

1/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide

tinyMicon MatisseCORE™

matiseye™-studio User’s Guide

How to build and operate a C development environment for Matisse using Visual Studio Code

2/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

Revision History

Date Version Description

2024/02/22 Rev.001 Initial publication

2024/05/10 Rev.002 Adding Stack Static Analysis (Stack View)

2024/07/24 Rev.003 Modified VS Code installation description

3/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

Table of Contents

1 Introduction .. 5

1.1 Overview .. 5

2 Installation Procedure .. 6

2.1 Installing C Programming Tools for Matisse.. 6

2.2 Installing Visual Studio Code(VS Code) ... 7

2.3 Installing cpptools on VS Code ... 8

2.4 Installing matiseye™-studio on VS Code ... 9

3 How to use Visual Studio Code (VS Code) .. 10

3.1 VS Code Window Description .. 10

3.2 Status Bar Description .. 11

3.3 Operating VS Code .. 12

4 Project Configuration and Setting Items .. 13

4.1 Configuration of the Samples Project ... 13

4.2 Compiler/Debugger Setting Items（settings.json）.. 14

5 How to Build .. 16

5.1 Running Build Task and Generated Files ... 16

5.2 MAP File ... 17

5.3 Stack Static Analysis .. 18

6 Debug .. 19

6.1 Debug Window Descriptions .. 19

6.2 Debug Menu ... 21

6.3 Breakpoints .. 22

6.4 Debug Toolbar .. 23

6.5 Data Inspection... 24

6.6 Call stack .. 25

6.7 MEMORY ... 26

6.8 PERIPHERALS .. 27

6.9 DISASSEMBLY .. 28

6.10 PERFORMANCE .. 29

6.11 Debug Related Keyboard Shortcuts .. 30

6.12 Memory Window ... 31

6.13 Peripheral Window .. 32

6.14 Function call history on CPU resetting .. 33

7 Command Execution ... 34

7.1 Displaying the Command Palette and Command Input .. 34

8 Frequently asked questions ... 35

9 Shortcut Key List ... 37

9.1 General ... 37

9.2 File Management .. 38

9.3 Editor Management .. 39

9.4 Editing .. 40

9.5 Search and Replace ... 41

9.6 Rich Language Editing ... 42

9.7 Display .. 43

4/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

9.8 Debug ... 44

10 Open-source software licenses .. 45

11 Trademark notices ... 45

5/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

1 Introduction

1.1 Overview

matiseye™-studio is a C development environment for Matisse. This tool is based on Visual Studio Code.

● File List

Table 1. matiseye™-studio File List

MatisseCCompiler-*.*.*.exe Installer for C programming tools for Matisse.

matiseye-studio-*.*.*.vsix Extension files that enable VS Code C programming features to be used for Matisse.

sample_project.zip A sample C language development project.

LED_Timer_Int_C.zip A sample C project for timer interrupt and LED blinking.

● Prerequisite

OS: Windows 7 32-bit / Windows 7 64-bit / Windows 10 32-bit / Windows 10 64-bit

CPU: Comparable performance to Intel Core line

Memory: 2GByte or more

HDD: 1GByte or more free space

.Net Framework: Version 4.7.2

● Compiler Restrictions

The current version has the following limitations:

［Matisse Settings］

・ MUL instruction: selectable for hardware (default without MUL for both hardware and IDE)

・ Number of general-purpose registers: fixed to 16

［Others］

・ 64-bit integer type (long long) and floating point number types (float and double) are not supported.

・ Variable-length arguments and variable-length arrays are not supported.

・ Dynamic memory allocation is not supported.

NOTES

Visual Studio Code (VS Code) is a powerful and lightweight OSS code editor developed by Microsoft.

6/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

2 Installation Procedure

2.1 Installing C Programming Tools for Matisse

 Notes

If .Net Framework is not installed on your computer, install Net Framework 4.7.2 first.

1 Double-click “MatisseCCompiler-*.*.*.exe” to run the installer.

NOTES

If User Account Control appears, click Yes.

2 Follow the on-screen instructions to install the software.

3 The following installers are also run automatically during

the installation of the C language compiler.

・Microsoft Visual Studio Redistributable package

・MtProxy (Proxy Server for Debug Board

Communication)

・MtChecker (Development Environment Configuration

Checker)

・mtloader (Program Downloader)

NOTES

If User Account Control appears, click Yes.

4 Restart your PC

NOTES

If you changed the installation location in “Select

Destination Location” from the default setting, you need

to specify the path to the c programming tools in the

setting file.

Figure 2. MatisseCCompiler Installation Window

Figure 1. Run MatisseCCompiler Installer

See “Project Configuration and Setting Items”.

7/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

2.2 Installing Visual Studio Code(VS Code)

NOTES

Please download the latest installer of VS Code from the website (https://code.visualstudio.com).

If the version of VS Code is outdated, the features of matiseye™-studio may not function properly, so please install

the latest version even if you already have it installed.

1 Double-click VS Code installer to launch VS Code installer.

NOTES

The installer is available for 32-bit and 64-bit.

For 32-bit Windows: VSCodeSetup-ia32-*.*.*.exe

For 64-bit Windows: VSCodeSetup-x64-*.*.*.exe

NOTES

If User Account Control appears, click “Yes”.

2 Follow the on-screen instructions to install the software.

Figure 3. Run VS Code Installer

Figure 4. VS Code Installation

8/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

2.3 Installing cpptools on VS Code

NOTES

・ Cpptools is an extension file that adds the ability to develop C programs to VS Code.

