

USB PD Controller Series

Stand-Alone PD Controller for Sink **BD93F10MWV EVK**

BD93F10MWV-EVK-001 (Stand-Alone)

Introduction

This User's Guide describes the series of required procedures to operate and evaluate the EVK of the PD controller BD93F10MWV for Sink. The documentation also contains the circuit components, operating procedures, and the Application Data.

Overview

BD93F10MWV-EVK-001 implements Stand-Alone PD Controller IC of BD93F10MWV in Sink mode. This EVK performs the Type-C connection and make PD contracts with an attached Source device according to the configuration of the DIP switches on the board. The EVK assumes Stand-Alone operation in the Dead Battery mode, so this EVK does not need an external power source and works as a VBUS powered product. The board will supply power and voltage via VSNK terminal based on the negotiation contracted with the source. Therefore, any existing board that is powered by an AC adapter or a regulated power supply up to 80W/20V can work and be evaluated with the EVK as a Type-C/PD power source.

EVK Operation Condition

Parameter	Min	Тур	Max	Units	Conditions
VBUS Power Supply	3.67	5.0	22	V	
VSRC5V Power Supply	3.1	5.0	5.5	V	
VSNK Output Voltage	4.75	5.0	22	V	Guaranteed by USB Standard and connected Source.
VSNK Output Current Range			3.0/5.0	А	Depending on the Type-C cable. The actual load current is depending on the sink device operation that connects to VSNK terminal.

© 2021 ROHM Co., Ltd. No. 64UG054E Rev.001 1/18

EVK Overview

Figure 1. BD93F10MWV-EVK-001(Top View)

Descriptions of EVK Functions

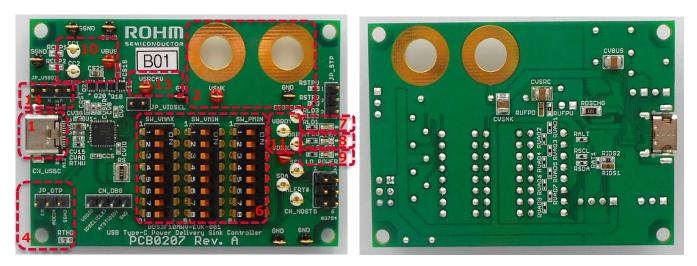


Figure 2. Descriptions of BD93F10MWV-EVK-001 Functions

This EVK has the functions that are defined in Table 1. Other than the functions listed, this EVK User Guide does not support it.

Table 1. Descriptions of available functions

No.	Function	Silk Indication	Description	Default Setting
1	Type-C Receptacle	CN_USB	Certified USB Type-C Receptacle TID: 5,200,000,020	-
2	Input System Power/Ground	VSNK, GND	The output for a system to an external device.	-
4	Enable OTP	JP_OTP	Enable/Disable configuration for (OTP) Over Temperature Protection with PTC thermistor. EN short: Enabled / EN Open: Disabled	Enabled
6	Select Auto Sink Request	SW_VMAX, SW_VMIN, SW_PMIN	Automatically selects the range of Power and Voltage to be contracted by USB PD.	VMAX = Set8, VMIN = Set1, PMIN = Set1, (5V to 20V, 0.5W)
7	LED of VBRDY	LD_VBR	Indicates when the series of process including the Type-C connection and USB PD contract is completed. Note that the indication doesn't mean that VBUS is supplying VSNK. The LED also turns on when the 5V PD contract is established due to the less power capability of the source side.	-
8	LED of ORIENT	LD_ORI	Indicates the orientation (Normal or Flip) of the connected Type-C. ON: Connected by CC2 OFF: Connected by CC1 or disconnected.	-
9	LED of POWER	LD_POWER	Indicates the condition of the LSI. ON: The power is supplied to the LSI. OFF: No power supply.	-
10	Monitor USB PD Communication	CC1, CC2,	Monitor terminals for Type-C voltage level and USB PD Communication.	-
10	Monitor VBUS condition	VBUS	Monitor terminal for VBUS voltage.	-
11	Monitor Functions	VBRDY, ORIENT,	Monitor terminal for LSI features.	-
13	SRC Power of 5V	VSRC5V	5V power supply from external power source. Connect VSRC5V to a 5V supply that is normally derived from the system battery.	-
14	USB 1.x / 2.0 communication	JP_USBD1, JP_USBD2	Communication terminal for USB 1.x / 2.0 D+(P)/D-(N) JP_USBD1: CC1 side JP_USBD2: CC2 side	-

We cannot respond to inquiries other than the functions above.

