

1/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide

tinyMicon MatisseCORE™

mtld user's guide

Linker User's Guide for tinyMicon MatisseCORE™

2/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

Update history

Date Version Description

2024/06/05 Rev.001 Describe the contents of mtld V1.01.00

2025/02/21 Rev.002 The description of “3.4.12.3.1.3(type)”
added

2025/03/13 Rev.003 Updated for mtld V2.00.00 and V3.00.00

3/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

Table of Contents

1. Overview ... 5

1.1. Characteristics ... 5

2. Operating Environment ... 6

2.1. Necessary system .. 6

2.2. Install .. 6

3. How to use .. 7

3.1. Starting mtld ... 7

3.2. Command Line Options List ... 7

3.3. Command-line option details .. 7

3.3.1. -o ... 7

3.3.2. --program-size= ... 7

3.3.3. --data-size= .. 8

3.3.4. --ex-program-size= .. 8

3.3.5. -L ... 8

3.3.6. -l ... 8

3.3.7. -defsym .. 9

3.3.8. --script .. 9

3.3.9. -Map= .. 9

3.3.10. --exclude-mul= ... 9

3.3.11. --crt .. 10

3.3.12. --libc ... 10

3.3.13. --gc-sections .. 10

3.3.14. -v .. 11

3.3.15. -h ... 11

3.4. Linker script .. 12

3.4.1. Linker script overview .. 12

3.4.2. Linker script format .. 12

3.4.3. Comments ... 12

3.4.4. Top level commands .. 13

3.4.5. ENTRY command .. 16

3.4.6. PROVIDE keyword .. 16

3.4.7. ASSERT command .. 16

3.4.8. SIZEOF function .. 17

3.4.9. ADDR function ... 17

3.4.10. LOADADDR function ... 17

3.4.11. ALIGN function ... 17

3.4.12. SECTIONS command .. 19

3.4.13. MEMORY command .. 26

4. No assurance function .. 28

4.1. Command line option ... 28

4.2. linker script ... 28

5. Open Source Software.. 29

6. For trademarks ... 29

4/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

5/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

1. Overview

mtld is a linker for tinyMicon MatisseCORE™, an ultra-small 8-bit CPU (Central Processing Unit) developed by ROHM for

embedding into LSI (Large Scale Integration).

Linker is a program that links an object file output by the compiler to a single file.

1.1. Characteristics

mtld has the following characteristics:

1 ELF 32-bit LSB is supported.

2 Links between object files (*.o) and static library files (*.a) are possible.

3 Various command-line options.

6/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

2. Operating Environment

The operating environment of mtld is described below.

2.1. System Requirements

Table 1. System Requirements

OS Windows™ Server 2012 (64-bit)
Windows™ 7 (32-bit/64-bit)
Windows™ 10 (32-bit/64-bit)
Windows™ 11 (64-bit)

CPU Equivalent to Intel™ Core™ series or a CPU with equivalent performance.

Memory Equipped with 4 GByte or more.

HDD/SSD More than 200 MB of free space.

2.2. Install

If you run the Matisse developing environment installer (matisse-dev-env-installer-XX.XX.XX.exe), mtld will also be installed.

By default, the set of tools will be installed in "C:\Program Files\ROHM\Matisse\".

7/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3. How to use

3.1. Starting mtld

mtld runs from the command line as follows: Multiple input files can be specified, and an object file (*.o) generated by mtcc can

be specified.

> mtld [options] input_file -o output_file

An example of a command line that runs mtld is shown below.

> mtld --program-size=10 -Map=output.map input.o -o output.bin

3.2. Command Line Options List

The following list of command-line options is available for linker (mtld):

Command line option Description

--program-size= Specifies the size of the program area.

--data-size= Specifies the size of the data area.

--ex-program-size= Specifies the size of the extended program area.

-L Specifies the directory for the library file. More than one can be specified.

-l Specifies the library file to link. More than one can be specified.

--defsym Defines a global symbol for the linker. More than one can be specified.

--script Uses this option to change the linker script.

-Map= Specifies the destination of the map file.

--exclude-mul= Specifies whether there is a multiplier for the core to be targeted.

--crt Modifies the run-time library that you want to link.

--libc Modifies the library file to be linked.

-v Displays version information.

-h Displays help messages.

3.3. Command-line option details

3.3.1. -o

3.3.1.1. Description

The -o option specifies the output filename in the following format: The binary file (ROM image) is output. At the same time, the

ELF file is automatically generated (the file name of the ELF file changes the output file name extension to .elf).

-o filename

3.3.1.2. Examples of Use
> mtld input.o -o output.bin

3.3.2. --program-size=

3.3.2.1. Description

The --program-size= option specifies the size of the program area in the following format: The program area is the size of the

specified number multiplied by 4 kbytes. If you omit this option, the default value of 8 (32kbytes) applies.

--program-size=n [n=8,9,10,11,12,13,14,15]

If the sum of the values specified by --program-size= and --data-size= is 17 (68kbytes) or greater, a memory capacity error

occurs.

3.3.2.2. Examples of Use
> mtld --program-size=8 input.o -o output.bin

8/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.3.3. --data-size=

3.3.3.1. Description

The --data-size= option specifies the size of the data area in the following format: The data area is the size of the specified

number multiplied by 4 kbytes. If this option is omitted, the default value of 1 (4 kbytes) is applied.

--data-size=n [n=1,2,3,4,5,6,7,8]

 If the sum of the values specified by --program-size= and --data-size= is 17 (68kbytes) or greater, a memory capacity error

occurs.

3.3.3.2. Examples of Use
> mtld --data-size=1 input.o -o output.bin

3.3.4. --ex-program-size=

3.3.4.1. Description

The --ex-program-size= option specifies the size of the extended program area in the following format: The extended program

area is the size of the specified number multiplied by 2 kbytes. If this option is omitted, the default value of 0 (0 kbytes) is

applied.

--ex-program-size=n [n=0..32]

3.3.4.2. Examples of Use
> mtld --ex-program-size=10 input.o -o output.bin

3.3.5. -L

3.3.5.1. Description

The -L option specifies the directory in the following format and adds the specified directory to the library file search path. This

option can be more than one.

-Ldirname

3.3.5.2. Examples of Use
> mtld -L./lib input.o -o output.bin

3.3.6. -l

3.3.6.1. Description

The -l option specifies the library file to link in the following format: The specified library file is searched for in the directory that is

registered in the library search path with the -L option. This option can be more than one.

-llibname

The library file specified by this option must satisfy all of the following conditions:

⚫ Static library

⚫ File name begins with "lib"

⚫ The file extension is ".a"

The optional parameter -l specifies the string from the library filename that "lib" and ".a" are removed.

9/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.3.6.2. Examples of Use
> mtld -ltest input.o -o output.bin // The library file named libtest.a will be linked

3.3.7. -defsym

3.3.7.1. Description

The -defsym option defines the symbol in the following format: This option can be more than one.

The defined symbols are enabled in the linker script.

-defsym SYMBOL=EXPRESSION

3.3.7.2. Examples of Use
> mtld --defsym __my_symbol=0xABCD input.o -o output.bin

3.3.8. --script

3.3.8.1. Description

The script option specifies the linker script to use for link processing in the following format: If you omit this option, mtld uses

the default linker script. The default linker script is "C:\Program Files\ROHM\Matisse\C\lib\ldscripts\matisse.x".

--script filename

3.3.8.2. Examples of Use
> mtld --script my_linker_script.x input.o -o output.bin

3.3.9. -Map=

3.3.9.1. Description

The -Map= option specifies the output destination for the map file in the following format: Map files contain the addresses of

global variables and functions.

-Map=filename

3.3.9.2. Examples of Use
> mtld -Map=mapfile.map input.o -o output.bin

3.3.10. --exclude-mul=

3.3.10.1. Description

The --exclude-mul option specifies whether the target CPU core has a multiplier in the following format: If you omit this option,

the default value (true) applies.

--exclude-mul=[true/false]

tinyMicon MatisseCORE™ has several variations, including a CPU core with a multiplier and a CPU core without a multiplier.

This option can be used to create machine language files suitable for each core.

Set value Output result

true Creates a binary file for a CPU core without a multiplier.

false Creates a binary file for a CPU core with a multiplier.

3.3.10.2. Examples of Use
> mtld --exclude-mul=true input.o -o output.bin

10/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.3.10.3. Details

This option determines the type of compiler runtime library (CRT) that will be linked. There are two types of CRTs: the one uses

the mul instructions for the CPU core with multiplier and the one doesn’t use the mul instructions for the CPU without the multiplier.

Applying true to the --exclude-mul option links CRTs for CPU cores without a multiplier.

Applying false to the --exclude-mul option links the CRT for the CPU core that has a multiplier.

The multiplication process is implemented as the CRT functions __mulhi3 and __mulsi3. If the application part requires

multiplication, these CRT functions are called.

That is, if you apply false to the--exclude-mul option, the mul instruction will not be generated in the application part.

This option does not change the code of the application. Only the CRT being linked changes.

3.3.11. --crt

3.3.11.1. Description

The --crt option replaces the run-time library with the file specified in the following format: If you omit this option, the parameter

of --exclude-mul= option determines the run-time library file being linked. If --exclude-mul=true, "C:\Program

Files\ROHM\Matisse\C\lib\crt.a" is linked, and if --exclude-mul=false, "C:\Program Files\ROHM\Matisse\C\lib\crt_with_mul.a" is

linked.

Runtime library files that are specified in this option must meet all of the following conditions:

⚫ Static library

⚫ Have defined all CRT symbols referenced by the linker script

⚫ Implementing all the runtime libraries required by the compiler (mtcc)

3.3.11.2. Examples of Use
> mtld --crt=my_crt.a input.o -o output.bin

3.3.12. --libc

3.3.12.1. Description

The --libc option replaces the standard library files in the following format: If you omit this option, the default standard library file

is linked. The default standard library file is "C:\Program Files\ROHM\Matisse\C\lib\libc.a".

The library file specified by this option must satisfy all the following conditions:

⚫ Static library

⚫ All standard library functions supported by the compiler (mtcc) are implemented

3.3.12.2. Examples of Use
> mtld --libc=./libcanother.a input.o -o output.bin

3.3.13. --gc-sections

3.3.13.1. Description

The --gc-sections option enables the garbage collection function of the linker (mtld). This option automatically removes unused

sections when linked. This enables you to reduce the size of the final executable file or library.

NOTE: The sections specified with KEEP keyword (3.4.12.4.2 KEEP keyword) are not subject to garbage collection.

3.3.13.2. Examples of Use
> mtld --gc-sections input.o -o output.bin

11/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.3.14. -v

3.3.14.1. Description

The -v option shows the version information for the linker (mtld) to standard output.

3.3.14.2. Examples of Use
> mtld -v

3.3.15. -h

3.3.15.1. Description

The -h option shows a help message for the linker (mtld) to standard output.

3.3.15.2. Examples of Use
> mtld -h

12/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.4. Linker script

A linker script is a script file that defines the linker (mtld) behavior during link processing. You can specify details for the program's

memory layout by describing the linker script.

The linker script functions available for linker (mtld) are described in the following chapters.

"C:\Program Files\ROHM\Matisse\C\lib\ldscripts\matchisse.x" is used as the default linker script. You can use the --script

command-line option to change the linker script that you want to apply.

3.4.1. Linker script overview

The linker (mtld) combines the input files into one output file according to the linker script description. Each input and output file

is in a data format called an ELF. An I/O file is called an object file. Each object file has multiple sections. The section of the input

file is called an input section, and the section of the output file is called an output section.

3.4.1.1. Section

Each section of the object file has a name, size, and content. When you run linker (mtld), the contents of the input section are

placed in the memory region specified by linker script and an output file is created.

3.4.1.2. Symbol

Each object file has a symbol. Each symbol has a name and address. When you compile a C language program and convert it to

an object file, symbols for the functions, global variables, and static variables are created. You can use these symbols as

parameters of commands and expressions in the linker script. In addition, you can define a new symbol in the linker script or

change the value of defined symbols.

3.4.1.3. LMA and VMA

The output section has two addresses. The first is the Load Memory Address (LMA), the address to which the section is loaded.

The second is the Virtual Memory Address (VMA), which is the address of the section when the program is being executed. In

most cases, these two addresses are identical. As an example of the difference between these two addresses, the data section

is loaded into the ROM and copied to the RAM when the program is started (this method is often used to initialize global variables

in embedded systems). In this case, you must write a linker script like the LMA of the section is in the ROM area, and the VMA is

in the RAM area.

3.4.2. Linker script format

The linker (mtld) supports the following BNF notation:

Linker script := Comment* | Top level command* | MEMORY command? | SECTIONS Command?

Top level command := Assignment | ENTRY command | PROVIDE keyword | ASSERT command | SIZEOF function | ADDR
function | LOADADDR function

3.4.3. Comments

3.4.3.1. Description

You can write comments in the linker script. The area enclosed in /* and */ is a comment. The contents of the comment do not

affect the operation of the linker script.

3.4.3.2. Examples of Use
/* This is a comment. */

/* multiple
Lines
Of

13/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

Comments.
*/

3.4.4. Top level commands

Top level commands that can be written in the top level of linker script are described below.

However, you can also use top level commands described in chapters 3.4.4.1. Assignment expression, 3.4.6. PROVIDE keyword,

3.4.8. SIZEOF function, 3.4.9. ADDR function, 3.4.10. LOADADDR function, 3.4.12. SECTIONS command.

3.4.4.1. Assignment expression

3.4.4.1.1 Syntax

The BNF representation of the assignment expression is as follows.

Assignment expression:= symbol name = expression;

When the assignment expression is evaluated, the left-hand symbol is substituted with the value of the right-hand symbol.

If the symbol on the left-hand is already defined, the symbol value is updated with the right-hand value. If the symbol is not defined,

the symbol is newly defined, and the right-hand value is substituted.

3.4.4.1.1.1 Examples of Use
symbol1 = 10; /* A new symbol "symbol1" is defined and 10 is assigned */
symbol1 = 20; /* The value of "symbol1" is updated to 20 */

3.4.4.2. Expressions

Expressions include immediate values, arithmetic expressions, and comparison expressions. Each item is described below.

3.4.4.2.1 Immediate value

3.4.4.2.1.1 Syntax

The BNF notation of immediate value is as follows. Immediate values are available only for integers.

Immediate value := decimal character+ Suffix? | 0x hexadecimal characters+ suffixes?
Decimal character := 0|1|2|3|4|5|6|7|8|9
Suffix := K| M
Hexadecimal := 0|1|2|3|4|5|6|7|8|9|a|b|c|d|e|f

A decimal or hexadecimal number with the suffix K multiplies the value by 1024, and the suffix M multiplies the value by 1048576.

The range of immediate values that are available is 0 to 4294967295 (0xFFFFFFFF). The immediate value greater than

4294967295 is replaced with 4294967295 at the time of evaluation.

Do not use negative numbers for immediate values. Even if a negative number is written in the linker script, it is treated as an

unsigned 32-bit integer during evaluation, which results in unintended results in arithmetic expressions and comparison

expressions.

The immediate value cannot be used alone and must be used as the right-hand part of the assignment expression or as an

argument to a function.

3.4.4.2.1.2 Examples of Use
symbol1 = 10; /* Defines symbol1 and assigns an immediate value of 10 */
symbol2 = 5K; /* Defines symbol2 and assigns 5 * 1024 results */
symbol3 = 10M; /* Defines symbol3 and assigns the results of 10 * 1048576 */
symbol4 = 0x1234abcd; /* Defines symbol4 and assigns hexadecimal immediate value 0x1234abcd */

3.4.4.2.2 Arithmetic expressions

14/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.4.4.2.2.1 Syntax

The BNF representation of the arithmetic expression is as follows.

Arithmetic expression := Expression Operator's Expression
Operator := +| -| *

The right-hand part of the arithmetic expression is evaluated before the arithmetic expression is evaluated.

The + operator performs summation when the expression is evaluated, the - operator performs subtraction when it is evaluated,

and the * operator performs multiplication when it is evaluated.

Valid operation results range from 0 to 4294967295 (0xFFFFFFFF). Only the lower 32-bit part of the result is used for evaluation

of operations with out-of-range results.

An arithmetic expression cannot be used alone and must be used as right-hand part of the assignment expression or as an

argument to a function.

3.4.4.2.2.2 Examples of Use
symbol1 = 10 + 2; /* symbol1 is defined and 12 is assigned */
symbol2 = symbol1-5; /* symbol2 is defined and 7 is assigned */
symbol3 = 0xFFFFFFFF; /* symbol3 is defined and 0xFFFFFFFF is assigned */
symbol4 = symbol1 + symbol3; /* symbol4 is defined and 11 is assigned (lower 32-bit part of 0x1000000B)*/
symbol5 = symbol1-symbol3; /* symbol5 is defined and 13 is assigned (lower 32-bit part of 0x10000000D)*/
symbol6 = 0x80000000 * 2; /* symbol6 is defined, and 0 is assigned (lower 32-bit part of 0x10000000) */

3.4.4.2.3 Comparison expressions

3.4.4.2.3.1 Syntax

The BNF representation of the comparison expression is as follows.

Comparison Expression := Expression Comparison Operator Expression
Comparison operator:= <|<=|>|>=|==|!=

The left-hand and right-hand terms of the comparison operator are evaluated before the comparison expression is evaluated.

The left-hand and right-hand terms are compared according to the comparison operator rules to evaluate the comparison

expression. If the comparison result is true, the comparison result is 1, and if the comparison result is false, the comparison result

is 0.

Comparison expressions cannot be used alone and must be used as right-hand part of an assignment expression or as an

argument to a function.

The description of each comparison operator is as follows.

Comparison
Operators

Description

< For example, if "a < b", the result is true if "a" is less than "b", and false otherwise.

<= For example, if "a <= b", the result is true if "a" is less than or equal to "b", and false if "a" is less than
or equal to "b".

> For example, if "a > b", the result is true if "a" is greater than "b", and false otherwise.

>= For example, if "a >= b", the result is true if "a" is greater than or equal to b, otherwise it is false.

== For example, if "a == b", the result is true if a and b are equal, and false otherwise.

!= For example, when "a != b", the result is true if "a" is not equal to "b", and false otherwise.

3.4.4.2.3.2 Examples of Use
symbol1 = 10;
symbol2 = 20;
symbol3 = symbol1 < symbol2; /* Since the comparison is true, 1 is assigned to symbol3 */
symbol4 = symbol1 == symbol2; /* Since the comparison result is false, 0 is assigned to symbol4 */

3.4.4.2.4 .variable (dot variable)

15/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.4.4.2.4.1 Description

A . variable (or dot variable) is a special variable that you use to manipulate location counters that represent the addresses of the

next data or section. The location counter is initialized at the start of the SECTIONS command and is then updated each time

data is added to the output section.

If the variable is on the left side of the assignment expression, then the value of the location counter is updated to the right side

of the assignment expression when the assignment expression is evaluated.

If the variable is used inside the expression, Variables can be evaluated to obtain the value of the current location counter.

