ROHM

User’s Guide

tinyMicon MatisseCORE™

mtcc User's Guide

C compiler for tinyMicon MatisseCORE™ mtcc User's Guide

© 2024 ROHM Co., Ltd. 1/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

Update History

Date

Version

Contents

2021/10/28

Rev.001

Describes the contents of mtcc
V1.01.00

2022/03/31

Rev.002

Added description of 6.8pragma,
6.9attribute and 6.10predefined
macros.

2022/10/21

Rev.003

Describes the contents of
8Unsupported features

2023/5/24

Rev.004

Added description of 3.3 Precautions.

2024/01/15

Rev.005

Modified 3.1Implementation-defined
behavior
Added 3.2Translation limits

2024/04/04

Rev.006

Added 4.4How to make diagnostic
functions strictly compliant with C99
standard

Modified 5.3Library Function Details
Added 5.4Type definition details
Modified 5.5Macro definition details

2024/05/08

Rev.007

Modified 5.4.4stddef.h

© 2024 ROHM Co., Ltd.

2/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

Table of Contents
(I O AT 1= PP TP P PPPPPPRRN 7
L I =T U= O OO PO PP PP OPPPON 7
B o= = i1 T =10 T g 44T o OO RSPS 8
2.1, SYSIEM REQUITEMENTSceiiiitiie ettt e bt e e st e ook et e oo b et e e e s b et e e eab e et oo b b et e e an b et e e este e e s anneeeeanbneeenanee 8
b 1 11 =1 (] o [PP PSPPSR TUPPUPPTPPPN 8
RO = g T U= Yo T oY= Tod T T o OSSPSR 9
3.1. Implementation-defined DENAVIONooo it e ettt e et e et e e nanneas 9
R T O I T B I = £ = o o EO OO TP OUPPR P 9
R TR G T2 01V o] o 01T o | PSP PP R PPN 10
TRy G T T T I o 1= o)=Y =TSRSS 11
T R B 0 £ - =T (=] = O PP PSP P PP OPSPPOUPPPIR 11
G Tt S T TG TR L1 (Yo 1= = PP 12
R T N T IR N O (o =1 (g To i o Yo | S OO PR SPPOUPPPN 12
3.1.7. J.3.7 AITAYS @NA POINTETS ...ttt ettt e e a et e oo a b et e e 4o bt e e e st et e e aab e et e oab bt e e e st et e e aabt e e e sbneeeeanbneeenanee 13
TR T T T 20 1 £ RS 14
3.1.9. J.3.9 Structures, unions, enumerations, and bit-fieldScoooiiiiiii i s 14
3110, J.3.10 QUATTIEIS ...ttt h e et e b h bt b et e o bt e e e aa b et e e e b e e e e a e e e e e bn e e e nnee 14
3.1.11. J.3.11 PreproCeSSING QIFECHIVESooiiiiiiiiiiiiee ettt e e e e ettt e e e e e e e te e et e e e e e e e nbbeeeeaeeeeaannneneeaens 14
3112, J.3.12 LIDrary fUNCHONS ..ottt a et e et e e s bt e e e st et e e eabb e e e s baeeeeanbeeeenanee 15
R T I B T R Tt G Y (e 011 Tox (1= O PSP P PR SPPOUPPPN 20
3.1.14. J.4 LoCale-SPECIfiC DENAVIONveiiiiiiie et e et e e e e e e et e e e e e e e e st b e e e eaeeeseensarneeeans 20
K I =T oIS =1 1] o N 0 11 T PSP OTPPP PSRN 22
K TR o (= Tor= 1] (o] PP OUPPPUPRPN 23
BT Tt IR 141 {1 1 =3 (o o] TP TR U O P UUPRPROORPPP 23
I (o (o U = O PSPPSR PUPRPPP 24
4.1, Start the COMPIIET (MECC)eeiiiiiie e h e a bt e oottt e s bt e e e s bt e e eab et e s bbe e e e anbb e e e ente e e e naneeas 24
4.2. List of compiler command lINE OPLIONSooiiiuiiiiiiee e e e e e e e e e e e e e e et r e e e e e e e e sntbeeeeaeeeseanbreaeeaeas 24
4.3. Details of compiler command iN€ OPLIONScoiiiiiiiiie ettt e et e et e e eaneeas 25
G A ST UTSUSS 25
G T o B RSSO 25
G TG T ST UTSSSS 25
B S USRS 26
G T T USRS 26
G T T o SRR PSSO 26
G T A o SRR USROS 26
G T Tl USSP 26
T LYY ¢ o] PRSPPI 27
B BT =T 4 (o PP PPTPRR 27
G T R o RSSO 27
3 T BT LAY oY1 11 o PSSP PPPURRPN 27
G T T RSP TSPT USSR 27
G T SRS 28
G T o OSSR PRTSR PSR 28
4.4. How to make diagnostic functions strictly compliant with C99 standard...............cooiiiiiiiiiii e 29

© 2024 ROHM Co., Ltd.

3/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

4.4.1. Descriptions of command 1IN OPLIONSuuiiiiiiiiiii et e st e e st e e s e e 29
4.5, Start the INKEr (MUA) ...t bt e e et e e e e bttt e s bt e e e aa b et e e eab e e e s sn et e e aabb e e e entn e e e naneeas 29
S I o =T ol oo T =T T IR T 0 T= K] 1) o £ E R 29
4.7. Details of linker command lINE OPLIONSouuiiiiiiii ettt eb e s e e st e e et e e e aaneeas 31

O 0y TR o TSSO PR PPOUPPROt 31

R o oo [= 0 BT = PP PSP PPEPRTRP 31

R T o £ | = BT T PP PP OUU PP PPPRN 31

A Ry o] (oo | =T 4B o TP P PRSP UPPPRPP 32

0 T PSSO 32

L T OO U R PROUPPROE 32

O R 1= 1] o D PO PRSP PP RPPPPN 32

8 TR~ o 4 | o | N 33

A |V T o L PO PP PP OUPPP PPN 33

A = el [To L= o T PRSP PRI 33

0 o o PSSR 34

O e oo PSP PROUPTRO: 34

O 0y 1 T OSSP ROUPRPRN: 35

0 o USRS 35

LT I o] = 1 VA (] i o o I PO PP PSP PP PTPPN 36
ST IR IR o = Y 11 T PSPPSR PP UPRPN 36
ST o == T 1= 1= T T ST T PP P RO UPPTRPPP 36
5.3. Library FUNCHON DELAIIS.ooiiiii ettt h e e et e e e bt e e e s bb et e e aa b et e e e st e e e e eabe e e e anbneeennee 36

LT TRy - 1111 o 1 o PP PP PRT PP SPPOUPPPN 36

LR 2 o1 1 o1 o PRSP 37

LR TG T {01117 o =T 1 o I PO PP PR O SPPOUPPPN 37

LR J 11 1180 T o 18 o [PP PSP PR PP SPPOUPPPN 37

Lo ST (o = o 11 o 1 PEEPR PP 37

LI TG (o [0 =1 o PSPPSR 37

LI T A (o 111 3 PSPPSR 38

LSRG R T =1 o 1o X PSSP 38

LRI) (o 1o 10 o PSPPSR 38

LT TRy L1 1413V T o PP PP P PR SPPOUPPPN 39

5.3, 11, MaAtiISSE/CPUTUNC.N ...t e e e e e e e e e e e e e e eaataeeeeeeeeasastaeeeeaeeeaaaabbeseeeeeesannsaraeeeens 39

5.3.12. MaAtiSSE/INTEITUDL.I ...ttt e ettt et e e s bt e e e a b et e e eabb e e e e eabeeeeanbneeenanee 39

5.3.13. MaAtISSE/SECHONS. N ...ttt a et e ettt e s bt e e e ettt e e ettt e e et e e e e aba e e e e 39

LR TR U111 = o] o 30 o PSSP OPRPPOPPRPN 40
I B o T [o N ioT g e [=] =1 PP PUPPTRONE 41

Lot IR 10111/ o 1= o [P UUP SRR 41

L =11 110 o T o S PERPR SR 41

L O] (o £= o TN 1P UEP ST 41

L] (o [0 1= 1 o PP EP SRR 41

LSRR T =1 o 1 8 o SRRSO 41

Lo G] (o o T8 o [O RPRP SRR 42

LT O =1 o 1o T o TS TRRRRUSPR 42
5.5. Macro definition AeLaIIS.ooiieii et e et e s e e e e e e e 43

© 2024 ROHM Co., Ltd. 4/61 No. 67UG025E Rev.007

December 2023

mtcc User's Guide User’s Guide

LRSI T4 1 [0 o IR OO PSP P PP OPRPPPUPPPIN 43
LI [=To TG 721G o VPSP 44
LT TC T 11101 0o OSSR 44
R T =11 10] o 1 IO PP PSP P PP OPSPPPUPPPN 44
LRSI (o | oo T 11 o H PP PSP P PP OPSPPPUPPPIN 44
LSRRI ST (o o =T X SRS 45
LT A (o 1] 0 o PRSP 45
5.5.8. MaAtiSSE/EXIMEMLN....c ettt e e et et e b e e et e e e s e e e e bn e e 45
5.5.9. MaAtiSSE/SIGNATUIE.N... .. ettt ettt e e sttt e e e et e e e ae e e e e an et e e e e s eeeeanaeeeeantee e e e nteeeeanaeeeeaneeeeanee 46
5.5.10. MALISSE/IVEISION.N ...ttt et ettt e o bt e e e h bt e e eab e et e s b b e e e e aa b et e e e ne e e e e enne e e e atr e e e e 46
6. SPECIFIC FUNCHIONS ...ttt e e bt e e a et e oo bttt o1 bt e e e ab et e e e ane e e e e b b e e e eaabb e e e nnteeesanneeeeas 47
(ST I e =Y aTo = To l o) oT [r= o g =T =T PP UPRTPN 47
L I B o (o (o TR U T PP PSP P PP OPSPPPUPPPIN 47
6.1.2. EXGMPIE SOUICE fil@ ...ttt ettt e e ettt e et e e s bt e e e a b et e e eabe e e e s nabe e e e anbeeeenanee 47
6.1.3. Example of compilation OPLIONSooiiiiiii e e e e e e e e e et e e e e e e e e et a e e e e e e e eeraraeaaans 47
(oI 101 T4 U o1 M =T o =T O PP PP UP PRI 49
Lo B o (o (o TR U T F OO PR PP SPPOUPPPN 49
6.2.2. EXAMPIE SOUICE Ileeiiiiiiii et e e e e e e et e e e e e e e e e aabaeeeeeeeeaastaeeeeaeeeasaabbeseeaeeesaanssraeeeans 49
O T o (=T 10 o] o S T OSSP P PR SPPOUPPPN 50
(SRR IS =T Lo £=1 (o I 101 o1 U | S PSP U PRSP PRI 51
LT 20 O o (o (o TRV T PSPPSR PURRRIN 51
6.3.2. EXAMPIE SOUICE fil@ ...ttt et e e ettt e ettt e sb e e e e et et e e eab bt e e s eabe e e e anbaeeennee 51
6.3.3. Debugger SCript fil@ @XAMIPIE ... e e bt e et 51
(O R B =Y o1 oo =T =) =T o U | (o] o PRSP 52
6.4, SYSIEMINIE FUNCHON ...t ettt bt e e ekttt e o ea bt e e e 4o b bt e e sttt e e aabe e e e sab bt e e e anbe e e e eanteeesanbeeeean 53
6.4.1. EXAMPIE SOUICE fl@ ...ttt et e e ettt e e ettt e s bt e e e st et e e eabb e e e s nnbe e e e anbneeeeanee 53
LSS TR [T 0 1 1= 1 oo PP PP R PPR 53
ORI I o (o (o TR U T T PP P PR SPPOUPPPO 53
6.5.2. EXAMPIE SOUICE fl© ...ttt e e ettt e ettt e s b bt e e e a b et e e eabt e e e e eabe e e e anbeeeeanee 53
RS TC T (=T or= 11 o] oI PSPPSR PPN 53
(SRS T (o [E= 11T =N F- 1 = O P PO UP PRI 54
Lo G B o (o (o TR T T T PP PP PR PP SPPOUPPPN 54
6.6.2. EXAMPIE SOUICE Ileeiiiiiiii it e e e e e et e e e e e e e e e tabaeeeeeeeeaastaaeeaeeeeaaaabbeseeaeeesannsarneeeans 54

O GG T o (=T 10 o] o I T PO PP PR PP SPPOUPPRN 54
B.7. INHNE @SSEIMDIET ...ttt a et oo b et e e ettt e oo a bt e e e oo b bt e e e st et e e aabe e e e e b bt e e e anb e e e e eaneeeesanneeeean 54
6.7.1. STAteMENT FOIMAL ...t e e e e e e e s et e e et e e s b n e e e e a et e e e e e e e e e e e e rre e e e 54
B.7.2. EXAMPIE SOUICE fIl© ...ttt e e e ettt e e e e e s e et ta ittt e e e s eassstaeeeeeeeeasstaaeeeaeseanssbeseeaeeesannsnsaneaans 54
O ARC T (=T or= 10 o] o1 OSSP SPPOUPRPN 55
(SRS T o] =T | 14 F- PP URRTR 56
Lo TR I o (0T (o TR T T PP SPPOUPPPN 56
6.8.2. EXAMPIE SOUICE Il ...ttt ettt et e ettt e e e e e e et ate e et e e e s esssstaeeeeeeeaasstbaeeaaeeeasnssbeneeaaeesannsnenneeans 56
Lo JRC T o (=Tor= 11 o] o I PRSP PR T OP PP PUPRPN 56
LS TR (] o1 (= TP PP IR 56
Lo TR I o (0 (o TR T T T PRSP OUPRRN 56
(oI I e T o] o LI Yo Uy ot PP 57

© 2024 ROHM Co., Ltd.
5/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

O R T o (=T 11 o] o S T OO TP PP TSP P PP OPRPPPUPPPRIO 57
6.10. PredefiN@d IMACTOSeeiiiiiiie ittt oo b e e e sttt e oo a e e oo et et e e e et et et eab et e e s b et e e e nb et e e nn e e e e e nnreeeean 58
B.10. 1. HOW 10 USE....ceee ittt ettt et e et e e ekt e e st e e e st e e e s ne e e e e ane e e e sann e e e e aare e e e ann e e e s anneeeeannneeennne 58
6.10.2. EXAMPIE SOUICE fIl© ..ottt e e et e e et e e s b e e e aab et e e ean e e e e s nnn e e e e anbneeeeanee 58

A 01T Te et 0 177=T o1 (1] o IO O PO P PP OPPPPPPPRPN 59
R 2 CCT o 11 (=T Y] o 1= T PP PRPPTRONE 59
7.2. Function parameter Calling CONVENTIONScoouiiiiiiiiie ittt ettt e s b e e e et e e esee e e s sane e e e abneeennee 59
7.2.1. Conventions for allocating arguments t0 reGISTErScoouiiiiiii e 59
7.2.2. Conventions for allocating arguments t0 STACKc..iiiiiiiiii e e e e 59

7.3. Function return value calling CONVENTIONSuiiiiiiiiiii et e et e e et e e s et e e abneeenaee 59
8. UNSUPPOIEA FEALUIES ..ottt a et e e bt e e bttt e oo a bttt oo bt e e e et et e e e ab et e e e b be e e e aab et e e enreeesanneeeeas 60
8.1. Compiler command iNE OPLIONSueiiiii ittt e e e e e e et e e e e e s st b e e e e e eeeseasssseeeeeeseasassaeeaeeseaaansbnneeaeeaaas 60
LI N 4] o1 (= T PP O TP UP PPN 60
8.3. Linker cOmMMANG lINE OPHIONS ...ttt ettt e e st e e ea et e e s b et e e st et e e aabe e e e saba e e e e nbe e e s aaneeeesanbeeeean 60
9. OPEN-SOUICE SOfWAIE [ICEBNSES.......eiiiiiiiiiiiiieie ettt e e e e ettt e e e e e e e eabateeeeeeeeeatasaeeeeeeeeaastaeeeeaeeeaasnsaaeeaeeeessanssnaeeeeas 61
(L R = Lo L= 4P Ty QT (1= P PSPPSRSO PPPP 61
© 2024 ROHM Co., Ltd. 6/61 No. 67UG025E Rev.007

December 2023

mtcc User's Guide User’s Guide

1. Overview

mtcc is a C language compiler for tinyMicon MatisseCORE ™.
A C language compiler is a program that converts a program source file written in C language into a machine language file.
tinyMicon MatisseCORE™ is an ultra-compact 8-bit microcontroller developed by ROHM specifically for LS| embedded

applications.