EVK schematic

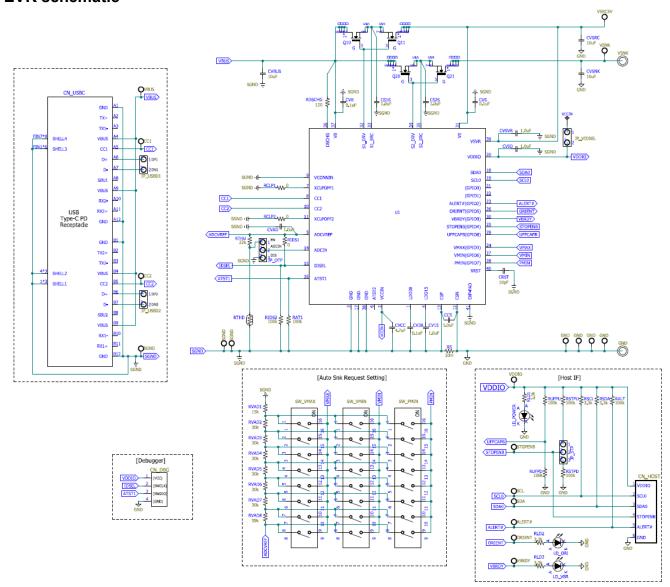


Figure 3. BD93F10MWV-EVK-001 Schematic

Operating Sequence

(The preparation for power up)

1. Confirm if both JP_VIOSEL and JP_STP are shorted by a jumper pin. The EVK cannot work correctly if there are no jumper pins on these terminals. It is highly recommended to be checked. (These jumpers are present by default.)

2. Short EN and ADCIN on JP_TOP if the Over Temperature Protection with the external PTC thermistor is in use. If not in use, short ADCIN and SGND.

3. Set SW_VMAX, SW_VMIN and SW_PMIN according to required PD contract. Please refer to Figure 9 for further information.

4. When connecting the existing system board for evaluation, connect the EVK into the existing system board before power up as shown in Figure 6.

(Check operation)

- Prepare any source device, e.g., Type-C/PD adapter, then connect to the Type-C receptacle on the EVK via a cable. Please
 insert a USB Type-C / PD protocol analyzer between the Source device and EVK if it is required to monitor the transaction
 on CC signals as shown in Figure 8.
- When LD_VBRDY lights up, it shows that the connection with a Source device is completed. LD_ORI shows the orientation of the inserted plug.
- 3. Confirm the contracted voltage from VSNK using a digital multimeter shown in Figure 4.

If there is no monitored VSNK voltage, below are the possible reasons:

- Type-C devices cannot be identified by the port as Sink or Source device. It is possible that the connected device is a Sink device.
- The connected Source device cannot meet the required power or voltage configured by PMIN or VMIN.
- There may be a latched-off state that is caused by the overvoltage on the Source or the EVK side due to the inrush current by the load connected on VSNK. The EVK has no countermeasures for inrush current so it is required for a system to prevent it.

Please check both Figure 15. and Figure 16. to confirm the correct behavior of the Type-C/PD connection.

(Connection examples and details)