3.4.4.2.4.2 Syntax
. = xxxx; /* used as the left-hand side of the assignment expression */
xxxx = . ; /* used as the right-hand side of the assignment expression */

3.4.4.2.4.3 Examples of Use
SECTIONS
{
 .text : {
 . = 0x1000; /* Set the location counter to 0x1000 */
 symbol1 = . ; /* Value of location counter is assigned to symbol1 */
 . = . + 0x200; /* Add 0x200 to the location counter */
 }
}

16/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.4.5. ENTRY command

3.4.5.1. Description

The ENTRY command is used by the linker script to set the entry point of the program. The entry point is the address of the first

instruction that the program begins executing. The ENTRY command indicates that the symbol is an entry point by specifying a

specific symbol name in the linker script.

If the ENTRY command is not used, the first address in the.text section becomes the entry point. If the ENTRY command is not

used and there is no text section, then address 0 is the entry point.

3.4.5.2. Command syntax
ENTRY(symbol name)

3.4.5.3. Examples of Use
entry_point = 0x0000; /* defines symbol entry_point and assigns 0x0000 */
ENTRY(entry_point) /* Set the symbol entry_point to the entry point */

Note: Writing multiple ENTRY commands in the linker script does not result in an error, but only the ENTRY command that is listed

last takes effect.

3.4.6. PROVIDE keyword

3.4.6.1. Description

The PROVIDE keyword is used to perform conditional symbol definitions in the linker script. The PROVIDE keyword defines a

symbol only if the specified symbol is not already defined in the input object file or linker script.

3.4.6.2. Syntax
PROVIDE(symbol name = expression);

3.4.6.3. Examples of Use
PROVIDE (not_defined = 0x1234); /* define symbol not_defined only if not_defined is not defined and then assign 0x1234 */

3.4.7. ASSERT command

3.4.7.1. Description

The ASSERT command displays an error message if the specified condition is not met and is used to stop link processing. By

using the ASSERT command, you can verify that certain conditions are met when linking.

3.4.7.2. Command syntax

The syntax of the ASSERT command is as follows.

ASSERT (immediate value | symbol name | arithmetic expression | comparison expression, error message);

3.4.7.3. Examples of Use
rom_size = 0xF000;
ram_size = 0xF000;
total_memory_size = 0x10000;

/* Error occurs when the sum of rom_size and ram_size exceeds total_memory_size
ASSERT(rom_size + ram_size <= total_memory_size, "Memory size over capacity.");

17/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.4.8. SIZEOF function

3.4.8.1. Description

Use the SIZEOF function to retrieve the size of the output section in the linker script. The result of the evaluation of the SIZEOF

function is the size in bytes of the specified output section.

3.4.8.2. Function syntax
SIZEOF(output section name)

3.4.8.3. Examples of Use
SECTIONS
{
 .text : {*(.text)}
}
symbol1 = SIZEOF(.text); /* assign symbol1 with the size of the text section */

3.4.9. ADDR function

3.4.9.1. Description

The ADDR function is used to retrieve the virtual memory address (VMA) at the head of a particular output section in the linker

script. The result of the evaluation of the ADDR function is the virtual memory address (VMA) at the beginning of the specified

output section.

3.4.9.2. Function syntax
ADDR(output section name)

3.4.9.3. Examples of Use
SECTIONS
{
 .text : {*(.text)}
}
symbol1 = ADDR(.text); /* assign symbol1 with the start address of aVMA in the..text section */

3.4.10. LOADADDR function

3.4.10.1. Description

The LOADADDR function is used to obtain the load memory address (LMA) at the beginning of a specific output section in the

linker script. The evaluation result of the LOADADDR function is the load memory address (LMA) at the beginning of the specified

output section.

3.4.10.2. Function syntax
LOADADDR(output section name)

3.4.10.3. Examples of Use
SECTONS
{
 .text : {*(.text)}
}
symbol1 = LOADADDR(.text); /* assign symbol1 with the start address of LMA of the .text section */

3.4.11. ALIGN function

3.4.11.1. Description

The ALIGN function is used to obtain the memory address of a particular alignment in the linker script. Alignment means that the

memory address points to a specific boundary. The memory boundary value specified by the ALIGN function must be the power

18/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

of 2. The evaluation result of the ALIGN function is the nearest memory boundary address in front of the current location counter.

If the current location counter is on the specified memory boundary, the evaluation result of the ALIGN function is the current

location counter.

For example, when the current location counter is 0x1010, the evaluation result of ALIGN (0x1000) is 0x2000, and when the

current location counter is 0x2000, the evaluation result of ALIGN (0x1000) is 0x2000.

3.4.11.2. Command syntax
ALIGN(memory boundaries)

NOTE: The memory boundary value specified by the ALIGN function must be the power of 2.

3.4.11.3. Examples of Use
SECTIONS
{
 .text : {*(.text)}
}

symbol1 = ALIGN(0x1000); /* assign symbol1 with the nearest 0x1000 boundary address in front of the location counter */

19/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.4.12. SECTIONS command

3.4.12.1. Description

The SECTIONS command defines how the sections in the input file are mapped to the sections of the output file in the linker script,

and also defines how the output sections are placed in the memory of the target system.

NOTE: The SECTIONS command can contain up to one description in the linker script.

3.4.12.2. Command syntax

The syntax of the SECTIONS command is as follows. You can write zero or more sections-commands in parentheses.

SECTIONS
{
 section-command
 ...
}

3.4.12.3. section-command

The section-command can be one of the following:

⚫ Description of the output section

⚫ Assignment expression

⚫ PROVIDE keyword, SIZEOF function, ADDR function, LOADADDR function, ALIGN function

Each section-command item is described below.

3.4.12.3.1 Description of the output section

The format of the description in the output section is as follows. Describe the attributes in the output section this way. The brackets

are optional attributes.

section name [address] [(type)] : [AT(lma)] [ALIGN(boundary)] [SUBALIGN(boundary)]

{
 output-section-command
 ...
} [>region] [AT>region] [=fillexp]

Note: For detailed information about output-section-command, see “3.4.12.4. output-section-command”.

The output section attributes are described below.

3.4.12.3.1.1 section name

The name of the output section.

3.4.12.3.1.2 address

Specifies the start address of the output section. The start address specified is a virtual memory address (VMA).

Note: “3.4.12.3.1.7 >region” should not be used at the same time as this feature. For detailed information about VMA, see “3.4.1.3.

LMA and VMA”.

3.4.12.3.1.3 (type)

Specifies the type of output section. The following types can be specified:

Type Name Description

NOLOAD Only the memory space of the specified section will be reserved and the data of the section
will not be included in the output file.

20/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.4.12.3.1.4 AT(lma)

Specifies the load memory address (LMA) for the output section.

NOTE: “3.4.12.3.1.8AT>region” should not be use at the same time as this feature. For detailed information about LMA, see

“3.4.1.3. LMA and VMA".

3.4.12.3.1.5 ALIGN(boundary)

Aligns the start address of the output section to a specific alignment. The start address to be aligned is a virtual memory address

(VMA).

Alignment means that the addresses in memory are placed at a particular boundary (the power of 2).

Note: 3.4.11. You can also use the ALIGN function to specify location counters and symbol alignment.3.4.11. ALIGN function

3.4.12.3.1.6 SUBALIGN(boundary)

Aligns the start address of the input section in the output section to a specific alignment. The start address to be aligned is a virtual

memory address (VMA).

Alignment means that the addresses in memory are placed at a particular boundary (the power of 2).

3.4.12.3.1.7 >region

Specifies the memory region to which the virtual memory address (VMA) of the output section is assigned.

NOTE: “3.4.12.3.1.2 address” should not be used at the same time as this feature. For detailed information about VMA, see

“3.4.1.3. LMA and VMA”. For detailed information about the memory region, see “3.4.13. MEMORY command”.

3.4.12.3.1.8 AT>region

Specifies the memory region to which the load memory address (LMA) of the output section is allocated.

NOTE: “3.4.12.3.1.4 AT(lma)” should not be used at the same time as this feature. For detailed information about LMA, see

“3.4.1.3. LMA and VMA”. For detailed information about the memory region, see “3.4.13. MEMORY command”.

3.4.12.3.1.9 =fillexp

The result of the evaluation of the specified expression is used as a fill pattern. A fill pattern is binary data that fills an area in the

output section where the data is not located. The available fill pattern sizes are 1 byte to 4 bytes.

3.4.12.3.2 Assignment expression

3.4.12.3.2.1 Description

“3.4.4.1. Assignment is also available as section-command. By using assignment expressions, you can define symbols and assign

value to symbols in SECTIONS command.

3.4.12.3.2.2 Examples of Use
SECTIONS
{
 .text : {*(.text)}
 symbol1 = 0x1000; /* assign symbol1 with 0x1000 */
}

3.4.12.3.3 PROVIDE keyword

3.4.12.3.3.1 Description

“3.4.6. PROVIDE keyword” is also available as section-command. By using PROVIDE keyword, you can perform conditional

symbol definitions in SECTIONS command.

21/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.4.12.3.3.2 Examples of Use
SECTIONS
{
 .text : {*(.text)}
 /* define symbol not_defined only if it is not defined and then assign with 0x1234 */
 PROVIDE(not_defined = 0x1234);
}

3.4.12.3.4 SIZEOF function

3.4.12.3.4.1 Description

“3.4.8. SIZEOF function” is also available as section-command. By using SIZEOF function, you can retrieve the size of the output

section in SECTIONS command.

3.4.12.3.4.2 Examples of Use
SECTIONS
{
 .text : {*(.text)}
 symbol1 = SIZEOF(.text); /* assign symbol1 with the size of the .text section */
}

3.4.12.3.5 ADDR function

3.4.12.3.5.1 Description

“3.4.9. ADDR function” is also available as section-command. By using ADDR function, you can retrieve the virtual memory

address (VMA) of a particular output section in SECTIONS command.

3.4.12.3.5.2 Examples of Use
SECTIONS
{
 .text : {*(.text)}
 symbol1 = ADDR(.text); /* assign symbol1 with the VMA of the .text section */
}

3.4.12.3.6 LOADADDR function

3.4.12.3.6.1 Description

“3.4.10. LOADADDR function” is also available as section-command. By using LOADADDR function, you can retrieve the load

memory address (LMA) of a particular output section in SECTIONS command.

3.4.12.3.6.2 Examples of Use
SECTONS
{
 .text : {*(.text)}
 symbol1 = LOADADDR(.text); /* assign symbol1 with the LMA of the .text section */
}

3.4.12.3.7 ALIGN function

3.4.12.3.7.1 Description

“3.4.11. ALIGN function” is also available as section-command. By using ALIGN function, you can obtain the memory address of

a particular alignment in SECTIONS command.

3.4.12.3.7.2 Examples of Use
SECTIONS
{

22/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

 .text : {*(.text)}
 symbol1 = ALIGN(0x1000); /* assign symbol1 with the nearest 0x1000 boundary address in front of the location counter */
}

3.4.12.4. output-section-command

The output-section-command is a command that can be used within “3.4.12.3.1 Description of the output section”.

The output-section-command can be one of the following:

⚫ Description of the input section

⚫ Assignment expression

⚫ PROVIDE keyword, SIZEOF function, ADDR function, LOADADDR Function, ALIGN function, KEEP keyword

Each item of output-section-command is described below.

3.4.12.4.1 Description of the input section

3.4.12.4.1.1 Description

Retrieves the specified section from the specified input file and places it in the output section.

3.4.12.4.1.2 Command syntax

The syntax of the input section description is as follows.

Input file name(section name)

3.4.12.4.1.3 Wildcards

The wildcard character "*" can be used for the input file name or section name. Wildcard characters "*" represent all strings.

3.4.12.4.1.4 Examples of Use
SECTIONS
{
 .text : {
 file1.o(.text) /* Place the .text section in input file "file1.o" here */
 }

 .data : {
 (.data) / place the .data section here in all input files */
 (.data.) /* place all subsections of .data in all input files here */

}
}

3.4.12.4.2 Assignment expression

3.4.12.4.2.1 Description

“3.4.4.1. Assignment expression” is also available as output-section-command. By using assignment expressions, you can define

symbols and assign value to symbols in SECTIONS command.

3.4.12.4.2.2 Examples of Use
SECTIONS
{
 .text : {
 symbol1 = 0x1000; /* assign symbol1 with 0x1000 */
 }
}

3.4.12.4.3 PROVIDE keyword

3.4.12.4.3.1 Description

23/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

“3.4.6. PROVIDE keyword” is also available as output-section-command. By using PROVIDE keyword, you can perform

conditional symbol definitions in SECTIONS command.

3.4.12.4.3.2 Examples of Use
SECTIONS
{
 .text : {
 *(.text)

/* define symbol not_defined only if not_defined is not defined and assign 0x1234 */
PROVIDE(not_defined = 0x1234);

}
}

3.4.12.4.4 SIZEOF function

3.4.12.4.4.1 Description

“3.4.8. SIZEOF function” is also available as output-section-command. By using SIZEOF function, you can retrieve the size of the

output section in SECTIONS command.

3.4.12.4.4.2 Examples of Use
SECTIONS
{
 .text : {
 *(.text)
 symbol1 = SIZEOF(.text); /* assign symbol1 with the size of the .text section */
 }
}

3.4.12.4.5 ADDR function

3.4.12.4.5.1 Description

“3.4.9. ADDR function” is also available as output-section-command. By using ADDR function, you can retrieve the virtual memory

address (VMA) of a particular output section in SECTIONS command.

3.4.12.4.5.2 Examples of Use
SECTIONS
{
 .text : {
 *(.text)
 symbol1 = ADDR(.text); /* assign symbol1 with the start address of VMA in the .text section */
 }
}

3.4.12.4.6 LOADADDR Function

3.4.12.4.6.1 Description

“3.4.10. LOADADDR function” is also available as output-section-command. By using LOADADDR function, you can retrieve the

load memory address (LMA) of a particular output section in SECTIONS command.

3.4.12.4.6.2 Examples of Use
SECTONS
{
 .text : {
 *(.text)
 symbol1 = LOADADDR(.text); /* assign symbol1 with the start address of LMA in the .text section */
 }
}

24/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.4.12.4.1 ALIGN function

3.4.12.4.1.1 Description

“3.4.11. ALIGN function” is also available as output-section-command. By using ALIGN function, you can obtain the memory

address of a particular alignment in SECTIONS command.

3.4.12.4.1.2 Examples of Use
SECTIONS
{
 .text : {
 *(.text)
 symbol1 = ALIGN(0x1000); /* assign symbol1 with the nearest 0x1000 boundary address in front of the location counter */
 }
}

3.4.12.4.2 KEEP keyword

3.4.12.4.2.1 Description

The KEEP keyword is used to ensure that specified sections are not deleted by the garbage collection. Even if “3.3.13. --gc-

sections” is used to remove unused sections by linkers (mtld), the sections specified by the KEEP keyword can still be retained.

3.4.12.4.2.2 Syntax
KEEP(input file name (input section name))

Note: You can use “3.4.12.4.1.3 Wildcards” for KEEP keyword arguments.

3.4.12.4.2.3 Examples of Use
/* Run using the --gc-sections command line option */
SECTIONS
{
 .text : {
 *(.text)
 KEEP(*(.text.keep)) /* protect the .text.keep section of all input files from the garbage collection*/
 }
}

3.4.12.5. SECTIONS command example

The following is an example of the SECTIONS command using the section-commands and output-section-commands described

above.

MEMORY
{
 ROM (rx) : ORIGIN = 0x0000, LENGTH = 4K
 RAM (rwx) : ORIGIN = 0x1000, LENGTH = 4K
}

SECTIONS
{
 .text : AT(ADDR(.text) + SIZEOF(.data)) ALIGN(4) SUBALIGN(8) {
 *(.text)
 KEEP(*(.init))
 _text_end = .;
 } >ROM =0xFF

 .data : AT(LOADADDR(.text) + SIZEOF(.text)) ALIGN(8) {
 _data_start = .;
 *(.data)
 . = ALIGN(0x10); /* Align the location counter to the 0x10 boundary */
 _data_end = .;
 } >RAM

25/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

 .bss : {
 _bss_start = .;
 *(.bss)
 _bss_end = .;
 } >RAM

 .user_stack (NOLOAD) : {
 . += 0x100;
 .user_stack_start = .;
 } >RAM

 .rodata : {
 . = ALIGN(0x20); /* Align the location counter to the 0x20 boundary */
 *(.rodata)
 SUBALIGN(4) /* Alignment of subsequent input sections to a 4-byte boundary */
 (.rodata.)

 _rodata_end = .;

 } >ROM AT>RAM

 _data_loadaddr = LOADADDR(.data); /* gets the load address in the .data section */
 _bss_size = SIZEOF(.bss); /* gets the size of the .bss section */
 _rodata_vma = ADDR(.rodata); /* gets the virtual address of the .rodata section */
}

26/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

3.4.13. MEMORY command

3.4.13.1. Description

The MEMORY command is used to describe the location and size of the memory region. The MEMORY command enables you

to specify which memory region of the target system is available and which memory region is unavailable. In addition, you can

assign a section to the memory region defined by this command. For detailed information about sections, see “3.4.12. SECTIONS

command”.

Once a memory region is defined, you can use “3.4.12.3.1.7>region” attribute to instruct the linker (mtld) to place a particular

output section in that memory region. For example, if you have a memory region named "mem", you can specify “> mem” in the

description of the output section in the SECTIONS command.

If an address is not specified in the output section, the linker (mtld) places the output section at the next available address in the

memory regoin described in the MEMORY command. If the sum of the output sections for a memory region is too large for that

memory region, the linker (mtld) displays an error message and stops processing the link.

NOTE: The MEMORY command can contain up to one description in the linker script.

3.4.13.2. Command syntax

The syntax of the MEMORY command is as follows. You can write zero or more memory regions in parentheses.

MEMORY
{
 name [(attr)] : ORIGIN = origin, LENGTH = len
 ...
}

3.4.13.2.1 name

The name to refer to the memory region described with the MEMORY command from the rest of the linker script.

The name is meaningful only in the linker script and does not conflict with the symbol name, file name, or section name. The name

of the memory region must be unique.

3.4.13.2.2 attr

This is a variable-length string that specifies the attributes of the memory region.

The attr string is an optional list of attributes that specifies whether to use a specific memory region for an input section that is not

explicitly mapped in the linker script. As described in the SECTIONS command, if you do not specify an output section for the

input section, the linker (mtld) automatically creates an output section with the same name as the input section. When the attributes

of a memory region are defined, the linker (mtld) uses those attributes to select the memory region of the output section to be

created.

The available attributes and their descriptions are as follows. Characters in an attribute have the same meaning both in upper and

lower case.

Attribute Description of the attribute

R Read-only section

W Readable and writable sections

X Executable section

3.4.13.2.3 ORIGIN

This expression indicates the start address of the memory region. The expression is evaluated before the memory allocation

process takes place and the result must be constant value.

3.4.13.2.4 LENGTH

This expression represents the size of the memory region in bytes. The expression is evaluated before the memory allocation

27/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

process takes place and the result must be constant value.

3.4.13.3. Examples of Use
MEMORY
{
 rom (RX) : ORIGIN = 0x0, LENGTH = 4K
 ram (WX) : ORIGIN = 0x1000, LENGTH = 1M
}

SECTIONS
{
 .text : {

 *(.text)
} >rom

 .data : {

*(.data)
} >ram

}

28/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

4. No assurance function

This linker (mtld) is based on open source software. The features of the open source software are also diverted to mtld. This

means that features not described in this document are available in mtld. These functions are called "no assurance function".