1.1. Features
mtcc has the following features.
1 Compliant with the C language standard (C99).

2 Excellent optimization performance.

3 Various command line options.

© 2024 ROHM Co., Ltd. 7161 No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

2. Operating environment

The operating environment of mtcc is described below.

2.1. System Requirements

Table 1. System Requirements

oS Windows 7 (32-bit/64-bit)
Windows 10 (32-bit/64-bit)
CPU Intel Core series or equivalent performance CPU.
memory 4GByte or more installed
HDD/SSD At least 200 MByte of free space.

2.2. Installation

Run the mtcc installer (MatisseCCompiler-XX.XX.XX.XX.exe) to install a set of necessary tools.

In the default configuration, the tool set is installed under "C:\Program Files\ROHM\Matisse\".

© 2024 ROHM Co., Ltd.

8/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

3. Language specification

The language specifications supported by mtcc are as follows.

Language standard: C99 (ISO/IEC 9899:1999)

Table 2. Data sizes and data alignments of available basic data types

type name Data size Data alignment
char 1 byte 1 byte
short 2 byte 1 byte
int 2 byte 1 byte
long 4 byte 1 byte
pointer type 2 byte 1 byte

Table 3. Unavailable basic data types

type name

float

double

long double

long long

Table 4. Unavailable features

feature

dynamic memory allocation

variable length array

Data types larger than 2 bytes will be stored in memory in little-endian format.

Floating-point types and 64-bit integer types are not supported by mtcc because they are rarely used in embedded programs.

Only a freestanding environment is supported for the execution environment.

3.1. Implementation-defined behavior

The C language standard (ISO/IEC 9899:1999 Annex J.3, J.4) requires documenting how the compiler implementation handles

the implementation-defined behavior.

The following section shows the implementation-defined behavior of mtcc.

3.1.1. J.3.1 Translation

Table 5. Requirements and implementation-defined behavior of “Translation”

Requirements

Implementation-defined behavior

How a diagnostic is identified (3.10, 5.1.1.3).

[file name]:[line number]:[column number]: [warning/erro
r]: [message]

Whether each nonempty sequence of white-space characters
other than new-line is retained or replaced by one space
character in translation phase 3 (5.1.1.2).

White-space characters except new-line characters are
retained.

© 2024 ROHM Co., Ltd.

9/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

3.1.2. J.3.2 Environment

Table 6. Requirements and implementation-defined behavior of “Environment”

Requirements

Implementation-defined behavior

The mapping between physical source file multibyte characters
and the source character set in translation phase 1 (5.1.1.2).

Multibyte characters are not allowed in identifiers, string
literals, or character constants. There is no mapping from
multibyte characters to the source character set. Multibyte
characters can only be used in comments.

Multibyte characters used outside of comments will result in
compile errors, for example, the following error message
will be displayed.

error: non-ASCII characters are not allowed outside of
literals and identifiers

The name and type of the function called at program startup in
a freestanding environment (5.1.2.1).

The only function called at program startup is ‘int
main(void).

Source code that defines a main function whose return
value is not of type int will result in compile errors and the
following error message will be displayed.

| error: ‘main’ must return ‘int’ |

Source code that defines a main function with more than
one argument will result in compile errors and the following
error message will be displayed.

| error: supported entry point is ‘int main(void)’ only. |

The effect of program termination in a freestanding
environment (5.1.2.1).

The CPU will enter the halt state when the main function
exits, the abort function is called, or the exit function is
called.

An alternative manner in which the main function may be
defined (5.1.2.2.1).

There is no other way to define the main function. If the
main function is not defined in the program, the source
code will result in compile errors, for example, the following
error message will be displayed.

error: linker error: (.init0+0xe): undefined reference to
main'

The values given to the strings pointed to by the argv
argument to main (5.1.2.2.1).

The argc and the argv arguments to main are not
supported.

The supported main function type is ‘int main(void)’ only.
For example, a source code that defines ‘int main(int argc,
char **argv) will result in compile errors and the following
error message will be displayed.

| error: supported entry point is 'int main(void)' only. |

What constitutes an interactive device (5.1.2.3).

Not specified. The program may use hardware peripherals
to interact with external environment.

The set of signals, their semantics, and their default handling
(7.14).

Signals are not supported.

The function implementation or header file for signal
functions do not exist in the standard library.

For example, source code that includes 'signal.h' to use
signal functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'signal.h' file not found |

Signal values other than SIGFPE, SIGILL, and SIGSEGV that
correspond to a computational exception (7.14.1.1).

Signals are not supported.

The function implementation or header file for signal
functions do not exist in the standard library.

For example, source code that includes 'signal.h' to use
signal functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'signal.h' file not found |

Signals for which the equivalent of signal(sig, SIG_IGN); is
executed at program startup (7.14.1.1).

Signals are not supported.

The function implementation or header file for signal
functions do not exist in the standard library.

For example, source code that includes 'signal.h' to use
signal functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'signal.h' file not found |

The set of environment names and the method for altering the
environment list used by the getenv function (7.20.4.5).

The getenv function is not supported.

The implementation of the getenv function do not exist in
the standard library and the declaration of the getenv
function also do not exist in the header file 'stdlib.h'.

© 2024 ROHM Co., Ltd.

10/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

For example, source code using the getenv function will
result in compile errors and the following error message will
be displayed.

error: implicit declaration of function 'getenv' is invalid in
C99 [-Werror,-Wimplicit-function-declaration]

The manner of execution of the string by the system function
(7.20.4.6).

The system function is not supported.
The implementation of the system function do not exist in
the standard library and the declaration of the system
function also do not exist in the header file 'stdlib.h'".
For example, source code using the system function will
result in compile errors and the following error message will
be displayed.
error: implicit declaration of function 'system' is invalid in
C99 [-Werror,-Wimplicit-function-declaration]

3.1.3. J.3.3 Identifiers

Table 7. Requirements and implementation-defined behavior of “Identifiers”

Requirements

Implementation-defined behavior

Which additional multibyte characters may appear in identifiers
and their correspondence to universal character names (6.4.2).

Multibyte characters cannot be used as identifiers.

For example, source code using multibyte characters as
identifiers will result in compile errors and the following
error message will be displayed.

error: non-ASCIlI characters are not allowed outside of
literals and identifiers

The number of significant initial characters in an identifier
(5.2.4.1,6.4.2).

Initial 63 characters are significant.

3.1.4. J.3.4 Characters

Table 8. Requirements and implementation-defined behavior of “Characters”

Requirements

Implementation-defined behavior

The number of bits in a byte (3.6).

The number of bits in a byte is 8.

The values of the members of the execution character set
(5.2.1).

The values of the members of the execution character set
are US ASCII characters.

The unique value of the member of the execution character set
produced for each of the standard alphabetic escape
sequences (5.2.2).

\a': 0x07, "\b': 0x08, "\f': 0x0C, "\n": Ox0A,
\r': 0x0D, "\t": 0x09, '\v': 0x0B

The value of a char object into which has been stored any
character other than a member of the basic execution
character set (6.2.5).

The value is type-converted to the char type.

Which of signed char or unsigned char has the same range,
representation, and behavior as “plain” char (6.2.5, 6.3.1.1).

Plain char is the same as signed char.

The mapping of members of the source character set (in
character constants and string literals) to members of the
execution character set (6.4.4.4, 5.1.1.2).

The mapping of the source character set to the execution
character set is one-to-one.

The value of an integer character constant containing more
than one character or containing a character or escape
sequence that does not map to a single-byte execution
character (6.4.4.4).

ASCII code values are used except for escape sequences.
For escape sequences, the following values are used.

\a': 0x07, "\b': 0x08, "\f': 0x0C, "\n": Ox0A,

\r': 0x0D, "\t": 0x09, '\v': 0x0B

The value of a wide character constant containing more than
one multibyte character, or containing a multibyte character or
escape sequence not represented in the extended execution
character set (6.4.4.4).

Wide characters are not supported.

The function implementation or header file for wide
character functions do not exist in the standard library.

For example, source code that includes 'wchar.h' to use
wide character functions will result in compile errors and
the following error message will be displayed.

[fatal error: ‘wchar.h' file not found |

The current locale used to convert a wide character constant
consisting of a single multibyte character that maps to a
member of the extended execution character set into a
corresponding wide character code (6.4.4.4).

Locales are not supported.

The function implementation or header file for locale
functions do not exist in the standard library.

For example, source code that includes 'locale.h' to use
locale functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'locale.h’ file not found

The current locale used to convert a wide string literal into
corresponding wide character codes (6.4.5).

Locales are not supported.

© 2024 ROHM Co., Ltd.

11/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

The function implementation or header file for locale
functions do not exist in the standard library.

For example, source code that includes 'locale.h' to use
locale functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'locale.h’ file not found |

The value of a string literal containing a multibyte character or
escape sequence not represented in the execution character
set (6.4.5).

Multibyte characters are not supported.

The function implementation or header file for multibyte
character functions do not exist in the standard library.
For example, source code using the mblen function to
count the length of multibyte character string will result in
compile errors and the following error message will be
displayed.

error: implicit declaration of function 'mblen’ is invalid in
C99 [-Werror,-Wimplicit-function-declaration]

Escape sequence will be stored as a normal binary data in
a string literal.

3.1.5. J.3.5 Integers

Table 9. Requirements and implementation-defined behavior of “Integers”

Requirements

Implementation-defined behavior

Any extended integer types that exist in the implementation
(6.2.5).

There are no extended integer types.

Whether signed integer types are represented using sign and
magnitude, two’s complement, or one’s complement, and
whether the extraordinary value is a trap representation or an
ordinary value (6.2.6.2).

Signed integer types are represented by two's complement.
There is no trap representation.

The rank of any extended integer type relative to another
extended integer type with the same precision (6.3.1.1).

There are no extended integer types.

The result of, or the signal raised by, converting an integer to a
signed integer type when the value cannot be represented in
an object of that type (6.3.1.3).

The value is truncated, discarding bits that cannot be
stored in the output type, and the least significant bit is left
unchanged. Signals are not supported.

The results of some bitwise operations on signed integers
(6.5).

For shift operations, an arithmetic shift is performed. For
other operations, the value is calculated as an unsigned
value.

3.1.6. J.3.6 Floating point

Table 10. Requirements and implementation-defined behavior of “Floating point”

Requirements

Implementation-defined behavior

The accuracy of the floating-point operations and of the library
functions in <math.h> and <complex.h> that return floating-
point results (5.2.4.2.2).

Floating-points are not supported.

The header files 'math.h' and ‘complex.h’ do not exist in the
standard library.

For example, source code using floating-point variables
(float, double, long double) will result in compile errors and
the following error message will be displayed.

| error: floating point type is not supported. |

The rounding behaviors characterized by non-standard values
of FLT_ROUNDS (5.2.4.2.2).

Floating-points are not supported.

The header file 'float.h’ and ‘FLT_ROUNDS’ macro do not
exist in the standard library.

For example, source code that includes 'float.h’ to use
‘FLT_ROUNDS’ macro will result in compile errors and the
following error message will be displayed.

| fatal error: ‘float.h' file not found |

The evaluation methods characterized by non-standard
negative values of FLT_EVAL_METHOD (5.2.4.2.2).

Floating-points are not supported.

The header file 'float.h’ and ‘FLT_EVAL_METHOD’ macro
do not exist in the standard library.

For example, source code that includes 'float.h’ to use
‘FLT_EVAL_METHOD’ macro will result in compile errors
and the following error message will be displayed.

| fatal error: ‘float.h' file not found

© 2024 ROHM Co., Ltd.

12/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

The direction of rounding when an integer is converted to a
floating-point number that cannot exactly represent the original
value (6.3.1.4).

Floating-points are not supported.

For example, source code using floating-point variables
(float, double, long double) will result in compile errors and
the following error message will be displayed.

| error: floating point type is not supported. |

The direction of rounding when a floating-point number is
converted to a narrower floating-point number (6.3.1.5).

Floating-points are not supported.

For example, source code using floating-point variables
(float, double, long double) will result in compile errors and
the following error message will be displayed.

| error: floating point type is not supported. |

How the nearest representable value or the larger or smaller
representable value immediately adjacent to the nearest
representable value is chosen for certain floating constants
(6.4.4.2).

Floating-points are not supported.

For example, source code using floating-point variables
(float, double, long double) will result in compile errors and
the following error message will be displayed.

| error: floating point type is not supported. |

Whether and how floating expressions are contracted when
not disallowed by the FP_CONTRACT pragma (6.5).

Floating-points are not supported.

The header file 'math.h’ and ‘FP_CONTRACT’ pragma do
not exist in the standard library.

For example, source code that includes 'math.h' to use
‘FP_CONTRACT’ pragma will result in compile errors and
the following error message will be displayed.

| fatal error: 'math.h' file not found |

The default state for the FENV_ACCESS pragma (7.6.1).

Floating-points are not supported.

The header file 'fenv.h’ and ‘FENV_ACCESS’ pragma do
not exist in the standard library.

For example, source code that includes 'fenv.h' to use
‘FENV_ACCESS’ pragma will result in compile errors and
the following error message will be displayed.

| fatal error: ‘fenv.h' file not found |

Additional floating-point exceptions, rounding modes,
environments, and classifications, and their macro names (7.6,
7.12).

Floating-points are not supported.

For example, source code using floating-point variables
(float, double, long double) will result in compile errors and
the following error message will be displayed.

[error: floating point type is not supported. |

The default state for the FP_CONTRACT pragma (7.12.2).

Floating-points are not supported.

The header file 'math.h’ and ‘FP_CONTRACT’ pragma do
not exist in the standard library.

For example, source code that includes 'math.h' to use
‘FP_CONTRACT’ pragma will result in compile errors and
the following error message will be displayed.

| fatal error: 'math.h' file not found |

Whether the “inexact” floating-point exception can be raised
when the rounded result actually does equal the mathematical
result in an IEC 60559 conformant implementation (F.9).

Floating-points are not supported.

For example, source code using floating-point variables
(float, double, long double) will result in compile errors and
the following error message will be displayed.

[error: floating point type is not supported. |

Whether the “underflow” (and “inexact”) floating-point
exception can be raised when a result is tiny but not inexact in
an IEC 60559 conformant implementation (F.9).

Floating-points are not supported.

For example, source code using floating-point variables
(float, double, long double) will result in compile errors and
the following error message will be displayed.

| error: floating point type is not supported. |

3.1.7. J.3.7 Arrays and pointers

Table 11. Requirements and implementation-defined behavior of “Arrays and pointers”

Requirements

Implementation-defined behavior

The result of converting a pointer to an integer or vice versa
(6.3.2.3).

The result of converting a pointer to an integer is the result
of converting a value of type unsigned int to the destination
type.

The result of converting an integer to a pointer is the result
of converting the source type to an unsigned int.

The size of the result of subtracting two pointers to elements of
the same array (6.5.6).

The result of the operation will be of type ptrdiff_t, which is
defined in <stddef.h> and the size is 2 bytes.

© 2024 ROHM Co., Ltd.

13/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

3.1.8. J.3.8 Hints

Table 12. Requirements and implementation-defined behavior of “Hints”

Requirements

Implementation-defined behavior

The extent to which suggestions made by using the register
storage-class specifier are effective (6.7.1).

The register storage-class specifier is ignored

The extent to which suggestions made by using the inline
function specifier are effective (6.7.4).

The inline keyword is valid only when the optimization level
is 1 or higher and the optimizer determines that there is a
benefit to inlining.

3.1.9. J.3.9 Structures, unions, enumerations, and bit-fields

Table 13. Requirements and implementation-defined behavior of “Structures, unions, enumerations, and bit-fields”

Requirements

Implementation-defined behavior

Whether a “plain” int bit-field is treated as a signed int bit-field
or as an unsigned int bit-field (6.7.2, 6.7.2.1).

A"plain” int bit-field is treated as a signed int bit-field.

Allowable bit-field types other than _Bool, signed int, and
unsigned int (6.7.2.1).

All integer types are allowed.

Whether a bit-field can straddle a storage-unit boundary
(6.7.2.1).

A bit-field cannot straddle a storage-unit boundary.

The order of allocation of bit-fields within a unit (6.7.2.1).

Bit-fields are allocated in order from lowest-bit to highest-
bit.

The alignment of non-bit-field members of structures (6.7.2.1).

The alignment of all data types is 1 byte. See 3Language
specification.

This should present no problem unless binary data written by
one implementation is read by another. The integer type
compatible with each enumerated type (6.7.2.2).