1 Start VS Code.

3 Click “Install” to complete the installation.

4 VS Code を再起動します。

Figure 5. Search cpptools

Figure 7. Install cpptools

Figure 6. Start VS Code

2 Click [] (Extensions) > Enter "cpptools" in the

search window and select "C/C++".

4 Restart VS Code.

9/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

2.4 Installing matiseye™-studio on VS Code

NOTES

Installing the matiseye™-studio extension file adds to VS Code the features required to develop C language programs

for Matisse.

If you have a previous version of the extension file (matise-c-setting, mt-studio) installed, please uninstall it before

performing the following steps.

1 Start VS Code.

3 Select “matiseye-studio-*.*.*.vsix" and press [Install].

Figure 9. Click Install from VSIX

Figure 8. Start VS Code

Figure 10. Install matiseye-studio_*.*.*.vsix

4 Restart VS Code.

 Notes

If other VS Code extensions for C/C++ development (CMake, PlatformIO, etc.) are installed, functionality may conflict.

Please disable them when using matiseye -studio.

2 Click [] (Extensions) > [...] (More Actions)

Click > [Install from VSIX].

10/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

3 How to use Visual Studio Code (VS Code)

3.1 VS Code Window Description

 Name Description

A

Explorer Lists open files.

Search Searches for and replaces files with the specified keyword.

Source Control It works with Git.

Debug and Run Debug the program.

Extensions Search for an extension, etc.

B Sidebar
When “Explorer” is selected, folders and files are displayed. When “Search” is selected
search forms and results are displayed. Displayed items vary depending on the selected
function.

C Editor Displays the contents of the open file. Split view of the editor is also supported.

D Panel Displays debugging information and command prompts.

E Status Bar
Displays information about the status of the file, such as character codes and line feed codes.
There are more details on the next page.

Figure 11. VS Code Window

Table 2. VS Code Window Description

A

B

C

D

E

11/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

3.2 Status Bar Description

The status bar at the bottom of the screen allows you to check and change the current settings of VS Code.

Name Description

Cursor Displays the cursor position. Click to change it.

Indentation Displays the indentation. Click to change it.

Encoding Displays the character encoding. Click to change it.

EOL Sequence Displays the EOL sequence or newline code. Click to change it.

Language Mode Displays which language mode the current file is opened in. Click to change it.

Debug Clock Speed

Displays the clock speed of the debug interface when debugging with the Matisse development board.
Click to change it.
If you change it during debugging, the change will not be reflected immediately, but will be reflected
from the next debug session.

C/C++ Configuration Displays the language settings for C/C++. No need to change it. Do not click.

Feedback Click to send feedback comments to Microsoft about VS Code. This is not a ROHM support contact.

Notifications Clicking it will display notifications from VS Code.

Figure 12. VS Code Status Bar

Table 3. VS Code Status Bar Description

Cursor Indentation Encoding EOL

Sequence

Language

Mode

Debug Clock

Speed

C/C++

Configuration

Notifications

Feedback

 Notes

You cannot contact ROHM support desk by using the feedback function.

Please contact the official support desk for feedback and troubleshooting of ROHM products.

12/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

3.3 Operating VS Code

Use sample_project to learn VS Code.

1 Unzip sample_project.zip and save it to a suitable folder.

2 Launch VS Code and select “Open Folder” from File

menu in the toolbar.

3 Select sample_project > src > sample.c in EXPLORER.

The contents of the C source file is displayed. You can

edit the file as is.

Open the sample_project.

 Notes

The path of the folder should not contain multi-byte

characters or spaces.

3 Select the extracted “sample_project” folder and click

[Select Folder].

Edit C source file

NOTES

If you write C syntactically incorrect, it will also be

pointed out before compilation.

Building

Debug

Build the data and generate an executable file.

Check the operation of the program.

Figure 13. VS Code sample_project

Figure 14. Click Open Folder

Figure 15. Select sample_project Folder

Figure 16. Edit C source file

See “How to Build”.

See “Debug”.

 Notes

The workspace is not yet supported by matiseye™-

studio. Please open the project folder directly.

13/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

4 Project Configuration and Setting Items

4.1 Configuration of the Samples Project

This section explains the data structure and settings based on the sample project “sample_project”.

Folder/file name Description

.vscode/settings.json Build and debug settings

src/ C language source code directory

out/ Build result output directory

downloader.bat
When using a development board with non-volatile memory, please run this batch file before
debugging. Then the program data will be written to the non-volatile memory.
See the program downloader manual for details.

Figure 17. Samples Project Configuration

Table 4. Samples Project Configuration

14/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

4.2 Compiler/Debugger Setting Items（settings.json）

Setting Name Description

matisse.C.build.compilerPath (*1) Path to the compiler(mtcc). Specify an absolute path.

matisse.C.debug.debuggerPath (*1) Path to the debugger(mtcsim). Specify an absolute path.

matisse.C.debug.mtProxyPath (*1)
Path to the debug communication proxy server (MtProxy). Specify an absolute
path.

matisse.C.others.downloaderPath (*1) Path to the program downloader (mtloader). Specify an absolute path.

matisse.C.others.mtCheckerPath (*1)
Path to the development environment configuration checker (MtChecker). Specify
an absolute path.