“No assurance function”’s has not been validated and are not assured to work correct. Use these functions on the user's own

responsibility.

4.1. Command line option

The following attachment lists the command-line options available for the open source software on which mtld is based. Of the

features described in this attachment, all that are not described in this document are “No assurance functions”, and those are not

assured to work correct. Use these features on the user's own responsibility.

Adobe Acrobat
Document

4.2. linker script

The following attachment lists the linker script features available for open-source software on which mtld is based. Of the features

described in this attachment, all that are not described in this document are “No assurance functions”, and those are not assured

to work correct. Use these features on the user's own responsibility.

Adobe Acrobat
Document

Next: Environment Variables, Up: Invocation [Contents][Index]

2.1 Command-line Options

The linker supports a plethora of command-line options, but in actual
practice few of
them are used in any particular context.
For instance, a frequent use of ld is to link
standard Unix
object files on a standard, supported Unix system. On such a system, to
link a file hello.o:

ld -o output /lib/crt0.o hello.o -lc

This tells ld to produce a file called output as the
result of linking the file /lib/crt0.o with
hello.o and
the library libc.a, which will come from the standard search
directories. (See
the discussion of the ‘-l’ option below.)

Some of the command-line options to ld may be specified at any
point in the command
line. However, options which refer to files, such
as ‘-l’ or ‘-T’, cause the file to be read at
the point at
which the option appears in the command line, relative to the object
files
and other file options. Repeating non-file options with a
different argument will either
have no further effect, or override prior
occurrences (those further to the left on the
command line) of that
option. Options which may be meaningfully specified more than
once are
noted in the descriptions below.

Non-option arguments are object files or archives which are to be linked
together. They
may follow, precede, or be mixed in with command-line
options, except that an object
file argument may not be placed between
an option and its argument.

Usually the linker is invoked with at least one object file, but you can
specify other forms
of binary input files using ‘-l’, ‘-R’,
and the script command language. If no binary input
files at all
are specified, the linker does not produce any output, and issues the
message
‘No input files’.

If the linker cannot recognize the format of an object file, it will
assume that it is a linker
script. A script specified in this way
augments the main linker script used for the link
(either the default
linker script or the one specified by using ‘-T’). This feature
permits
the linker to link against a file which appears to be an object
or an archive, but actually
merely defines some symbol values, or uses
INPUT or GROUP to load other objects.
Specifying a
script in this way merely augments the main linker script, with the
extra
commands placed after the main script; use the ‘-T’ option
to replace the default linker
script entirely, but note the effect of
the INSERT command. See Linker Scripts.

For options whose names are a single letter,
option arguments must either follow the
option letter without intervening
whitespace, or be given as separate arguments
immediately following the
option that requires them.

https://sourceware.org/binutils/docs/ld/Environment.html

https://sourceware.org/binutils/docs/ld/Invocation.html

https://sourceware.org/binutils/docs/ld/index.html#SEC_Contents

https://sourceware.org/binutils/docs/ld/LD-Index.html

https://sourceware.org/binutils/docs/ld/Scripts.html

For options whose names are multiple letters, either one dash or two can
precede the
option name; for example, ‘-trace-symbol’ and
‘--trace-symbol’ are equivalent. Note—there is
one exception to
this rule. Multiple letter options that start with a lower case ’o’ can
only
be preceded by two dashes. This is to reduce confusion with the
‘-o’ option. So for
example ‘-omagic’ sets the output file
name to ‘magic’ whereas ‘--omagic’ sets the NMAGIC
flag on the
output.

Arguments to multiple-letter options must either be separated from the
option name by
an equals sign, or be given as separate arguments
immediately following the option that
requires them. For example,
‘--trace-symbol foo’ and ‘--trace-symbol=foo’ are equivalent.
Unique abbreviations of the names of multiple-letter options are
accepted.

Note—if the linker is being invoked indirectly, via a compiler driver
(e.g. ‘gcc’) then all the
linker command-line options should be
prefixed by ‘-Wl,’ (or whatever is appropriate for
the particular
compiler driver) like this:

 gcc -Wl,--start-group foo.o bar.o -Wl,--end-group

This is important, because otherwise the compiler driver program may
silently drop the
linker options, resulting in a bad link. Confusion
may also arise when passing options that
require values through a
driver, as the use of a space between option and argument acts
as
a separator, and causes the driver to pass only the option to the linker
and the
argument to the compiler. In this case, it is simplest to use
the joined forms of both
single- and multiple-letter options, such as:

 gcc foo.o bar.o -Wl,-eENTRY -Wl,-Map=a.map

Here is a table of the generic command-line switches accepted by the GNU
linker:

@file

Read command-line options from file. The options read are
inserted in place of the
original @file option. If file
does not exist, or cannot be read, then the option will be
treated
literally, and not removed.

Options in file are separated by whitespace. A whitespace
character may be
included in an option by surrounding the entire
option in either single or double
quotes. Any character (including a
backslash) may be included by prefixing the
character to be included
with a backslash. The file may itself contain additional
@file
options; any such options will be processed recursively.

-a keyword

This option is supported for HP/UX compatibility. The keyword
argument must be
one of the strings ‘archive’, ‘shared’, or
‘default’. ‘-aarchive’ is functionally equivalent to
‘-Bstatic’, and the other two keywords are functionally equivalent
to ‘-Bdynamic’. This
option may be used any number of times.

--audit AUDITLIB

Adds AUDITLIB to the DT_AUDIT entry of the dynamic section.
AUDITLIB is not
checked for existence, nor will it use the DT_SONAME
specified in the library. If
specified multiple times DT_AUDIT
will contain a colon separated list of audit interfaces
to use. If the linker
finds an object with an audit entry while searching for shared
libraries,
it will add a corresponding DT_DEPAUDIT entry in the output file.
This option is
only meaningful on ELF platforms supporting the rtld-audit
interface.

-b input-format
--format=input-format

ld may be configured to support more than one kind of object
file. If your ld is
configured this way, you can use the
‘-b’ option to specify the binary format for
input object files
that follow this option on the command line. Even when ld is
configured to support alternative object formats, you don’t usually need
to specify
this, as ld should be configured to expect as a
default input format the most usual
format on each machine.
input-format is a text string, the name of a particular
format
supported by the BFD libraries. (You can list the available binary
formats
with ‘objdump -i’.)
See BFD.

You may want to use this option if you are linking files with an unusual
binary
format. You can also use ‘-b’ to switch formats explicitly (when
linking object files of
different formats), by including
‘-b input-format’ before each group of object files in a
particular format.

The default format is taken from the environment variable
GNUTARGET.
See
Environment Variables.
You can also define the input format from a script, using the
command
TARGET;
see Commands Dealing with Object File Formats.

-c MRI-commandfile
--mri-script=MRI-commandfile

For compatibility with linkers produced by MRI, ld accepts script
files written in an
alternate, restricted command language, described in
MRI Compatible Script Files.
Introduce MRI script files with
the option ‘-c’; use the ‘-T’ option to run linker
scripts
written in the general-purpose ld scripting language.
If MRI-cmdfile does not exist,
ld looks for it in the directories
specified by any ‘-L’ options.

-d
-dc
-dp

These three options are equivalent; multiple forms are supported for
compatibility
with other linkers. They assign space to common symbols
even if a relocatable
output file is specified (with ‘-r’). The
script command FORCE_COMMON_ALLOCATION has the
same effect.
See Other Linker Script Commands.

--depaudit AUDITLIB
-P AUDITLIB

Adds AUDITLIB to the DT_DEPAUDIT entry of the dynamic section.
AUDITLIB is not
checked for existence, nor will it use the DT_SONAME
specified in the library. If

https://sourceware.org/binutils/docs/ld/BFD.html

https://sourceware.org/binutils/docs/ld/Environment.html

https://sourceware.org/binutils/docs/ld/Format-Commands.html

https://sourceware.org/binutils/docs/ld/MRI.html

https://sourceware.org/binutils/docs/ld/Miscellaneous-Commands.html

specified multiple times DT_DEPAUDIT
will contain a colon separated list of audit
interfaces to use. This
option is only meaningful on ELF platforms supporting the
rtld-audit interface.
The -P option is provided for Solaris compatibility.

--enable-non-contiguous-regions

This option avoids generating an error if an input section does not
fit a matching
output section. The linker tries to allocate the input
section to subseque nt matching
output sections, and generates an
error only if no output section is large enough.
This is useful when
several non-contiguous memory regions are available and the
input
section does not require a particular one. The order in which input
sections
are evaluated does not change, for instance:

 MEMORY {
 MEM1 (rwx) : ORIGIN : 0x1000, LENGTH = 0x14
 MEM2 (rwx) : ORIGIN : 0x1000, LENGTH = 0x40
 MEM3 (rwx) : ORIGIN : 0x2000, LENGTH = 0x40
 }
 SECTIONS {
 mem1 : { *(.data.*); } > MEM1
 mem2 : { *(.data.*); } > MEM2
 mem3 : { *(.data.*); } > MEM2
 }

 with input sections:
 .data.1: size 8
 .data.2: size 0x10
 .data.3: size 4

 results in .data.1 affected to mem1, and .data.2 and .data.3
 affected to mem2, even though .data.3 would fit in mem3.

This option is incompatible with INSERT statements because it changes
the way
input sections are mapped to output sections.

--enable-non-contiguous-regions-warnings

This option enables warnings when
--enable-non-contiguous-regions allows possibly
unexpected
matches in sections mapping, potentially leading to silently
discarding a
section instead of failing because it does not fit any
output region.

-e entry
--entry=entry

Use entry as the explicit symbol for beginning execution of your
program, rather
than the default entry point. If there is no symbol
named entry, the linker will try to
parse entry as a number,
and use that as the entry address (the number will be
interpreted in
base 10; you may use a leading ‘0x’ for base 16, or a leading
‘0’ for
base 8). See Setting the Entry Point, for a discussion of defaults
and other ways of
specifying the entry point.

--exclude-libs lib,lib,...

Specifies a list of archive libraries from which symbols should not be automatically
exported. The library names may be delimited by commas or colons. Specifying
--
exclude-libs ALL excludes symbols in all archive libraries from
automatic export. This
option is available only for the i386 PE targeted
port of the linker and for ELF

https://sourceware.org/binutils/docs/ld/Entry-Point.html

targeted ports. For i386 PE, symbols
explicitly listed in a .def file are still exported,
regardless of this
option. For ELF targeted ports, symbols affected by this option will
be treated as hidden.

--exclude-modules-for-implib module,module,...

Specifies a list of object files or archive members, from which symbols
should not
be automatically exported, but which should be copied wholesale
into the import
library being generated during the link. The module names
may be delimited by
commas or colons, and must match exactly the filenames
used by ld to open the
files; for archive members, this is simply
the member name, but for object files the
name listed must include and
match precisely any path used to specify the input file
on the linker’s
command-line. This option is available only for the i386 PE targeted
port
of the linker. Symbols explicitly listed in a .def file are still exported,
regardless
of this option.

-E
--export-dynamic
--no-export-dynamic

When creating a dynamically linked executable, using the -E
option or the --export-
dynamic option causes the linker to add
all symbols to the dynamic symbol table. The
dynamic symbol table is the
set of symbols which are visible from dynamic objects
at run time.

If you do not use either of these options (or use the
--no-export-dynamic option to
restore the default behavior), the
dynamic symbol table will normally contain only
those symbols which are
referenced by some dynamic object mentioned in the link.

If you use dlopen to load a dynamic object which needs to refer
back to the symbols
defined by the program, rather than some other
dynamic object, then you will
probably need to use this option when
linking the program itself.

You can also use the dynamic list to control what symbols should
be added to the
dynamic symbol table if the output format supports it.
See the description of ‘--
dynamic-list’.

Note that this option is specific to ELF targeted ports. PE targets
support a similar
function to export all symbols from a DLL or EXE; see
the description of ‘--export-
all-symbols’ below.

--export-dynamic-symbol=glob

When creating a dynamically linked executable, symbols matching
glob will be
added to the dynamic symbol table. When creating a
shared library, references to
symbols matching glob will not be
bound to the definitions within the shared library.
This option is a
no-op when creating a shared library and ‘-Bsymbolic’ or
‘--dynamic-
list’ are not specified. This option is only meaningful
on ELF platforms which
support shared libraries.

--export-dynamic-symbol-list=file

Specify a ‘--export-dynamic-symbol’ for each pattern in the file.
The format of the file is
the same as the version node without
scope and node name. See VERSION
Command for more information.

-EB

Link big-endian objects. This affects the default output format.

-EL

Link little-endian objects. This affects the default output format.

-f name
--auxiliary=name

When creating an ELF shared object, set the internal DT_AUXILIARY field
to the
specified name. This tells the dynamic linker that the symbol
table of the shared
object should be used as an auxiliary filter on the
symbol table of the shared object
name.

If you later link a program against this filter object, then, when you
run the
program, the dynamic linker will see the DT_AUXILIARY field. If
the dynamic linker
resolves any symbols from the filter object, it will
first check whether there is a
definition in the shared object
name. If there is one, it will be used instead of the
definition
in the filter object. The shared object name need not exist.
Thus the
shared object name may be used to provide an alternative
implementation of
certain functions, perhaps for debugging or for
machine-specific performance.

This option may be specified more than once. The DT_AUXILIARY entries
will be
created in the order in which they appear on the command line.

-F name
--filter=name

When creating an ELF shared object, set the internal DT_FILTER field to
the
specified name. This tells the dynamic linker that the symbol table
of the shared
object which is being created should be used as a filter
on the symbol table of the
shared object name.

If you later link a program against this filter object, then, when you
run the
program, the dynamic linker will see the DT_FILTER field. The
dynamic linker will
resolve symbols according to the symbol table of the
filter object as usual, but it will
actually link to the definitions
found in the shared object name. Thus the filter
object can be
used to select a subset of the symbols provided by the object
name.

Some older linkers used the -F option throughout a compilation
toolchain for
specifying object-file format for both input and output
object files.
The GNU linker
uses other mechanisms for this purpose: the
-b, --format, --oformat options, the
TARGET

https://sourceware.org/binutils/docs/ld/VERSION.html

command in linker scripts, and the GNUTARGET
environment variable.
The GNU linker
will ignore the -F option when not
creating an ELF shared object.

-fini=name

When creating an ELF executable or shared object, call NAME when the
executable
or shared object is unloaded, by setting DT_FINI to the
address of the function. By
default, the linker uses _fini as
the function to call.

-g

Ignored. Provided for compatibility with other tools.

-G value
--gpsize=value

Set the maximum size of objects to be optimized using the GP register to
size. This
is only meaningful for object file formats such as
MIPS ELF that support putting
large and small objects into different
sections. This is ignored for other object file
formats.

-h name
-soname=name

When creating an ELF shared object, set the internal DT_SONAME field to
the
specified name. When an executable is linked with a shared object
which has a
DT_SONAME field, then when the executable is run the dynamic
linker will attempt
to load the shared object specified by the DT_SONAME
field rather than using the
file name given to the linker.

-i

Perform an incremental link (same as option ‘-r’).

-init=name

When creating an ELF executable or shared object, call NAME when the
executable
or shared object is loaded, by setting DT_INIT to the address
of the function. By
default, the linker uses _init as the
function to call.

-l namespec
--library=namespec

Add the archive or object file specified by namespec to the
list of files to link. This
option may be used any number of times.
If namespec is of the form :filename, ld
will search the library path for a file called filename, otherwise it
will search the
library path for a file called libnamespec.a.

On systems which support shared libraries, ld may also search for
files other than
libnamespec.a. Specifically, on ELF
and SunOS systems, ld will search a directory for a
library
called libnamespec.so before searching for one called
libnamespec.a. (By
convention, a .so extension
indicates a shared library.) Note that this behavior does
not apply
to :filename, which always specifies a file called
filename.

The linker will search an archive only once, at the location where it is
specified on
the command line. If the archive defines a symbol which
was undefined in some
object which appeared before the archive on the
command line, the linker will
include the appropriate file(s) from the
archive. However, an undefined symbol in an
object appearing later on
the command line will not cause the linker to search the
archive again.

See the -(option for a way to force the linker to search
archives multiple times.

You may list the same archive multiple times on the command line.

This type of archive searching is standard for Unix linkers. However,
if you are using
ld on AIX, note that it is different from the
behaviour of the AIX linker.

-L searchdir
--library-path=searchdir

Add path searchdir to the list of paths that ld will search
for archive libraries and ld
control scripts. You may use this
option any number of times. The directories are
searched in the order
in which they are specified on the command line. Directories
specified
on the command line are searched before the default directories. All
-L
options apply to all -l options, regardless of the
order in which the options appear. -
L options do not affect
how ld searches for a linker script unless -T
option is
specified.

If searchdir begins with = or $SYSROOT, then this
prefix will be replaced by the sysroot
prefix, controlled by the
‘--sysroot’ option, or specified when the linker is configured.

The default set of paths searched (without being specified with
‘-L’) depends on
which emulation mode ld is using, and in
some cases also on how it was configured.
See Environment Variables.

The paths can also be specified in a link script with the
SEARCH_DIR command.
Directories specified this way are searched
at the point in which the linker script
appears in the command line.

-m emulation

Emulate the emulation linker. You can list the available
emulations with the ‘--
verbose’ or ‘-V’ options.

If the ‘-m’ option is not used, the emulation is taken from the
LDEMULATION environment
variable, if that is defined.

Otherwise, the default emulation depends upon how the linker was
configured.

-M
--print-map

https://sourceware.org/binutils/docs/ld/Environment.html

Print a link map to the standard output. A link map provides
information about the
link, including the following:

Where object files are mapped into memory.
How common symbols are allocated.
All archive members included in the link, with a mention of the symbol
which
caused the archive member to be brought in.
The values assigned to symbols.

Note - symbols whose values are computed by an expression which
involves a
reference to a previous value of the same symbol may not
have correct result
displayed in the link map. This is because the
linker discards intermediate
results and only retains the final value
of an expression. Under such
circumstances the linker will display
the final value enclosed by square
brackets. Thus for example a
linker script containing:

 foo = 1
 foo = foo * 4
 foo = foo + 8

will produce the following output in the link map if the -M
option is used:

 0x00000001 foo = 0x1
 [0x0000000c] foo = (foo * 0x4)
 [0x0000000c] foo = (foo + 0x8)

See Expressions in Linker Scripts for more information about expressions in
linker
scripts.

How GNU properties are merged.

When the linker merges input .note.gnu.property sections into one output
.note.gnu.property section, some properties are removed or updated.
These
actions are reported in the link map. For example:

Removed property 0xc0000002 to merge foo.o (0x1) and bar.o (not found)

This indicates that property 0xc0000002 is removed from output when
merging properties in foo.o, whose property 0xc0000002 value
is 0x1, and
bar.o, which doesn’t have property 0xc0000002.

Updated property 0xc0010001 (0x1) to merge foo.o (0x1) and bar.o (0x1)

This indicates that property 0xc0010001 value is updated to 0x1 in output
when merging properties in foo.o, whose 0xc0010001 property value
is 0x1,
and bar.o, whose 0xc0010001 property value is 0x1.

--print-map-discarded
--no-print-map-discarded

Print (or do not print) the list of discarded and garbage collected sections
in the link
map. Enabled by default.

https://sourceware.org/binutils/docs/ld/Expressions.html

-n
--nmagic

Turn off page alignment of sections, and disable linking against shared
libraries. If
the output format supports Unix style magic numbers,
mark the output as NMAGIC.