Depending on the enumeration value, the most appropriate
one of the following types will be selected.

signed int

unsigned int

signed long

unsigned long

3.1.10. J.3.10 Qualifiers

Table 14. Requirements and implementation-defined behavior of “Qualifiers”

Requirements

Implementation-defined behavior

What constitutes an access to an object that has volatile-
qualified type (6.7.3).

A volatile-qualified object is recognized by the compiler as
potentially being accessed by asynchronous interrupts, so
they are not optimized and are always stored in memory
(not in registers). Read and write access to these objects
are done directly from and to this memory. Each read and
write operation processes data one byte at a time. If an
object is larger than two bytes, the sequence of the bytes
accessed is undefined. For objects that include bit fields,
any modification is handled through a read-modify-write
process.

3.1.11. J.3.11 Preprocessing directives

Table 15. Requirements and implementation-defined behavior of “Preprocessing directives”

Requirements

Implementation-defined behavior

How sequences in both forms of header names are mapped to
headers or external source file names (6.4.7).

The sequences in both forms of header names will be
interpreted as US ASCII code and will be mapped to the
source file names.

Whether the value of a character constant in a constant
expression that controls conditional inclusion matches the
value of the same character constant in the execution
character set (6.10.1).

The value of a character constant in a constant expression
that controls conditional inclusion matches the value of the
same character constant in the execution character set.

Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion may
have a negative value (6.10.1).

The value of a single-character character constant in a
constant expression that controls conditional inclusion may
have a negative value.

The places that are searched for an included < > delimited
header, and how the places are specified, or the header is
identified (6.10.2).

The compiler will search for the specified files in the
following order.
1. From the directories specified by -I option.

© 2024 ROHM Co., Ltd.

14/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

2. From the system header file directory. "C:\Program
Files\ROHM\Matisse\include" in default.

How the named source file is searched for in an included " "
delimited header (6.10.2).

The compiler will search for the specified files in the
following order.

1. From the current directory, that is, the directory
containing the source file to be compiled.

2. From the directories specified by - option.

3. From the system header file directory. "C:\Program
Files\ROHM\Matisse\include" in default.

The method by which preprocessing tokens (possibly resulting
from macro expansion) in a #include directive are combined
into a header name (6.10.2).

The preprocessing tokens in a #include directive are
combined by the same method as other preprocessing
tokens.

The nesting limit for #include processing (6.10.2).

Up to 15 nests are supported.

Whether the # operator inserts a \ character before the
\ character that begins a universal character name in a
character constant or string literal (6.10.3.2).

The # operator will not insert a \ character before the
\ character that begins a universal character name in a
character constant or string literal.

The behavior on each recognized non-STDC #pragma
directive (6.10.6).

See section 6.8pragma.

The definitions for _ DATE__ and __TIME__ when
respectively, the date and time of translation are not available
(6.10.8).

These macros are always available.

3.1.12. J.3.12 Library functions

Table 16. Requirements and implementation-defined behavior of “Library functions”

Requirements

Implementation-defined behavior

Any library facilities available to a freestanding program, other
than the minimal set required by clause 4 (5.1.2.1).

All library functions described in section 5Library function
are available to a freestanding program.

The format of the diagnostic printed by the assert macro
(7.2.1.1).

Assertion failed: ([assertion argument]), function [functio
n name], file [file name], line [line number].

The representation of the floating-point status flags stored by
the fegetexceptflag function (7.6.2.2).

Floating-points are not supported.

The header file 'fenv.h’ and fegetexceptflag function do not
exist in the standard library.

For example, source code that includes 'fenv.h' to use
fegetexceptflag function will result in compile errors and the
following error message will be displayed.

| fatal error: ‘fenv.h' file not found |

Whether the feraiseexcept function raises the “inexact”
floating-point exception in addition to the “overflow” or
“underflow” floating-point exception (7.6.2.3).

Floating-points are not supported.

The header file 'fenv.h’ and feraiseexcept function do not
exist in the standard library.

For example, source code that includes 'fenv.h' to use
feraiseexcept function will result in compile errors and the
following error message will be displayed.

| fatal error: ‘fenv.h' file not found |

Strings other than "C" and " that may be passed as the
second argument to the setlocale function (7.11.1.1).

The setlocale function is not supported.

The function implementation or header file for locale
functions do not exist in the standard library.

For example, source code that includes 'locale.h' to use
setlocale functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'locale.h' file not found |

The types defined for float_t and double_t when the value of
the FLT_EVAL_METHOD macro is less than 0 or greater than
2(7.12).

Mathematics functions and floating-points are note
supported.

The header files 'math.h’ and ‘float.h’ do not exist in the
standard library. And the definition of float_t and double_t
and FLT_EVAL_METHOD also do not exist in the standard
library.

For example, source code that includes 'math.h' to use
float_t and double_t will result in compile errors and the
following error message will be displayed.

| fatal error: 'math.h' file not found |

Also, for example, source code that includes 'float.h' to use
FLT _EVAL_METHOD macro will result in compile errors
and the following error message will be displayed.

| fatal error: ‘float.h' file not found |

© 2024 ROHM Co., Ltd.

15/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

Domain errors for the mathematics functions, other than those
required by this International Standard (7.12.1).

Mathematics functions are not supported.

The function implementation or header file for mathematics
functions do not exist in the standard library.

For example, source code that includes 'math.h' to use
mathematics functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'math.h' file not found |

The values returned by the mathematics functions on domain
errors (7.12.1).

Mathematics functions are not supported.

The function implementation or header file for mathematics
functions do not exist in the standard library.

For example, source code that includes 'math.h' to use
mathematics functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'math.h' file not found |

The values returned by the mathematics functions on
underflow range errors, whether errno is set to the value of the
macro ERANGE when the integer expression
math_errhandling & MATH_ERRNO is nonzero, and whether
the “underflow” floating-point exception is raised when the
integer expression math_errhandling & MATH_ERREXCEPT is
nonzero. (7.12.1).

Mathematics functions are not supported.

The function implementation or header file for mathematics
functions do not exist in the standard library.

For example, source code that includes 'math.h' to use
macro math_errhandling or macro MATH_ERRNO or
macro MATH_ERREXCEPT will result in compile errors
and the following error message will be displayed.

| fatal error: 'math.h' file not found |

Whether a domain error occurs or zero is returned when an
fmod function has a second argument of zero (7.12.10.1).

Mathematics functions are not supported.

The function implementation or header file for mathematics
functions do not exist in the standard library.

For example, source code that includes 'math.h' to use
fmod function will result in compile errors and the following
error message will be displayed.

| fatal error: 'math.h' file not found |

The base-2 logarithm of the modulus used by the remquo
functions in reducing the quotient (7.12.10.3).

Mathematics functions are not supported.

The function implementation or header file for mathematics
functions do not exist in the standard library.

For example, source code that includes 'math.h' to use
remquo functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'math.h' file not found |

Whether the equivalent of signal (sig, SIG_DFL); is executed
prior to the call of a signal handler, and, if not, the blocking of
signals that is performed (7.14.1.1).

Signals are not supported.

The function implementation or header file for signal
functions do not exist in the standard library.

For example, source code that includes 'signal.h' to use
signal functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'signal.h' file not found |

The null pointer constant to which the macro NULL expands
(7.17).

The macro NULL will be expanded to ‘((void *)0)'.

Whether the last line of a text stream requires a terminating
new-line character (7.19.2).

The last line of a text stream doesn't require a terminating
new-line character.

Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in
(7.19.2).

Input stream is not supported.

The implementation of functions for the input stream do not
exist in the standard library, and the declaration of variables
or functions for the input stream also do not exist in the
header file 'stdio.h'.

For example, source code using the getc function will result
in compile errors and the following error message will be
displayed.

error: implicit declaration of function 'getc' is invalid in

C99 [-Werror,-Wimplicit-function-declaration]

The number of null characters that may be appended to data
written to a binary stream (7.19.2).

The number of null characters that may be appended to
data written to a binary stream is 0.

Whether the file position indicator of an append-mode stream
is initially positioned at the beginning or end of the file (7.19.3).

File operation is not supported.
The implementation of functions for the file operation do not
exist in the standard library, and the declaration of variables
or functions for the file operation also do not exist in the
header file 'stdio.h'.
For example, source code using the fopen function will
result in compile errors and the following error message will
be displayed.
error: implicitly declaring library function 'fopen' with type
'FILE *(const char *, const char *)' (aka 'struct _ file

© 2024 ROHM Co., Ltd.

16/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

*(const char *, const char *)') [-Werror,-Wimplicit-
function-declaration]

Whether a write on a text stream causes the associated file to
be truncated beyond that point (7.19.3).

File operation is not supported.

The implementation of functions for the file operation do not
exist in the standard library, and the declaration of variables
or functions for the file operation also do not exist in the
header file 'stdio.h'.

For example, source code using the fopen function will
result in compile errors and the following error message will
be displayed.

error: implicitly declaring library function ‘fopen’ with type
'FILE *(const char *, const char *)' (aka 'struct __file
*(const char *, const char *)') [-Werror,-Wimplicit-
function-declaration]

The characteristics of file buffering (7.19.3).

File buffering is not performed.

Whether a zero-length file actually exists (7.19.3).

File operation is not supported.
The implementation of functions for the file operation do not
exist in the standard library, and the declaration of variables
or functions for the file operation also do not exist in the
header file 'stdio.h'.
For example, source code using the fopen function will
result in compile errors and the following error message will
be displayed.
error: implicitly declaring library function ‘fopen’ with type
'FILE *(const char *, const char *)' (aka 'struct __file
*(const char *, const char *)') [-Werror,-Wimplicit-
function-declaration]

The rules for composing valid file names (7.19.3).

File operation is not supported.
The implementation of functions for the file operation do not
exist in the standard library, and the declaration of variables
or functions for the file operation also do not exist in the
header file 'stdio.h'.

For example, source code using the fopen function will
result in compile errors and the following error message will
be displayed.

error: implicitly declaring library function ‘fopen’ with type
'FILE *(const char *, const char *)' (aka 'struct __file
*(const char *, const char *)') [-Werror,-Wimplicit-
function-declaration]

Whether the same file can be simultaneously open multiple
times (7.19.3).

File operation is not supported.
The implementation of functions for the file operation do not
exist in the standard library, and the declaration of variables
or functions for the file operation also do not exist in the
header file 'stdio.h'.
For example, source code using the fopen function will
result in compile errors and the following error message will
be displayed.
error: implicitly declaring library function ‘fopen’ with type
'FILE *(const char *, const char *)' (aka 'struct __file
*(const char *, const char *)') [-Werror,-Wimplicit-
function-declaration]

The nature and choice of encodings used for multibyte
characters in files (7.19.3).

File operation is not supported.
The implementation of functions for the file operation do not
exist in the standard library, and the declaration of variables
or functions for the file operation also do not exist in the
header file 'stdio.h'.

For example, source code using the fopen function will
result in compile errors and the following error message will
be displayed.

error: implicitly declaring library function ‘fopen’ with type
'FILE *(const char *, const char *)' (aka 'struct __file
*(const char *, const char *)') [-Werror,-Wimplicit-
function-declaration]

The effect of the remove function on an open file (7.19.4.1).

File operation is not supported.

The implementation of functions for the file operation do not
exist in the standard library, and the declaration of variables
or functions for the file operation also do not exist in the
header file 'stdio.h'.

© 2024 ROHM Co., Ltd.

17/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

For example, source code using the remove function will
result in compile errors and the following error message will
be displayed.
error: implicit declaration of function 'remove' is invalid in
C99 [-Werror,-Wimplicit-function-declaration]

The effect if a file with the new name exists prior to a call to the
rename function (7.19.4.2).

File operation is not supported.
The implementation of functions for the file operation do not
exist in the standard library, and the declaration of variables
or functions for the file operation also do not exist in the
header file 'stdio.h'.
For example, source code using the rename function will
result in compile errors and the following error message will
be displayed.
error: implicit declaration of function 'rename’ is invalid in
C99 [-Werror,-Wimplicit-function-declaration]

Whether an open temporary file is removed upon abnormal
program termination (7.19.4.3).

File operation is not supported.
The implementation of functions for the file operation do not
exist in the standard library, and the declaration of variables
or functions for the file operation also do not exist in the
header file 'stdio.h'.
For example, source code using the tmpfile function will
result in compile errors and the following error message will
be displayed.
error: implicit declaration of function 'tmpfile' is invalid in
C99 [-Werror,-Wimplicit-function-declaration]

Which changes of mode are permitted (if any), and under what
circumstances (7.19.5.4).

File operation is not supported.
The implementation of functions for the file operation do not
exist in the standard library, and the declaration of variables
or functions for the file operation also do not exist in the
header file 'stdio.h'.
For example, source code using the fopen function will
result in compile errors and the following error message will
be displayed.
error: implicitly declaring library function ‘fopen’ with type
'FILE *(const char *, const char *)' (aka 'struct __file
*(const char *, const char *)') [-Werror,-Wimplicit-
function-declaration]

The style used to print an infinity or NaN, and the meaning of
any n-char or n-wchar sequence printed for a NaN (7.19.6.1,
7.24.2.1).

Infinity and NaN are not supported.

The function implementation or header file for an infinity or
NaN do not exist in the standard library.

For example, source code that includes 'math.h' to use
‘INFINITY’ macro of ‘NAN’ macro will result in compile
errors and the following error message will be displayed.

| fatal error: 'math.h' file not found

The output for %p conversion in the fprintf or fwprintf function
(7.19.6.1,7.24.2.1).

A 4-digit hexadecimal number will be output.

The interpretation of a - character that is neither the first nor

the last character, nor the second where a " character is the

first, in the scanlist for %[conversion in the fscanf or fwscanf
function (7.19.6.2, 7.24.2.1).

Input stream is not supported.
The implementation of functions for the input stream do not
exist in the standard library, and the declaration of variables
or functions for the input stream also do not exist in the
header file 'stdio.h'.
For example, source code using the fscanf function will
result in compile errors and the following error message will
be displayed.
error: implicitly declaring library function 'fscanf' with
type 'int (FILE *restrict, const char *restrict, ...)' (aka 'int
(struct __file *restrict, const char *restrict, ...)") [-Werror,-
Wimplicit-function-declaration]

The set of sequences matched by a %p conversion and the
interpretation of the corresponding input item in the fscanf or
fwscanf function (7.19.6.2, 7.24.2.2).

Input stream is not supported.
The implementation of functions for the input stream do not
exist in the standard library, and the declaration of variables
or functions for the input stream also do not exist in the
header file 'stdio.h'".
For example, source code using the fscanf function will
result in compile errors and the following error message will
be displayed.

error: implicitly declaring library function 'fscanf' with

type 'int (FILE *restrict, const char *restrict, ...)' (aka 'int

© 2024 ROHM Co., Ltd.

18/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

(struct __file *restrict, const char *restrict, ...)") [-Werror,-
Wimplicit-function-declaration]

The value to which the macro errno is set by the fgetpos,
fsetpos, or ftell functions on failure (7.19.9.1, 7.19.9.3,
7.19.9.4).

File operation is not supported.
The implementation of functions for the file operation do not
exist in the standard library, and the declaration of variables
or functions for the file operation also do not exist in the
header file 'stdio.h'.
For example, source code using the fgetpos function will
result in compile errors and the following error message will
be displayed.
error: implicit declaration of function 'fgetpos' is invalid in
C99 [-Werror,-Wimplicit-function-declaration]

The meaning of any n-char or n-wchar sequence in a string
representing a NaN that is converted by the strtod, strtof,
strtold, wcstod, westof, or westold function (7.20.1.3,
7.24.4.1.1).

Those functions are not supported.
The implementation of those functions do not exist in the
standard library, and the declaration of those functions also
do not exist in the header file 'stdlib.h'.
For example, source code using the strtod function will
result in compile errors and the following error message will
be displayed.
error: implicitly declaring library function 'strtod' with type
'double (const char *, char **)' [-Werror,-Wimplicit-
function-declaration]

Whether or not the strtod, strtof, strtold, wcstod, wcstof, or
wcstold function sets errno to ERANGE when underflow
occurs (7.20.1.3, 7.24.4.1.1).

Those functions are not supported.
The implementation of those functions do not exist in the
standard library, and the declaration of those functions also
do not exist in the header file 'stdlib.h'.
For example, source code using the strtod function will
result in compile errors and the following error message will
be displayed.
error: implicitly declaring library function 'strtod’ with type
'double (const char *, char **)' [-Werror,-Wimplicit-
function-declaration]

Whether the calloc, malloc, and realloc functions return a null
pointer or a pointer to an allocated object when the size
requested is zero (7.20.3).