Matisse.C.build.srcFiles A list of source files.

matisse.C.build.includePath A list of directories from which load include files.

matisse.C.build.libraryPath A list of directories from which load library files.

matisse.C.build.libraryFiles A list of library file names.

matisse.C.build.preprocessorDefinitions A list of preprocessor definitions (#define).

matisse.C.build.excludeMul
true: The target board doesn’t include multiplier.
false: The target board includes multiplier.

matises.C.build.optimizationLevel
Optimization level option.
-O0(no optimization) / -O1(optimization level 1) / -O2(max optimization level) / -
Os(Reduced ROM size)

(continued on next page)

NOTES

(*1) If you have changed the installation location from the default setting of the installer, you need to specify the

absolute path to these tools in the configuration file. If not, you do not need to specify these fields.

Figure 18. Compiler/Debugger Setting Items

Table 5. Compiler/Debugger Setting Items Description

 Notes

The setting items should not contain multi-byte characters.

15/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

Setting Name Description

matisse.C.build.programSize

Specify the size of the program area (8-14).
8: 32 kbyte / 9: 36 kbyte / 10: 40 kbyte / 11: 44 kbyte
12: 48 kbyte / 13: 52 kbyte / 14: 56 kbyte

matisse.C.build.dataSize
Specify the size of the data area (1-8).
1: 4 kbyte / 2: 8 kbyte / 3: 12 kbyte / 4: 16 kbyte
5: 20 kbyte / 6: 24 kbyte / 7: 28 kbyte / 8: 32 kbyte

matisse.C.build.exProgramSize
Specify the size of the extended program area (0-32).
0: 0byte / 1: 2kbyte / 2: 4kbyte ... / 32: 64kbyte

matisse.C.build.enableC99CompliantDiagnostics

true: The source code diagnostic function strictly complies with the C99
standard.
false: The source code diagnostic function remains at the default
settings.

matisse.C.debug.debugClockSpeed

Specify the clock speed of the debug interface.
The matiseye-adapter Pro supports from 10kHz to 24MHz.
The matiseye-adpter supports from 10kHz to 1.5MHz. If faster than
1.5MHz is specified, 1.5MHz will be applied.
This item can be also configured from the status bar.

matisse.C.debug.showMemoryWindowOnStart

true: Show Memory Window at the start of debugging.
false: Don’t show Memory Window at the start of debugging.

matisse.C.debug.showPeripheralWindowOnStart

true: Show Peripheral Window at the start of debugging.
false: Don’t show Peripheral Window at the start of debugging.

matisse.C.debug.showBacktraceOnReset

true: Detects a CPU resetting during debugging, displays a function
call history and stop debugging.
false: Detect a CPU resetting and stop debugging.

matisse.C.debug.peripheralViewSvdPath

Path the peripheral register information file that PERIPHERALS reads
at startup. Specify the absolute/relative path. The file is in CMSIS-
SVD format.

matisse.C.debug.enablePeripheralView
true: Show PERIPHERALS at the start of debugging.
false: Don’t show PERIPHERALS at the start of debugging.

"matisse.C.debug.showPerformanceViewOnStart"

true: Show Performance View at the start of debugging.
false: Don’t show Performance View at the start of debugging.

"matisse.C.debug.performanceViewSampleRate"
Sampling rate settings when PERFORMANCE starts up.

matisse.C.others.downloaderOptions A list of program downloader options. Separated with a comma.

(Other settings don’t need to be changed.)

See “Memory Window”.

See “Peripheral Window”.

See “Function call history on CPU resetting”.

See “PERIPHERALS”.

See “PERFORMANCE”.

16/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

5 How to Build

5.1 Running Build Task and Generated Files

File name Description

out/program.map*1 MAP file. It can be used to check memory usage, address of functions, and address of variables.

out/program.elf*2 Program’s debugging binaries.

out/program.bin*2 Program binaries.

1 Choose Terminal > Run Build Task from the toolbar, or

press Ctrl + Shift + B to run the build task.

2 After the build task is performed, the files are generated

in the "out" folder.

Figure 19. Execution Run Build Task

Figure 20. File Generation Run Build Task

Table 6. Run Build Task Description

17/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

5.2 MAP File

 This section describes the format of MAP file.

NOTES

Basically, text is ROM (functions, constants table, etc.), and the.bss/.data is RAM.

Figure 21. MAP File Configuration

Section name Address Size

18/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

5.3 Stack Static Analysis

The Stack View performs static analysis of stack usage based on the built program. It displays the maximum stack usage per

function and the maximum usage for the entire program, helping to prevent stack overflow in advance. Additionally, it allows you

to check the call relationships between functions.

■Start Procedure: To start the analysis, execute "Matisse Analysis: Start Stack Analysis" from the command palette. The build

process will begin, and upon completion, the aforementioned tab will be displayed on the left side of the editor screen.

 Name Description

A Stack View Tab
Displayed on the right side of the editor. If you press the close button while there is unsaved
data, a file save confirmation window will appear. To save data, use the “Export CSV”.

B Maximum Stack Usage
Displays the maximum stack usage for entire program. This value is the sum of the maximum
stack usage of the main function and the interrupt handlers (e.g., irg_handler, nmi_handler).

C Export CSV Outputs the “Detailed Stack Usage Table” as a CSV file.

D Export Graph Image Outputs the “Function” call graph as a PNG image file.

E
Detailed Stack Usage
Table

Column Name Description

Function

Displays the call relationships in a tree format.

Total Stack Size
In addition to the “Stack Size” of the function itself, the displayed value is the
sum of the “Total Stack Size” of the function with the largest stack usage among
all the functions called by that function.

Stack Size Displays the maximum stack usage of the function itself.

Source Displays the file name where the function is defined.