-N
--omagic

Set the text and data sections to be readable and writable. Also, do
not page-align
the data segment, and disable linking against shared
libraries. If the output format
supports Unix style magic numbers,
mark the output as OMAGIC. Note: Although a
writable text section
is allowed for PE-COFF targets, it does not conform to the
format
specification published by Microsoft.

--no-omagic

This option negates most of the effects of the -N option. It
sets the text section to
be read-only, and forces the data segment to
be page-aligned. Note - this option
does not enable linking against
shared libraries. Use -Bdynamic for this.

-o output
--output=output

Use output as the name for the program produced by ld; if this
option is not
specified, the name a.out is used by default. The
script command OUTPUT can also
specify the output file name.

--dependency-file=depfile

Write a dependency file to depfile. This file contains a rule
suitable for make
describing the output file and all the input files
that were read to produce it. The
output is similar to the compiler’s
output with ‘-M -MP’ (see Options
Controlling the
Preprocessor in Using the GNU Compiler
Collection). Note that there is no option like
the compiler’s ‘-MM’,
to exclude “system files” (which is not a well-specified concept
in the
linker, unlike “system headers” in the compiler). So the output from
‘--
dependency-file’ is always specific to the exact state of the
installation where it was
produced, and should not be copied into
distributed makefiles without careful
editing.

-O level

If level is a numeric values greater than zero ld optimizes
the output. This might
take significantly longer and therefore probably
should only be enabled for the final
binary. At the moment this
option only affects ELF shared library generation. Future
releases of
the linker may make more use of this option. Also currently there is
no
difference in the linker’s behaviour for different non-zero values
of this option. Again
this may change with future releases.

-plugin name

https://gcc.gnu.org/onlinedocs/gcc/Preprocessor-Options.html#Preprocessor-Options

Involve a plugin in the linking process. The name parameter is
the absolute
filename of the plugin. Usually this parameter is
automatically added by the
complier, when using link time
optimization, but users can also add their own
plugins if they so
wish.

Note that the location of the compiler originated plugins is different
from the place
where the ar, nm and
ranlib programs search for their plugins. In order for
those
commands to make use of a compiler based plugin it must first be
copied into the
${libdir}/bfd-plugins directory. All gcc
based linker plugins are backward compatible,
so it is sufficient to
just copy in the newest one.

--push-state

The --push-state allows one to preserve the current state of the
flags which govern
the input file handling so that they can all be
restored with one corresponding --pop-
state option.

The option which are covered are: -Bdynamic, -Bstatic,
-dn, -dy, -call_shared, -non_shared,
-static, -N, -n, --whole-archive,
--no-whole-archive, -r, -Ur,
--copy-dt-needed-entries, --no-
copy-dt-needed-entries,
--as-needed, --no-as-needed, and -a.

One target for this option are specifications for pkg-config. When
used with the --libs
option all possibly needed libraries are
listed and then possibly linked with all the
time. It is better to return
something as follows:

-Wl,--push-state,--as-needed -libone -libtwo -Wl,--pop-state

--pop-state

Undoes the effect of –push-state, restores the previous values of the
flags
governing input file handling.

-q
--emit-relocs

Leave relocation sections and contents in fully linked executables.
Post link analysis
and optimization tools may need this information in
order to perform correct
modifications of executables. This results
in larger executables.

This option is currently only supported on ELF platforms.

--force-dynamic

Force the output file to have dynamic sections. This option is specific
to VxWorks
targets.

-r
--relocatable

Generate relocatable output—i.e., generate an output file that can in
turn serve as
input to ld. This is often called partial
linking. As a side effect, in environments that
support standard Unix
magic numbers, this option also sets the output file’s magic

number to
OMAGIC.
If this option is not specified, an absolute file is produced. When
linking C++ programs, this option will not resolve references to
constructors; to do
that, use ‘-Ur’.

When an input file does not have the same format as the output file,
partial linking
is only supported if that input file does not contain any
relocations. Different output
formats can have further restrictions; for
example some a.out-based formats do not
support partial linking
with input files in other formats at all.

This option does the same thing as ‘-i’.

-R filename
--just-symbols=filename

Read symbol names and their addresses from filename, but do not
relocate it or
include it in the output. This allows your output file
to refer symbolically to absolute
locations of memory defined in other
programs. You may use this option more than
once.

For compatibility with other ELF linkers, if the -R option is
followed by a directory
name, rather than a file name, it is treated as
the -rpath option.

-s
--strip-all

Omit all symbol information from the output file.

-S
--strip-debug

Omit debugger symbol information (but not all symbols) from the output file.

--strip-discarded
--no-strip-discarded

Omit (or do not omit) global symbols defined in discarded sections.
Enabled by
default.

-t
--trace

Print the names of the input files as ld processes them. If
‘-t’ is given twice then
members within archives are also printed.
‘-t’ output is useful to generate a list of
all the object files
and scripts involved in linking, for example, when packaging files
for
a linker bug report.

-T scriptfile
--script=scriptfile

Use scriptfile as the linker script. This script replaces
ld’s default linker script (rather
than adding to it), so
commandfile must specify everything necessary to describe
the
output file. See Linker Scripts. If scriptfile does not exist in
the current directory,
ld looks for it in the directories
specified by any preceding ‘-L’ options. Multiple ‘-T’
options accumulate.

https://sourceware.org/binutils/docs/ld/Scripts.html

-dT scriptfile
--default-script=scriptfile

Use scriptfile as the default linker script. See Linker Scripts.

This option is similar to the --script option except that
processing of the script is
delayed until after the rest of the
command line has been processed. This allows
options placed after the
--default-script option on the command line to affect the
behaviour of the linker script, which can be important when the linker
command
line cannot be directly controlled by the user. (eg because
the command line is
being constructed by another tool, such as
‘gcc’).

-u symbol
--undefined=symbol

Force symbol to be entered in the output file as an undefined
symbol. Doing this
may, for example, trigger linking of additional
modules from standard libraries. ‘-u’
may be repeated with
different option arguments to enter additional undefined
symbols. This
option is equivalent to the EXTERN linker script command.

If this option is being used to force additional modules to be pulled
into the link, and
if it is an error for the symbol to remain
undefined, then the option --require-defined
should be used
instead.

--require-defined=symbol

Require that symbol is defined in the output file. This option
is the same as option --
undefined except that if symbol
is not defined in the output file then the linker will
issue an error
and exit. The same effect can be achieved in a linker script by using
EXTERN, ASSERT and DEFINED together. This option
can be used multiple times to require
additional symbols.

-Ur

For anything other than C++ programs, this option is equivalent to
‘-r’: it generates
relocatable output—i.e., an output file that can in
turn serve as input to ld. When
linking C++ programs, ‘-Ur’
does resolve references to constructors, unlike ‘-r’.
It
does not work to use ‘-Ur’ on files that were themselves linked
with ‘-Ur’; once the
constructor table has been built, it cannot
be added to. Use ‘-Ur’ only for the last
partial link, and
‘-r’ for the others.

--orphan-handling=MODE

Control how orphan sections are handled. An orphan section is one not
specifically
mentioned in a linker script. See Orphan Sections.

MODE can have any of the following values:

place

https://sourceware.org/binutils/docs/ld/Scripts.html

https://sourceware.org/binutils/docs/ld/Orphan-Sections.html

Orphan sections are placed into a suitable output section following
the strategy
described in Orphan Sections. The option
‘--unique’ also affects how sections
are placed.

discard

All orphan sections are discarded, by placing them in the
‘/DISCARD/’ section (see
Output Section Discarding).

warn

The linker will place the orphan section as for place and also
issue a warning.

error

The linker will exit with an error if any orphan section is found.

The default if ‘--orphan-handling’ is not given is place.

--unique[=SECTION]

Creates a separate output section for every input section matching
SECTION, or if
the optional wildcard SECTION argument is
missing, for every orphan input section.
An orphan section is one not
specifically mentioned in a linker script. You may use
this option
multiple times on the command line; It prevents the normal merging of
input sections with the same name, overriding output section assignments
in a
linker script.

-v
--version
-V

Display the version number for ld. The -V option also
lists the supported emulations.

-x
--discard-all

Delete all local symbols.

-X
--discard-locals

Delete all temporary local symbols. (These symbols start with
system-specific local
label prefixes, typically ‘.L’ for ELF systems
or ‘L’ for traditional a.out systems.)

-y symbol
--trace-symbol=symbol

Print the name of each linked file in which symbol appears. This
option may be
given any number of times. On many systems it is necessary
to prepend an
underscore.

This option is useful when you have an undefined symbol in your link but
don’t
know where the reference is coming from.

-Y path

https://sourceware.org/binutils/docs/ld/Orphan-Sections.html

https://sourceware.org/binutils/docs/ld/Output-Section-Discarding.html

Add path to the default library search path. This option exists
for Solaris
compatibility.

-z keyword

The recognized keywords are:

‘bndplt’

Always generate BND prefix in PLT entries. Supported for Linux/x86_64.

‘call-nop=prefix-addr’
‘call-nop=suffix-nop’
‘call-nop=prefix-byte’
‘call-nop=suffix-byte’

Specify the 1-byte NOP padding when transforming indirect call
to a locally
defined function, foo, via its GOT slot.
call-nop=prefix-addr generates 0x67 call
foo.
call-nop=suffix-nop generates call foo 0x90.
call-nop=prefix-byte generates byte
call foo.
call-nop=suffix-byte generates call foo byte.
Supported for i386 and
x86_64.

‘cet-report=none’
‘cet-report=warning’
‘cet-report=error’

Specify how to report the missing GNU_PROPERTY_X86_FEATURE_1_IBT and
GNU_PROPERTY_X86_FEATURE_1_SHSTK properties in input
.note.gnu.property
section. cet-report=none, which is the default, will make the
linker not report missing properties in input files.
cet-report=warning will make
the linker issue a warning for
missing properties in input files. cet-report=error
will make
the linker issue an error for missing properties in input files.
Note
that ibt will turn off the missing
GNU_PROPERTY_X86_FEATURE_1_IBT
property report and shstk will
turn off the missing
GNU_PROPERTY_X86_FEATURE_1_SHSTK property report.
Supported for
Linux/i386 and Linux/x86_64.

‘combreloc’
‘nocombreloc’

Combine multiple dynamic relocation sections and sort to improve
dynamic
symbol lookup caching. Do not do this if ‘nocombreloc’.

‘common’
‘nocommon’

Generate common symbols with STT_COMMON type during a relocatable
link.
Use STT_OBJECT type if ‘nocommon’.

‘common-page-size=value’

Set the page size most commonly used to value. Memory image
layout will be
optimized to minimize memory pages if the system is
using pages of this size.

‘defs’

Report unresolved symbol references from regular object files. This
is done
even if the linker is creating a non-symbolic shared library.
This option is the
inverse of ‘-z undefs’.

‘dynamic-undefined-weak’
‘nodynamic-undefined-weak’

Make undefined weak symbols dynamic when building a dynamic object,
if
they are referenced from a regular object file and not forced local
by symbol
visibility or versioning. Do not make them dynamic if
‘nodynamic-undefined-weak’. If
neither option is given, a target
may default to either option being in force, or
make some other
selection of undefined weak symbols dynamic. Not all targets
support
these options.

‘execstack’

Marks the object as requiring executable stack.

‘global’

This option is only meaningful when building a shared object. It makes
the
symbols defined by this shared object available for symbol resolution
of
subsequently loaded libraries.

‘globalaudit’

This option is only meaningful when building a dynamic executable.
This option
marks the executable as requiring global auditing by
setting the DF_1_GLOBAUDIT
bit in the DT_FLAGS_1 dynamic
tag. Global auditing requires that any auditing
library defined via
the --depaudit or -P command-line options be run for
all
dynamic objects loaded by the application.

‘ibtplt’

Generate Intel Indirect Branch Tracking (IBT) enabled PLT entries.
Supported
for Linux/i386 and Linux/x86_64.

‘ibt’

Generate GNU_PROPERTY_X86_FEATURE_1_IBT in .note.gnu.property section
to indicate compatibility with IBT. This also implies ibtplt.
Supported for

Linux/i386 and Linux/x86_64.

‘indirect-extern-access’
‘noindirect-extern-access’

Generate GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS in
.note.gnu.property section to indicate that object file requires
canonical
function pointers and cannot be used with copy relocation.
This option also
implies noextern-protected-data and
nocopyreloc. Supported for i386 and x86-64.

noindirect-extern-access removes
GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS from
.note.gnu.property
section.

‘initfirst’

This option is only meaningful when building a shared object.
It marks the
object so that its runtime initialization will occur
before the runtime
initialization of any other objects brought into
the process at the same time.
Similarly the runtime finalization of
the object will occur after the runtime
finalization of any other
objects.

‘interpose’

Specify that the dynamic loader should modify its symbol search order
so that
symbols in this shared library interpose all other shared
libraries not so
marked.

‘unique’
‘nounique’

When generating a shared library or other dynamically loadable ELF
object
mark it as one that should (by default) only ever be loaded once,
and only in
the main namespace (when using dlmopen). This is
primarily used to mark
fundamental libraries such as libc, libpthread et
al which do not usually
function correctly unless they are the sole instances
of themselves. This
behaviour can be overridden by the dlmopen caller
and does not apply to certain
loading mechanisms (such as audit libraries).

‘lam-u48’

Generate GNU_PROPERTY_X86_FEATURE_1_LAM_U48 in .note.gnu.property
section
to indicate compatibility with Intel LAM_U48. Supported for
Linux/x86_64.

‘lam-u57’

Generate GNU_PROPERTY_X86_FEATURE_1_LAM_U57 in .note.gnu.property
section
to indicate compatibility with Intel LAM_U57. Supported for
Linux/x86_64.

‘lam-u48-report=none’
‘lam-u48-report=warning’
‘lam-u48-report=error’

Specify how to report the missing
GNU_PROPERTY_X86_FEATURE_1_LAM_U48
property in input
.note.gnu.property section.
lam-u48-report=none, which is the default, will make
the
linker not report missing properties in input files.
lam-u48-report=warning will
make the linker issue a warning for
missing properties in input files. lam-u48-
report=error will
make the linker issue an error for missing properties in input
files.
Supported for Linux/x86_64.

‘lam-u57-report=none’
‘lam-u57-report=warning’
‘lam-u57-report=error’

Specify how to report the missing
GNU_PROPERTY_X86_FEATURE_1_LAM_U57
property in input
.note.gnu.property section.
lam-u57-report=none, which is the default, will make
the
linker not report missing properties in input files.
lam-u57-report=warning will
make the linker issue a warning for
missing properties in input files. lam-u57-
report=error will
make the linker issue an error for missing properties in input
files.
Supported for Linux/x86_64.

‘lam-report=none’
‘lam-report=warning’
‘lam-report=error’

Specify how to report the missing
GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and
GNU_PROPERTY_X86_FEATURE_1_LAM_U57 properties in input
.note.gnu.property
section. lam-report=none, which is the default, will make the
linker not report missing properties in input files.
lam-report=warning will make
the linker issue a warning for
missing properties in input files. lam-report=error
will make
the linker issue an error for missing properties in input files.
Supported for Linux/x86_64.

‘lazy’

When generating an executable or shared library, mark it to tell the
dynamic
linker to defer function call resolution to the point when
the function is called
(lazy binding), rather than at load time.
Lazy binding is the default.

‘loadfltr’

Specify that the object’s filters be processed immediately at runtime.

‘max-page-size=value’

Set the maximum memory page size supported to value.

‘muldefs’

Allow multiple definitions.

‘nocopyreloc’

Disable linker generated .dynbss variables used in place of variables
defined in
shared libraries. May result in dynamic text relocations.

‘nodefaultlib’

Specify that the dynamic loader search for dependencies of this object
should
ignore any default library search paths.

‘nodelete’

Specify that the object shouldn’t be unloaded at runtime.

‘nodlopen’

Specify that the object is not available to dlopen.

‘nodump’

Specify that the object can not be dumped by dldump.

‘noexecstack’

Marks the object as not requiring executable stack.

‘noextern-protected-data’

Don’t treat protected data symbols as external when building a shared
library.
This option overrides the linker backend default. It can be
used to work around
incorrect relocations against protected data symbols
generated by compiler.
Updates on protected data symbols by another
module aren’t visible to the
resulting shared library. Supported for
i386 and x86-64.

‘noreloc-overflow’

Disable relocation overflow check. This can be used to disable
relocation
overflow check if there will be no dynamic relocation
overflow at run-time.

Supported for x86_64.

‘now’

When generating an executable or shared library, mark it to tell the
dynamic
linker to resolve all symbols when the program is started, or
when the shared
library is loaded by dlopen, instead of deferring
function call resolution to the
point when the function is first
called.

‘origin’

Specify that the object requires ‘$ORIGIN’ handling in paths.

‘pack-relative-relocs’
‘nopack-relative-relocs’

Generate compact relative relocation in position-independent executable
and
shared library. It adds DT_RELR, DT_RELRSZ and
DT_RELRENT entries to the dynamic
section. It is ignored when
building position-dependent executable and
relocatable output.
nopack-relative-relocs is the default, which disables compact
relative relocation. When linked against the GNU C Library, a
GLIBC_ABI_DT_RELR symbol version dependency on the shared C Library is
added to the output. Supported for i386 and x86-64.

‘relro’
‘norelro’

Create an ELF PT_GNU_RELRO segment header in the object. This
specifies a
memory segment that should be made read-only after
relocation, if supported.
Specifying ‘common-page-size’ smaller
than the system page size will render this
protection ineffective.
Don’t create an ELF PT_GNU_RELRO segment if ‘norelro’.

‘report-relative-reloc’

Report dynamic relative relocations generated by linker. Supported for
Linux/i386 and Linux/x86_64.

‘separate-code’
‘noseparate-code’

Create separate code PT_LOAD segment header in the object. This
specifies a
memory segment that should contain only instructions and must
be in wholly
disjoint pages from any other data. Don’t create separate
code PT_LOAD segment
if ‘noseparate-code’ is used.

‘shstk’

Generate GNU_PROPERTY_X86_FEATURE_1_SHSTK in .note.gnu.property
section
to indicate compatibility with Intel Shadow Stack. Supported for
Linux/i386 and Linux/x86_64.

‘stack-size=value’

Specify a stack size for an ELF PT_GNU_STACK segment.
Specifying zero will
override any default non-zero sized
PT_GNU_STACK segment creation.

‘start-stop-gc’ ¶
‘nostart-stop-gc’

When ‘--gc-sections’ is in effect, a reference from a retained
section to
__start_SECNAME or __stop_SECNAME causes all
input sections named SECNAME to also be
retained, if
SECNAME is representable as a C identifier and either
__start_SECNAME or
__stop_SECNAME is synthesized by the
linker. ‘-z start-stop-gc’ disables this effect,
allowing
sections to be garbage collected as if the special synthesized symbols
were not defined. ‘-z start-stop-gc’ has no effect on a
definition of __start_SECNAME
or __stop_SECNAME in an
object file or linker script. Such a definition will prevent
the
linker providing a synthesized __start_SECNAME or
__stop_SECNAME respectively,
and therefore the special
treatment by garbage collection for those references.