Those functions are not supported.
The implementation of those functions do not exist in the
standard library, and the declaration of those functions also
do not exist in the header file 'stdlib.h'.
For example, source code using the malloc function will
result in compile errors and the following error message will
be displayed.
error: implicitly declaring library function 'malloc’ with
type 'void *(unsigned int)' [-Werror,-Wimplicit-function-
declaration]

Whether open streams with unwritten buffered data are
flushed, open streams are closed, or temporary files are
removed when the abort or _Exit function is called (7.20.4.1,
7.20.4.4).

Stream buffer and temporary files are not supported.

The implementation of the functions of temporary files do
not exist in the standard library, and the declaration of the
functions of temporary files also do not exist in the header
file ‘stdio.h’.

For example, source code using the tmpfile function will
result in compile errors and the following error message will
be displayed.

error: implicit declaration of function 'tmpfile' is invalid in
C99 [-Werror,-Wimplicit-function-declaration]

Opened streams are not closed when the abort or _Exit
function are called.

The termination status returned to the host environment by the
abort, exit, or _Exit function (7.20.4.1, 7.20.4.3, 7.20.4.4).

In the case of the abort function, the termination status will
be 1.

In the case of the exit function, the argument of the function
will be the termination status.

The termination code is stored in the register R14 and R15.
See section 7.3Function return value calling conventions.

The value returned by the system function when its argument
is not a null pointer (7.20.4.6).

The system function is not supported.

The implementation of the system function does not exist in
the standard library, and the declaration of the system
function also does not exist in the header file ‘stdlib.h’

For example, source code using the system function will
result in compile errors and the following error message will
be displayed.

© 2024 ROHM Co., Ltd.

19/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

error: implicit declaration of function 'system' is invalid in
C99 [-Werror,-Wimplicit-function-declaration]

The local time zone and Daylight Saving Time (7.23.1).

The date and time functions are not supported.

The function implementation or header file for date and
time functions do not exist in the standard library.

For example, source code that includes 'time.h' to use time
functions will result in compile errors and the following error
message will be displayed.

| fatal error: 'time.h' file not found |

The range and precision of times representable in clock_t and
time_t (7.23).

The date and time functions are not supported.

The function implementation or header file for date and
time functions do not exist in the standard library.

For example, source code that includes 'time.h' to use
clock_t type or time_t type will result in compile errors and
the following error message will be displayed.

| fatal error: 'time.h' file not found |

The era for the clock function (7.23.2.1).

The date and time functions are not supported.

The function implementation or header file for date and
time functions do not exist in the standard library.

For example, source code that includes 'time.h' to use the
clock function will result in compile errors and the following
error message will be displayed.

| fatal error: 'time.h' file not found |

The replacement string for the %Z specifier to the strftime, and
wcsftime functions in the "C" locale (7.23.3.5, 7.24.5.1).

The date and time functions are not supported.

The function implementation or header file for date and
time functions do not exist in the standard library.

For example, source code that includes 'time.h' to use the
strftime function will result in compile errors and the
following error message will be displayed.

| fatal error: 'time.h' file not found |

Whether or when the trigonometric, hyperbolic, base-e
exponential, base-e logarithmic, error, and log gamma
functions raise the “inexact” floating-point exception in an IEC
60559 conformant implementation (F.9).

Mathematics functions are not supported.

The function implementation or header file for mathematics
functions do not exist in the standard library.

For example, source code that includes 'math.h' to use
mathematics functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'math.h' file not found |

Whether the functions in <math.h> honor the rounding
direction mode in an IEC 60559 conformant implementation
(F.9).

Mathematics functions are not supported.

The function implementation or header file for mathematics
functions do not exist in the standard library.

For example, source code that includes 'math.h' to use
mathematics functions will result in compile errors and the
following error message will be displayed.

| fatal error: 'math.h' file not found |

3.1.13. J.3.13 Architecture

Table 17. Requirements and implementation-defined behavior of “Architecture”

Requirements

Implementation-defined behavior

The values or expressions assigned to the macros specified in
the headers <float.h>, <limits.h>, and <stdint.h> (5.2.4.2,
7.18.2,7.18.3).

For <stdint.h> and <limits.h>, see section 5.5Macro
definition details.

<floath.h> is not supported.

Source code that includes “float.h’ will result in compile
errors and the following error message will be displayed.

| fatal error: ‘float.h' file not found |

The number, order, and encoding of bytes in any object (when
not explicitly specified in this International Standard) (6.2.6.1).

The alignment of all object is 1 byte.
Endianness is little-endian.

The value of the result of the sizeof operator (6.5.3.4).

See section 3Language specification.

3.1.14. J.4 Locale-specific behavior

Table 18. Requirements and implementation-defined behavior of “Locale-specific behavior”

Requirements

Implementation-defined behavior

Additional members of the source and execution character
sets beyond the basic character set (5.2.1).

There are no additional members of the source and
execution character sets.

© 2024 ROHM Co., Ltd.

20/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

The presence, meaning, and representation of additional
multibyte characters in the execution character set beyond the
basic character set (5.2.1.2).

There are no additional multibyte characters in the
execution character set.

The shift states used for the encoding of multibyte characters
(5.2.1.2).

Multibyte characters are not supported.
The function implementation or header file for multibyte
character functions do not exist in the standard library.
For example, source code using the mblen function will
result in compile errors and the following error message will
be displayed.
error: implicit declaration of function 'mblen’ is invalid in
C99 [-Werror,-Wimplicit-function-declaration]

The direction of writing of successive printing characters
(5.2.2).

Always printed from left to right.

The decimal-point character (7.1.1).

The decimal-point character is always ".".

The set of printing characters (7.4, 7.25.2).

Characters from 0x20 to Ox7E in US ASCII code.

The set of control characters (7.4, 7.25.2).

Characters from 0x00 to Ox1F and Ox7F in US ASCII code.

The sets of characters tested for by the isalpha, isblank,
islower, ispunct, isspace, isupper, iswalpha, iswblank,
iswlower, iswpunct, iswspace, or iswupper functions (7.4.1.2,
7413,7417,7419,74.1.10,7.41.11,7.25.2.1.2,
7.25.2.1.3,7.25.21.7,7.25.2.1.9,7.25.2.1.10, 7.25.2.1.11).

The iswalpha, iswblank, iswlower, iswpunct, iswspace and
iswupper functions are not supported.

For other functions, tested characters in US ASCII code are
as follows.

isalpha: From 0x41 to Ox5A and from 0x61 to 0x7A.
isblank: 0x09 and 0x20.

islower: From 0x61 to Ox7A.

ispunct: From 0x21 to 0x2F and from Ox3A to 0x40 and
from 0x5B to 0x60 and from 0x7B to Ox7E.

isspace: From 0x09 to 0x0D and 0x20.

isupper: From 0x41 to 0x5A.

The native environment (7.11.1.1).

Locale is not supported.

The function implementation or header file for locale
functions do not exist in the standard library.

For example, source code that includes 'locale.h' to use
locale functions will result in compile errors and the
following error message will be displayed.

| fatal error: "locale.h’ file not found

Additional subject sequences accepted by the numeric
conversion functions (7.20.1, 7.24.4.1).

No additional subject sequences accepted by the numeric
conversion functions.

The collation sequence of the execution character set
(7.21.4.3,7.24.4.4.2).

The collation functions are not supported.
The function implementation of the collation functions do
not exist in the standard library, and the declaration of the
collation functions also do not exist in the header file
‘string.h’.
For example, source code using the strcoll function will
result in compile errors and the following error message will
be displayed.
error: implicit declaration of function 'strcoll' is invalid in
C99 [-Werror,-Wimplicit-function-declaration]

The contents of the error message strings set up by the
strerror function (7.21.6.2).

The strerror function is not supported.

The implementation of the strerror function does not exist in
the standard library, and the declaration of the strerror
function also does not exist in the header file ‘string.h’.

For example, source code using the strerror function will
result in compile errors and the following error message will
be displayed.

error: implicitly declaring library function 'strerror' with
type 'char *(int)' [-Werror,-Wimplicit-function-declaration]

The formats for time and date (7.23.3.5, 7.24.5.1).

Time and date are not supported.

The function implementation or header file for date and
time functions do not exist in the standard library.

For example, source code that includes 'time.h' to use the
strftime function will result in compile errors and the
following error message will be displayed.

| fatal error: 'time.h' file not found |

Character mappings that are supported by the towctrans
function (7.25.1).

The towctrans function is not supported.
The implementation or header file for the towctrans function
do not exist in the standard library.

© 2024 ROHM Co., Ltd.

21/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

For example, source code that includes ‘wctype.h’ to use
the towctrans function will result in compile errors and the
following error message will be displayed.

| fatal error: ‘'wctype.h' file not found |

Character classifications that are supported by the iswctype
function (7.25.1).

The iswctype function is not supported.

The implementation or header file for the iswctype function
do not exist in the standard library.

For example, source code that includes ‘wctype.h’ to use
the iswctype function will result in compile errors and the
following error message will be displayed.

| fatal error: ‘'wctype.h' file not found |

3.2. Translation limits

For each of the translation limits defined in C99 (ISO/IEC 9899:1999), the values for which mtcc guarantees operation are

described in the table below.

Table 19. The translation limits values guaranteed by mtcc

Item C99 Spec mtcc guarantees
Nesting levels of blocks 127 127
Nesting levels of conditional inclusion 63 63
Pointgr, array, and function_declar?ztors (in any combinations) modifying 12 12

an arithmetic, structure, union, or incomplete type in a declaration

Nesting levels of parenthesized declarators within a full declarator 63 63
Nesting levels of parenthesized expressions within a full expression 63 63
Significant initial characters in an internal identifier or a macro name 63 63
Significant initial characters in an external identifier 31 31
External identifiers in one translation unit 4095 4095
Identifiers with block scope declared in one block 511 511
{\:I:g:srlc;iic:)intjiﬁﬁrs simultaneously defined in one preprocessing 4095 4095
Parameters in one function definition 127 127
Arguments in one function call 127 127
Parameters in one macro definition 127 127
Arguments in one macro invocation 127 127
Characters in a logical source line 4095 4095
g::;:t(;tﬁ;sﬁi)nn? character string literal or wide string literal (after 4095 4095(*1)
Bytes in an object (in a hosted environment only) 65535 - (*2)
Nesting levels for #included files 15 15
Case labels for a switch statement 1023 1023
Members in a single structure or union 1023 1023
Enumeration constants in a single enumeration 1023 1023
Level of nested structure or union definitions in a single struct-

declaration-list 63 63

(*1) The code using the maximum value of this item can be compiled by mtcc, but in some hardware configurations, the string

object may exceed the RAM capacity. In other words, it will not cause errors at compile time, but may cause RAM size error at

link time. Refer to 4.7.3--data-size= for changing the capacity of RAM.

© 2024 ROHM Co., Ltd.
22/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

(*2) This field is out of scope because mtcc supports only the freestanding environment and does not support the hosted

environment.

3.3. Precautions

As mentioned above, mtcc complies with C99 (ISO/IEC 9899:1999), but there are some statements that requires caution in that
standard.
Therefore, mtcc may behave in a seemingly faulty manner even though it is operating according to the standard.

This section describes the contents and workarounds of these precautions.

3.3.1. Infinite loop
3.3.1.1. Description

mtcc may interpret infinite loops with no side-effects as undefined behavior and remove it. This may cause programs containing

infinite loops to terminate or cause unexpected behavior.

Here is an example of an infinite loop without side-effects. Please avoid such code as it would result in undefined behavior.

while(1) {
[l infinite loop with no side-effects
}

3.3.1.2. Workaround

By using volatile keyword, infinite loop can be safely described as follows.

volatile bool loopFlag = true;
while(loopFlag) [
}

The volatile keyword tells mtcc that this infinite loop may have side-effects. As a result, mtcc will not interpret this infinite loop as

undefined behavior and will not remove it.

© 2024 ROHM Co., Ltd. 23/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

4. How to use

4.1. Start the compiler (mtcc)

mtcc is executed from the command line as shown below. Basically, multiple input files can be specified. C source files (*.c),

assembler files (*.S), and object files (*.0) are supported as input files.

[> mtcc [options] input_file -0 output file

A concrete example of the command line to run mtcc is shown below.

| > mtcc -02 -I./include source.c -0 output.bin

4.2. List of compiler command line options

The main command line options of the compiler (mtcc) are listed below.

Table 20. The main command line options of mtcc

Command line options Description
-0 Specifies the optimization level.
-0 Specifies the output file name.
-1 Specifies the directory of the include file. Can be specified multiple times.
-E Outputs the results of preprocessor execution to standard output.
-S Outputs an assembler file converted from C language source files.
-C Outputs an object file converted from a C language source file.
-g Adds debugging information to the output file.
The format of the debug information is DWARF4.
-D Defines a preprocessor macro. Can be specified multiple times.
-Werror Turn warnings into errors.
-Werror= Turn specified warning into an error.
-Wno- Disable specified warning.
-Weverything Enable all warnings.
-WI, Passes the comma-separated options to the linker (mtld).
-V Displays the version information.
-h Displays a help message.
© 2024 ROHM Co., Ltd. 24/61 No. 67UG025E Rev.007

December 2023

mtcc User's Guide User’s Guide

4.3. Details of compiler command line options
431.-0
4.3.1.1. Description

The -O option specifies the optimization level of the compiler in the following format. If this option is omitted, the default value (-

02) is applied.

[-Ox [x=0,1,2,5].

Depending on the optimization level, the performance of the program, ROM size, and debuggability vary.

The differences between each optimization level are as follows.

Table 21. The difference between each optimization level

Option | Description program execution speed ROM size Debuggability
-00 No optimization slow big high

-O1 Optimization level 1 general medium medium

-02 Maximum optimization level fastest small very low

-Os ROM size reduction fast smallest very low

4.3.1.2. Example of use

| > mtcc -O0 input.c -0 output.bin

4.3.2. -0
4.3.2.1. Description

The -0 option specifies the output file name in the following format. A binary format file (ROM image) is output. At the same time,
the ELF format file will be automatically generated (the file name of the ELF format file will be the output file name with its
extension changed to .elf).

However, if the -E option is used, the -o option will be disabled, and if the -S option is used, Only the assembler file will be

output.

[-o filename

4.3.2.2. Example of use

| > mtcc input.c -0 output.bin

4.3.3. -l
4.3.3.1. Description

The -1 option specifies a directory in the following format and adds the specified directory to the include file search path. Multiple

-1 options can be specified.

[-Idirname

4.3.3.2. Example of use

> mtcc -l./include input.c -0 output.bin
> mtcc -l./include1 -l./include2 input.c -0 output.bin

© 2024 ROHM Co., Ltd. 25/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

43.4. -E
4.3.4.1. Description

The -E option prints the results of the preprocessor-only execution to standard output. When the -E option is used, the -o option

is disabled. If you want to save the results of the -E option to a file, use the redirection instead of the -0 option.

4.3.4.2. Example of use

| > mtcc -E input.c > output.pp

4.3.5. -S
4.3.5.1. Description

The -S option outputs an assembler file. When -S option is used, the number of input files is limited to one. The extension of the

output assembler file is recommended to be (*.S) by convention.

4.3.5.2. Example of use

[> mtcc -S input.c -0 output.S

4.3.6. -c

4.3.6.1. Description

The -c option outputs an object file. When the -c option is used, the number of input files is limited to one. The extension of the

output object file is recommended to be (*.0) by convention.

4.3.6.2. Example of use

[> mtcc -c input.c -0 output.o

4.3.7. g
4.3.7.1. Description

The -g option generates debugging information in the output file. The format of the debugging information is DWARF version 4.

4.3.7.2. Example of use

| > mtcc -g input.c -o output.bin

4.3.8.-D
4.3.8.1. Description

The -D option defines a preprocessor macro in the following format. Multiple -D options can be specified.

-Dname
-Dname=def

4.3.8.2. Example of use

| > micc -DDEBUG -DCOUNT=100 input.c -0 output.bin

© 2024 ROHM Co., Ltd. 26/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

4.3.9. -Werror

4.3.9.1. Description

The -Werror option treats all warnings as errors.

