaluation boards (hereinafter collectively referred to as "Reference Designs, etc.") to customers for the purpose of referencing them in the development of devices, equipment, software, etc. incorporating ROHM products (hereinafter collectively referred to as "Customer Products"). The design, verification, etc. required for the development of the Customer's Product shall be done at the customer's responsibility and expense. In no event shall the customer use the Reference Designs, etc. for any purpose other than the purpose mentioned above.
- 3) Reference Designs, etc. are provided on an "as is" basis. ROHM disclaims all warranties, express or implied, including, but not limited to, warranties of usefulness, functionality, accuracy, merchantability, and fitness for a particular purpose. In no event shall ROHM be liable for any damages (including, but not limited to, lost profits or other incidental, consequential, or punitive damages) arising out of, related to or in connection with the use of or application of the Reference Designs, etc. whether in contract or tort. For the avoidance of doubt, ROHM does not warrant that the Reference Designs, etc. will work with the Customer's Product.
- 4) When using Reference Designs, etc. be sure to request and verify the latest specifications (including the specifications of the products that compose the Reference Design, etc.) separately.
- 5) The customer shall be responsible for implementing safety measures such as derating, redundant design, fire prevention, backup, and fail-safe measures, etc., to prevent personal injury, fire damage, etc., caused by the Customer's Product developed with Reference Designs, etc. ROHM assumes no liability whatsoever for any use in excess of the ratings or in case of failure to observe the instructions for use.
- 6) The application circuit examples, constants, and other information provided in Reference Designs, etc. are intended to illustrate standard operation and usage. Therefore, when designing for mass production, please take into account various external conditions.
- 7) Reference Designs, etc. are intended to show typical operations and examples of application circuits, etc., and do not constitute a license, express or implied, to implement or use any intellectual property rights or any other rights of ROHM or any other company. ROHM shall not be liable for any disputes arising from, related to or in connection with the use of the Reference Designs, etc.
- 8) Please make sure to contact ROHM and obtain ROHM's consent before using the Reference Designs, etc. for the following Customer's Product that requires particularly high reliability. Transportation equipment (in-vehicle, ship, railroad, etc.), trunk line communication equipment, traffic signal equipment, disaster and security equipment, safety equipment, medical equipment, servers, solar cells, power transmission systems, etc.
- 9) Do not use Reference Designs, etc. for the following Customer's Product that requires extremely high reliability. Aerospace equipment, nuclear power control equipment, submarine relay equipment, etc.
- 10) Do not use Reference Designs, etc. for military use, such as development of weapons of mass destruction, or for any other military purpose.
- 11) ROHM does not assume any liability for any accidents or damages caused by non- compliance with the descriptions in this document.
- 12) The information contained in this document has been carefully prepared to ensure accuracy. However, ROHM shall not be liable for any loss or damage incurred by customers due to errors or misprints in this document.
- 13) Do not reproduce or duplicate any part of this document in any form or by any means without ROHM's permission.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

www.rohm.com