‘start-stop-visibility=value’ ¶

Specify the ELF symbol visibility for synthesized
__start_SECNAME and __stop_SECNAME
symbols (see Input Section Example). value must be exactly ‘default’,
‘internal’,
‘hidden’, or ‘protected’. If no ‘-z
start-stop-visibility’ option is given, ‘protected’ is
used for
compatibility with historical practice. However, it’s highly
recommended to use ‘-z start-stop-visibility=hidden’ in new
programs and
shared libraries so that these symbols are not exported
between shared
objects, which is not usually what’s intended.

‘text’
‘notext’
‘textoff’

Report an error if DT_TEXTREL is set, i.e., if the position-independent
or
shared object has dynamic relocations in read-only sections. Don’t
report an
error if ‘notext’ or ‘textoff’.

‘undefs’

Do not report unresolved symbol references from regular object files,
either
when creating an executable, or when creating a shared library.
This option is
the inverse of ‘-z defs’.

‘unique-symbol’

https://sourceware.org/binutils/docs/ld/Input-Section-Example.html

‘nounique-symbol’

Avoid duplicated local symbol names in the symbol string table. Append
".number" to duplicated local symbol names if ‘unique-symbol’
is used. nounique-symbol
is the default.

‘x86-64-baseline’
‘x86-64-v2’
‘x86-64-v3’
‘x86-64-v4’

Specify the x86-64 ISA level needed in .note.gnu.property section.
x86-64-
baseline generates GNU_PROPERTY_X86_ISA_1_BASELINE.
x86-64-v2 generates
GNU_PROPERTY_X86_ISA_1_V2.
x86-64-v3 generates GNU_PROPERTY_X86_ISA_1_V3.
x86-64-v4
generates GNU_PROPERTY_X86_ISA_1_V4.
Supported for Linux/i386 and Linux/x86_64.

Other keywords are ignored for Solaris compatibility.

-(archives -)
--start-group archives --end-group

The archives should be a list of archive files. They may be
either explicit file names,
or ‘-l’ options.

The specified archives are searched repeatedly until no new undefined
references
are created. Normally, an archive is searched only once in
the order that it is
specified on the command line. If a symbol in that
archive is needed to resolve an
undefined symbol referred to by an
object in an archive that appears later on the
command line, the linker
would not be able to resolve that reference. By grouping
the archives,
they will all be searched repeatedly until all possible references are
resolved.

Using this option has a significant performance cost. It is best to use
it only when
there are unavoidable circular references between two or
more archives.

--accept-unknown-input-arch
--no-accept-unknown-input-arch

Tells the linker to accept input files whose architecture cannot be
recognised. The
assumption is that the user knows what they are doing
and deliberately wants to
link in these unknown input files. This was
the default behaviour of the linker, before
release 2.14. The default
behaviour from release 2.14 onwards is to reject such
input files, and
so the ‘--accept-unknown-input-arch’ option has been added to
restore
the old behaviour.

--as-needed
--no-as-needed

This option affects ELF DT_NEEDED tags for dynamic libraries mentioned
on the
command line after the --as-needed option. Normally
the linker will add a

DT_NEEDED tag for each dynamic library mentioned
on the command line,
regardless of whether the library is actually
needed or not. --as-needed causes a
DT_NEEDED tag to only be
emitted for a library that at that point in the link
satisfies a
non-weak undefined symbol reference from a regular object file or, if
the
library is not found in the DT_NEEDED lists of other needed libraries, a
non-weak
undefined symbol reference from another needed dynamic library.
Object files or
libraries appearing on the command line after
the library in question do not affect
whether the library is seen as
needed. This is similar to the rules for extraction of
object files
from archives. --no-as-needed restores the default behaviour.

Note: On Linux based systems the --as-needed option also has
an affect on the
behaviour of the --rpath and
--rpath-link options. See the description of
--rpath-link
for more details.

--add-needed
--no-add-needed

These two options have been deprecated because of the similarity of
their names to
the --as-needed and --no-as-needed
options. They have been replaced by --copy-dt-
needed-entries
and --no-copy-dt-needed-entries.

-assert keyword

This option is ignored for SunOS compatibility.

-Bdynamic
-dy
-call_shared

Link against dynamic libraries. This is only meaningful on platforms
for which
shared libraries are supported. This option is normally the
default on such
platforms. The different variants of this option are
for compatibility with various
systems. You may use this option
multiple times on the command line: it affects
library searching for
-l options which follow it.

-Bgroup

Set the DF_1_GROUP flag in the DT_FLAGS_1 entry in the dynamic
section. This causes the
runtime linker to handle lookups in this
object and its dependencies to be performed
only inside the group.
--unresolved-symbols=report-all is implied. This option is
only
meaningful on ELF platforms which support shared libraries.

-Bstatic
-dn
-non_shared
-static

Do not link against shared libraries. This is only meaningful on
platforms for which
shared libraries are supported. The different
variants of this option are for
compatibility with various systems. You
may use this option multiple times on the
command line: it affects
library searching for -l options which follow it. This
option
also implies --unresolved-symbols=report-all. This
option can be used with -shared. Doing

so means that a
shared library is being created but that all of the library’s external
references must be resolved by pulling in entries from static
libraries.

-Bsymbolic

When creating a shared library, bind references to global symbols to the
definition
within the shared library, if any. Normally, it is possible
for a program linked against
a shared library to override the definition
within the shared library. This option is
only meaningful on ELF
platforms which support shared libraries.

-Bsymbolic-functions

When creating a shared library, bind references to global function
symbols to the
definition within the shared library, if any.
This option is only meaningful on ELF
platforms which support shared
libraries.

-Bno-symbolic

This option can cancel previously specified ‘-Bsymbolic’ and
‘-Bsymbolic-functions’.

--dynamic-list=dynamic-list-file

Specify the name of a dynamic list file to the linker. This is
typically used when
creating shared libraries to specify a list of
global symbols whose references
shouldn’t be bound to the definition
within the shared library, or creating
dynamically linked executables
to specify a list of symbols which should be added to
the symbol table
in the executable. This option is only meaningful on ELF platforms
which support shared libraries.

The format of the dynamic list is the same as the version node without
scope and
node name. See VERSION Command for more information.

--dynamic-list-data

Include all global data symbols to the dynamic list.

--dynamic-list-cpp-new

Provide the builtin dynamic list for C++ operator new and delete. It
is mainly useful
for building shared libstdc++.

--dynamic-list-cpp-typeinfo

Provide the builtin dynamic list for C++ runtime type identification.

--check-sections
--no-check-sections

Asks the linker not to check section addresses after they have
been assigned to see
if there are any overlaps. Normally the linker will
perform this check, and if it finds
any overlaps it will produce
suitable error messages. The linker does know about,
and does make
allowances for sections in overlays. The default behaviour can be
restored by using the command-line switch --check-sections.
Section overlap is not

https://sourceware.org/binutils/docs/ld/VERSION.html

usually checked for relocatable links. You can
force checking in that case by using
the --check-sections
option.

--copy-dt-needed-entries
--no-copy-dt-needed-entries

This option affects the treatment of dynamic libraries referred to
by DT_NEEDED
tags inside ELF dynamic libraries mentioned on the
command line. Normally the
linker won’t add a DT_NEEDED tag to the
output binary for each library mentioned
in a DT_NEEDED tag in an
input dynamic library. With --copy-dt-needed-entries
specified on the command line however any dynamic libraries that
follow it will have
their DT_NEEDED entries added. The default
behaviour can be restored with --no-
copy-dt-needed-entries.

This option also has an effect on the resolution of symbols in dynamic
libraries. With
--copy-dt-needed-entries dynamic libraries
mentioned on the command line will be
recursively searched, following
their DT_NEEDED tags to other libraries, in order to
resolve symbols
required by the output binary. With the default setting however
the
searching of dynamic libraries that follow it will stop with the
dynamic library itself.
No DT_NEEDED links will be traversed to resolve
symbols.

--cref

Output a cross reference table. If a linker map file is being
generated, the cross
reference table is printed to the map file.
Otherwise, it is printed on the standard
output.

The format of the table is intentionally simple, so that it may be
easily processed by
a script if necessary. The symbols are printed out,
sorted by name. For each
symbol, a list of file names is given. If the
symbol is defined, the first file listed is
the location of the
definition. If the symbol is defined as a common value then any
files
where this happens appear next. Finally any files that reference the
symbol are
listed.

--ctf-variables
--no-ctf-variables

The CTF debuginfo format supports a section which encodes the names and
types
of variables found in the program which do not appear in any symbol
table. These
variables clearly cannot be looked up by address by
conventional debuggers, so the
space used for their types and names is
usually wasted: the types are usually small
but the names are often not.
--ctf-variables causes the generation of such a section.
The default behaviour can be restored with --no-ctf-variables.

--ctf-share-types=method

Adjust the method used to share types between translation units in CTF.

‘share-unconflicted’

Put all types that do not have ambiguous definitions into the shared dictionary,
where debuggers can easily access them, even if they only occur in one
translation unit. This is the default.

‘share-duplicated’

Put only types that occur in multiple translation units into the shared
dictionary: types with only one definition go into per-translation-unit
dictionaries. Types with ambiguous definitions in multiple translation units
always go into per-translation-unit dictionaries. This tends to make the CTF
larger, but may reduce the amount of CTF in the shared dictionary. For very
large projects this may speed up opening the CTF and save memory in the CTF
consumer at runtime.

--no-define-common

This option inhibits the assignment of addresses to common symbols.
The script
command INHIBIT_COMMON_ALLOCATION has the same effect.
See Other Linker Script
Commands.

The ‘--no-define-common’ option allows decoupling
the decision to assign addresses to
Common symbols from the choice
of the output file type; otherwise a non-
Relocatable output type
forces assigning addresses to Common symbols.
Using ‘--
no-define-common’ allows Common symbols that are referenced
from a shared library
to be assigned addresses only in the main program.
This eliminates the unused
duplicate space in the shared library,
and also prevents any possible confusion over
resolving to the wrong
duplicate when there are many dynamic modules with
specialized search
paths for runtime symbol resolution.

--force-group-allocation

This option causes the linker to place section group members like
normal input
sections, and to delete the section groups. This is the
default behaviour for a final
link but this option can be used to
change the behaviour of a relocatable link (‘-r’).
The script
command FORCE_GROUP_ALLOCATION has the same
effect. See Other Linker
Script Commands.

--defsym=symbol=expression

Create a global symbol in the output file, containing the absolute
address given by
expression. You may use this option as many
times as necessary to define multiple
symbols in the command line. A
limited form of arithmetic is supported for the
expression in this
context: you may give a hexadecimal constant or the name of an
existing
symbol, or use + and - to add or subtract hexadecimal
constants or
symbols. If you need more elaborate expressions, consider
using the linker
command language from a script (see Assigning Values to Symbols).
Note: there
should be no white space between symbol, the
equals sign (“=”), and expression.

https://sourceware.org/binutils/docs/ld/Miscellaneous-Commands.html

https://sourceware.org/binutils/docs/ld/Miscellaneous-Commands.html

https://sourceware.org/binutils/docs/ld/Assignments.html

The linker processes ‘--defsym’ arguments and ‘-T’ arguments
in order, placing ‘--
defsym’ before ‘-T’ will define the
symbol before the linker script from ‘-T’ is
processed, while
placing ‘--defsym’ after ‘-T’ will define the symbol after
the linker
script has been processed. This difference has
consequences for expressions within
the linker script that use the
‘--defsym’ symbols, which order is correct will depend on
what
you are trying to achieve.

--demangle[=style]
--no-demangle

These options control whether to demangle symbol names in error messages
and
other output. When the linker is told to demangle, it tries to
present symbol names
in a readable fashion: it strips leading
underscores if they are used by the object file
format, and converts C++
mangled symbol names into user readable names.
Different compilers have
different mangling styles. The optional demangling style
argument can be used
to choose an appropriate demangling style for your compiler.
The linker will
demangle by default unless the environment variable
‘COLLECT_NO_DEMANGLE’
is set. These options may be used to override the default.

-Ifile
--dynamic-linker=file

Set the name of the dynamic linker. This is only meaningful when
generating
dynamically linked ELF executables. The default dynamic
linker is normally correct;
don’t use this unless you know what you are
doing.

--no-dynamic-linker

When producing an executable file, omit the request for a dynamic
linker to be used
at load-time. This is only meaningful for ELF
executables that contain dynamic
relocations, and usually requires
entry point code that is capable of processing
these relocations.

--embedded-relocs

This option is similar to the --emit-relocs option except
that the relocs are stored in a
target-specific section. This option
is only supported by the ‘BFIN’, ‘CR16’ and M68K
targets.

--disable-multiple-abs-defs

Do not allow multiple definitions with symbols included
in filename invoked by -R or
–just-symbols

--fatal-warnings
--no-fatal-warnings

Treat all warnings as errors. The default behaviour can be restored
with the option -
-no-fatal-warnings.

--force-exe-suffix

Make sure that an output file has a .exe suffix.

If a successfully built fully linked output file does not have a
.exe or .dll suffix, this
option forces the linker to copy
the output file to one of the same name with a .exe
suffix. This
option is useful when using unmodified Unix makefiles on a Microsoft
Windows host, since some versions of Windows won’t run an image unless
it ends
in a .exe suffix.

--gc-sections
--no-gc-sections

Enable garbage collection of unused input sections. It is ignored on
targets that do
not support this option. The default behaviour (of not
performing this garbage
collection) can be restored by specifying
‘--no-gc-sections’ on the command line. Note
that garbage
collection for COFF and PE format targets is supported, but the
implementation is currently considered to be experimental.

‘--gc-sections’ decides which input sections are used by
examining symbols and
relocations. The section containing the entry
symbol and all sections containing
symbols undefined on the
command-line will be kept, as will sections containing
symbols
referenced by dynamic objects. Note that when building shared
libraries,
the linker must assume that any visible symbol is
referenced. Once this initial set of
sections has been determined,
the linker recursively marks as used any section
referenced by their
relocations. See ‘--entry’, ‘--undefined’, and
‘--gc-keep-exported’.

This option can be set when doing a partial link (enabled with option
‘-r’). In this
case the root of symbols kept must be explicitly
specified either by one of the
options ‘--entry’,
‘--undefined’, or ‘--gc-keep-exported’ or by a ENTRY
command in the linker
script.

As a GNU extension, ELF input sections marked with the
SHF_GNU_RETAIN flag will not
be garbage collected.

--print-gc-sections
--no-print-gc-sections

List all sections removed by garbage collection. The listing is
printed on stderr. This
option is only effective if garbage
collection has been enabled via the ‘--gc-sections’)
option. The
default behaviour (of not listing the sections that are removed) can
be
restored by specifying ‘--no-print-gc-sections’ on the command
line.

--gc-keep-exported

When ‘--gc-sections’ is enabled, this option prevents garbage
collection of unused
input sections that contain global symbols having
default or protected visibility. This
option is intended to be used for
executables where unreferenced sections would
otherwise be garbage
collected regardless of the external visibility of contained
symbols.
Note that this option has no effect when linking shared objects since
it is
already the default behaviour. This option is only supported for
ELF format targets.

--print-output-format

Print the name of the default output format (perhaps influenced by
other command-
line options). This is the string that would appear
in an OUTPUT_FORMAT linker script
command (see Commands Dealing with Files).

--print-memory-usage

Print used size, total size and used size of memory regions created with
the
MEMORY Command command. This is useful on embedded targets to have a
quick
view of amount of free memory. The format of the output has one
headline and one
line per region. It is both human readable and easily
parsable by tools. Here is an
example of an output:

Memory region Used Size Region Size %age Used
 ROM: 256 KB 1 MB 25.00%
 RAM: 32 B 2 GB 0.00%

--help

Print a summary of the command-line options on the standard output and exit.

--target-help

Print a summary of all target-specific options on the standard output and exit.

-Map=mapfile

Print a link map to the file mapfile. See the description of the
-M option, above. If
mapfile is just the character
- then the map will be written to stdout.

Specifying a directory as mapfile causes the linker map to be
written as a file inside
the directory. Normally name of the file
inside the directory is computed as the
basename of the output
file with .map appended. If however the special character
%
is used then this will be replaced by the full path of the
output file. Additionally if
there are any characters after the
% symbol then .map will no longer be appended.

 -o foo.exe -Map=bar [Creates ./bar]
 -o ../dir/foo.exe -Map=bar [Creates ./bar]
 -o foo.exe -Map=../dir [Creates ../dir/foo.exe.map]
 -o ../dir2/foo.exe -Map=../dir [Creates ../dir/foo.exe.map]
 -o foo.exe -Map=% [Creates ./foo.exe.map]
 -o ../dir/foo.exe -Map=% [Creates ../dir/foo.exe.map]
 -o foo.exe -Map=%.bar [Creates ./foo.exe.bar]
 -o ../dir/foo.exe -Map=%.bar [Creates ../dir/foo.exe.bar]
 -o ../dir2/foo.exe -Map=../dir/% [Creates ../dir/../dir2/foo.exe.map]
 -o ../dir2/foo.exe -Map=../dir/%.bar [Creates ../dir/../dir2/foo.exe.bar]

It is an error to specify more than one % character.

If the map file already exists then it will be overwritten by this
operation.

--no-keep-memory

ld normally optimizes for speed over memory usage by caching the
symbol tables of
input files in memory. This option tells ld to
instead optimize for memory usage, by

https://sourceware.org/binutils/docs/ld/File-Commands.html

https://sourceware.org/binutils/docs/ld/MEMORY.html

rereading the symbol tables as
necessary. This may be required if ld runs out of
memory space
while linking a large executable.

--no-undefined
-z defs

Report unresolved symbol references from regular object files. This
is done even if
the linker is creating a non-symbolic shared library.
The switch --[no-]allow-shlib-
undefined controls the
behaviour for reporting unresolved references found in shared
libraries being linked in.

The effects of this option can be reverted by using -z undefs.

--allow-multiple-definition
-z muldefs

Normally when a symbol is defined multiple times, the linker will
report a fatal error.
These options allow multiple definitions and the
first definition will be used.

--allow-shlib-undefined
--no-allow-shlib-undefined

Allows or disallows undefined symbols in shared libraries.
This switch is similar to --
no-undefined except that it
determines the behaviour when the undefined symbols are
in a
shared library rather than a regular object file. It does not affect
how undefined
symbols in regular object files are handled.

The default behaviour is to report errors for any undefined symbols
referenced in
shared libraries if the linker is being used to create
an executable, but to allow them
if the linker is being used to create
a shared library.

The reasons for allowing undefined symbol references in shared
libraries specified at
link time are that:

A shared library specified at link time may not be the same as the one
that is
available at load time, so the symbol might actually be
resolvable at load time.
There are some operating systems, eg BeOS and HPPA, where undefined
symbols in shared libraries are normal.

The BeOS kernel for example patches shared libraries at load time to
select
whichever function is most appropriate for the current
architecture. This is
used, for example, to dynamically select an
appropriate memset function.

--error-handling-script=scriptname

If this option is provided then the linker will invoke
scriptname whenever an error is
encountered. Currently however
only two kinds of error are supported: missing
symbols and missing
libraries. Two arguments will be passed to script: the keyword
“undefined-symbol” or ‘missing-lib” and the name of the
undefined symbol or
missing library. The intention is that the script
will provide suggestions to the user

as to where the symbol or library
might be found. After the script has finished then
the normal linker
error message will be displayed.