4.3.9.2. Example of use

| > mtcc -Werror input.c -0 output.bin

4.3.10. -Werror=
4.3.10.1. Description

The -Werror= option treats the specified warning as an error as follows. For example, -Werror=constant-conversion will treat the

warning for an assignment that results in an overflow as an error.

| -Werror=constant-conversion

4.3.10.2. Example of use

[> mtcc -Werror=constant-conversion input.c -o output.bin

4.3.11. -Wno

4.3.11.1. Description

The -Wno- option suppresses the specified warning as follows. For example, -Wno-constant-conversion will suppress warnings

for assignments that result in overflow.

[-Wno-constant-conversion

4.3.11.2. Example of use

| > micc -Wno-constant-conversion input.c -0 output.bin

4.3.12. -Weverything
4.3.12.1. Description

The -Weverything option allows all warnings to be generated. By default, mtcc behaves the same as the clang’s -Wall option,

suppressing minor warnings. But by using this option, all warnings will be enabled.

4.3.12.2. Example of use

[> mtcc -Weverything input.c -0 output.bin

4.3.13. “-WL,”
4.3.13.1. Description

The "-WI," option specifies command line options to be passed to the linker (mtld) in the following format. This option must be

enclosed entirely in double quotes.

["-Wl,opt1,0pt2,0pt3,... ,.optX"

© 2024 ROHM Co., Ltd. 27/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

4.3.13.2. Example of use

| > mtcc "-WI,-L./lib,-Map=mapfile.map" input.c -o output.bin

4.3.14. -v
4.3.14.1. Description

The -v option outputs the version information of the compiler (mtcc) to the standard output.

4.3.14.2. Example of use

[> mtcc -v

4.3.15. -h
4.3.15.1. Description

The -h option prints help messages for command line options to standard output.

4.3.15.2. Example of use

[> mtcc -h

© 2024 ROHM Co., Ltd. 28/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

4.4. How to make diagnostic functions strictly compliant with C99 standard

If you want mtcc's source code diagnostics to strictly compliant with the C99 standard, add all of the following command line

options at compile time.

-Wall -pedantic-errors -Werror=undefined-internal -Werror=implicit-function-declaration -Werror=invalid-noreturn -
Werror=static-local-in-inline -Wno-keyword-macro -Wno-comment -Wno-trigraphs -Wno-shift-op-parentheses -Wno-initializer-
overrides -Wno-tautological-constant-out-of-range-compare -Wno-constexpr-not-const -Wno-format-security -Wno-ignored-
qualifiers -Wno-unknown-attributes -Wno-braced-scalar-init -Wno-null-conversion -Wno-ambiguous-ellipsis -Wno-
inaccessible-base -Wno-static-self-init -Wno-deprecated-increment-bool -Wno-missing-exception-spec -Wno-deprecated-
register -Wno-vexing-parse -Wno-c++11-compat-deprecated-writable-strings -Wno-unknown-pragmas -Wno-absolute-value -
Wno-enum-conversion -Wno-deprecated-declarations -Wno-extern-initializer -Wno-constant-logical-operand -Wno-switch -
Whno-literal-conversion -Wno-unused-volatile-lvalue -Wno-enum-compare -Wno-parentheses -Wno-array-bounds -Wno-
sizeof-array-decay -Wno-pointer-bool-conversion -Wno-visibility -Wno-bitfield-constant-conversion -Wno-unused-value -Wno-
missing-braces -Wno-missing-braces -Wno-int-to-pointer-cast -Wno-empty-body -Wno-tautological-compare

4.4.1. Descriptions of command line options

The ‘-pedantic-errors’ option ensures that mtcc’s diagnostic functions comply with the C99 standard. However, using the ‘-
pedantic-errors’ option alone does not guarantee full compliance with the standard. There are cases where code allowed by the
standard is incorrectly marked as errors, so the -Wno-xxx' options are used to prevent these errors. Also, there are cases where
non-standard code is only given warnings instead of errors. So the '-Werror=xxx' options are used to turn those warnings into

errors.

4.5. Start the linker (mtid)

mtld can be run from the command line as follows. Multiple input files can be specified, object file (*.0) is supported as input

files.

[> mtld [options] input_file -o output file

A concrete example of the command line to run mtld is shown below.
| > mtld --program-size=10 -Map=output.map input.o -o output.bin

You can also specify the command line option of the linker (mtld) by using the compiler (mtcc) command line option “-WI,” as

shown below.

| > mtcc -WI,--program-size=10,-Map=output.map input.c -o output.bin

4.6. Linker command line options list

The main command line options of the linker (mtld) are listed below.

Table 22. The main command line options of the linker (mtld)

Command line options Description
--program-size= Specifies the size of the program area.
--data-size= Specifies the size of the data area.
--ex-program-size= Specifies the size of the extended program area.
-L Specifies the directory of the library file. Can be specified multiple times.
-l Specify the library file to be linked. Can be specified multiple times.
--defsym Defines a global symbol for the linker. Can be specified multiple times.
--script Used to modify the linker script.
-Map= Specify the map file output destination.
--exclude-mul= Specifies whether the target core has a multiplier or not.
--crt Changes the runtime library to be linked.
--libc Changes the library file to be linked.
-V Displays the version information.
© 2024 ROHM Co., Ltd.
) 20/61 No. 67UG025E Rev.007

December 2023

mtcc User's Guide User’s Guide

[-h | Displays a help message.

© 2024 ROHM Co., Ltd. 30/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

4.7. Details of linker command line options

4.71. -0
4.7.1.1. Description

The -0 option specifies the output file name in the following format. A binary format file (ROM image) is output. At the same time,
the ELF format file will be automatically generated (the file name of the ELF format file will be the output file name with its

extension changed to .elf).

| -o filename

4.7.1.2. Example of use

| > mtld input.o -o output.bin

4.7.2. --program-size=
4.7.2.1. Description

The --program-size= option specifies the size of the program area in the following format. The program area will be the size of

the specified number multiplied by 4kbyte. If this option is omitted, the default value of 8 (32kbyte) will be applied.

| --program-size=n [n=8,9,10,11,12,13,14,15].

If the sum of the value specified by --program-size= and the value specified by --data-size= exceeds 17 (68kbyte), a memory

capacity error will occur.

4.7.2.2. Example of use

> mtcc "-WI,--program-size=8" input.c -0 output.bin
> mtld --program-size=8 input.o -0 output.bin

4.7.3. --data-size=
4.7.3.1. Description

The --data-size= option specifies the size of the data area in the following format. The data area will be the size of the specified

number multiplied by 4kbyte. If this option is omitted, the default value of 1 (4kbyte) will be applied.

| --data-size=n [n=1,2,3,4,5,6,7.7].

If the sum of the value specified by --program-size= and the value specified by --data-size= exceeds 17 (68kbyte), a memory

capacity error will occur.

4.7.3.2. Example of use

> mtcc "-WI,--data-size=1" input.c -0 output.bin
> mtld --data-size=1 input.o -0 output.bin

© 2024 ROHM Co., Ltd. 31/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

4.7 .4. --ex-program-size=

4.7.4.1. Description

The --ex-program-size= option specifies the size of the extended program area in the following format. The size of the extended

program area is the specified number multiplied by 2kbyte. If this option is omitted, the default value of 0 (Okbyte) will be

applied.

| --ex-program-size=n [n=0..32].

4.7.4.2. Example of use

> mtcc "-WI,--ex-program-size=10" input.c -o output.bin
> mtld --ex-program-size=10 input.o -0 output.bin

4.7.5. -L

4.7.5.1. Description

The -L option specifies a directory in the following format and adds the specified directory to the library file search path. This

option can be specified multiple times.

[-Ldirname

4.7.5.2. Example of use

> mtcc "-WI,-L./lib" input.c -o output.bin
> mtld -L./lib input.o -0 output.bin

4.7.6. -l

4.7.6.1. Description

The -l option specifies the library file to be linked in the following format. The specified library files will be searched in the

directory registered in the library search path with the -L option. This option can be specified multiple times.

[-llibname

The library file specified by this option must meet all of the following conditions
® Thefile is a static library.
® The file name starts with "lib".

® The file extension is ".a".
The -I option specifies the library file name as a string without "lib" and ".a".

4.7.6.2. Example of use

> mtcc "-WI,-Itest" input.c -0 output.bin /I “libtest.a” will be linked
> mtld -ltest input.o -0 output.bin // “libtest.a” will be linked

4.7.7. --defsym
4.7.7.1. Description

The --defsym option defines a symbol in the following format. This option can be specified multiple times.

© 2024 ROHM Co., Ltd. No. 67UG025E Rev.007

32/61

December 2023

mtcc User's Guide User’s Guide

[—defsym SYMBOL=EXPRESSION

4.7.7.2. Example of use

> mtcc "-WI,--defsym __my_symbol=0xABCD" input.c -o output.bin
> mtld --defsym __my_symbol=0xABCD input.o -0 output.bin

4.7.8. --script
4.7.8.1. Description

The --script option specifies the linker script to be used for link processing in the following format. If this option is omitted, the
default linker script will be used.

The default linker script is "C:\Program Files\ROHM\Matisse\lib\ldscripts\matisse.x".

| --script filename

4.7.8.2. Example of use

> mtcc "-WI,--script my_linker_script.x" input.c -o output.bin
> mtld --script my_linker_script.x input.o -0 output.bin

4.7.9. -Map=
4.7.9.1. Description

The -Map= option specifies the output destination of the map file in the following format. The map file will show the addresses of

global variables and functions.

| -Map=filename

4.7.9.2. Example of use

> mtcc "-WI,-Map=mapfile.map" input.c -o output.bin
> mtld -Map=mapfile.map input.o -0 output.bin

4.7.10. --exclude-mul=
4.7.10.1. Description

The --exclude-mul option specifies whether the CPU core to be targeted has a multiplier in the following format. If this option is

omitted, the default value of (true) will be applied.

[--exclude-mul=[true/false].

There are several variants of tinyMicon MatisssCORE™, some with multipliers and some without. This option can be used to

generate the appropriate machine language file for CPU core to be targeted.

Table 23. The values and the output results of “--exclude-mul=" option

Value Output results
true Generate machine language files for CPU cores that do not
have multipliers.
false Generate a machine language file for CPU cores with a
multiplier.
© 2024 ROHM Co., Ltd. 33/61 No. 67UG025E Rev.007

December 2023

mtcc User's Guide User’s Guide

4.7.10.2. Example of use

> mtcc "-WI,--exclude-mul=true" input.c -o output.bin
> mtld --exclude-mul=true input.o -0 output.bin

4.7.10.3. detailed information

This option determines the type of compiler runtime library (CRT) to link. There are two types of CRTs: one that uses mul
instructions for CPU cores with multipliers, and one that does not use mul instructions for CPU cores without multipliers.

When true is applied to the --exclude-mul option, the CRT for CPU cores without multiplier is linked.

When false is applied to the --exclude-mul option, CRT for CPU cores with multiplier is linked.

The multiplication process is implemented as CRT functions __mulhi3 and __mulsi3, and these CRT functions are called when
the multiplication process is needed in the user application.

In other words, even when false is applied to the --exclude-mul option, the mul instruction will not be generated in the user

application. The generated code of the user application will not be changed by setting of this option.

4.711. --crt
4.7.11.1. Description

The --crt option replaces the runtime library with a file specified in the following format. If this option is omitted, the runtime
library file corresponding to the value set in the --exclude-mul= option will be used.

For the CPU cores without a multiplier, "C:\Program Files\ROHM\Matissel\lib\crt.a" will be linked.

For the CPU cores with a multiplier, "C:\Program Files\ROHM\Matisse\lib\crt_with_mul.a" will be linked.

The runtime library file specified by this option must meet all of the following conditions
® Thefile is a static library.
® Define all symbols referenced by the linker script.

® Implements all the necessary runtime libraries for the compiler (mtcc)

4.7.11.2. Example of use

> mtcc "-WI,--crt=my_crt.a" input.c -o output.bin
> mild --crt=my_crt.a input.o -0 output.bin

4.7.12. --libc
4.7.12.1. Description

The --libc option replaces the library files in the following format. If this option is omitted, the default library file will be linked. The
default library file is "C:\Program Files\ROHM\Matisse\lib\libc.a".

The library file specified by this option must meet all of the following conditions
® static library

® Implement all library functions supported by the compiler (mtcc)

4.7.12.2. Example of use

> mtcc "-WI,--libc=. /libcanother.a" input.c -o output.bin
> mtld --libc=. /libcanother.a input.o -0 output.bin

© 2024 ROHM Co., Ltd. 34/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

4.713. -v
4.7.13.1. Description

The -v option outputs the version information of the linker (mtld) to the standard output.

4.7.13.2. Example of use

[> mtld -v

4.714. -h
4.7.14.1. Description

The -h option prints the help messages of the linker (mtld) to the standard output.

4.7.14.2. Example of use

[> mtld -h

© 2024 ROHM Co., Ltd. 35/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

5. Library function

The library functions provided by the compiler (mtcc) are described below.

5.1. Library file

The library file contains all the library functions supported by the compiler (mtcc). The default library file is located at
"C:\Program Files\ROHM\Matissel\lib\libc.a".

The linker (mtld) reads the library file and statically links it to the machine language instruction file. The linker (mtld) links only

the library functions necessary for program execution, so that unnecessary functions are not linked.

It is also possible to change the library file to be linked using the --libc option of the linker (mtld).

5.2. Header file

To use the library functions, you need to include the header file.

The following is a list of header files for the libraries provided by the compiler (mtcc).

Table 24. The list of library functions provided by the compiler (mtcc)

Header file name

Description

assert.h

A header file for diagnostic functions.

ctype.h A header file for character data identification and conversion.
errno.h A header file for the error numbers used by library functions.
inttypes.h A header file that extends stdint.h and adds functionality.

is0646.h A header file that provides an alternative to the operator.

limits.h A header file that defines the limits for each integer type.

setjmp.h A header file for global jump.

stdarg.h A header file for functions with variable length arguments.
stdbool.h A header file that provides the bool type.

stddef.h A header file that provides commonly used macros and types.
stdint.h A header file that provides an integer type with a standardized size.
stdio.h A header file for standard I/O.

stdlib.h A header file that provides macros, types, and functions related to standard utilities.
string.h A header file for string operations.

matisse/cpufunc.h

A header file that provides special macros to manipulate the CPU.

matisse/extmem.h

A header file that provides macros about the extended program area.

matisse/interrupt.h

A header file that provides macros for interrupt handling.

matisse/sections.h

A header file that provides macros to specify sections.

matisse/signature.h

A header file for storing signatures in the output file.

matisse/version.h

A header file that provides version information for compilers and libraries.

util/atomic.h

A header file that provides macros and functions related to atomic blocks.

5.3. Library Function Details

The library functions (or function macros) that are available in each header file are described below.

It also describes whether each function is reentrant or not. Reentrant functions can be called simultaneously from multiple

processing locations.

Non-reentrant functions can cause unintended results if they are called simultaneously from multiple locations. In such cases,

use an Atomic block to prevent simultaneous calls from multiple locations.

5.3.1. assert.h

Table 25. The library functions available in assert.ht

Function/Macro Name

Description Reentrancy

assert

Added diagnostic functions to the program. non-reentrant

© 2024 ROHM Co., Ltd.

No. 67UG025E Rev.007

36/61 December 2023

mtcc User's Guide

User’s Guide

5.3.2. ctype.h

Table 26. The library functions available in ctype.h

Function/Macro Name Description Reentrancy
isalnum Determine if it is ASCII alphanumeric. reentrant
isalpha Determines if the character is ASCII alphabet. reentrant
isascii Determine if it is an ASCII code. reentrant
isblank Determines if a character is a blank character. reentrant
iscntrl Determine if it is a control character. reentrant
isdigit Determine if it is a decimal number. reentrant
isgraph Determine if a character is a printable character other than a standard | reentrant
blank character.
islower Determines if a character is lower ASCII alphabet. reentrant
isprint Determine if a character is printable, including standard whitespace reentrant
characters.
ispunct Determine if a character is a printable character other than standard reentrant
whitespace or ASCII alphanumeric characters.
isspace Determines if a character is a standard whitespace character. reentrant
isupper Determines if a character is upper ASCII alphabet. reentrant
isxdigit Determines if the number is a hexadecimal number. reentrant
toascii Convert to ASCII characters. reentrant
tolower Converts an upper ASCII alphabet character to a lower ASCII reentrant
alphabet character.
toupper Converts lower ASCII alphabet character to upper ASCII alphabet reentrant
character.
5.3.3. inttypes.h
Table 27. The library functions available in inttype.h
Function/Macro Name Description Reentrancy
imaxabs Calculates the absolute value of a signed 32-bit integer type. reentrant
imaxdiv Performs division between signed 32-bit integer types and returns the | reentrant
quotient and remainder.
5.3.4. setjump.h
Table 28. The library functions available in setjimp.h
Function/Macro Name Description Reentrancy
longjump Restore the environment in which the setjump function was called. reentrant
setjump Save the environment at the time of the function call so that the reentrant
longjump function can be used later.
5.3.5. stdarg.h
Table 29. The library functions available in stdarg.h
Function/Macro Name Description Reentrancy
va_arg Get the variable length argument. reentrant
va_copy Copy the current variable length argument list. reentrant
va_end End the acquisition of variable length arguments. reentrant
va_start Start getting variable length arguments. reentrant
5.3.6. stddef.h
Table 30. The library functions available in stddef.h
Function/Macro Name Description Reentrancy
offsetof Get the offset value of the member of the strcut type. reentrant

© 2024 ROHM Co., Ltd.