NOTES
Functions that are not called by eny other function are displayed as root nodes

Figure 22. Stack View Window

Table 7. Stack View Window Description

See “Displaying the Command Palette and Command Input”.

D

A

B

C

E

 Notes

When compiler optimization is enabled, function inlining may cause the call graph to differ from the actual program.

19/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6 Debug

6.1 Debug Window Descriptions

To view the debugging Window, select (Run and Debug).

 Name Description

A Debug and Run Display the debugging screen.

B Start Debugging Start debugging.

C Choosing the debug mode
Select board debug (when hardware is connected) or sim debug (when hardware is not
connected) to start debugging in the mode shown.

D Open launch.json Create/display launch.json files and allows you to change the debugging configuration.

E View Settings The debug console appears.

F Debug toolbar

 (continued on next page)

G

Figure 23. Debug Window when “Debug and Run” selected

Table 8. Debug and Run Description

A

B C D E F

Current debug configuration

H
Breakpoint

Current line

See “Debug Toolbar”.

20/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

 Name Description

G VARIABLES Displays the variable names and values.

H WATCH

I CALL STACK

J BREAKPOINTS

K MEMORY

L PELIPHERALS

M DISASSEMBLY

N Debug Console Displays debug logs.

Figure 24. Debug Window when “Debug and Run” selected

Table 9. Debug and Run Description

G
H

I

J
N

Current debug configuration

Current line

K

L

M

See “MEMORY”.

See “DISASSEMBLY”.

See “PERIPHERALS”.

See “Data Inspection”.

See “Breakpoints”.

See “Call stack”.

21/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.2 Debug Menu

 You can also work with debugging items from Debug on the toolbar.

Figure 25. Debug Menu

22/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.3 Breakpoints

You can add or delete breakpoints by clicking to the

space to the left of the code line number.

When debug session starts, the program breaks just

before executing the line of code where you added the

breakpoint.

NOTES

• Breakpoints could be disabled and displayed in gray if

you change source code during debugging. In that

case re-build the program and re-start debugging.

• Breakpoints on lines that do not involve arithmetic

processing, such as variable declarations and blank

lines are disabled and displayed in gray.

You can turn on, off or delete the breakpoints both

individually and collectively.

You can specify function name on “BREAKPOINTS

window”, if you want to break on the start of the function.

BREAKPOINTS window

Figure 26. BREAKPOINTS

Figure 27. BREAKPOINTS Window

Individual breakpoint on/off

Toggle breakpoints on/off in bulk

Deleting breakpoints in bulk

Create a breakpoint by function name

23/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.4 Debug Toolbar

 Once a debug session starts, the Debug toolbar will appear on the top of the editor.

■The left button has the Step Execution function as follows.

 Name Keyboard Shortcuts Description

A

Continue F5 Go to the next breakpoint.

Pause F6 Breaks a running program.

B Step Over F10
Executes the current line and proceeds to the next
line.

C Step Into F11
If the execution of the current line is a function,
proceed into it.

D Step Out Shift+F11 Execute until exiting the currently executing function.

■The button on the right has functions related to the entire debug execution.

 Name Keyboard Shortcuts Description

E Restart Ctrl+Shift+F5 Restart debugging.

F Stop Shift+F5 Terminate debugging.

Figure 28. Debug Toolbar

Table 10. Debug Toolbar Left Button Description

Table 11. Debug Toolbar Right Button Description

A B C D E F

24/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.5 Data Inspection

Close all trees

Delete in bulk

Add watch expression

Double-click or press F2 to edit

NOTES

When you hover the mouse cursor over a variable in the

source code, the contents of the variable are displayed in a

popup.

You can check and edit the value of variables.

If the variable type is a structure, pointer, or array, details of

each element are displayed in a tree format.

The variables displayed in the “VARIABLE window” are local

variables on the call stack.

VARIABLES window

Displaying the result of evaluating an expression for a

specific variable is called a watch expression.

You can specify variable names in “WATCH window”. You

can add or delete variables you want to monitor changes.

WATCH window

NOTES

Use “VARIABLE window” to change the value of a variables.

You cannot change the value in the “WATCH window”.

You can also add a watch expression by right-clicking the

variable in the “VARIABLES window” and clicking "Add to

Watch".

Use “WATCH window” for displaying global variables

Input watch expression

Figure 30. Editing Values

Figure 29. VARIABLES Window

Figure 31. WATCH Window

See “Call stack”.

Checking the value of variables while the program breaks is called data inspection.

You can use this feature in the “VARIABLE window” and “WATCH window”.

25/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.6 Call stack

The “CALL STACK window” displays the history of function calling in reverse order.

 If you select a function name displayed in the “CALL STACK

window”, the contents of the “VARIABLES window” and

“WATCH window” are switched to the contents according to

the scope of the function.

Figure 32. CALL STACK Window

Switching the scope

Function name

The address of function calling or

current program counter.

26/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.7 MEMORY

MEMORY area displays the memory value of the specified range in the screen of VS Code.

 Click "Add MEMORY VIEW" to display the form for adding

MEMORY VIEW.

Memory

Values

The MEMORY VIEW displays the memory range and value as shown above.

Double-click on a memory value to edit the value.

Clicking the Reload button will reload the memory value.

When “Auto” is checked, auto auto-reload starts.

The memory value that has been changed from the previous state will be displayed in red.

Enter the start address and size of the memory range you

want to display in the form and hit enter. The MEMORY

VIEW will be newly displayed in the editor area.

You can enter both hexadecimal and decimal values in the

Add New form.