The availability of this option is controlled by a configure time
switch, so it may not
be present in specific implementations.

--no-undefined-version

Normally when a symbol has an undefined version, the linker will ignore
it. This
option disallows symbols with undefined version and a fatal error
will be issued
instead.

--default-symver

Create and use a default symbol version (the soname) for unversioned
exported
symbols.

--default-imported-symver

Create and use a default symbol version (the soname) for unversioned
imported
symbols.

--no-warn-mismatch

Normally ld will give an error if you try to link together input
files that are
mismatched for some reason, perhaps because they have
been compiled for
different processors or for different endiannesses.
This option tells ld that it should
silently permit such possible
errors. This option should only be used with care, in
cases when you
have taken some special action that ensures that the linker errors
are
inappropriate.

--no-warn-search-mismatch

Normally ld will give a warning if it finds an incompatible
library during a library
search. This option silences the warning.

--no-whole-archive

Turn off the effect of the --whole-archive option for subsequent
archive files.

--noinhibit-exec

Retain the executable output file whenever it is still usable.
Normally, the linker will
not produce an output file if it encounters
errors during the link process; it exits
without writing an output file
when it issues any error whatsoever.

-nostdlib

Only search library directories explicitly specified on the
command line. Library
directories specified in linker scripts
(including linker scripts specified on the
command line) are ignored.

--oformat=output-format

ld may be configured to support more than one kind of object
file. If your ld is
configured this way, you can use the
‘--oformat’ option to specify the binary format
for the output
object file. Even when ld is configured to support alternative
object
formats, you don’t usually need to specify this, as ld
should be configured to
produce as a default output format the most
usual format on each machine. output-
format is a text string, the
name of a particular format supported by the BFD
libraries. (You can
list the available binary formats with ‘objdump -i’.) The script
command OUTPUT_FORMAT can also specify the output format, but
this option overrides
it. See BFD.

--out-implib file

Create an import library in file corresponding to the executable
the linker is
generating (eg. a DLL or ELF program). This import
library (which should be called
*.dll.a or *.a for DLLs)
may be used to link clients against the generated executable;
this
behaviour makes it possible to skip a separate import library creation
step (eg.
dlltool for DLLs). This option is only available for
the i386 PE and ELF targetted
ports of the linker.

-pie ¶
--pic-executable

Create a position independent executable. This is currently only supported on
ELF
platforms. Position independent executables are similar to shared
libraries in that
they are relocated by the dynamic linker to the virtual
address the OS chooses for
them (which can vary between invocations). Like
normal dynamically linked
executables they can be executed and symbols
defined in the executable cannot be
overridden by shared libraries.

-no-pie ¶

Create a position dependent executable. This is the default.

-qmagic

This option is ignored for Linux compatibility.

-Qy

This option is ignored for SVR4 compatibility.

--relax
--no-relax

An option with machine dependent effects.
This option is only supported on a few
targets.
See ld and the H8/300.
See ld and Xtensa Processors.
See ld and the
68HC11 and 68HC12.
See ld and the Altera Nios II.
See ld and PowerPC 32-bit ELF
Support.

https://sourceware.org/binutils/docs/ld/BFD.html

https://sourceware.org/binutils/docs/ld/H8_002f300.html

https://sourceware.org/binutils/docs/ld/Xtensa.html

https://sourceware.org/binutils/docs/ld/M68HC11_002f68HC12.html

https://sourceware.org/binutils/docs/ld/Nios-II.html

https://sourceware.org/binutils/docs/ld/PowerPC-ELF32.html

On some platforms the --relax option performs target specific,
global optimizations
that become possible when the linker resolves
addressing in the program, such as
relaxing address modes,
synthesizing new instructions, selecting shorter version of
current
instructions, and combining constant values.

On some platforms these link time global optimizations may make symbolic
debugging of the resulting executable impossible.
This is known to be the case for
the Matsushita MN10200 and MN10300
family of processors.

On platforms where the feature is supported, the option
--no-relax will disable it.

On platforms where the feature is not supported, both --relax
and --no-relax are
accepted, but ignored.

--retain-symbols-file=filename

Retain only the symbols listed in the file filename,
discarding all others. filename is
simply a flat file, with one
symbol name per line. This option is especially useful in
environments
(such as VxWorks)
where a large global symbol table is accumulated
gradually, to conserve
run-time memory.

‘--retain-symbols-file’ does not discard undefined symbols,
or symbols needed for
relocations.

You may only specify ‘--retain-symbols-file’ once in the command
line. It overrides ‘-
s’ and ‘-S’.

-rpath=dir ¶

Add a directory to the runtime library search path. This is used when
linking an ELF
executable with shared objects. All -rpath
arguments are concatenated and passed
to the runtime linker, which uses
them to locate shared objects at runtime.

The -rpath option is also used when locating shared objects which
are needed by
shared objects explicitly included in the link; see the
description of the -rpath-link
option. Searching -rpath
in this way is only supported by native linkers and cross
linkers which
have been configured with the --with-sysroot option.

If -rpath is not used when linking an ELF executable, the
contents of the
environment variable LD_RUN_PATH will be used if it
is defined.

The -rpath option may also be used on SunOS. By default, on
SunOS, the linker will
form a runtime search path out of all the
-L options it is given. If a -rpath option is
used, the
runtime search path will be formed exclusively using the -rpath
options,
ignoring the -L options. This can be useful when using
gcc, which adds many -L
options which may be on NFS mounted
file systems.

For compatibility with other ELF linkers, if the -R option is
followed by a directory
name, rather than a file name, it is treated as
the -rpath option.

-rpath-link=dir

When using ELF or SunOS, one shared library may require another. This
happens
when an ld -shared link includes a shared library as one
of the input files.

When the linker encounters such a dependency when doing a non-shared,
non-
relocatable link, it will automatically try to locate the required
shared library and
include it in the link, if it is not included
explicitly. In such a case, the -rpath-link
option
specifies the first set of directories to search. The
-rpath-link option may
specify a sequence of directory names
either by specifying a list of names separated
by colons, or by
appearing multiple times.

The tokens $ORIGIN and $LIB can appear in these search
directories. They will be
replaced by the full path to the directory
containing the program or shared object in
the case of $ORIGIN
and either ‘lib’ - for 32-bit binaries - or ‘lib64’ - for
64-bit
binaries - in the case of $LIB.

The alternative form of these tokens - ${ORIGIN} and
${LIB} can also be used.
The token $PLATFORM is not
supported.

This option should be used with caution as it overrides the search path
that may
have been hard compiled into a shared library. In such a case it
is possible to use
unintentionally a different search path than the
runtime linker would do.

The linker uses the following search paths to locate required shared
libraries:

1. Any directories specified by -rpath-link options.
2. Any directories specified by -rpath options. The difference
between -rpath and -

rpath-link is that directories
specified by -rpath options are included in the
executable and
used at runtime, whereas the -rpath-link option is only effective
at link time. Searching -rpath in this way is only supported
by native linkers and
cross linkers which have been configured with
the --with-sysroot option.

3. On an ELF system, for native linkers, if the -rpath and
-rpath-link options were
not used, search the contents of the
environment variable LD_RUN_PATH.

4. On SunOS, if the -rpath option was not used, search any
directories specified
using -L options.

5. For a native linker, search the contents of the environment
variable
LD_LIBRARY_PATH.

6. For a native ELF linker, the directories in DT_RUNPATH or
DT_RPATH of a shared library
are searched for shared
libraries needed by it. The DT_RPATH entries are ignored
if
DT_RUNPATH entries exist.

7. For a linker for a Linux system, if the file /etc/ld.so.conf
exists, the list of
directories found in that file. Note: the path
to this file is prefixed with the

sysroot value, if that is
defined, and then any prefix string if the linker was
configured with the --prefix=<path> option.

8. For a native linker on a FreeBSD system, any directories specified by
the
_PATH_ELF_HINTS macro defined in the elf-hints.h
header file.

9. Any directories specified by a SEARCH_DIR command in a
linker script given on the
command line, including scripts specified
by -T (but not -dT).

10. The default directories, normally /lib and /usr/lib.
11. Any directories specified by a plugin LDPT_SET_EXTRA_LIBRARY_PATH.
12. Any directories specified by a SEARCH_DIR command in a default
linker script.

Note however on Linux based systems there is an additional caveat: If
the --as-
needed option is active and a shared library
is located which would normally satisfy
the search and this
library does not have DT_NEEDED tag for libc.so
and there is a
shared library later on in the set of search
directories which also satisfies the search
and
this second shared library does have a DT_NEEDED tag for
libc.so then the
second library will be selected instead
of the first.

If the required shared library is not found, the linker will issue a
warning and
continue with the link.

-shared ¶
-Bshareable

Create a shared library. This is currently only supported on ELF, XCOFF
and SunOS
platforms. On SunOS, the linker will automatically create a
shared library if the -e
option is not used and there are
undefined symbols in the link.

--sort-common
--sort-common=ascending
--sort-common=descending

This option tells ld to sort the common symbols by alignment in
ascending or
descending order when it places them in the appropriate output
sections. The
symbol alignments considered are sixteen-byte or larger,
eight-byte, four-byte, two-
byte, and one-byte. This is to prevent gaps
between symbols due to alignment
constraints. If no sorting order is
specified, then descending order is assumed.

--sort-section=name

This option will apply SORT_BY_NAME to all wildcard section
patterns in the linker script.

--sort-section=alignment

This option will apply SORT_BY_ALIGNMENT to all wildcard section
patterns in the linker
script.

--spare-dynamic-tags=count

This option specifies the number of empty slots to leave in the
.dynamic section of
ELF shared objects. Empty slots may be needed by
post processing tools, such as

the prelinker. The default is 5.

--split-by-file[=size]

Similar to --split-by-reloc but creates a new output section for
each input file when
size is reached. size defaults to a
size of 1 if not given.

--split-by-reloc[=count]

Tries to creates extra sections in the output file so that no single
output section in
the file contains more than count relocations.
This is useful when generating huge
relocatable files for downloading into
certain real time kernels with the COFF object
file format; since COFF
cannot represent more than 65535 relocations in a single
section. Note
that this will fail to work with object file formats which do not
support
arbitrary sections. The linker will not split up individual
input sections for
redistribution, so if a single input section contains
more than count relocations one
output section will contain that
many relocations. count defaults to a value of
32768.

--stats

Compute and display statistics about the operation of the linker, such
as execution
time and memory usage.

--sysroot=directory

Use directory as the location of the sysroot, overriding the
configure-time default.
This option is only supported by linkers
that were configured using --with-sysroot.

--task-link

This is used by COFF/PE based targets to create a task-linked object
file where all of
the global symbols have been converted to statics.

--traditional-format

For some targets, the output of ld is different in some ways from
the output of
some existing linker. This switch requests ld to
use the traditional format instead.

For example, on SunOS, ld combines duplicate entries in the
symbol string table.
This can reduce the size of an output file with
full debugging information by over 30
percent. Unfortunately, the SunOS
dbx program can not read the resulting program
(gdb has no
trouble). The ‘--traditional-format’ switch tells ld to not
combine duplicate
entries.

--section-start=sectionname=org

Locate a section in the output file at the absolute
address given by org. You may
use this option as many
times as necessary to locate multiple sections in the
command
line.
org must be a single hexadecimal integer;
for compatibility with
other linkers, you may omit the leading
‘0x’ usually associated with hexadecimal

values. Note: there
should be no white space between sectionname, the equals
sign
(“=”), and org.

-Tbss=org
-Tdata=org
-Ttext=org

Same as --section-start, with .bss, .data or
.text as the sectionname.

-Ttext-segment=org ¶

When creating an ELF executable, it will set the address of the first
byte of the text
segment.

-Trodata-segment=org ¶

When creating an ELF executable or shared object for a target where
the read-only
data is in its own segment separate from the executable
text, it will set the address
of the first byte of the read-only data segment.

-Tldata-segment=org ¶

When creating an ELF executable or shared object for x86-64 medium memory
model, it will set the address of the first byte of the ldata segment.

--unresolved-symbols=method

Determine how to handle unresolved symbols. There are four possible
values for
‘method’:

‘ignore-all’

Do not report any unresolved symbols.

‘report-all’

Report all unresolved symbols. This is the default.

‘ignore-in-object-files’

Report unresolved symbols that are contained in shared libraries, but
ignore
them if they come from regular object files.

‘ignore-in-shared-libs’

Report unresolved symbols that come from regular object files, but
ignore
them if they come from shared libraries. This can be useful
when creating a
dynamic binary and it is known that all the shared
libraries that it should be
referencing are included on the linker’s
command line.

The behaviour for shared libraries on their own can also be controlled
by the --
[no-]allow-shlib-undefined option.

Normally the linker will generate an error message for each reported
unresolved
symbol but the option --warn-unresolved-symbols
can change this to a warning.

--dll-verbose
--verbose[=NUMBER]

Display the version number for ld and list the linker emulations
supported. Display
which input files can and cannot be opened. Display
the linker script being used by
the linker. If the optional NUMBER
argument > 1, plugin symbol status will also be
displayed.

--version-script=version-scriptfile

Specify the name of a version script to the linker. This is typically
used when
creating shared libraries to specify additional information
about the version
hierarchy for the library being created. This option
is only fully supported on ELF
platforms which support shared libraries;
see VERSION Command. It is partially
supported on PE platforms, which can
use version scripts to filter symbol visibility in
auto-export mode: any
symbols marked ‘local’ in the version script will not be
exported.
See ld and WIN32 (cygwin/mingw).

--warn-common

Warn when a common symbol is combined with another common symbol or with
a
symbol definition. Unix linkers allow this somewhat sloppy practice,
but linkers on
some other operating systems do not. This option allows
you to find potential
problems from combining global symbols.
Unfortunately, some C libraries use this
practice, so you may get some
warnings about symbols in the libraries as well as in
your programs.

There are three kinds of global symbols, illustrated here by C examples:

‘int i = 1;’

A definition, which goes in the initialized data section of the output
file.

‘extern int i;’

An undefined reference, which does not allocate space.
There must be either a
definition or a common symbol for the
variable somewhere.

‘int i;’

A common symbol. If there are only (one or more) common symbols for a
variable, it goes in the uninitialized data area of the output file.
The linker
merges multiple common symbols for the same variable into a
single symbol.

https://sourceware.org/binutils/docs/ld/VERSION.html

https://sourceware.org/binutils/docs/ld/WIN32.html

If they are of different sizes, it picks the largest
size. The linker turns a
common symbol into a declaration, if there is
a definition of the same variable.

The ‘--warn-common’ option can produce five kinds of warnings.
Each warning consists
of a pair of lines: the first describes the symbol
just encountered, and the second
describes the previous symbol
encountered with the same name. One or both of the
two symbols will be
a common symbol.

1. Turning a common symbol into a reference, because there is already a
definition for the symbol.

file(section): warning: common of `symbol'
 overridden by definition
file(section): warning: defined here

2. Turning a common symbol into a reference, because a later definition for
the
symbol is encountered. This is the same as the previous case,
except that the
symbols are encountered in a different order.

file(section): warning: definition of `symbol'
 overriding common
file(section): warning: common is here

3. Merging a common symbol with a previous same-sized common symbol.

file(section): warning: multiple common
 of `symbol'
file(section): warning: previous common is here

4. Merging a common symbol with a previous larger common symbol.

file(section): warning: common of `symbol'
 overridden by larger common
file(section): warning: larger common is here

5. Merging a common symbol with a previous smaller common symbol. This is
the same as the previous case, except that the symbols are
encountered in a
different order.

file(section): warning: common of `symbol'
 overriding smaller common
file(section): warning: smaller common is here

--warn-constructors

Warn if any global constructors are used. This is only useful for a few
object file
formats. For formats like COFF or ELF, the linker can not
detect the use of global
constructors.

--warn-execstack
--no-warn-execstack

On ELF platforms this option controls how the linker generates warning
messages
when it creates an output file with an executable stack. By
default the linker will not
warn if the -z execstack command
line option has been used, but this behaviour can
be overridden by the
--warn-execstack option.

On the other hand the linker will normally warn if the stack is made
executable
because one or more of the input files need an execuable
stack and neither of the -z
execstack or -z
noexecstack command line options have been specified. This warning
can be disabled via the --no-warn-execstack option.

Note: ELF format input files specify that they need an executable
stack by having a
.note.GNU-stack section with the executable
bit set in its section flags. They can
specify that they do not need
an executable stack by having that section, but
without the executable
flag bit set. If an input file does not have a .note.GNU-stack
section present then the default behaviour is target specific. For
some targets, then
absence of such a section implies that an
executable stack is required. This is often
a problem for hand
crafted assembler files.

--warn-multiple-gp

Warn if multiple global pointer values are required in the output file.
This is only
meaningful for certain processors, such as the Alpha.
Specifically, some processors
put large-valued constants in a special
section. A special register (the global
pointer) points into the middle
of this section, so that constants can be loaded
efficiently via a
base-register relative addressing mode. Since the offset in
base-
register relative mode is fixed and relatively small (e.g., 16
bits), this limits the
maximum size of the constant pool. Thus, in
large programs, it is often necessary to
use multiple global pointer
values in order to be able to address all possible
constants. This
option causes a warning to be issued whenever this case occurs.

--warn-once

Only warn once for each undefined symbol, rather than once per module
which
refers to it.

--warn-rwx-segments
--no-warn-rwx-segments

Warn if the linker creates a loadable, non-zero sized segment that has
all three of
the read, write and execute permission flags set. Such a
segment represents a
potential security vulnerability. In addition
warnings will be generated if a thread
local storage segment is
created with the execute permission flag set, regardless of
whether or
not it has the read and/or write flags set.

These warnings are enabled by default. They can be disabled via the
--no-warn-rwx-
segments option and re-enabled via the
--warn-rwx-segments option.

--warn-section-align

Warn if the address of an output section is changed because of
alignment. Typically,
the alignment will be set by an input section.
The address will only be changed if it
not explicitly specified; that
is, if the SECTIONS command does not specify a start
address for
the section (see SECTIONS Command).

--warn-textrel

https://sourceware.org/binutils/docs/ld/SECTIONS.html

Warn if the linker adds DT_TEXTREL to a position-independent executable
or shared
object.

--warn-alternate-em

Warn if an object has alternate ELF machine code.

--warn-unresolved-symbols

If the linker is going to report an unresolved symbol (see the option
--unresolved-
symbols) it will normally generate an error.
This option makes it generate a warning
instead.

--error-unresolved-symbols

This restores the linker’s default behaviour of generating errors when
it is reporting
unresolved symbols.

--whole-archive

For each archive mentioned on the command line after the
--whole-archive option,
include every object file in the archive
in the link, rather than searching the archive
for the required object
files. This is normally used to turn an archive file into a
shared
library, forcing every object to be included in the resulting shared
library.
This option may be used more than once.

Two notes when using this option from gcc: First, gcc doesn’t know
about this
option, so you have to use -Wl,-whole-archive.
Second, don’t forget to use -Wl,-no-
whole-archive after your
list of archives, because gcc will add its own list of archives
to
your link and you may not want this flag to affect those as well.

--wrap=symbol

Use a wrapper function for symbol. Any undefined reference to
symbol will be
resolved to __wrap_symbol. Any
undefined reference to __real_symbol will be resolved to
symbol.