37/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

5.3.7. stdint.h

Table 31. The library functions available in stdint.h

Function/Macro Name Description Reentrancy
___CONCATenate Concatenate the specified characters. reentrant
___CONCAT Concatenate the specified characters. reentrant
INT8 C Cast specified value to int8 t. reentrant
UINT8 C Cast specified value to uint8 t. reentrant
INT16_C Cast specified value to int16 _t. reentrant
UINT16_C Cast specified value to uint16_t. reentrant
INT32 C Cast specified value to int32 t. reentrant
UINT32 C Cast specified value to uint32_t. reentrant
INTMAX_C Cast specified value to intmax_t. reentrant
UINTMAX_C Cast specified value to uintmax_t. reentrant
5.3.8. stdio.h
Table 32. The library functions available in stdio.h

Function/Macro Name Description Reentrancy
FDEV_SETUP_STREAM Stream open. non-reentrant
fdev_close Close the stream. reentrant
fprintf Output a formatted string to the stream. reentrant
fputc Output a character to the stream. reentrant
fputs Output string to the stream. reentrant
fwrite Write to the stream. reentrant
printf Output a formatted string to standard output. non-reentrant
putc Output a character to standard output. non-reentrant
putchar Output a character to standard output. non-reentrant
puts Output string to standard output. non-reentrant
snprintf Formatted string output to string. Maximum output size can be reentrant

specified.
sprintf Output formatted string to string. reentrant
vfprintf Output a formatted string to the stream. reentrant
vprintf Output a formatted string to standard output. reentrant
vsnprintf Formatted string output to string. Maximum output size can be reentrant

specified.
vsprintf Output formatted string to string. reentrant

5.3.9. stdlib.h
Table 33. The library functions available in stdlib.h

Function/Macro Name Description Reentrancy
abort Causes the program to terminate abnormally. reentrant
abs Calculates the absolute value of an int type. reentrant
atoi Converts decimal strings to an int type. reentrant
atol Converts a decimal string to a long type. reentrant
bsearch Binary search. reentrant
div Performs division between signed int types and returns the quotient reentrant

and remainder.
exit Terminate the program. reentrant
labs Calculates absolute values of long type. reentrant
Idiv Performs division between signed long types and returns the quotient reentrant

and remainder.
gsort Quick sort. reentrant
rand Generate pseudo-random numbers. non-reentrant
rand_r Generate pseudo-random numbers. reentrant
srand Initialize pseudo-random numbers. reentrant
strtol Converts a string to a long type. non-reentrant
strtoul Converts a string to unsigned long type. non-reentrant

© 2024 ROHM Co., Ltd.

38/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

5.3.10. string.h

Table 34. The library functions available in string.h

Function/Macro Name Description Reentrancy
memccpy Copy the memory data. Maximum copy size can be specified. reentrant
memchr Search for a character from the beginning of the memory. reentrant
memcmp Compare the memory data. reentrant
memcpy Copy the memory data. reentrant
memmove Move the memory data. reentrant
memrchr Search for a character from the end of the memory. reentrant
memset Set the specified data in memory. reentrant
strcat Concatenate strings. reentrant
strchr Search for a character from the beginning of a string. reentrant
stremp Compare strings. reentrant
strcpy Copy the string. reentrant
strcspn Find out how many characters from the beginning of the string are not | reentrant
any of the characters in the specified string.
stricat Concatenate strings. Maximum string size can be specified. reentrant
stricpy Copies a string. Maximum string size can be specified. reentrant
strlen Get the string length. reentrant
strncat Concatenate strings. The number of characters to be concatenated reentrant
can be specified.
strncmp Compare strings. The number of characters to compare can be reentrant
specified.
strncpy Copies a string of characters. The number of characters to be copied reentrant
can be specified.
strnlen Get string length. Maximum string length can be specified. reentrant
strpbrk Returns the first position from the beginning of the string at which a reentrant
character in the specified string is found.
strrchr Search for characters from the end of a string. reentrant
strspn Find out how many characters from the beginning of the string are reentrant
contained in the specified string.
strstr Searches for a specified string from the beginning of the string. reentrant
strtok Split a string into tokens. non-reentrant
strtok_r Split a string into tokens. reentrant
5.3.11. matisse/cpufunc.h
Table 35. The library functions available in matisse/cpufunc.h
Function/Macro Name Description Reentrancy
~NOP Output the nop instruction. reentrant
HLT Output the hlt instruction. reentrant
5.3.12. matisse/interrupt.h
Table 36. The library functions available in matisse/interrupt.h
Function/Macro Name Description Reentrancy
ei Enable interrupt flag. reentrant
isei Get whether the interrupt flag is enabled or not. reentrant
di Disable the interrupt flag. reentrant
SWi Generated maskable interrupt in software interrupt. reentrant
swnmi Generated non-maskable interrupt in software interrupt. reentrant
5.3.13. matisse/sections.h
Table 37. The library functions available in matisse/sections.h
Function/Macro Name Description Reentrancy
SECTION _TEXT Place data or functions into .text section. reentrant
SECTION_RODATA Place data or functions into .rodata section. reentrant
SECTION_DATA Place data or functions into .data section. reentrant
SECTION_BSS Place data or functions into .bss section. reentrant
SECTION_NOINIT Place data or functions into .noinit section. reentrant

© 2024 ROHM Co., Ltd.

39/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

5.3.14. util/atomic.h

Table 38. The library functions available in util/atomic.h

flag after the end of the non-atomic block.

Function/Macro Name Description Reentrancy

ATOMIC_BLOCK Create an interrupt-disabled block, whitch is called an atomic block. | reentrant
The interrupt flag is disabled in the block.

NONATOMIC_BLOCK Create an interrupt-enabled block, which is called a non-atomic reentrant
block. The interrupt flag is disabled in the block.

ATOMIC_RESTORESTATE Used as a parameter to ATOMIC_BLOCK. Restore interrupt flag reentrant
after the end of the atomic block.

ATOMIC_FORCEON Used as a parameter to ATOMIC_BLOCK. Enable interrupt flag reentrant
after the end of the atomic block.

NONATOMIC_RESTORESTATE | Used as a parameter to NONATOMIC_BLOCK. Restore interrupt reentrant
flag after the end of the non-atomic block.

NONATOMIC_FORCEOFF Used as a parameter to NONATOMIC_BLOCK. Disable interrupt reentrant

© 2024 ROHM Co., Ltd.

No. 67UG025E Rev.007

40/61

December 2023

mtcc User's Guide

5.4. Type definition details

The types that are defined in each header file are described below.

5.4.1. inttypes.h

Table 39. The types defined in inttypes.h

Type Name Definition
_Lidiv_t struct {
intmax_t quot;
intmax_t rem;
2
imaxdiv_t _Lidiv_t

5.4.2. setjmp.h

Table 40. The types defined in setjmp.h

Type Name

Definition

jmp_buf[1]

struct _jmp_buf {
unsigned char _jb[_JBLEN];
b

5.4.3. stdarg.h

Table 41. The types defined in stdarg.h

Type Name Definition
gnuc_va_list builtin_va_list
va_list __gnuc_va_list

5.4.4. stddef.h

Table 42. The types defined in stddef.h

Type Name Definition
PTRDIFF_TYPE int

ptrdiff_t __ PTRDIFF_TYPE__
SIZE_TYPE unsigned int

size t ___SIZE_TYPE__

5.4.5. stdint.h

Table 43. The types defined in stdint.h

Type Name Definition
int8_t signed char
uint8_t unsigned char
int16_t signed int
uint16_t unsigned int
int32_t signed long
uint32_t unsigned long
intptr t int16 t
uintptr_t uint16_t
int_least8 _t int8 t
uint_least8 t uint8 t
int_least16_t int16_t

uint least16 t uint16 t
int_least32_t int32_t
uint_least32_t uint32_t
int_fast8 t int8_t
uint_fast8 t uint8_t

int fast16 t int16 t
uint_fast16_t uint16_t

© 2024 ROHM Co., Ltd. 41/61 No. 67UG025E Rev.007

User’s Guide

December 2023

mtcc User's Guide

User’s Guide

int fast32 t int32 t
uint fast32 t uint32 t
intmax_t int32 _t
uintmax t uint32 t

5.4.6. stdio.h

Table 44. The types defined in stdio.h

Type Name

Definition

— file

h

struct {

char *buf;

uint8_t flags;

int size;

int len;

int (*put)(char, struct __file *);
int (*get)(struct __file *);

void *updata;

FILE

file

5.4.7. stdlib.h

Table 45. The types defined in stdlib.h

Type Name Definition
div_t struct {
int quot;
int rem;
b
Idiv_t struct {
long quot;
long rem;
%
compare_fn_t int (*)(const void *, const void *)

© 2024 ROHM Co., Ltd.

42/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

5.5. Macro definition details

The macros that are defined in each header file are described below.

5.5.1. errno.h
Table 46. The macros defined in errno.h

Macro name Definition Value

EDOM 33 33 (0x21)
ERANGE 34 34 (0x22)
ENOSYS ((int)(66081697 & 0x7fff)) 21409 (0x53a1)
EINTR ((int)(2453066 & 0x7fff)) 28234 (0x6eda)
E2BIG ENOERR 11762 (0x2df2)
EACCES ENOERR 11762 (0x2df2)
EADDRINUSE ENOERR 11762 (0x2df2)
EADDRNOTAVAIL ENOERR 11762 (0x2df2)
EAFNOSUPPORT ENOERR 11762 (0x2df2)
EAGAIN ENOERR 11762 (0x2df2)
EALREADY ENOERR 11762 (0x2df2)
EBADF ENOERR 11762 (0x2df2)
EBUSY ENOERR 11762 (0x2df2)
ECHILD ENOERR 11762 (0x2df2)
ECONNABORTED ENOERR 11762 (0x2df2)
ECONNREFUSED ENOERR 11762 (0x2df2)
ECONNRESET ENOERR 11762 (0x2df2)
EDEADLK ENOERR 11762 (0x2df2)
EDESTADDRREQ ENOERR 11762 (0x2df2)
EEXIST ENOERR 11762 (0x2df2)
EFAULT ENOERR 11762 (0x2df2)
EFBIG ENOERR 11762 (0x2df2)
EHOSTUNREACH ENOERR 11762 (0x2df2)
EILSEQ ENOERR 11762 (0x2df2)
EINPROGRESS ENOERR 11762 (0x2df2)
EINVAL ENOERR 11762 (0x2df2)
EIO ENOERR 11762 (0x2df2)
EISCONN ENOERR 11762 (0x2df2)
EISDIR ENOERR 11762 (0x2df2)
ELOOP ENOERR 11762 (0x2df2)
EMFILE ENOERR 11762 (0x2df2)
EMLINK ENOERR 11762 (0x2df2)
EMSGSIZE ENOERR 11762 (0x2df2)
ENAMETOOLONG ENOERR 11762 (0x2df2)
ENETDOWN ENOERR 11762 (0x2df2)
ENETRESET ENOERR 11762 (0x2df2)
ENETUNREACH ENOERR 11762 (0x2df2)
ENFILE ENOERR 11762 (0x2df2)
ENOBUFS ENOERR 11762 (0x2df2)
ENODEV ENOERR 11762 (0x2df2)
ENOENT ENOERR 11762 (0x2df2)
ENOEXEC ENOERR 11762 (0x2df2)
ENOLCK ENOERR 11762 (0x2df2)
ENOMEM ENOERR 11762 (0x2df2)
ENOMSG ENOERR 11762 (0x2df2)
ENOPROTOOPT ENOERR 11762 (0x2df2)
ENOSPC ENOERR 11762 (0x2df2)
ENOTCONN ENOERR 11762 (0x2df2)
ENOTDIR ENOERR 11762 (0x2df2)
ENOTEMPTY ENOERR 11762 (0x2df2)
ENOTSOCK ENOERR 11762 (0x2df2)
ENOTTY ENOERR 11762 (0x2df2)
ENXIO ENOERR 11762 (0x2df2)
EOPNOTSUPP ENOERR 11762 (0x2df2)
EPERM ENOERR 11762 (0x2df2)

© 2024 ROHM Co., Ltd. No. 67UG025E Rev.007

43/61 December 2023

mtcc User's Guide

User’s Guide

EPIPE ENOERR 11762 (0x2df2)
EPROTONOSUPPORT ENOERR 11762 (0x2df2)
EPROTOTYPE ENOERR 11762 (0x2df2)
EROFS ENOERR 11762 (0x2df2)
ESPIPE ENOERR 11762 (0x2df2)
ESRCH ENOERR 11762 (0x2df2)
ETIMEDOUT ENOERR 11762 (0x2df2)
EWOULDBLOCK ENOERR 11762 (0x2df2)
EXDEV ENOERR 11762 (0x2df2)
ENOERR ((int)(66072050 & Oxffff)) 11762 (0x2df2)
5.5.2. is0646.h
Table 47. The macros defined in iso646.h
Macro name Definition Value
and && &&
and_eq &= =
bitand & &
bitor | |
compl ~ ~
not ! !
not_eq 1= 1=
or I |
or_eq |= =
xor A A
Xor_eq A= A=
5.5.3. limits.h
Table 48. The macros defined in limits.h
Macro name Definition Value
CHAR BIT CHAR BIT 8 (0x08)
MB LEN MAX 1 1 (0x01)
SCHAR MIN (-SCHAR_MAX - 1) -128 (0x80)
SCHAR_MAX SCHAR_MAX 127 (0x7F)
UCHAR MAX (SCHAR_MAX*2+1) 255 (OxFF)
CHAR MIN SCHAR MIN -128 (0x80)
CHAR MAX SCHAR MAX 127 (0x7F)
SHRT MIN (-SHRT_MAX - 1) -32768 (0x8000)
SHRT MAX SHRT MAX 32767 (OX7FFF)
USHRT MAX (SHRT_MAX *2U + 1U) 65535 (OXFFFF)
INT MIN (-INT_MAX-1) -32768 (0x8000)
INT MAX INT MAX 32767 (OX7FFF)
UINT MAX (INT_MAX* 2U + 1U) 65535 (OXFFFF)
LONG MIN (-LONG_MAX -1L) -2147483648 (0x80000000)
LONG MAX ~ LONG MAX 2147483647 (0x7FFFFFFF)
ULONG_MAX (LONG_MAX * 2UL + 1UL) 4294967295 (OxFFFFFFFF)

5.5.4. setmjp.h

Table 49. The macros defined in setjmp.h

Macro name

Definition

Value

JBLEN

11

11 (0xb)

ATTR__NORETURN

attribute__((__noreturn__))

attribute__ ((__noreturn__))

5.5.5. stdboo.h

Table 50. The macros defined in stdbool.h

Macro name Definition Value
bool Bool Bool
true 1 1 (0x1)
false 0 0 (0x0)

© 2024 ROHM Co., Ltd.