It is not possible to display a range that exceeds the on-

board memory area.
Figure 33. MEMORY VIEW

Figure 34. MEMORY VIEW Editor Area

Auto Reload

Check

Add MEMORY VIEW

Clear MEMORY VIEW History

History of MEMORY VIEW

Form for adding MEMORY VIEW

Reload Button
Memory

Address

Memory Address

Offset

ASCII Representation

of the memory values

27/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.8 PERIPHERALS

PERIPHERALS displays device info on screen for reading/writing values. Data is from CMSIS-SVD file (<XXX>) specified in File

Path Setting.

 Name Description

A Peripheral Lists Peripheral name double-click creates corresponding tab in editor.

B Peripheral Tabs
Each tab shows a hierarchical list of registers for a peripheral.
• The register layer displays name, offset, and value.
• The field layer displays bit field name, width, and value or list name.

C
Tree
Expand/Collapse

Double-click on a register/field name or click on the "▶" to expand/collapse it.

D Description Tooltip Mouse over the register/field name to see the contents of the <description>.

E Popup Menu

Right-clicking on a peripheral/register/field name opens a menu for performing the following
functions.
• "Copy Value": Copy the register/field value to the clipboard

(If "<access>" is write-only , “Copy Value" is not displayed.).
• “Set Value Format“: Switch display format of register/field to 16, 10, or binary

F Value Input Box Enter a value (in hexadecimal/decimal/binary format) and press Enter to write.

G Register Value List Click the list item to write values.

H Reload All Button Click to reload and update the display of all tabbed peripheral register values.

I Reload Single Button Click to reload and update the display of the register value for the current tab.

J Auto Reload Check When checked, the “Register Single Button” is automatically executed every 1s.

File path setting

SVD files are written in XML, a markup language that uses tags ("<**>").

The file path can be set in settings.json (compiler/debugger settings).

NOTES：By default, multi-byte registers are written in MSB to LSB order, but can be changed to LSB to MSB using the

specified keyword. Additionally, the byte order is little-endian.

Figure 35. PERIPHERALS View

Table 12. PERIPHERALS Description

See “Project Configuration and Setting Items”.

NOTES：When writing or reloading, the last

changed values in input boxes or selection

lists are highlighted in red.

NOTES: If register is "<readAction>", “Force Read" is displayed.

J
A

H

C E G

F B I

D

28/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.9 DISASSEMBLY

DISASSEMBLY area displays the disassembly result of the specified function.

Click "Disassemble function" to open the command palette

for entering the function to be disassembled.

Enter the function name to be disassembled in the

command palette and hit enter to display the disassembly

view in the editor area.

Click "Switch to assembly / Switch to code" to switch

between the disassembly view and the source code view.

Figure 36. DISASSEMBLY Operation Window

29/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.10 PERFORMANCE

■Startup procedure: Set to enable startup in the settings file (settings.json), and when debugging is executed, a window

appears and sampling begins. You can specify the sampling rate at startup in the settings file.

■Pause Procedure: Stopping method: Sampling is interrupted during break, pause, and step execution.

 Name Description

A Performance View Tab
Displayed on the right side of the editor. If unsaved data is present when you press the close button,
a file save confirmation pop-up will appear. Use the "Save File" button to save data.

B PERFORMANCE Table

Updates every 1s. Details are as follows:

Name Description

Function
Lists function names in the program, ordered by the number of samples, and updates
automatically.

Usage
Displays the ratio and graph of the number of samples for each function relative to the
total.

Samples Counts the number of samples executed during sampling.

Address Displays the start address of each function.

Size Displays the size of each function.

C Total Samples
Displays the total number of sampled PC. Sampling occurs only during debugging (excluding pause
and stop).

D Clear Button Clears the display of Total Samples, Usage, and Samples (resets to 0).

E Save File Button Saves the Total Samples and table information as a CSV file.

F
Sampling Rate Selection
List

Allows selection of the sampling rate from the dropdown list. Can be changed at any time.
Rates: 30ms/50ms/70ms/100ms/200ms/500ms/1s.

Table 13. PERFORMANCE View Description

Figure 37. PERFORMANCE View

A

C
F

E

B

D

See “Project Configuration and Setting Items”.

PERFORMANCE displays the execution time ratio of each function in a program. During debugging, the program

counter (PC) is periodically sampled, increasing the count for the current function. This helps verify the execution ratio

of each function and identify high-load functions, enabling efficient system performance enhancement.

 Notes

Since a sampling method, the measurement results are probabilistic. For accuracy, measurements of tens of seconds

to several minutes are required.

30/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.11 Debug Related Keyboard Shortcuts

Key Action

F5 Start debugging

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

Ctrl+Shift+D Open debugging

Ctrl+Shift+Y Open the debug console

F9 Toggle breakpoints

Shift+F9 Continue

F5 Pause

F6 Step Over

F10 Step Into

F11 Step Out

Shift+F11 Start debugging

 NOTES

You can see shortcuts on the right side of the each menu.

Table 14. Debug Related Keyboard Shortcuts

31/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.12 Memory Window

You can monitor memory values and peripheral registers and you can change their values.

If "matisse.C.debug.showMemoryWindowOnStart" in

settings.json is “true", the “Memory Window” will be shown

when debugging starts.

.mapファイル

Memory Window Display Settings

NOTES

You can check the addresses of the global variables in

the MAP file. The address of the global variables are

written in .data area or .bss area. The static variables

are not displayed in the MAP file.

