

ROHM Solution Simulator

Excellent EMI Immunity High Output Drive Rail-to-Rail Input/Output CMOS Operational Amplifier

BD87521G-LB – Voltage Follower **DC Sweep simulation**


This circuit simulates DC sweep response with Op-Amp as a voltage follower. You can observe the output voltage when the input voltage is changed. You can customize the parameters of the components shown in blue, such as VSOURCE, or peripheral components, and simulate the voltage follower with the desired operating condition.

You can simulate the circuit in the published application note: Operational amplifier, Comparator (Tutorial). [JP] [EN] [CN] [KR]

General Cautions

- Caution 1: The values from the simulation results are not guaranteed. Please use these results as a guide for your design.
- Caution 2: These model characteristics are specifically at Ta=25°C. Thus, the simulation result with temperature variances may significantly differ from the result with the one done at actual application board (actual measurement).
- Caution 3: Please refer to the Application note of Op-Amps for details of the technical information.
- Caution 4: The characteristics may change depending on the actual board design and ROHM strongly recommend to double check those characteristics with actual board where the chips will be mounted on.

1 Simulation Schematic

Figure 1. Simulation Schematic

How to simulate

The simulation settings, such as parameter sweep or convergence options. are configurable from the 'Simulation Settings' shown in Figure 2, and Table 1 shows the default setup of the simulation.

In case of simulation convergence issue, you can change advanced options to solve. The temperature is set to 27 $^{\circ}\text{C}$ in the default statement in 'Manual Options'. You can modify it.

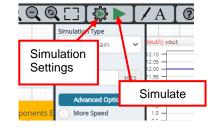


Figure 2. Simulation Settings and execution

Table 1. Simulation settings default setup

Parameters	Default	Note
Simulation Type	DC	Do not change Simulation Type
Parameter Sweep	VSOURCE	VOLTAGE_LEVEL from 0 V to 5 V by 0.1 V
Advanced options	Balanced	-
	Convergence Assist	-
Manual Options	.temp 27	-

©2024 ROHM Co., Ltd. No. 67UG006E Rev.001 Apr.2024 1/3

3 **Simulation Conditions**

Table 2. List of the simulation condition parameters

Instance Type		Parameters	Default	Variable Range		Units
		Parameters	Value	Min	Max	Ullits
VSOURCE	Voltage Source	Voltage_level	5	VSS	VDD	V
		AC_magnitude	0.0	fixed		V
		AC_phase	0.0	fixed		0
VDD	Voltage Source For Op-Amp	Voltage_level	5	4 ^(Note1)	15 ^(Note1)	V
		AC_magnitude	0.0	fixed		V
		AC_phase	0.0	fixed		0

(Note 1) Set it to the guaranteed operating range of the Op-Amps.

Op-Amp model

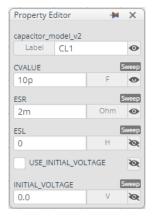
Table 3 shows the model pin function implemented. Note that the Op-Amp model is the behavioral model for its input/output characteristics, and neither protection circuits nor functions unrelated to the purpose are implemented.

Table 3. Op-Amp model pins used for the simulation

Pin Name	Description		
+IN	Non-inverting input		
-IN	Inverting input		
VDD	Positive power supply		
VSS	Negative power supply / Ground		
OUT	Output		

©2024 ROHM Co., Ltd. No. 67UG006E Rev.001 Apr.2024 2/3

5 Peripheral Components


5.1 Bill of Material

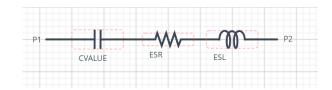

Table 4 shows the list of components used in the simulation schematic. Each of the capacitors has the parameters of equivalent circuit shown below. The default values of equivalent components are set to zero except for the ESR of C. You can modify the values of each component.

Table 4. List of capacitors used in the simulation circuit

Type	Instance Name	Default Value	Variable Range		Units
Type			Min	Max	UIIIIS
Resistor	R1_1	0	0	10	kΩ
	RL1	10k	1k	1M, NC	Ω
Capacitor	C1_1	0.1	0.1	22	pF
	CL1	10	free. NC		pF

5.2 Capacitor Equivalent Circuits

(a) Property editor

(b) Equivalent circuit

Figure 3. Capacitor property editor and equivalent circuit

The default value of ESR is $2m \Omega$.

(Note 2) These parameters can take any positive value or zero in simulation but it does not guarantee the operation of the IC in any condition. Refer to the datasheet to determine adequate value of parameters.

6 Recommended Products

6.1 Op-Amp

BD87521G-LB: 1ch Excellent EMI Immunity High Output Drive Rail-to-Rail I/O CMOS Op-Amp. [JP] [EN] [CN] [KR] [TW] [DE] BD87522FJ-LB: 2ch Excellent EMI Immunity High Output Drive Rail-to-Rail I/O CMOS Op-Amp. [JP] [EN] [CN] [KR] [TW] [DE] BD87524FV-LB: 4ch Excellent EMI Immunity High Output Drive Rail-to-Rail I/O CMOS Op-Amp. [JP] [EN] [CN] [KR] [TW] [DE] Technical Articles and Tools can be found in the Design Resources on the product web page.

©2024 ROHM Co., Ltd.

No. 67UG006E Rev.001

Apr.2024

General Precaution

- 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001