This can be used to provide a wrapper for a system function. The
wrapper function
should be called __wrap_symbol. If it
wishes to call the system function, it should call
__real_symbol.

Here is a trivial example:

void *
__wrap_malloc (size_t c)
{
 printf ("malloc called with %zu\n", c);
 return __real_malloc (c);
}

If you link other code with this file using --wrap malloc, then
all calls to malloc will call
the function __wrap_malloc
instead. The call to __real_malloc in __wrap_malloc will
call the
real malloc function.

You may wish to provide a __real_malloc function as well, so that
links without the --
wrap option will succeed. If you do this,
you should not put the definition of
__real_malloc in the same
file as __wrap_malloc; if you do, the assembler may resolve
the
call before the linker has a chance to wrap it to malloc.

Only undefined references are replaced by the linker. So, translation unit
internal
references to symbol are not resolved to
__wrap_symbol. In the next example, the call
to f in
g is not resolved to __wrap_f.

int
f (void)
{
 return 123;
}

int
g (void)
{
 return f();
}

--eh-frame-hdr
--no-eh-frame-hdr

Request (--eh-frame-hdr) or suppress
(--no-eh-frame-hdr) the creation of .eh_frame_hdr
section and ELF PT_GNU_EH_FRAME segment header.

--no-ld-generated-unwind-info

Request creation of .eh_frame unwind info for linker
generated code sections like PLT.
This option is on by default
if linker generated unwind info is supported.

--enable-new-dtags
--disable-new-dtags

This linker can create the new dynamic tags in ELF. But the older ELF
systems may
not understand them. If you specify
--enable-new-dtags, the new dynamic tags will be
created as needed
and older dynamic tags will be omitted.
If you specify --disable-
new-dtags, no new dynamic tags will be
created. By default, the new dynamic tags
are not created. Note that
those options are only available for ELF systems.

--hash-size=number

Set the default size of the linker’s hash tables to a prime number
close to number.
Increasing this value can reduce the length of
time it takes the linker to perform its
tasks, at the expense of
increasing the linker’s memory requirements. Similarly
reducing this
value can reduce the memory requirements at the expense of speed.

--hash-style=style

Set the type of linker’s hash table(s). style can be either
sysv for classic ELF .hash
section, gnu for
new style GNU .gnu.hash section or both for both
the classic ELF .hash
and new style GNU .gnu.hash
hash tables. The default depends upon how the linker
was configured,
but for most Linux based systems it will be both.

--compress-debug-sections=none
--compress-debug-sections=zlib

--compress-debug-sections=zlib-gnu
--compress-debug-sections=zlib-gabi

On ELF platforms, these options control how DWARF debug sections are
compressed using zlib.

--compress-debug-sections=none doesn’t compress DWARF debug
sections. --compress-
debug-sections=zlib-gnu compresses
DWARF debug sections and renames them to
begin with ‘.zdebug’
instead of ‘.debug’. --compress-debug-sections=zlib-gabi
also
compresses DWARF debug sections, but rather than renaming them it
sets the
SHF_COMPRESSED flag in the sections’ headers.

The --compress-debug-sections=zlib option is an alias for
--compress-debug-sections=zlib-
gabi.

Note that this option overrides any compression in input debug
sections, so if a
binary is linked with --compress-debug-sections=none
for example, then any compressed
debug sections in input files will be
uncompressed before they are copied into the
output binary.

The default compression behaviour varies depending upon the target
involved and
the configure options used to build the toolchain. The
default can be determined by
examining the output from the linker’s
--help option.

--reduce-memory-overheads

This option reduces memory requirements at ld runtime, at the expense of
linking
speed. This was introduced to select the old O(n^2) algorithm
for link map file
generation, rather than the new O(n) algorithm which uses
about 40% more
memory for symbol storage.

Another effect of the switch is to set the default hash table size to
1021, which
again saves memory at the cost of lengthening the linker’s
run time. This is not
done however if the --hash-size switch
has been used.

The --reduce-memory-overheads switch may be also be used to
enable other tradeoffs in
future versions of the linker.

--max-cache-size=size

ld normally caches the relocation information and symbol tables
of input files in
memory with the unlimited size. This option sets the
maximum cache size to size.

--build-id
--build-id=style

Request the creation of a .note.gnu.build-id ELF note section
or a .buildid COFF
section. The contents of the note are
unique bits identifying this linked file. style can
be
uuid to use 128 random bits, sha1 to use a 160-bit
SHA1 hash on the normative
parts of the output contents,
md5 to use a 128-bit MD5 hash on the normative parts

of
the output contents, or 0xhexstring to use a chosen bit
string specified as an even
number of hexadecimal digits (- and
: characters between digit pairs are ignored).
If style
is omitted, sha1 is used.

The md5 and sha1 styles produces an identifier
that is always the same in an identical
output file, but will be
unique among all nonidentical output files. It is not intended
to be compared as a checksum for the file’s contents. A linked
file may be changed
later by other tools, but the build ID bit
string identifying the original linked file does
not change.

Passing none for style disables the setting from any
--build-id options earlier on the
command line.

--package-metadata=JSON

Request the creation of a .note.package ELF note section. The
contents of the note are
in JSON format, as per the package metadata
specification. For more information
see:
https://systemd.io/ELF_PACKAGE_METADATA/
If the JSON argument is
missing/empty then this will disable the
creation of the metadata note, if one had
been enabled by an earlier
occurrence of the –package-metdata option.
If the linker
has been built with libjansson, then the JSON string
will be validated.

Options Specific to i386 PE Targets
Options specific to C6X uClinux targets
Options specific to C-SKY targets
Options specific to Motorola 68HC11 and 68HC12 targets
Options specific to Motorola 68K target
Options specific to MIPS targets
Options specific to PDP11 targets

2.1.1 Options Specific to i386 PE Targets

The i386 PE linker supports the -shared option, which causes
the output to be a
dynamically linked library (DLL) instead of a
normal executable. You should name the
output *.dll when you
use this option. In addition, the linker fully supports the standard
*.def files, which may be specified on the linker command line
like an object file (in fact,
it should precede archives it exports
symbols from, to ensure that they get linked in, just
like a normal
object file).

In addition to the options common to all targets, the i386 PE linker
support additional
command-line options that are specific to the i386
PE target. Options that take values
may be separated from their
values by either a space or an equals sign.

--add-stdcall-alias

If given, symbols with a stdcall suffix (@nn) will be exported
as-is and also with the
suffix stripped.
[This option is specific to the i386 PE targeted port of the linker]

--base-file file

Use file as the name of a file in which to save the base
addresses of all the
relocations needed for generating DLLs with
dlltool.
[This is an i386 PE specific
option]

--dll

Create a DLL instead of a regular executable. You may also use
-shared or specify a
LIBRARY in a given .def
file.
[This option is specific to the i386 PE targeted port of the
linker]

--enable-long-section-names
--disable-long-section-names

The PE variants of the COFF object format add an extension that permits
the use of
section names longer than eight characters, the normal limit
for COFF. By default,
these names are only allowed in object files, as
fully-linked executable images do
not carry the COFF string table required
to support the longer names. As a GNU
extension, it is possible to
allow their use in executable images as well, or to
(probably pointlessly!)
disallow it in object files, by using these two options.
Executable images
generated with these long section names are slightly non-
standard, carrying
as they do a string table, and may generate confusing output
when examined
with non-GNU PE-aware tools, such as file viewers and dumpers.
However,
GDB relies on the use of PE long section names to find Dwarf-2 debug
information sections in an executable image at runtime, and so if neither
option is
specified on the command-line, ld will enable long
section names, overriding the
default and technically correct behaviour,
when it finds the presence of debug
information while linking an executable
image and not stripping symbols.
[This
option is valid for all PE targeted ports of the linker]

--enable-stdcall-fixup
--disable-stdcall-fixup

If the link finds a symbol that it cannot resolve, it will attempt to
do “fuzzy linking”
by looking for another defined symbol that differs
only in the format of the symbol
name (cdecl vs stdcall) and will
resolve that symbol by linking to the match. For
example, the
undefined symbol _foo might be linked to the function
_foo@12, or the
undefined symbol _bar@16 might be linked
to the function _bar. When the linker does
this, it prints a
warning, since it normally should have failed to link, but sometimes
import libraries generated from third-party dlls may need this feature
to be usable.
If you specify --enable-stdcall-fixup, this
feature is fully enabled and warnings are not
printed. If you specify
--disable-stdcall-fixup, this feature is disabled and such
mismatches are considered to be errors.
[This option is specific to the i386 PE
targeted port of the linker]

--leading-underscore
--no-leading-underscore

For most targets default symbol-prefix is an underscore and is defined
in target’s
description. By this option it is possible to
disable/enable the default underscore
symbol-prefix.

--export-all-symbols

If given, all global symbols in the objects used to build a DLL will
be exported by the
DLL. Note that this is the default if there
otherwise wouldn’t be any exported
symbols. When symbols are
explicitly exported via DEF files or implicitly exported
via function
attributes, the default is to not export anything else unless this
option is
given. Note that the symbols DllMain@12,
DllEntryPoint@0, DllMainCRTStartup@12, and
impure_ptr will not be automatically
exported. Also, symbols imported from other
DLLs will not be
re-exported, nor will symbols specifying the DLL’s internal layout
such as those beginning with _head_ or ending with
_iname. In addition, no symbols
from libgcc,
libstd++, libmingw32, or crtX.o will be exported.
Symbols whose names
begin with __rtti_ or __builtin_ will
not be exported, to help with C++ DLLs. Finally,
there is an
extensive list of cygwin-private symbols that are not exported
(obviously, this applies on when building DLLs for cygwin targets).
These cygwin-
excludes are: _cygwin_dll_entry@12,
_cygwin_crt0_common@8, _cygwin_noncygwin_dll_entry@12,
_fmode, _impure_ptr, cygwin_attach_dll,
cygwin_premain0, cygwin_premain1, cygwin_premain2,
cygwin_premain3, and environ.
[This option is specific to the i386 PE targeted port of the
linker]

--exclude-symbols symbol,symbol,...

Specifies a list of symbols which should not be automatically
exported. The symbol
names may be delimited by commas or colons.
[This option is specific to the i386
PE targeted port of the linker]

--exclude-all-symbols

Specifies no symbols should be automatically exported.
[This option is specific to
the i386 PE targeted port of the linker]

--file-alignment

Specify the file alignment. Sections in the file will always begin at
file offsets which
are multiples of this number. This defaults to
512.
[This option is specific to the i386
PE targeted port of the linker]

--heap reserve
--heap reserve,commit

Specify the number of bytes of memory to reserve (and optionally commit)
to be
used as heap for this program. The default is 1MB reserved, 4K
committed.
[This
option is specific to the i386 PE targeted port of the linker]

--image-base value

Use value as the base address of your program or dll. This is
the lowest memory
location that will be used when your program or dll
is loaded. To reduce the need to
relocate and improve performance of
your dlls, each should have a unique base
address and not overlap any
other dlls. The default is 0x400000 for executables,
and 0x10000000
for dlls.
[This option is specific to the i386 PE targeted port of the
linker]

--kill-at

If given, the stdcall suffixes (@nn) will be stripped from
symbols before they are
exported.
[This option is specific to the i386 PE targeted port of the linker]

--large-address-aware

If given, the appropriate bit in the “Characteristics” field of the COFF
header is set
to indicate that this executable supports virtual addresses
greater than 2 gigabytes.
This should be used in conjunction with the /3GB
or /USERVA=value megabytes
switch in the “[operating systems]”
section of the BOOT.INI. Otherwise, this bit has
no effect.
[This option is specific to PE targeted ports of the linker]

--disable-large-address-aware

Reverts the effect of a previous ‘--large-address-aware’ option.
This is useful if ‘--large-
address-aware’ is always set by the compiler
driver (e.g. Cygwin gcc) and the
executable does not support virtual
addresses greater than 2 gigabytes.
[This
option is specific to PE targeted ports of the linker]

--major-image-version value

Sets the major number of the “image version”. Defaults to 1.
[This option is specific
to the i386 PE targeted port of the linker]

--major-os-version value

Sets the major number of the “os version”. Defaults to 4.
[This option is specific to
the i386 PE targeted port of the linker]

--major-subsystem-version value

Sets the major number of the “subsystem version”. Defaults to 4.
[This option is
specific to the i386 PE targeted port of the linker]

--minor-image-version value

Sets the minor number of the “image version”. Defaults to 0.
[This option is specific
to the i386 PE targeted port of the linker]

--minor-os-version value

Sets the minor number of the “os version”. Defaults to 0.
[This option is specific to
the i386 PE targeted port of the linker]

--minor-subsystem-version value

Sets the minor number of the “subsystem version”. Defaults to 0.
[This option is
specific to the i386 PE targeted port of the linker]

--output-def file

The linker will create the file file which will contain a DEF
file corresponding to the
DLL the linker is generating. This DEF file
(which should be called *.def) may be
used to create an import
library with dlltool or may be used as a reference to
automatically or implicitly exported symbols.
[This option is specific to the i386 PE
targeted port of the linker]

--enable-auto-image-base
--enable-auto-image-base=value

Automatically choose the image base for DLLs, optionally starting with base
value,
unless one is specified using the --image-base argument.
By using a hash generated
from the dllname to create unique image bases
for each DLL, in-memory collisions
and relocations which can delay program
execution are avoided.
[This option is
specific to the i386 PE targeted port of the linker]

--disable-auto-image-base

Do not automatically generate a unique image base. If there is no
user-specified
image base (--image-base) then use the platform
default.
[This option is specific to
the i386 PE targeted port of the linker]

--dll-search-prefix string

When linking dynamically to a dll without an import library,
search for <string>
<basename>.dll in preference to
lib<basename>.dll. This behaviour allows easy distinction
between DLLs built for the various "subplatforms": native, cygwin,
uwin, pw, etc.
For instance, cygwin DLLs typically use
--dll-search-prefix=cyg.
[This option is specific
to the i386 PE targeted port of the linker]

--enable-auto-import

Do sophisticated linking of _symbol to __imp__symbol for
DATA imports from DLLs, thus
making it possible to bypass the dllimport
mechanism on the user side and to
reference unmangled symbol names.
[This option is specific to the i386 PE targeted
port of the linker]

The following remarks pertain to the original implementation of the
feature and are
obsolete nowadays for Cygwin and MinGW targets.

Note: Use of the ’auto-import’ extension will cause the text section
of the image file
to be made writable. This does not conform to the
PE-COFF format specification
published by Microsoft.

Note - use of the ’auto-import’ extension will also cause read only
data which would
normally be placed into the .rdata section to be
placed into the .data section

instead. This is in order to work
around a problem with consts that is described
here:
http://www.cygwin.com/ml/cygwin/2004-09/msg01101.html

Using ’auto-import’ generally will ’just work’ – but sometimes you may
see this
message:

"variable ’<var>’ can’t be auto-imported. Please read the
documentation for ld’s --
enable-auto-import for details."

This message occurs when some (sub)expression accesses an address
ultimately
given by the sum of two constants (Win32 import tables only
allow one). Instances
where this may occur include accesses to member
fields of struct variables imported
from a DLL, as well as using a
constant index into an array variable imported from a
DLL. Any
multiword variable (arrays, structs, long long, etc) may trigger
this error
condition. However, regardless of the exact data type
of the offending exported
variable, ld will always detect it, issue
the warning, and exit.

There are several ways to address this difficulty, regardless of the
data type of the
exported variable:

One way is to use –enable-runtime-pseudo-reloc switch. This leaves the task
of
adjusting references in your client code for runtime environment, so
this method
works only when runtime environment supports this feature.

A second solution is to force one of the ’constants’ to be a variable –
that is,
unknown and un-optimizable at compile time. For arrays,
there are two possibilities:
a) make the indexee (the array’s address)
a variable, or b) make the ’constant’
index a variable. Thus:

extern type extern_array[];
extern_array[1] -->
 { volatile type *t=extern_array; t[1] }

or

extern type extern_array[];
extern_array[1] -->
 { volatile int t=1; extern_array[t] }

For structs (and most other multiword data types) the only option
is to make the
struct itself (or the long long, or the ...) variable:

extern struct s extern_struct;
extern_struct.field -->
 { volatile struct s *t=&extern_struct; t->field }

or

extern long long extern_ll;
extern_ll -->
 { volatile long long * local_ll=&extern_ll; *local_ll }

A third method of dealing with this difficulty is to abandon
’auto-import’ for the
offending symbol and mark it with
__declspec(dllimport). However, in practice that
requires using compile-time #defines to indicate whether you are
building a DLL,
building client code that will link to the DLL, or
merely building/linking to a static
library. In making the choice
between the various methods of resolving the ’direct
address with
constant offset’ problem, you should consider typical real-world usage:

Original:

--foo.h
extern int arr[];
--foo.c
#include "foo.h"
void main(int argc, char **argv){
 printf("%d\n",arr[1]);
}

Solution 1:

--foo.h
extern int arr[];
--foo.c
#include "foo.h"
void main(int argc, char **argv){
 /* This workaround is for win32 and cygwin; do not "optimize" */
 volatile int *parr = arr;
 printf("%d\n",parr[1]);
}

Solution 2:

--foo.h
/* Note: auto-export is assumed (no __declspec(dllexport)) */
#if (defined(_WIN32) || defined(__CYGWIN__)) && \
 !(defined(FOO_BUILD_DLL) || defined(FOO_STATIC))
#define FOO_IMPORT __declspec(dllimport)
#else
#define FOO_IMPORT
#endif
extern FOO_IMPORT int arr[];
--foo.c
#include "foo.h"
void main(int argc, char **argv){
 printf("%d\n",arr[1]);
}

A fourth way to avoid this problem is to re-code your
library to use a functional
interface rather than a data interface
for the offending variables (e.g. set_foo() and
get_foo() accessor
functions).

--disable-auto-import

Do not attempt to do sophisticated linking of _symbol to
__imp__symbol for DATA imports
from DLLs.
[This option is specific to the i386 PE targeted port of the linker]

--enable-runtime-pseudo-reloc

If your code contains expressions described in –enable-auto-import section,
that is,
DATA imports from DLL with non-zero offset, this switch will create
a vector of
’runtime pseudo relocations’ which can be used by runtime
environment to adjust

references to such data in your client code.
[This option is specific to the i386 PE
targeted port of the linker]

--disable-runtime-pseudo-reloc

Do not create pseudo relocations for non-zero offset DATA imports from DLLs.
[This
option is specific to the i386 PE targeted port of the linker]

--enable-extra-pe-debug

Show additional debug info related to auto-import symbol thunking.
[This option is
specific to the i386 PE targeted port of the linker]

--section-alignment

Sets the section alignment. Sections in memory will always begin at
addresses
which are a multiple of this number. Defaults to 0x1000.
[This option is specific to
the i386 PE targeted port of the linker]

--stack reserve
--stack reserve,commit

Specify the number of bytes of memory to reserve (and optionally commit)
to be
used as stack for this program. The default is 2MB reserved, 4K
committed.
[This
option is specific to the i386 PE targeted port of the linker]

--subsystem which
--subsystem which:major
--subsystem which:major.minor

Specifies the subsystem under which your program will execute. The
legal values
for which are native, windows,
console, posix, and xbox. You may optionally set
the
subsystem version also. Numeric values are also accepted for
which.
[This option is
specific to the i386 PE targeted port of the linker]

The following options set flags in the DllCharacteristics field
of the PE file header:
[These options are specific to PE targeted ports of the linker]

--high-entropy-va
--disable-high-entropy-va

Image is compatible with 64-bit address space layout randomization
(ASLR). This
option is enabled by default for 64-bit PE images.