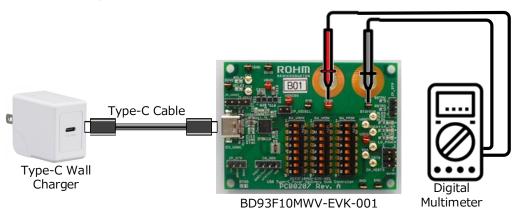


Figure 4. An evaluation for only EVK with Type-C cable

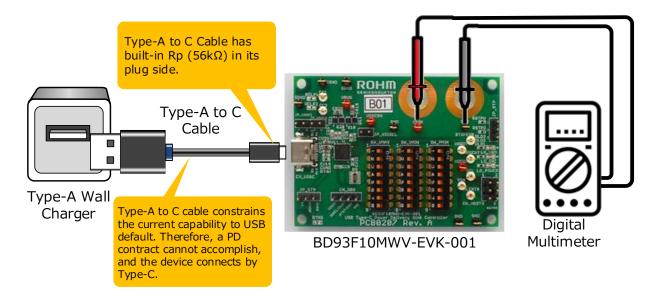


Figure 5. An example of the connection with Type-A to C Cable

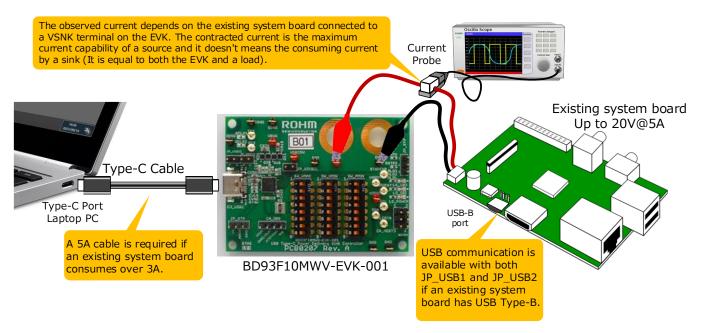


Figure 6. An example of the connection of the EVK supplying power to an existing system board

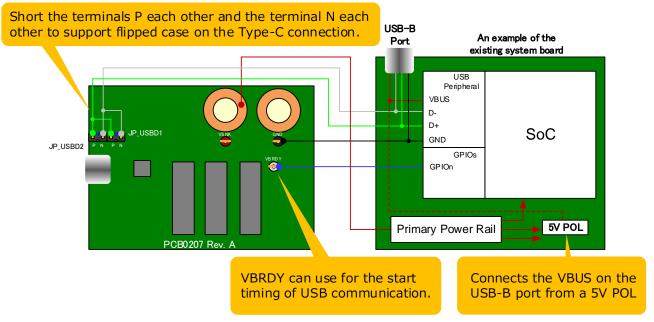


Figure 7. An example of USB connection on an existing system board

Figure 8. An example of the connection with a protocol analyzer for PD communication

(Change configuration of the PD contracts)

Note: The configurations of SW_VMAX, SW_VMIN, and SW_PMIN are stored upon power-up. <u>Dynamically changing the DIP switches will not change the configuration during operation.</u> Please do the following procedures to set the new configuration, settings will be reflected after a power cycle of the EVK.

- 1. Turn off VSRC5V if powered up.
- 2. Unplug the Type-C cable from the Type-C receptacle and disconnect it from the Source device.
- 3. Change SW_VMAX, SW_VMIN, and SW_PMIN according to the requirement.
- 4. Power VSRC5V if necessary. The new configuration is stored at power up
- 5. Reconnect the Source device to the Type-C receptacle of the EVK via Type-C cable.

W PMIN[W] 0.5 7.5 15 27 36 45 60 80

Configuring the USB PD contract range

This EVK can set the range of USB PD contract automatically according to SW_VMAX, SW_VMIN, SW_PMIN DIP switch settings. The EVK can make a contract with a PD source that has a range within the "USB PD Contractable Range" shown in Figure 9. The EVK requires a power cycle to update the range assigned by SW_VMAX, SW_VMIN, and SW_PMIN. A power cycle occurs by both disconnecting from a Source device and losing power from VSRC5V. If there is no VSRC5V, only disconnecting from a Source device is required

A USB PD contract is determined by USB PD communication on either CC1 or CC2 between a Source and Sink device after the Type-C connection. Please refer to Figure 16. regarding USB PD communication waveform.

Note: Each DIP switch must only have one pin at ON. Multiple positions are not allowed, as it does not guarantee the expected operation.

Table 2. The table for the range of PD contract by SW VMAX / SW VMIN / SW PMIN

1 SH_UMAX 1 SH_UMIN 1 SH_PHIN	Set	SW_VMAX[V]	SW_VMIN[V]	SI
(= = 0 (= = 0 (= = 0)	1	5 *	5 *	
(N = ZD (N = ZD (N = ZD	2	9*	9*	
Tú m P Tu m P Tu m P	3	12	12	
TIME ADD COMMAND	4	15 *	15 *	
Com Dan Dan D	5	16	16	
Com D Com D Com D	6	18	18	
Quant D Quant D Quant D	7	19	19	
Stom Brown Date 1	8	20 [*]	20 *	

^{*}Required voltage depending on the power specified for the Source device specified in the PDP Rating in the USB PD standard. Others are optional.