Figure 38. Memory Window

Figure 39. Memory Window Display Settings

See “Project Configuration and Setting Items”.

Switch target by clicking tab

Enter the address or variable name and

press Enter to move the cursor

Double-click or press F2 to edit value

Reload the value

Add new tab

Check to toggle auto reload on/off

 Notes

Do not click on column header (the area where

displayed as “Address 00 01 .. 0F”). The memory display

may be corrupted.

32/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.13 Peripheral Window

The Peripheral window displays information about the peripheral registers. You can monitor or change the property values by

three different ways. The window display is based on the XML file set in the settings file (settings.ini)

Setting Item Description

[Peripheral]
SelectedPeripheral=

Describes the peripheral name to be
displayed when Peripheral Window is
started. If nothing is selected, the first
peripheral will be displayed.
The peripheral name displayed when
Peripheral Window was closed will be
filled in.

[FilePath]
XMLFilePath=

Set the XML file‘s path in which the
peripheral information is written in
CMSIS-SVD format.

Notes
If this path is incorrect, Peripheral
Window will not be started.

NOTES

Setting File：A .ini file that set the peripheral name selected on startup and XML file path.

XML File：A .xml file that describes the peripheral information output by RapidMaker.

.ini File contents

If "matisse.C.debug.showPeripheralWindowOnStart" in

settings.json is “true", the “Peripheral Window” will be shown

when debugging starts.

.ini File

Peripheral Window Display Settings

Edit .ini File in the following formats.

Figure 41. Peripheral Window Display Settings

Table 15. ini File Format Description

See “Project Configuration and Setting Items”.

If the register/field value is larger than 1 bit, displayed as a Text Box.

Values exceeding 4 bytes are abbreviated (“0x...〇〇”).

Click to switch peripheral. At startup, the peripheral configured in the

setting file is displayed.

Double-click on the register name to expand the field.

If the field value is a list, displayed as a Combo Box.

If the field value is 1 bit, displayed as a Check Box.

Check to toggle auto reload on/off

Check to toggle the foremost on/off

NOTES

Each component supports keyboard operation during focus. Please refer to

"PeripheralWindow_users_guide_en.pdf“.

Figure 40. Peripheral Window

Reload the value

settings.json

33/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

6.14 Function call history on CPU resetting

When the CPU is reset during debugging due to WDT or hardware failure or etc, this feature allows you to check which function

was executed when the reset occurred.

If you set "matisse.C.debug.showBacktraceOnReset" in settings.json to "true" and run the build task, the function call history will

be displayed at CPU resetting during debugging.

The function call history will be displayed in the “DEBUG CONSOLE”. After the history is displayed, debugging will be automat ically

terminated.

Field Description

Stack frame number 0 is the function that was being executed at CPU resetting. Followed by the caller functions.

Instruction address

The address of the instruction being executed.
 Notes
Since the program counter is cleared at CPU resetting, the instruction address is not fixed for
functions with a stack frame number 0. Therefore, the address range is displayed.

Function name The function name being executed.

File name The file name being executed.

Line number

The line number of the file being executed.
 Notes
Since the program counter is cleared at CPU resetting, the line number is not fixed for functions with
a stack frame number of 0. Therefore, the line number range is displayed.

 NOTES

• When this functionality is enabled, the instructions for displaying the function call history will be automatically

added to the program. The ROM size becomes larger and the program becomes slower.

• This functionality restores the function call history using the data left on the stack. If the stack data is corrupted, it

will not work properly.

• After detecting a reset by this function, clear the RAM (stack data); if a reset is detected twice in a row without

clearing the RAM, the function call history may not be displayed correctly.

• Inline functions may not appear in the call history. If compiler optimization is enabled, even functions without the

inline keyword will be subject to inlining.

Table 16. Call Stack Format Description

Stack frame number

Instruction address

Function name

File name Line number

Figure 42. Display Function Call Stack at reset

34/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

7 Command Execution

7.1 Displaying the Command Palette and Command Input

■The matiseye™-studio adds the following commands to VS Code

Command Description

Matisse Debug:
Start Memory Window

Startup the Memory Window.

 Notes
This command is only available during debugging.

Matisse Debug:
Start Peripheral Window

Startup the Peripheral Window.

 Notes
This command is only available during debugging.

Matisse Debug: Start MtChecker Startup the MtChecker (Development Environment Configuration Checker).

Tasks: Run Task

The following tasks which are defined in tasks.json can be executed.
• Build: Perform build. Same as Ctrl + Shift + B.
• Clean: Delete all files generated by the build task.
• Rebuild: Run the Clean task and Build task.

Matisse Analysis:
Start Stack Analysis

Startup the Stack View.

Figure 43. Command Palette Display and Command Input

Table 17. Command Palette Description

See “Memory Window”.

See “Peripheral Window”.

See “Stack Static Analysis”.

Type “Ctrl + Shift + P” or F1 from the keyboard to display the Command Palette at the top of the screen.

From here, you have access to various functionality of VS Code.

35/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

8 Frequently asked questions

The functions ei() and di() defined in matisse/interrupt. h display error squiggly lines.

Is there a way to erase it?

Answer

In “matisse.C.build.compilerPath” of the configuration file (settings.json), set the full path of mtcc (default

setting is C:/Program Files/ROHM/Matisse/C/bin/mtcc.exe).

I do not know how to set the library path where the library file is located.

I do not know how to link the library files.

Answer

Please run the build task (Ctrl + Shift + b) after editing the configuration file (settings.json). In the current

development environment, the contents of the settings.json will not be reflected in the source code until you

run the build task.