44/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

| bool true false are defined | 1 [1(0x1)
5.5.6. stddef.h
Table 51. The macros defined in stddef.h

Macro name Definition Value
NULL ((void *)0) ((void *)0)

5.5.7. stdint.h

Table 52. The macros defined in stdint.h

Macro name Definition Value
INT8 MAX 0x7F 127 (0x7F)
INT8_MIN (-INT8_MAX-1) -128 (0x80)
UINT8 MAX (INT8 MAX*2+1) 255 (OxFFFF)
INT16_MAX Ox7fff 32767 (OX7FFF)
INT16 MIN (-INT16_MAX-1) -32768 (0x8000)
UINT16 MAX (__CONCAT(INT16_MAX, U) * 2U + 1U) 65535 (OxFFFF)
INT32_MAX OX7fffffffL 2147483647 (0x7FFFFFFF)
INT32 MIN (-INT32_MAX - 1L) -2147483648 (0x80000000)
UINT32 MAX (__CONCAT(INT32 MAX, U) * 2UL + 1UL) 4294967295 (OXFFFFFFFF)
INT LEAST8 MAX INT8 MAX 127 (0x7F)
INT LEAST8 MIN INT8 MIN -128 (0x80)
UINT_LEAST8 MAX UINT8 MAX 255 (OxFF)
INT LEAST16 MAX INT16_ MAX 32767 (OX7FFF)
INT_LEAST16_MIN INT16_MIN -32768 (0x8000)
UINT LEAST16 MAX UINT16 MAX 65535 (OxFFFF)
INT LEAST32 MAX INT32 MAX 2147483647 (0x7FFFFFFF)
INT LEAST32 MIN INT32 MIN -2147483648 (0x80000000)
UINT LEAST32 MAX UINT32 MAX 4294967295 (OXFFFFFFFF)
INT_FAST8 MAX INT8 MAX 127 (0x7F)
INT FAST8 MIN INT8 MIN -128 (0x80)
UINT FAST8 MAX UINT8 MAX 255 (OxFF)
INT_FAST16 _MAX INT16_MAX 32767 (OX7FFF)
INT_FAST16_MIN INT16_MIN -32768 (0x8000)
UINT FAST16 MAX UINT16 MAX 65535 (OxFFFF)
INT FAST32 MAX INT32 MAX 2147483647 (0x7FFFFFFF)
INT FAST32 MIN INT32 MIN -2147483648 (0x80000000)
UINT FAST32 MAX UINT32 MAX 4294967295 (OxFFFFFFFF)
INTPTR_MAX INT16_ MAX 32767 (OX7FFF)
INTPTR_MIN INT16_MIN -32768 (0x8000)
UINTPTR MAX UINT16 MAX 65535 (OxFFFF)
INTMAX MAX INT32 MAX 2147483647 (0x7FFFFFFF)
INTMAX_MIN INT32 MIN -2147483648 (0x80000000)
UINTMAX_ MAX UINT32 MAX 4294967295 (OxFFFFFFFF)
PTRDIFF_MAX INT16 MAX 32767 (OX7FFF)
PTRDIFF MIN INT16 MIN -32768 (0x8000)
SIG_ATOMIC_MAX INT8_MAX 127 (0x7F)
SIG_ATOMIC_MIN INT8 MIN -128 (0x80)
SIZE MAX UINT16 MAX 65535 (OxFFFF)

5.5.8. matisse/extmem.h

Table 53. The macros defined in matisse/extmem.h

Macro name

Definition

Value

EXTMEM_FUNCTIONS_BEGIN_HERE

_Pragma(“clang section text=\".extext\")

_Pragma(“clang section
text=\".extext\”)

EXTMEM_FUNCTIONS_END_HERE

_Pragma(“clang section text=\"\")

_Pragma(“clang section
text=\".extext\”)

EXTMEM_THIS_FUNCTION

SECTION_MACRO(extext)

__atrribute__
((section(“.extext”))

EXTMEM_EXCLUDE_THIS_FUNCTION | SECTION_TEXT

attribute ((section(“.text”))

© 2024 ROHM Co., Ltd.

45/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

5.5.9. matisse/signature.h

Table 54. The macros defined in matisse/signature.h

Macro name Definition Value
SIGNATURE_HEADER 0x6D 109 (0x6D)
5.5.10. matisse/version.h
Table 55. The macros defined in matisse/version.h
Macro name Definition Value
MATISSE LIBC VERSION STRING “1.1.1” “1.1.1”
__ MATISSE _LIBC_VERSION_ 10101UL 10101 (0x2775)
__MATISSE_LIBC DATE _STRING “20220322” “20220322”
~ MATISSE LIBC DATE 20220322UL 20220322 (0x13489A2)
MATISSE LIBC MAJOR 1 1 (0x1)
MATISSE LIBC MINOR 1 1 (0x1)
~ MATISSE _LIBC REVISION 1 1 (0x1)

© 2024 ROHM Co., Ltd.

46/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

6. Specific functions

This section describes the features specific to the compiler (mtcc).

6.1. Extended program area

There are several variations of tinyMicon MatissesCORE™, and some CPU cores can use an extended program area (0x10000 -
0x1FFFF) in addition to the normal 16-bit memory area (0x0000 - OxFFFF).

The differences between normal memory area and the extended program area are as follows.

Table 56. The differences between normal memory area and extended program area

Memory type Placing program data Placing constant data | Used as data area (.data, .bss or stack)
Normal memory area Placeable Placeable Usable
Extended program area Placeable Non-placeable Unusable

6.1.1. How to use

To use the extended program area, you need to perform the following two steps.
1. Include the header file <matisse/extmem.h> in the C source file and use the macros for the extended program area.
2. Specify the command line option to enable the extended program area at compile time.

6.1.2. Example source file

Write the source file as follows. For a detailed description of the macros, refer to the comments in the file <matisse/extmem.h>.

#include <matisse/extmem.h>

/I All the functions defined after this macro will be placed in the extended program area.
EXTMEM_FUNCTIONS_BEGIN_HERE

void func1(){
/I this function will be placed in the extended program area.
}

void func2(){
/I this function will be placed in the extended program area.
}

void func3(}
/I this function will be placed in the extended program area.
}

void func4(){
/I this function will be placed in the extended program area.
}

int main(){
/I this function will be placed in the extended program area.
return O;

6.1.3. Example of compilation options

To compile a source file that uses the extended program area, specify --ex-program-size= in the command line option as shown

below.

| > mtcc "-WI,--ex-program-size=10,-Map=mapfile.map" input.c -o output.bin

© 2024 ROHM Co., Ltd. 47/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

--ex-program-size= option specifies the size of the extended program area. If the size of the extended program area is not
enough, a compile error will occur.
-Map= option specifies the map file. By looking at the map file, you can check whether the function is placed in the extended

program area or not.

© 2024 ROHM Co., Ltd. 48/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

6.2. Interrupt handler

tinyMicon MatisseCORE™ supports two types of interrupts: maskable and non-maskable interrupts.

The compiler (mtcc) can define interrupt handlers as C functions to be executed when an interrupt occurs.

6.2.1. How to use

To use the interrupt handler, you need to perform the following two steps.
1. Include the header file <matisse/interrupt.h> in the C source file.
2. Use the macro ISR() to define interrupt handlers, where ISR(IRQ_vect) is the interrupt handler for maskable interrupts and

ISR(NMI_vect) is the interrupt handler for non-maskable interrupts.

6.2.2. Example source file
6.2.2.1. Interrupt handler

The macro ISR(IRQ_vect) can be used to create a maskable interrupt handler, and the macro ISR(NMI_vect) can be used to

create a non-maskable interrupt handler.

#include <matisse/interrupt.h>

volatile int irgCount = 0;
volatile int nmiCount = 0;

ISR(IRQ_vect){
/I this function is the handler of the maskable interrupt.
irqCount++;

}

ISR(NMI_vect}
/I this function is the handler of the non-maskable interrupt.
nmiCount++;

6.2.2.2. Interrupt flag on/off

You can also turn on/off the interrupt flag using the macros defined in the header file <matisse/cpufunc.h>.

#include <matisse/interrupt.h>
#include <matisse/cpufunc.h>

volatile int irgCount = 0;

ISR(IRQ_vect){
/I this function is the handler of the maskable interrupt.
irqCount++;

}

int main(){
ei(); // the interrupt flag turns on.
timer_start();
while(irgCount < 100){
do_some_event_loop();
}

di(); // the interrupt flag turns off.

© 2024 ROHM Co., Ltd. 49/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

6.2.2.3. Atomic block

The macros defined in the <util/atomic.h> header file can be used to create an atomic block. An atomic block is a code block
where maskable interrupts do not occur. Please refer to the comments in the <util/atomic.h> file for a detailed description of the

macros for atomic blocks.

#include <matisse/interrupt.h>
#include <matisse/cpufunc.h>
#include <util/atomic.h>

volatile int irqCount = 0;

ISR(IRQ_vect){
/I this function is the handler of maskable interrupt.
irqCount++;

}

int main(){
volatile int irgCountCopy = 0;
ei(); // the interrupt flag turns on.
timer_start();
while(irgCount < 100){
ATOMIC_BLOCK(ATOMIC_RESTORESTATE)X
/I Maskable interrupts don’t occur in this block, so copying counter is always performed successfully.
irgCountCopy = irqCount;
}

do_some_event_loop();

}
di(); // the interrupt flag turns off.

6.2.3. Precautions

Interrupt handlers have a size limit and must be 256 bytes or less. Avoid writing many processes in the interrupt handler. If it is
necessary, cut out the processes to a separate function and call the function from the interrupt handler.

Exceeding the size limit of the interrupt handler will result in a compile-time error.

© 2024 ROHM Co., Ltd. 50/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

6.3. Standard output

tinyMicon MatisseCORE™ does not support standard 1/O (stdin, stdout, stderr) because the CPU is dedicated for LSI
embedded systems.

However, the pseudo standard output (stdout) can be used only when debugging with the command line debugger (mtsim).

6.3.1. How to use

To use the pseudo standard output by the command line debugger (mtsim), you need to do the following steps
1. Install the command line debugger (mtsim).

Write some special codes to enable the standard output feature in the source file.

Write a script file to enable the standard output function of the command line debugger (mtsim).

Build the source file and generate the binary file.

o &>~ b

Run msim using the script file and binary file you created.

6.3.2. Example source file

Write the source file as follows.

Refer to the comments in the header file <stdio.h> file for the special stream created by the FDEV_SETUP_STREAM macro.

#include <stdio.h>
#include <matisse/interrupt.h>

int myPutChar(char c, FILE* file);

/I Create a special output stream.
FILE myStdout = FDEV_SETUP_STREAM(myPutChar, NULL, FDEV_SETUP_WRITE);

/I This is the callback function for processing every char data in the output stream.
int myPutChar(char c, FILE* file)

/I Invoke interrupt to access the hook address.
swnmi();
return 0;

}

int main (void)

{
/I Overwrite stdout with a special output stream.
stdout = &myStdout;

[/l Each output data is processed by the callback (myPutChar), and then passed to the hook function.
/I The hook function outputs characters to the standard output of mtsim.
printf("Hello, world!\n);

return O;

6.3.3. Debugger script file example

Write a script file to control the debugger (mtsim) as shown below and save it as script.txt.

Use the debugger's hook command to link the hook address to a function in the hook DLL. The hook command will execute the
hook function in the DLL when the debugger (mtsim) accesses the hook address.

The hook DLL is in "C:\Program Files\ROHM\Matisse\mtsim\bin\StdoutHook.dll" by default.

0x02 is the interrupt vector address for non-maskable interrupts. When swnmi() is executed in the source code, a non-maskable

interrupt occurs and the execution is moved to 0x02 then the hook function is called.

© 2024 ROHM Co., Ltd. 51/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

set echo off

b 0x02

b Ox1a

hook 0x2 C:\Program Files\ROHM\Matisse\mtsim\bin\StdoutHook.dll
c

q

6.3.4. Debugger execution

If you run debugger with a command like the following, you will see the string on the standard output of mtsim.

The -sim option specifies execution in simulation mode, and the -s option specifies a script file. Please refer to the mtsim

documentation for more details on the command line.

The command line options can be changed according to your usage.

> mtsim -sim -sscript.txt -q output.bin
Hello, world!
>

© 2024 ROHM Co., Ltd.
52/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

6.4. Systemlnit function

Create a Systeminit function if you need to initialize the system when the program starts. For example, Systeminit function is
used to change the CPU clock frequency, set the peripherals, change the memory map, change the stack, etc.
If you have created a Systemlnit function, the Systemlnit function will be automatically called from the start-up routine.

The timing when the Systeminit function is called is as follows.

Start-up routine

Reset interrupt handlling

i

Execute Systemlnit function

]

Initialize data section

Initialize bss section

\ 4

Execute main function

6.4.1. Example source file

If you write the Systemlnit function as follows, it will be executed automatically at startup.

void Systemlnit()

/I Do some initialization here.

}

6.5. Noinit section

Variables in the bss section will be initialized to 0 in the start-up routine, but if you do not want them to be initialized, use the
noinit section.

Variables placed in the noinit section will not be initialized.

6.5.1. How to use

Include the header file <matisse/sections.h> in your C source file and use the macro SECTION_NOINIT for the target variable.

6.5.2. Example source file

#include <matisse/sections.h>

SECTION_NOINIT int notlinitializedVariable;

SECTION_NOINIT int notlnitializedArray[10];

6.5.3. Precautions

Initial values cannot be specified for variables placed in the noinit section.

Static variables cannot be placed in the noinit section.

© 2024 ROHM Co., Ltd. 53/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide

User’s Guide

6.6. Signature data

By including the header file <matisse/signature.h> in the C source file, the compiler (mtcc) can embed signature data for

identification in the output files (both binary format file and ELF format file).

The signature data consists of 7 bytes of data, and the format is as follows.

Table 57. The format of the signature data

Data index Description

0x6D ('M"in ASCII code. The initial character of Matisse.)

mtcc major version number

mtcc minor version number

mtcc revision number

matisse libc major version number

matisse libc minor version number

g WIN|—=|O

matisse libc revision number

The locations where signature data are embedded are as follows.

Table 58. The locations where the signature data are embedded

File types Locations
Binary format file The end of RAM data.
ELF format file In the signature section.

6.6.1. How to use

Simply include the header file <matisse/signature.h> in the C source file to embed the signature data in the output file.

6.6.2. Example source file

| #include <matisse/signature.h>

6.6.3. Precautions

The header file <matisse/signature.h> can only be included in one file of the entire program. If you include it in multiple files, a

compile-time error will occur.

6.7. Inline assembler

The compiler (mtcc) supports the feature of simple inline assembler.

6.7.1. Statement format

The inline assembler statement is written in the following format.

[asm volatile__ (assembler_code);

Please be sure to specify __volatile__ so that it is not deleted by the optimization of the compiler.

Assembler instructions can be written directly in the assembler_code part.

6.7.2. Example source file

The inline assembler is written in the C language function as follows.

void sample_func() {
// nop instruction
asm volatile _ ("nop\n\t");

© 2024 ROHM Co., Ltd.
54/61

No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

/I load values to r10 and r11
asm__ _ volatile__ ("Idr r10, Ox10\n\t"
"ldr r11, 0x20\n\t);

/I call other_func using r8 and r9

asm__ _ volatile__ ("ldr r8, lo8(other_func)\n\t"
"Idr r9, hi8(other_func)\n\t"
"call er8\n\t");

6.7.3. Precautions

Be careful that the registers used in the inline assembler do not conflict with the registers used in the C source file part.

If the registers conflict, the values will be overwritten, causing unintended results.

© 2024 ROHM Co., Ltd. 55/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

6.8. pragma

The compiler (mtcc) supports the pragmas. By writing pragma in the source code, you can provide additional information to the

compiler.

6.8.1. How to use

The supported #pragmra directives are as follows.

Table 59. The supported #pragmra directives

pragma Description
#pragma clang section [section_type="name"] Change the section name of global objects to "name".
The following can be used for "section_type"
® text
® rodata
® data
® bss

6.8.2. Example source file

#pragma clang section text=".text.subsection" // All global objects that were supposed to be placed in .text section after this
line will be placed into .text.subsection..

/I This function will be placed into .text.subsection .
void func1(){
}

/I This function will also be placed into .text.subsection .
void func2(){
}

#pragma clang section text=""// Restore the settings of .text section to the default.

6.8.3. Precautions

If you do not understand the pragmas, they may cause unintended compilation errors or bugs. Please make sure you

understand what you are doing before using them.

6.9. attribute

The compiler (mtcc) supports the attributes. By writing attributes in the source code, you can specify the attributes of the objects

in the program.

6.9.1. How to use

The supported attribute directives are as follows.

Table 60. The supported attribute directives

attribute Description

__attribute__ ((__const_)) When specified for a function, it notifies the compiler that the
function is a const function, which does not change global or
static variables.

__attribute__ ((__interrupt__)) When specified for a function, it notifies the compiler that the
function is an interrupt handler.
__attribute__ ((__nodebug__)) Debug information about the specified object will not be
generated.
© 2024 ROHM Co., Ltd. No. 67UG025E Rev.007
56/61

December 2023

mtcc User's Guide User’s Guide

__attribute__ ((__noreturn__)) When specified for a function, the function becomes will not
return to the caller.
__attribute__ ((__pure_)) When specified for a function, it notifies the compiler that it is

a pure function, which always returns the same value when
called with the same arguments.

attribute__ ((section ("[section_name]"))) The specified object will be placed in section_name.