Table 3. The detailed information for three DIP switches

Terminal	SW_VMAX	SW_VMIN	SW_PMIN
Description	 The upper limit voltage for the USB PD contract. The device does not make a contract that exceeds this value. The value should not be less than SW_VMIN. It will operate as 5V@0.1A if SW_VMAX is less than SW_VMIN. 	•The lower limit voltage for the USB PD contract. The device does not make a contact that falls under this value. • Set SW_VMAX equal to SW_VMIN if a specific fixed voltage is required.	•The lower limit power for the USB PD contract and it shall meet the minimum power that can operate the sink device. The product cannot make a contract with the Source device if the power capability is not enough.
	icos tian ovv_viviiv.	•The value should not be more than SW_VMAX. It will operate as 5V@0.1A if SW_VMIN is more than SW_VMAX.	•The maximum current for the sink on the contracted current is up to the maximum current capability of a source.
			If a setting where SW_PMIN / min(SW_VMAX or SW_VMIN), exceeds 5A, then it will operate as 5V@0.1A.

Figure 9 shows the specific range by SW_VMAX, SW_VMIN, and SW_PMIN that allows USB PD Contract.

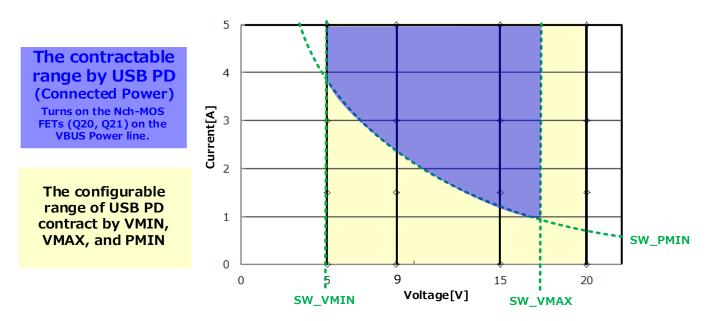


Figure 9. USB PD Contractable Range

Figure 10 shows the contracted power data objects (PDO) with a 45W source supporting 5V, 9V, and 15V when DIP switches are set to SW_VMAX = 15V (Set to 4), SW_VMIN = 9V (Set to 3), and SW_PMIN = 15W (Set to 3).

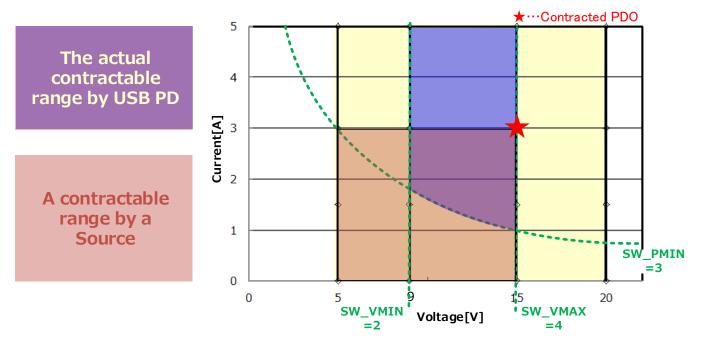


Figure 10. The contractable range with a source under the example

According to the ★ sign, the contracted PDO is specified to the maximum power within the USB PD contractable range. USB PD standard mandates the specific voltages according to the power of the contracted Source. 5V, 9V, 15V, and 20V are mandatory and other voltages are optional.

For example, if the EVK SW_VMAX is set to 12V and connected to the Source device specified in Figure 9, where the Source device does not have 12V as an option, then the contract with the EVK will be a PDO of 9V@3A.

Over temperature protection by an external PTC thermistor

This EVK has over temperature protection using thermistor RTHD mounted on the board. The detection threshold of the protection is set to 120°C, and when the temperature around the PTC thermistor reaches the set temperature, the device turns off the Nch-MOS FET (Q20 and Q21) on VBUS power line to isolate VBUS from the system safely. To enable this protection, connect JP_OTP EN and ADSIN with a jumper pin.

Other than the temperature detected at RTHD, the overtemperature protection can be triggered by the specific applied voltage as defined in Table 4.

·			
Items			
Detection temperature [°C]	120		
Implemented PTC thermistor as RTHU	MURATA PRF15BD102QB6RC		
ON Threshold [V]	0.780		
OFF Threshold [V]	0.470		
Divided resistance RTHU [Ω]	22k		