 Notes

If you want to define function macros, please describe them in your header files, not in the configuration file

(settings.json)

I wrote macro definitions in “matisse.C.build.preprocessorDefinitions” of the configuration file (settings.json),

but they are not reflected in the source code.

Answer

For example, if you want to link a library file called “libAAA.a”, place “libAAA.a” in the folder where the

library path is set and add the setting “libAAA.a” to “matisse.C.build.libraryFiles”.

 Notes

mtcc supports only static links. You cannot link dynamic library files (*.so) .

Answer

For example, if you want to add a folder called “AAA” to the library path, add the setting “AAA” to

“matisse.C.build.libraryPath”.

36/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

Answer

Add “-ffunction-sections” to “matisse.C.build.additionalCompileOptions” and “--gc-sections” to

“matisse.C.build.additionalLinkerOptions” to “matisse.C.build.additionalLinkerOptions“in the settings file

(settings.json). This will prevent unused functions from being included in the build output file.

During the build, a pop-up like a following image is displayed in the lower right corner of the screen. What

do I need to do?

Answer

Press “Allow”. If you accidentally clicked a “Disallow”,

Follow these steps:

Press the F1 key and enter “Select Default Shell”.

Press the Enter key.

Select “Command Prompt” from the displayed options and press the Enter key.

Is there a way to delete unused functions?

Notes

This setting disables debug functionality. Please do not perform this setting when debugging is required,

but only when creating output files for release.

37/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

9 Shortcut Key List

9.1 General

Shortcut Key Action

 Quick Open

 New window

 Close Tab

 Close Window

Table 18. Shortcut Key List (General)

Ctrl P

Ctrl Shift N

Ctrl W

Ctrl Shift W

38/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

9.2 File Management

Shortcut Key Action

New File

 Open File

 Save

 Save As...

 Save All

 Copy Path of Active File

 Reveal Active File in Explorer

 Show Active File in New Window

Table 19. Shortcut Key List (File Management)

Ctrl N

Ctrl

Ctrl S

Ctrl Shift S

O

Ctrl K

Ctrl K

Ctrl K

Ctrl K

P

R

O

S

39/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

9.3 Editor Management

Shortcut Key Action

Split Editor

Close Editor

Reopen Closed Editor

Open Left Editor

Open Right Editor

Focus into 1
st
, 2

nd
, 3

rd
 Editor Group

Open Next in Current Editor Group

Open Previous in Current Editor Group

Table 20. Shortcut Key List (Editor Management)

Ctrl \

Ctrl

Ctrl

Ctrl PgUp

F4

Shift T

Ctrl PgDn

Ctrl 1 2 3

Ctrl Tab

Ctrl Shift Tab

40/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

9.4 Editing

Shortcut Key Action

Copy Line

Cut Line

Jump to Matching Bracket

Indent Line

Outdent Line

Go to Beginning of Line

Go to End of Line

Toggle Line Comment

Fold Region

Unfold Region

Box Selection

Table 21. Shortcut Key List (Editing)

OR

Ctrl

Ctrl

Shift \

Ctrl

Shift Tab

] Tab

Ctrl [
OR

Home

Ctrl End

Ctrl /

Ctrl Shift [

Ctrl Shift]

Ctrl Alt

Ctrl C

Ctrl X

Mouse

41/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

9.5 Search and Replace

Shortcut Key Action

Find

 Replace

 Find Next

Find Previous

Table 22. Shortcut Key List (Search and Replace)

Ctrl F

Ctrl

F3

Ctrl F3

H

42/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

9.6 Rich Language Editing

Shortcut Key Action

 Trigger Suggestion

 Format Document

 Format Selection

 Go to Definition

Go Back

 Go Next

 Peek Definition

 Open Definition to the Side

 Show References

 Find All References

 Rename Symbol

 Go to Line

 Go to File

Table 23. Shortcut Key List (Rich Language Editing)

F12

Ctrl Space

Ctrl

F12

F

Ctrl K

Ait

Ctrl F

Alt ←

Alt →

Alt F12

Ctrl K F12

Shift F12

Shift Ait

F2

Ctrl G

Ctrl P

43/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

9.7 Display

Shortcut Key Action

Toggle Full Screen

 Zoom in

 Zoom out

 Toggle Sidebar Visibility

 Show Explorer

 Show Search

 Show Debug

Table 24. Shortcut Key List (Display)

Ctrl

F11

+

Ctrl -

Shift

Ctrl B

Ctrl E

Shift Ctrl F

Shift Ctrl D

44/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

9.8 Debug

Shortcut Key Action

Start Debugging

Stop Debugging

Restart Debugging

Step in

Step out

Step over

Toggle Breakpoint

Pause Debugging

Table 25. Shortcut Key List (Debug)

Shift

F5

F5

Shift Ctrl F5

F11

Shift F11

F10

F9

F6

45/45

© 2024 ROHM Co., Ltd. No. 67UG023E Rev.003

June 2024

User’s Guide matiseye™-studio users guide

10 Open-source software licenses

This software includes open-source software (hereinafter referred to as "open-source software program") provided under the

following license conditions, in addition to software for which ROHM owns or is licensed.

Open-source software programs are subject to their respective license terms, so in the event of a conflict between the license

terms of an open-source software program and this material, the license terms of the open-source software program shall prevail.

