Transistor

What is a Thermal Model?

Among SPICE models, there are models for performing simulations in relation to heat, which are referred to as thermal models. Simulations using the thermal models are performed to make a rough estimate during the initial stage of thermal design. This application note explains the thermal models.

Definition of thermal resistance

First, we explain the definition of thermal resistance. Thermal resistance is a quantification of how difficult it is for heat to be conducted. Using a diagram and equation, thermal resistance is represented as the quotient of the temperature difference between 2 given points by the heat flow between the 2 points (amount of flow per unit time, power consumption) P, as shown in Figure 1.

![Figure 1. Definition of thermal resistance](image)

Thermal resistance \(R_{th} \)

\[
R_{th} = \frac{T_1 - T_2}{heat\ flow\ P} = \frac{Temperature\ difference\ \Delta T}{Heat\ flow\ P} \quad [^\circ C/W]
\]

As these diagram and equation look familiar, they can be treated equivalently to Ohm’s law. Figure 2 shows Ohm’s law using a diagram and equation. It can be seen that the respective parameters are replaceable by heat and electricity.

What is a thermal model?

In a thermal model, a location corresponding to transient thermal resistance is replaced by an electrical circuit model, so that the transient thermal resistance characteristics can be calculated using an electrical circuit.

The junction temperature \(T_j \) can be calculated by Equation (1).

\[
T_j = R_{th,JA} \times P_C + T_A \quad [^\circ C]
\]

\(R_{th,JA} \): Thermal resistance between junction and ambient temperature \([^\circ C/W]\)
\(P_C \): Power consumption of device \([W]\)
\(T_A \): Ambient temperature \([^\circ C]\)

Replacing a thermal circuit with an electrical circuit according to the definition of thermal resistance described above yields Equation (2).

\[
V = R \times I + V_{BIAS} \quad [V]
\]

\(R \): Electrical resistance corresponding to thermal resistance \([\Omega]\)
\(I \): Current corresponding to power consumption of device \([A]\)
\(V_{BIAS} \): Bias voltage corresponding to ambient temperature \([V]\)
What is a Thermal Model?

Next, the simulation circuit and the device configuration are shown in Figures 3 and 4, respectively. From Equations (1) and (2), a voltage with an RC time constant is generated in the Tj pin by applying the power consumption P_D of the device to the Tj pin as a current I and applying the ambient temperature T_A to the Ta pin as a bias voltage V_{BIAS}. This generated voltage represents the junction temperature. In addition, the resistance connected to the Tc pin is R_1 that is thermal resistance between the case and the heat sink (R_{thCF}) and R_2 that is thermal resistance between the heat sink and the ambient temperature (R_{thFA}). R_{thCF} includes the thermal resistance of the thermal interface material (TIM) and the contact thermal resistance. C_1 is the heat capacity of the heat sink. R_2 and C_1 comprise the heat sink.

Due to heat capacity of objects, temperature will not increase immediately even when the power consumption of the device is increased. Heat capacity represents how easily temperature can change. The larger the heat capacity, the slower temperature rises. The heat capacity of an object is defined as the amount of heat required to raise the temperature of the object by 1 K (kelvin). The unit of heat capacity is J/K (joule per kelvin). In some countries, W·s/K (watt second per kelvin) is also used (equal to J/K). In addition, K and °C are considered equal when treating relative temperatures.

Since it is necessary to replace this heat capacity with an electrical model, heat capacity is treated as capacitance of a capacitor in thermal models. Figure 5 shows the circuit of a thermal model. This is referred to as a Cauer RC thermal circuit network. By applying voltage (= ambient temperature) to the Ta pin and applying current (= power consumption of the device) to the Tj pin, a voltage (= temperature) with an RC time constant is generated on the Tj pin.

Actual thermal model

Due to heat capacity of objects, temperature will not increase immediately even when the power consumption of the device is increased. Heat capacity represents how easily temperature can change. The larger the heat capacity, the slower temperature rises. The heat capacity of an object is defined as the amount of heat required to raise the temperature of the object by 1 K (kelvin). The unit of heat capacity is J/K (joule per kelvin). In some countries, W·s/K (watt second per kelvin) is also used (equal to J/K). In addition, K and °C are considered equal when treating relative temperatures.

Since it is necessary to replace this heat capacity with an electrical model, heat capacity is treated as capacitance of a capacitor in thermal models. Figure 5 shows the circuit of a thermal model. This is referred to as a Cauer RC thermal circuit network. By applying voltage (= ambient temperature) to the Ta pin and applying current (= power consumption of the device) to the Tj pin, a voltage (= temperature) with an RC time constant is generated on the Tj pin.

Next, Figure 6 shows the netlist of SPICE. As a subcircuit, only values of R and C are described. Therefore, a change in the characteristics due to self-heating is not considered.
What is a Thermal Model?

To create a thermal model, first mount the device on an infinite heatsink (cold plate) and perform actual measurement using transient thermal measurement equipment (e.g., T3Ster*). Next, calculate the structure function from the measurement data to express the thermal resistance and heat capacity of the package. Figure 7 shows an example of the structure function. The structure function obtained from transient thermal measurement equipment is represented as a network subdividing the effect of three-dimensional temperature distribution as well as the thermal resistance and the heat capacity. Therefore, each boundary is not so clear, for example, between the chip and the die bonding in the measurement mounting diagram shown in Figure 8. Thus, each device in Figure 5 does not correspond one-to-one with the thermal resistance and the heat capacity existing in each component in Figure 8. In addition, although the configuration has 3 RC stages in the example shown in Figure 5, it may have 4 stages or more.

The key points of the “thermal models” are summarized as follows.

• Among SPICE models, there are thermal models for performing simulations in relation to heat.

• A thermal model is a model of an electrical circuit corresponding to the transient thermal resistance for performing calculations of a thermal circuit on an electrical circuit.

• By applying the power consumption P_C as current I to the thermal model, the junction temperature T_J can be monitored as voltage.

How to obtain thermal models

The thermal models are available from ROHM’s home page. On the page for the individual product name, select the “TOOLS” tab and download the file from “Thermal Model” in the items of “MODELS”.

* T3Ster is the product of Mentor Graphics Corp.
Notice

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

ROHM
SEMICONDUCTOR

www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.

R1102B