Table 4. The parameters of the OTP with PTC thermistor

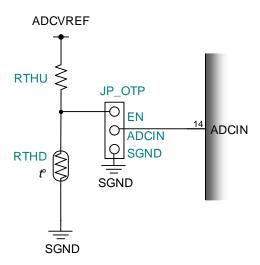


Figure 11. OTP Schematic Circuit

Parts List

Table 5. Parts List

	, ,	Table 5. Parts	LIST	1
Part No.	Value	Manufacturer	Model Number	Size [mm(inch)]
IC				
U1	BD93F series	ROHM	BD93F10MWV	5.00 x 5.00
FET				
Q10, Q11, Q20, Q21	RW4E075AJ	ROHM	RW4E075AJ	HEML1616L7
Capacitor				
CCS, CV15, CVAD, CVIO, CVSVR	1μF	MURATA	GRT155R61C105ME01D	1005(0402)
CRST	10pF	WURTH	885012006017	1608(0603)
CS1S, CS2S	1μF	TDK	CGA3E3X5R1H105K080AB	1608(0603)
CV38, CVB, CVS	0.1µF	MURATA	GCM155L8EH104KE07D	1005(0402)
CVBUS, CVSRC,	10µF	MURATA	GCM32EC71H106KA03L	3225(1210)
CVSNK CVCC	4.7µF	MURATA	GRM188R61E475KE11D	1608(0603)
	4.7μΓ	MURATA	GKW166K61E473KE11D	1000(0003)
Resistor RDSCHG	120Ω	ROHM	KTR18EZPJ121	3216(1206)
RS	120Ω 10mΩ	ROHM	LTR18EZPFU10L0	3216(1206)
RIDS1	0Ω	No mount	LINIOLZFI OTOLO	1608(0603)
RIDS2	100ΚΩ	ROHM	ESR03EZPF1003	1608(0603)
RAT1, RALT, RSTPU,	100ΚΩ	ROHM	MCR01MZPF1003	
RSTPD				1005(0402)
RUFPU	100ΚΩ	ROHM	ESR03EZPF1003	1608(0603)
RUFPD RLD1, RLD2, RLD3,	100ΚΩ	No mount	<u>-</u>	1608(0603)
RSCL, RSDA	3.3kΩ	ROHM	MCR01MZPF3301	1005(0402)
RTHU	22ΚΩ	ROHM	MCR01MZPF2202	1005(0402)
RVAD1	15ΚΩ	ROHM	MCR01MZPJ153	1005(0402)
RVAD2, RVAD3, RVAD4, RVAD5, RVAD6, RVAD7	30ΚΩ	ROHM	MCR01MZPF3002	1005(0402)
RVAD8	39ΚΩ	ROHM	MCR01MZPF3902	1005(0402)
RCLP1, RCLP2	Ω0	No mount	-	1608(0603)
Thermistor				
RTHD	PRF15BD102QB6RC	MURATA	PRF15BD102QB6RC	1608(0603)
Connector				
CN_USBC	DX07B024JJ1R1500	JAE	DX07B024JJ1R1500	Type-C Receptacle
LED				Receptacie
LD_POWER, LD_ORI, LD_VBR	LED	ROHM	SML-D12M8W	LED
Switch				
SW_VMAX, SW_VMIN, SW_PMIN	Dip SW "Totsu" 8 poles	OMRON	"Kata" A6T-8104	DIP8_SW
Contact pin	T			
TP1, TP2	CC1, CC2	MAC 8	LC-2-G-White	TESTPIN
TP3, TP4, TP5, TP6	VBUSV, SRC5V, VSNK, VDDIO	MAC 8	LC-2-G-Red	TESTPIN
TP7, TP8, TP9, TP10, TP11, TP12	SCLSDA, ALERT, ORIENT, VBRDY, STOPENB	MAC 8	LC-2-G-White	TESTPIN
TPGND1, TPGND2, TPGND3	SGND	MAC 8	LC-2-G-Black	TESTPIN
TPGND4, TPGND5, TPGND6, TPGND7	GND	MAC 8	LC-2-G-Black	TESTPIN
TERMINAL	VSNK	-	-	TESTPIN
TERMINAL	GND	-	-	TESTPIN

Part No.	Value	Manufacturer	Model Number	Size [mm(inch)]
CN_HOST	HDR2X3	Useconn Electronics.Ltd	PH-2X3SG	HDR2X3
CN_DBG	HDR1X4	SULLINS Connector Solutions	PREC004SAAN-RC	HDR1X4
JP_STP, JP_OTP	HDR1X3	TE CONNECTIVITY	5-146285-3	HDR1X3
JP_VIOSEL, JP_USBD1, JP_USBD2	HDR1X2	TE CONNECTIVITY	9-146256-0-01	HDR1X2

© 2021 ROHM Co., Ltd. No. 64UG054E Rev.001 13/18

Board Layout

EVK PCB Information

Number of Layers	Material	Board Size	Copper Thickness
3	FR-4	70mm x 50mm x 1.6mmt	1oz (35µm)