__attribute__ ((unused)) Can be specified for variables, functions, and arguments.
Suppresses unused warning.

6.9.2. Example source file

__attribute__ ((__const__)) void func1() {
/I This function will be given the const attribute.

}

__attribute__ ((__nodebug__)) __attribute__((__pure__)) void func2() {
/I This function will be given the nodebug and the pure attributes.

}

void func3() __attribute_ (_ pure__); // Adding the attribute on function declaration.

int var1 __attribute_ ((__nodebug_)); // This variable will be given the nodebug attribute.
int var2 __ attribute_ ((__nodebug__)) = 10; // This variable will also be given the nodebug attribute.

6.9.3. Precautions

If you do not understand the attributes, they may cause unintended compilation errors or bugs. Please make sure you

understand what you are doing before using them.

© 2024 ROHM Co., Ltd. 57/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

6.10. Predefined Macros

The compiler (mtcc) has predefined macros. These macros are predefined inside the compiler (mtcc) and are used to get
information about the compiler type and the compiler version.

6.10.1. How to use

The predefined macros available in the compiler (mtcc) are as follows.

Table 61. The predefined macros available in the compiler (mtcc)

Macro name Value

MATISSE

— MATISSE

MATISSE

~ MTCC_MAJOR _

—_MTCC_MINOR__

Ol

~ MTCC_REVISION _

6.10.2. Example source file

#ifdef _ MATISSE___
/I Write the source code for Matisse here.

#else
/I Write the source code for other architecture here.
#endif
#if (__ MTCC_MAJOR_ ==1)&& (__MTCC_MINOR__ == 1) && (__MTCC_REVISION__ ==0)
/I Write the source code for mtcc V1.01.00 here.
#endif
© 2024 ROHM Co., Ltd. No. 67UG025E Rev.007

58/61 December 2023

mtcc User's Guide User’s Guide

7. Calling convention

The machine language code output by the compiler (mtcc) follows certain convention for passing values to C functions and

receiving the return value from C function calls. This convention is called the calling convention.

7.1. Register types

Table 62. Register types

Register name Register type Description

RO Special register This register is used as the lower byte of a 16-bit PC (Program Counter).
When used as the source operand in the LDR instruction, the value of the
flag register can be obtained.

When used in arithmetic operations or bitwise operations, it can be used
as a zero register.

R1 Special register This register is used as the upper byte of the 16-bit PC (Program
Counter).
R2, R3 Special register These registers are used as a 16-bit SP (Stack Pointer), where R2 is the
lower byte and R3 is the upper byte.
R4, R5 Special Register These registers are used as a 16-bit FP (Frame Pointer), where R4 is the
Callee-Saved Register lower byte and R5 is the upper byte.

They are also used as Callee-Saved general purpose registers in
functions that do not have FP.

R6, R7, R8, R9 Callee-Saved Register General purpose registers whose values are not changed by function
calling.
R10, R11 Temporary register Registers used for various temporary operations.
Caller-Saved register The values of these registers may be changed by function calling.
R12, R13, R14, Caller-Saved register General purpose registers whose values may be changed by function
R15 calling.

7.2. Function parameter calling conventions

The arguments are allocated to the registers in order. If there are not enough registers, the remaining arguments are allocated

to the stack.

7.2.1. Conventions for allocating arguments to registers

® Allocate the arguments to R15, R14, R13, and R12 in the order in which they are declared (leftmost to rightmost).

® A 1-byte argument is extended to 2-bytes and allocated to registers.

7.2.2. Conventions for allocating arguments to stack

® The arguments are pushed onto the stack in order from the rightmost one.

7.3. Function return value calling conventions

® |f the return value is a structure or a union, the return value will be pushed onto the stack from the upper byte of the last
member.
If the size of the return value is 1-byte, the return value will be allocated to the register R14.
If the size of the return value is 2-bytes, the lower byte will be allocated to the register R14 and the upper byte will be allocated
to the register R15.

[) If the size of the return value is 4-bytes, the return value will be allocated to the register R12, R13, R14, and R15 from the

lower byte.

© 2024 ROHM Co., Ltd. 59/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

8. Unsupported features

mtcc and mtld are developed based on open-source software. The functionality of those open-source software is inherited by
mtcc and mtld. In other words, there are additional features available in mtcc and mtld that are not described in this document.
These features are called "unsupported features".

We have not tested unsupported features. And we do not guarantee that they will work properly. Please use them based on your

own judgment.

8.1. Compiler command line options

Alist of command line options available for the OSS compiler on which mtcc is based is provided in the attachment below. All
functionalities listed in this attachment that are not described in this document are unsupported features and are not guaranteed

to work properly. Please use them based on your own judgment.

8.2. Attributes

A list of attributes available for the OSS compiler on which mtcc is based is provided in the attachment below. All functionalities
listed in this attachment that are not described in this document are unsupported features and are not guaranteed to work

properly. Please use them based on your own judgment.

8.3. Linker command line options

A list of command line options available for the OSS linker on which mtld is based is provided in the attachment below. All
functionalities listed in this attachment that are not described in this document are unsupported features and are not guaranteed

to work properly. Please use them based on your own judgment.

© 2024 ROHM Co., Ltd. 60/61 No. 67UG025E Rev.007
December 2023

mtcc User's Guide User’s Guide

9. Open-source software licenses

This software includes open-source software (hereinafter referred to as "open-source software program") provided under the
following license conditions, in addition to software for which ROHM owns or is licensed.

Open-source software programs are subject to their respective license terms, so in the event of a conflict between the license
terms of an open-source software program and this material, the license terms of the open source software program shall

prevail.

Included open-source software and their license terms
+LLVM/clang(3-clause BSD license)
+Mono.Options(The MIT License)

*ninja(Apache License Version 2.0)

+libc(Apache License Version 2.0)

+binutils(GPL Version 2)

«crt(GPL Version 3)

10. Trademark notices

"Windows" is a trademark of Microsoft Group companies.
"Intel" is a trademark of Intel Corporation or its subsidiaries.
"Core™" js a trademark or registered trademark of Intel Corporation or its subsidiaries.

“tinyMicon MatisseCORE™” and “matiseye™” are a trademark or registered trademark of ROHM Corporation.

End.

© 2024 ROHM Co., Ltd. 61/61 No. 67UG025E Rev.007
December 2023

Notice

Caution

1. The information written in these materials regarding the software and system (hereinafter collectively “Software”) and the contents of the
materials are current as of the date of the material’s issuance, and may be changed by ROHM, at any time and for any reason, without prior
notice.

2. If you plan to use the Software in connection with any equipment or device (such as the medical equipment, transportation equipment,
traffic equipment, aerospace equipment, nuclear power control equipment, vehicle equipment including the fuel control system and/or car
accessories, and/or various kinds of safety devices etc.) which require extremely high reliability, and whose breakdown or malfunction relate
to the risk of personal injury or death, or any other serious damage (such usage is hereinafter called “Special Usage”), you must first consult
with the ROHM's sales representative. ROHM is not responsible for any loss, injury, or damage etc. incurred by you or any other third party
caused by any Special Usage without ROHM'’s prior written approval.

3. Semiconductor products may break or malfunction due to various factors. You are responsible for designing, testing, and implementing safety
measures in connection with your use of any ROHM products using the Software (such ROHM products are hereinafter called “Product”) Such
safety measures include, but are not limited to, derating, reductant design, fire spread prevention, backup, and/or fail safe etc. in order to
prevent the accident resulting in injury or death and/or fire damage etc.. ROHM is not responsible and hereby disclaims liability for any
damage in relation to your use beyond the rated value, or the non-compliance with any precaution for use.

4. ROHM is not responsible for any direct and/or indirect damage to you, or any third parties, (including the damage caused by loss of
intangible asset such as information, data, or program etc., loss and/or interruption of profit) which is caused by the use or impossibility to
use of the Software.

5. Since the Software, these materials, and/or the Product contain confidential information of ROHM’, including technical information, and/or
trade secrets, you are prohibited from engaging in any of the following acts in whole or part, without ROHM’s prior written approval:
(i) disclosing any ROHM confidential information to a third party;
(ii) disassembling, reverse engineering, and/or any other analysis;
(iii) reprinting, copy, and/or reproduction; or
(iv) removing the copyright notice included in the Software.

6. When exporting the Software, or the technology and/or confidential information written in these materials, you are required to follow the
applicable export control laws and regulations such as “Foreign Exchange and Foreign Tarade Act” and/or “Export Administration Regulations
(EAR).".

7. ROHM disclaims all warranties, statutory or otherwise, and ROHM hereby disclaims any warranty for non-infringement for the Software
and/or the information written in these materials. Accordingly, ROHM is not liable to you for any direct or third-party claims of infringement
of rights.

8. No license, whether expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties
with respect to the Software or Products or the information contained in these materials.

9. You agree to indemnify, defend and hold harmless ROHM and ROHM'’s officers and/or employees from responsibility, and hold them harmless,
and defend them from any damage, loss, penalty, or cost caused by any claim of liability (including but not limited to the attorney fees)
resulting from, or incurred relating to the following acts:

(1) any alleged infringement of a third party’s rights or the violation of laws caused by reading, download, encryption, summarization, copy,
or transfer etc.; or
(2) violation of these materials.

10. ROHM does not guarantee that these materials or the Software is error free. ROHM shall not be in any way responsible or liable for any
damages, expenses, or losses incurred by you or third parties resulting from errors contained in these materials.

Thank you for using ROHM products.
For inquiries about our products, please contact us.

ROHM

ety ROHM Customer Support System

https://www.rohm.co.jp/contactus

www.rohm.co.jp
© 2024 ROHM Co., Ltd. All rights reserved.

	1. Overview
	1.1. Features

	2. Operating environment
	2.1. System Requirements
	2.2. Installation

	3. Language specification
	3.1. Implementation-defined behavior
	3.1.1. J.3.1 Translation
	3.1.2. J.3.2 Environment
	3.1.3. J.3.3 Identifiers
	3.1.4. J.3.4 Characters
	3.1.5. J.3.5 Integers
	3.1.6. J.3.6 Floating point
	3.1.7. J.3.7 Arrays and pointers
	3.1.8. J.3.8 Hints
	3.1.9. J.3.9 Structures, unions, enumerations, and bit-fields
	3.1.10. J.3.10 Qualifiers
	3.1.11. J.3.11 Preprocessing directives
	3.1.12. J.3.12 Library functions
	3.1.13. J.3.13 Architecture
	3.1.14. J.4 Locale-specific behavior

	3.2. Translation limits
	3.3. Precautions
	3.3.1. Infinite loop
	3.3.1.1. Description
	3.3.1.2. Workaround

	4. How to use
	4.1. Start the compiler (mtcc)
	4.2. List of compiler command line options
	4.3. Details of compiler command line options
	4.3.1. -O
	4.3.1.1. Description
	4.3.1.2. Example of use

	4.3.2. -o
	4.3.2.1. Description
	4.3.2.2. Example of use

	4.3.3. -I
	4.3.3.1. Description
	4.3.3.2. Example of use

	4.3.4. -E
	4.3.4.1. Description
	4.3.4.2. Example of use

	4.3.5. -S
	4.3.5.1. Description
	4.3.5.2. Example of use

	4.3.6. -c
	4.3.6.1. Description
	4.3.6.2. Example of use

	4.3.7. -g
	4.3.7.1. Description
	4.3.7.2. Example of use

	4.3.8. -D
	4.3.8.1. Description
	4.3.8.2. Example of use

	4.3.9. -Werror
	4.3.9.1. Description
	4.3.9.2. Example of use

	4.3.10. -Werror=
	4.3.10.1. Description
	4.3.10.2. Example of use

	4.3.11. -Wno
	4.3.11.1. Description
	4.3.11.2. Example of use

	4.3.12. -Weverything
	4.3.12.1. Description
	4.3.12.2. Example of use

	4.3.13. “-Wl,”
	4.3.13.1. Description
	4.3.13.2. Example of use

	4.3.14. -v
	4.3.14.1. Description
	4.3.14.2. Example of use

	4.3.15. -h
	4.3.15.1. Description
	4.3.15.2. Example of use

	4.4. How to make diagnostic functions strictly compliant with C99 standard
	4.4.1. Descriptions of command line options

	4.5. Start the linker (mtld)
	4.6. Linker command line options list
	4.7. Details of linker command line options
	4.7.1. -o
	4.7.1.1. Description
	4.7.1.2. Example of use

	4.7.2. --program-size=
	4.7.2.1. Description
	4.7.2.2. Example of use

	4.7.3. --data-size=
	4.7.3.1. Description
	4.7.3.2. Example of use

	4.7.4. --ex-program-size=
	4.7.4.1. Description
	4.7.4.2. Example of use

	4.7.5. -L
	4.7.5.1. Description
	4.7.5.2. Example of use

	4.7.6. -l
	4.7.6.1. Description
	4.7.6.2. Example of use

	4.7.7. --defsym
	4.7.7.1. Description
	4.7.7.2. Example of use

	4.7.8. --script
	4.7.8.1. Description
	4.7.8.2. Example of use

	4.7.9. -Map=
	4.7.9.1. Description
	4.7.9.2. Example of use

	4.7.10. --exclude-mul=
	4.7.10.1. Description
	4.7.10.2. Example of use
	4.7.10.3. detailed information

	4.7.11. --crt
	4.7.11.1. Description
	4.7.11.2. Example of use

	4.7.12. --libc
	4.7.12.1. Description
	4.7.12.2. Example of use

	4.7.13. -v
	4.7.13.1. Description
	4.7.13.2. Example of use

	4.7.14. -h
	4.7.14.1. Description
	4.7.14.2. Example of use

	5. Library function
	5.1. Library file
	5.2. Header file
	5.3. Library Function Details
	5.3.1. assert.h
	5.3.2. ctype.h
	5.3.3. inttypes.h
	5.3.4. setjump.h
	5.3.5. stdarg.h
	5.3.6. stddef.h
	5.3.7. stdint.h
	5.3.8. stdio.h
	5.3.9. stdlib.h
	5.3.10. string.h
	5.3.11. matisse/cpufunc.h
	5.3.12. matisse/interrupt.h
	5.3.13. matisse/sections.h
	5.3.14. util/atomic.h

	5.4. Type definition details
	5.4.1. inttypes.h
	5.4.2. setjmp.h
	5.4.3. stdarg.h
	5.4.4. stddef.h
	5.4.5. stdint.h
	5.4.6. stdio.h
	5.4.7. stdlib.h

	5.5. Macro definition details
	5.5.1. errno.h
	5.5.2. iso646.h
	5.5.3. limits.h
	5.5.4. setmjp.h
	5.5.5. stdboo.h
	5.5.6. stddef.h
	5.5.7. stdint.h
	5.5.8. matisse/extmem.h
	5.5.9. matisse/signature.h
	5.5.10. matisse/version.h

	6. Specific functions
	6.1. Extended program area
	6.1.1. How to use
	6.1.2. Example source file
	6.1.3. Example of compilation options

	6.2. Interrupt handler
	6.2.1. How to use
	6.2.2. Example source file
	6.2.2.1. Interrupt handler
	6.2.2.2. Interrupt flag on/off
	6.2.2.3. Atomic block

	6.2.3. Precautions

	6.3. Standard output
	6.3.1. How to use
	6.3.2. Example source file
	6.3.3. Debugger script file example
	6.3.4. Debugger execution

	6.4. SystemInit function
	6.4.1. Example source file

	6.5. Noinit section
	6.5.1. How to use
	6.5.2. Example source file
	6.5.3. Precautions

	6.6. Signature data
	6.6.1. How to use
	6.6.2. Example source file
	6.6.3. Precautions

	6.7. Inline assembler
	6.7.1. Statement format
	6.7.2. Example source file
	6.7.3. Precautions

	6.8. pragma
	6.8.1. How to use
	6.8.2. Example source file
	6.8.3. Precautions

	6.9. attribute
	6.9.1. How to use
	6.9.2. Example source file
	6.9.3. Precautions

	6.10. Predefined Macros
	6.10.1. How to use
	6.10.2. Example source file

	7. Calling convention
	7.1. Register types
	7.2. Function parameter calling conventions
	7.2.1. Conventions for allocating arguments to registers
	7.2.2. Conventions for allocating arguments to stack

	7.3. Function return value calling conventions

	8. Unsupported features
	8.1. Compiler command line options
	8.2. Attributes
	8.3. Linker command line options

	9. Open-source software licenses
	10. Trademark notices