Included open-source software and their license terms

・glob(ISC)

・gulp(The MIT License)

・CSV Writer(The MIT License)

・@aduh95/viz.js (The MIT License)

・jsonc-parser(The MIT License)

・svgexport(The MIT License)

11 Trademark notices

"Windows" and "VS Code" are trademarks of Microsoft Group companies.

"Intel" is a trademark of Intel Corporation or its subsidiaries.

"Core™" is a trademark or registered trademark of Intel Corporation or its subsidiaries.

“tinyMicon MatisseCORE™” and “matiseye™” are a trademark or registered trademark of ROHM Corporation.

Notice

www.rohm.co.jp
© 2024 ROHM Co., Ltd. All rights reserved.

Caution

1. The information written in these materials regarding the software and system (hereinafter collectively “Software”) and the contents of the

materials are current as of the date of the material’s issuance, and may be changed by ROHM, at any time and for any reason, without prior

notice.

2. If you plan to use the Software in connection with any equipment or device (such as the medical equipment, transportation equipment,

traffic equipment, aerospace equipment, nuclear power control equipment, vehicle equipment including the fuel control system and/or car

accessories, and/or various kinds of safety devices etc.) which require extremely high reliability, and whose breakdown or malfunction relate

to the risk of personal injury or death, or any other serious damage (such usage is hereinafter called “Special Usage”), you must first consult

with the ROHM’s sales representative. ROHM is not responsible for any loss, injury, or damage etc. incurred by you or any other third party

caused by any Special Usage without ROHM’s prior written approval.

3. Semiconductor products may break or malfunction due to various factors. You are responsible for designing, testing, and implementing safety

measures in connection with your use of any ROHM products using the Software (such ROHM products are hereinafter called “Product”) Such

safety measures include, but are not limited to, derating, reductant design, fire spread prevention, backup, and/or fail safe etc. in order to

prevent the accident resulting in injury or death and/or fire damage etc.. ROHM is not responsible and hereby disclaims liability for any

damage in relation to your use beyond the rated value, or the non-compliance with any precaution for use.

4. ROHM is not responsible for any direct and/or indirect damage to you, or any third parties, (including the damage caused by loss of

intangible asset such as information, data, or program etc., loss and/or interruption of profit) which is caused by the use or impossibility to

use of the Software.

5. Since the Software, these materials, and/or the Product contain confidential information of ROHM’, including technical information, and/or

trade secrets, you are prohibited from engaging in any of the following acts in whole or part, without ROHM’s prior written approval:

(i) disclosing any ROHM confidential information to a third party;

(ii) disassembling, reverse engineering, and/or any other analysis;

(iii) reprinting, copy, and/or reproduction; or

(iv) removing the copyright notice included in the Software.

6. When exporting the Software, or the technology and/or confidential information written in these materials, you are required to follow the

applicable export control laws and regulations such as “Foreign Exchange and Foreign Tarade Act” and/or “Export Administration Regulations

(EAR).”.

7. ROHM disclaims all warranties, statutory or otherwise, and ROHM hereby disclaims any warranty for non-infringement for the Software

and/or the information written in these materials. Accordingly, ROHM is not liable to you for any direct or third-party claims of infringement

of rights.

8. No license, whether expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties

with respect to the Software or Products or the information contained in these materials.

9. You agree to indemnify, defend and hold harmless ROHM and ROHM’s officers and/or employees from responsibility, and hold them harmless,

and defend them from any damage, loss, penalty, or cost caused by any claim of liability (including but not limited to the attorney fees)

resulting from, or incurred relating to the following acts:

(1) any alleged infringement of a third party’s rights or the violation of laws caused by reading, download, encryption, summarization, copy,

or transfer etc.; or

(2) violation of these materials.

10. ROHM does not guarantee that these materials or the Software is error free. ROHM shall not be in any way responsible or liable for any

damages, expenses, or losses incurred by you or third parties resulting from errors contained in these materials.

Thank you for using ROHM products.

For inquiries about our products, please contact us.

ROHM Customer Support System
https://www.rohm.co.jp/contactus

	1 Introduction
	1.1 Overview

	2 Installation Procedure
	2.1 Installing C Programming Tools for Matisse
	2.2 Installing Visual Studio Code(VS Code)
	2.3 Installing cpptools on VS Code
	2.4 Installing matiseye™-studio on VS Code

	3 How to use Visual Studio Code (VS Code)
	3.1 VS Code Window Description
	3.2 Status Bar Description
	3.3 Operating VS Code

	4 Project Configuration and Setting Items
	4.1 Configuration of the Samples Project
	4.2 Compiler/Debugger Setting Items（settings.json）

	5 How to Build
	5.1 Running Build Task and Generated Files
	5.2 MAP File
	5.3 Stack Static Analysis

	6 Debug
	6.1 Debug Window Descriptions
	6.2 Debug Menu
	6.3 Breakpoints
	6.4 Debug Toolbar
	6.5 Data Inspection
	6.6 Call stack
	6.7 MEMORY
	6.8 PERIPHERALS
	6.9 DISASSEMBLY
	6.10 PERFORMANCE
	6.11 Debug Related Keyboard Shortcuts
	6.12 Memory Window
	6.13 Peripheral Window
	6.14 Function call history on CPU resetting

	7 Command Execution
	7.1 Displaying the Command Palette and Command Input

	8 Frequently asked questions
	9 Shortcut Key List
	9.1 General
	9.2 File Management
	9.3 Editor Management
	9.4 Editing
	9.5 Search and Replace
	9.6 Rich Language Editing
	9.7 Display
	9.8 Debug

	10 Open-source software licenses
	11 Trademark notices