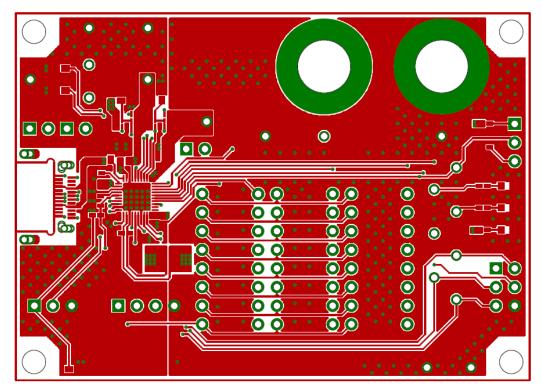


Figure 12. Top Layer (Top View)

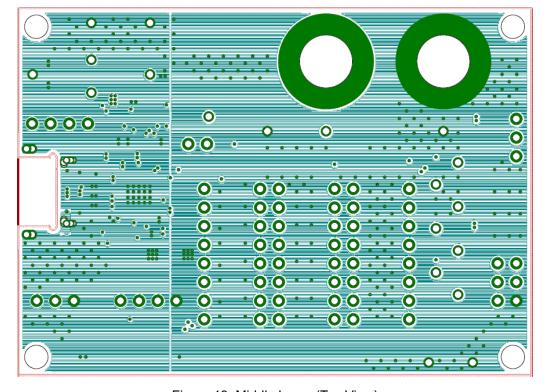


Figure 13. Middle Layer (Top View)

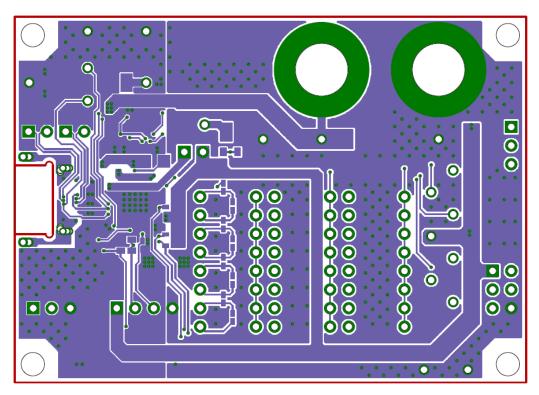


Figure 14. Bottom Layer (Top View)

Reference Application Data

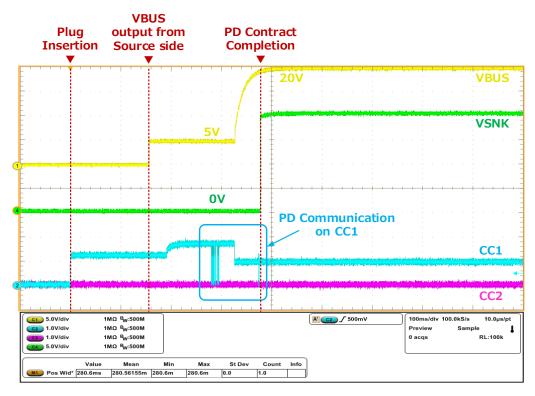


Figure 15. The waveform of the USB PD Negotiation at 20V

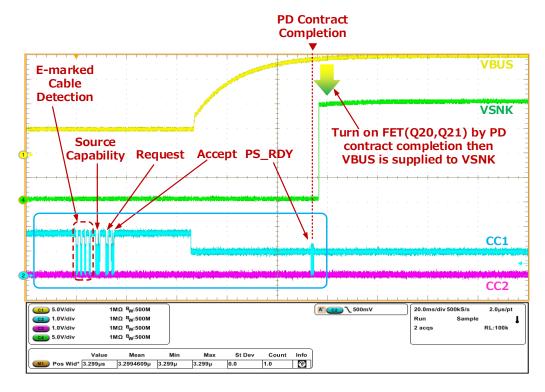


Figure 16. The waveform of the USB PD Negotiation at 20V (Detailed PD Communication)

The USB PD communication on CC1 or CC2 signal results in BMC modulated digital communication with a 1 UI of 300 KHz. It is necessary to check this communication for analyzing and debugging when introducing USB PD system. Below are some relatively inexpensive protocol analyzers that have enough merits in USB IF Workshop.

- Total Phase USB Power Delivery Analyzer TP350110
- TELEDYNE LECROY Mercury T2C Protocol Analyzer USB-TMPD-M02-X

Revision History

Date	Revision Number	Description
Oct. 19. 2021	001	Initial release

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/