This option also implies --dynamicbase and
--enable-reloc-section.

--dynamicbase
--disable-dynamicbase

The image base address may be relocated using address space layout
randomization (ASLR). This feature was introduced with MS Windows
Vista for i386
PE targets. This option is enabled by default but
can be disabled via the --disable-
dynamicbase option.
This option also implies --enable-reloc-section.

--forceinteg

--disable-forceinteg

Code integrity checks are enforced. This option is disabled by
default.

--nxcompat
--disable-nxcompat

The image is compatible with the Data Execution Prevention.
This feature was
introduced with MS Windows XP SP2 for i386 PE
targets. The option is enabled by
default.

--no-isolation
--disable-no-isolation

Although the image understands isolation, do not isolate the image.
This option is
disabled by default.

--no-seh
--disable-no-seh

The image does not use SEH. No SE handler may be called from
this image. This
option is disabled by default.

--no-bind
--disable-no-bind

Do not bind this image. This option is disabled by default.

--wdmdriver
--disable-wdmdriver

The driver uses the MS Windows Driver Model. This option is disabled
by default.

--tsaware
--disable-tsaware

The image is Terminal Server aware. This option is disabled by
default.

--insert-timestamp
--no-insert-timestamp

Insert a real timestamp into the image. This is the default behaviour
as it matches
legacy code and it means that the image will work with
other, proprietary tools. The
problem with this default is that it
will result in slightly different images being
produced each time the
same sources are linked. The option --no-insert-timestamp
can
be used to insert a zero value for the timestamp, this ensuring
that binaries
produced from identical sources will compare
identically.

--enable-reloc-section
--disable-reloc-section

Create the base relocation table, which is necessary if the image
is loaded at a
different image base than specified in the PE header.
This option is enabled by
default.

2.1.2 Options specific to C6X uClinux targets

The C6X uClinux target uses a binary format called DSBT to support shared
libraries.
Each shared library in the system needs to have a unique index;
all executables use an
index of 0.

--dsbt-size size

This option sets the number of entries in the DSBT of the current executable
or
shared library to size. The default is to create a table with 64
entries.

--dsbt-index index

This option sets the DSBT index of the current executable or shared library
to index.
The default is 0, which is appropriate for generating
executables. If a shared library
is generated with a DSBT index of 0, the
R_C6000_DSBT_INDEX relocs are copied into the
output file.

The ‘--no-merge-exidx-entries’ switch disables the merging of adjacent
exidx entries in
frame unwind info.

2.1.3 Options specific to C-SKY targets

--branch-stub

This option enables linker branch relaxation by inserting branch stub
sections when
needed to extend the range of branches. This option is
usually not required since C-
SKY supports branch and call instructions that
can access the full memory range
and branch relaxation is normally handled by
the compiler or assembler.

--stub-group-size=N

This option allows finer control of linker branch stub creation.
It sets the maximum
size of a group of input sections that can
be handled by one stub section. A
negative value of N locates
stub sections after their branches, while a positive value
allows stub
sections to appear either before or after the branches. Values of
‘1’ or
‘-1’ indicate that the
linker should choose suitable defaults.

2.1.4 Options specific to Motorola 68HC11 and 68HC12 targets

The 68HC11 and 68HC12 linkers support specific options to control the
memory bank
switching mapping and trampoline code generation.

--no-trampoline

This option disables the generation of trampoline. By default a trampoline
is
generated for each far function which is called using a jsr
instruction (this happens
when a pointer to a far function is taken).

--bank-window name

This option indicates to the linker the name of the memory region in
the ‘MEMORY’
specification that describes the memory bank window.
The definition of such region
is then used by the linker to compute
paging and addresses within the memory
window.

2.1.5 Options specific to Motorola 68K target

The following options are supported to control handling of GOT generation
when linking
for 68K targets.

--got=type

This option tells the linker which GOT generation scheme to use.
type should be one
of ‘single’, ‘negative’,
‘multigot’ or ‘target’. For more information refer to the
Info entry
for ld.

2.1.6 Options specific to MIPS targets

The following options are supported to control microMIPS instruction
generation and
branch relocation checks for ISA mode transitions when
linking for MIPS targets.

--insn32
--no-insn32

These options control the choice of microMIPS instructions used in code
generated
by the linker, such as that in the PLT or lazy binding stubs,
or in relaxation. If ‘--
insn32’ is used, then the linker only uses
32-bit instruction encodings. By default or if
‘--no-insn32’ is
used, all instruction encodings are used, including 16-bit ones where
possible.

--ignore-branch-isa
--no-ignore-branch-isa

These options control branch relocation checks for invalid ISA mode
transitions. If ‘-
-ignore-branch-isa’ is used, then the linker
accepts any branch relocations and any
ISA mode transition required
is lost in relocation calculation, except for some cases
of BAL
instructions which meet relaxation conditions and are converted to
equivalent
JALX instructions as the associated relocation is
calculated. By default or if ‘--no-
ignore-branch-isa’ is used
a check is made causing the loss of an ISA mode transition
to produce
an error.

--compact-branches
--no-compact-branches

These options control the generation of compact instructions by the linker
in the PLT
entries for MIPS R6.

2.1.7 Options specific to PDP11 targets

For the pdp11-aout target, three variants of the output format can be
produced as
selected by the following options. The default variant
for pdp11-aout is the ‘--omagic’
option, whereas for other
targets ‘--nmagic’ is the default. The ‘--imagic’ option is
defined
only for the pdp11-aout target, while the others are described
here as they apply to the
pdp11-aout target.

-N
--omagic

Mark the output as OMAGIC (0407) in the a.out header to
indicate that the text
segment is not to be write-protected and
shared. Since the text and data sections
are both readable and
writable, the data section is allocated immediately contiguous
after
the text segment. This is the oldest format for PDP11 executable
programs
and is the default for ld on PDP11 Unix systems
from the beginning through
2.11BSD.

-n
--nmagic

Mark the output as NMAGIC (0410) in the a.out header to
indicate that when the
output file is executed, the text portion will
be read-only and shareable among all
processes executing the same
file. This involves moving the data areas up to the
first possible 8K
byte page boundary following the end of the text. This option
creates
a pure executable format.

-z
--imagic

Mark the output as IMAGIC (0411) in the a.out header to
indicate that when the
output file is executed, the program text and
data areas will be loaded into separate
address spaces using the split
instruction and data space feature of the memory
management unit in
larger models of the PDP11. This doubles the address space
available
to the program. The text segment is again pure, write-protected, and
shareable. The only difference in the output format between this
option and the
others, besides the magic number, is that both the text
and data sections start at
location 0. The ‘-z’ option selected
this format in 2.11BSD. This option creates a
separate
executable format.

--no-omagic

Equivalent to ‘--nmagic’ for pdp11-aout.

Next: Environment Variables, Up: Invocation [Contents][Index]

https://sourceware.org/binutils/docs/ld/Environment.html

https://sourceware.org/binutils/docs/ld/Invocation.html

https://sourceware.org/binutils/docs/ld/index.html#SEC_Contents

https://sourceware.org/binutils/docs/ld/LD-Index.html

Options (LD).pdf

Go to the first, previous, next, last section, table of contents.

Linker Scripts
Every link is controlled by a linker script. This script is written in the linker command
language.

The main purpose of the linker script is to describe how the sections in the input files
should be mapped into the output file, and to control the memory layout of the output
file. Most linker scripts do nothing more than this. However, when necessary, the linker
script can also direct the linker to perform many other operations, using the commands
described below.

The linker always uses a linker script. If you do not supply one yourself, the linker will use
a default script that is compiled into the linker executable. You can use the `--verbose'
command line option to display the default linker script. Certain command line options,
such as `-r' or `-N', will affect the default linker script.

You may supply your own linker script by using the `-T' command line option. When you
do this, your linker script will replace the default linker script.

You may also use linker scripts implicitly by naming them as input files to the linker, as
though they were files to be linked. See section Implicit Linker Scripts.

Basic Script Concepts: Basic Linker Script Concepts
Script Format: Linker Script Format
Simple Example: Simple Linker Script Example
Simple Commands: Simple Linker Script Commands
Assignments: Assigning Values to Symbols
SECTIONS: SECTIONS Command
MEMORY: MEMORY Command
PHDRS: PHDRS Command
VERSION: VERSION Command
Expressions: Expressions in Linker Scripts
Implicit Linker Scripts: Implicit Linker Scripts

Basic Linker Script Concepts

We need to define some basic concepts and vocabulary in order to describe the linker
script language.

The linker combines input files into a single output file. The output file and each input file
are in a special data format known as an object file format. Each file is called an object

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_1.html

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_2.html

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_4.html

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_8.html

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC5

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC6

file. The output file is often called an executable, but for our purposes we will also call it
an object file. Each object file has, among other things, a list of sections. We sometimes
refer to a section in an input file as an input section; similarly, a section in the output
file is an output section.

Each section in an object file has a name and a size. Most sections also have an
associated block of data, known as the section contents. A section may be marked as
loadable, which mean that the contents should be loaded into memory when the output
file is run. A section with no contents may be allocatable, which means that an area in
memory should be set aside, but nothing in particular should be loaded there (in some
cases this memory must be zeroed out). A section which is neither loadable nor
allocatable typically contains some sort of debugging information.

Every loadable or allocatable output section has two addresses. The first is the VMA, or
virtual memory address. This is the address the section will have when the output file is
run. The second is the LMA, or load memory address. This is the address at which the
section will be loaded. In most cases the two addresses will be the same. An example of
when they might be different is when a data section is loaded into ROM, and then copied
into RAM when the program starts up (this technique is often used to initialize global
variables in a ROM based system). In this case the ROM address would be the LMA, and
the RAM address would be the VMA.

You can see the sections in an object file by using the objdump program with the `-h'
option.

Every object file also has a list of symbols, known as the symbol table. A symbol may
be defined or undefined. Each symbol has a name, and each defined symbol has an
address, among other information. If you compile a C or C++ program into an object file,
you will get a defined symbol for every defined function and global or static variable.
Every undefined function or global variable which is referenced in the input file will
become an undefined symbol.

You can see the symbols in an object file by using the nm program, or by using the objdump
program with the `-t' option.

Linker Script Format

Linker scripts are text files.

You write a linker script as a series of commands. Each command is either a keyword,
possibly followed by arguments, or an assignment to a symbol. You may separate
commands using semicolons. Whitespace is generally ignored.

Strings such as file or format names can normally be entered directly. If the file name
contains a character such as a comma which would otherwise serve to separate file

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC7

names, you may put the file name in double quotes. There is no way to use a double
quote character in a file name.

You may include comments in linker scripts just as in C, delimited by `/*' and `*/'. As in
C, comments are syntactically equivalent to whitespace.

Simple Linker Script Example

Many linker scripts are fairly simple.

The simplest possible linker script has just one command: `SECTIONS'. You use the
`SECTIONS' command to describe the memory layout of the output file.

The `SECTIONS' command is a powerful command. Here we will describe a simple use of it.
Let's assume your program consists only of code, initialized data, and uninitialized data.
These will be in the `.text', `.data', and `.bss' sections, respectively. Let's assume further
that these are the only sections which appear in your input files.

For this example, let's say that the code should be loaded at address 0x10000, and that
the data should start at address 0x8000000. Here is a linker script which will do that:

SECTIONS
{
 . = 0x10000;
 .text : { *(.text) }
 . = 0x8000000;
 .data : { *(.data) }
 .bss : { *(.bss) }
}

You write the `SECTIONS' command as the keyword `SECTIONS', followed by a series of
symbol assignments and output section descriptions enclosed in curly braces.

The first line in the above example sets the special symbol `.', which is the location
counter. If you do not specify the address of an output section in some other way (other
ways are described later), the address is set from the current value of the location
counter. The location counter is then incremented by the size of the output section.

The first line inside the `SECTIONS' command of the above example sets the value of the
special symbol `.', which is the location counter. If you do not specify the address of an
output section in some other way (other ways are described later), the address is set
from the current value of the location counter. The location counter is then incremented
by the size of the output section. At the start of the `SECTIONS' command, the location
counter has the value `0'.

The second line defines an output section, `.text'. The colon is required syntax which
may be ignored for now. Within the curly braces after the output section name, you list
the names of the input sections which should be placed into this output section. The `*'
is a wildcard which matches any file name. The expression `*(.text)' means all `.text'
input sections in all input files.

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC8

Since the location counter is `0x10000' when the output section `.text' is defined, the linker
will set the address of the `.text' section in the output file to be `0x10000'.

The remaining lines define the `.data' and `.bss' sections in the output file. The linker will
place the `.data' output section at address `0x8000000'. After the linker places the `.data'
output section, the value of the location counter will be `0x8000000' plus the size of the
`.data' output section. The effect is that the linker will place the `.bss' output section
immediately after the `.data' output section in memory

The linker will ensure that each output section has the required alignment, by increasing
the location counter if necessary. In this example, the specified addresses for the `.text'
and `.data' sections will probably satisfy any alignment constraints, but the linker may
have to create a small gap between the `.data' and `.bss' sections.

That's it! That's a simple and complete linker script.

Simple Linker Script Commands

In this section we describe the simple linker script commands.

Entry Point: Setting the entry point
File Commands: Commands dealing with files
Format Commands: Commands dealing with object file formats
Miscellaneous Commands: Other linker script commands

Setting the entry point

The first instruction to execute in a program is called the entry point. You can use the
ENTRY linker script command to set the entry point. The argument is a symbol name:

ENTRY(symbol)

There are several ways to set the entry point. The linker will set the entry point by trying
each of the following methods in order, and stopping when one of them succeeds:

the `-e' entry command-line option;
the ENTRY(symbol) command in a linker script;
the value of the symbol start, if defined;
the address of the first byte of the `.text' section, if present;
The address 0.

Commands dealing with files

Several linker script commands deal with files.

INCLUDE filename

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC9

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC10

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC11

Include the linker script filename at this point. The file will be searched for in the
current directory, and in any directory specified with the -L option. You can nest calls
to INCLUDE up to 10 levels deep.

INPUT(file, file, ...)
INPUT(file file ...)

The INPUT command directs the linker to include the named files in the link, as
though they were named on the command line. For example, if you always want to
include `subr.o' any time you do a link, but you can't be bothered to put it on every
link command line, then you can put `INPUT (subr.o)' in your linker script. In fact, if
you like, you can list all of your input files in the linker script, and then invoke the
linker with nothing but a `-T' option. The linker will first try to open the file in the
current directory. If it is not found, the linker will search through the archive library
search path. See the description of `-L' in section Command Line Options. If you use
`INPUT (-lfile)', ld will transform the name to libfile.a, as with the command line
argument `-l'. When you use the INPUT command in an implicit linker script, the files
will be included in the link at the point at which the linker script file is included. This
can affect archive searching.

GROUP(file, file, ...)
GROUP(file file ...)

The GROUP command is like INPUT, except that the named files should all be archives,
and they are searched repeatedly until no new undefined references are created.
See the description of `-(' in section Command Line Options.

OUTPUT(filename)

The OUTPUT command names the output file. Using OUTPUT(filename) in the linker script
is exactly like using `-o filename' on the command line (see section Command Line
Options). If both are used, the command line option takes precedence. You can use
the OUTPUT command to define a default name for the output file other than the usual
default of `a.out'.

SEARCH_DIR(path)

The SEARCH_DIR command adds path to the list of paths where ld looks for archive
libraries. Using SEARCH_DIR(path) is exactly like using `-L path' on the command line
(see section Command Line Options). If both are used, then the linker will search
both paths. Paths specified using the command line option are searched first.

STARTUP(filename)

The STARTUP command is just like the INPUT command, except that filename will
become the first input file to be linked, as though it were specified first on the
command line. This may be useful when using a system in which the entry point is
always the start of the first file.

Commands dealing with object file formats

A couple of linker script commands deal with object file formats.

OUTPUT_FORMAT(bfdname)
OUTPUT_FORMAT(default, big, little)

The OUTPUT_FORMAT command names the BFD format to use for the output file (see
section BFD). Using OUTPUT_FORMAT(bfdname) is exactly like using `-oformat bfdname' on the
command line (see section Command Line Options). If both are used, the command

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_2.html#SEC3

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_2.html#SEC3

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_2.html#SEC3

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_2.html#SEC3

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_2.html#SEC3

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC12

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_5.html#SEC53

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_2.html#SEC3

line option takes precedence. You can use OUTPUT_FORMAT with three arguments to use
different formats based on the `-EB' and `-EL' command line options. This permits
the linker script to set the output format based on the desired endianness. If neither
`-EB' nor `-EL' are used, then the output format will be the first argument, default. If
`-EB' is used, the output format will be the second argument, big. If `-EL' is used,
the output format will be the third argument, little. For example, the default linker
script for the MIPS ELF target uses this command:

OUTPUT_FORMAT(elf32-bigmips, elf32-bigmips, elf32-littlemips)

This says that the default format for the output file is `elf32-bigmips', but if the user
uses the `-EL' command line option, the output file will be created in the `elf32-
littlemips' format.

TARGET(bfdname)

The TARGET command names the BFD format to use when reading input files. It
affects subsequent INPUT and GROUP commands. This command is like using `-b
bfdname' on the command line (see section Command Line Options). If the TARGET
command is used but OUTPUT_FORMAT is not, then the last TARGET command is also used
to set the format for the output file. See section BFD.

Other linker script commands

There are a few other linker scripts commands.

ASSERT(exp, message)

Ensure that exp is non-zero. If it is zero, then exit the linker with an error code, and
print message.

EXTERN(symbol symbol ...)

Force symbol to be entered in the output file as an undefined symbol. Doing this
may, for example, trigger linking of additional modules from standard libraries. You
may list several symbols for each EXTERN, and you may use EXTERN multiple times. This
command has the same effect as the `-u' command-line option.

FORCE_COMMON_ALLOCATION

This command has the same effect as the `-d' command-line option: to make ld
assign space to common symbols even if a relocatable output file is specified (`-r').

NOCROSSREFS(section section ...)

This command may be used to tell ld to issue an error about any references among
certain output sections. In certain types of programs, particularly on embedded
systems when using overlays, when one section is loaded into memory, another
section will not be. Any direct references between the two sections would be errors.
For example, it would be an error if code in one section called a function defined in
the other section. The NOCROSSREFS command takes a list of output section names. If
ld detects any cross references between the sections, it reports an error and returns
a non-zero exit status. Note that the NOCROSSREFS command uses output section
names, not input section names.

OUTPUT_ARCH(bfdarch)

Specify a particular output machine architecture. The argument is one of the names
used by the BFD library (see section BFD). You can see the architecture of an object

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_2.html#SEC3

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_5.html#SEC53

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC13

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_5.html#SEC53

file by using the objdump program with the `-f' option.

Assigning Values to Symbols

You may assign a value to a symbol in a linker script. This will define the symbol as a
global symbol.

Simple Assignments: Simple Assignments
PROVIDE: PROVIDE

Simple Assignments

You may assign to a symbol using any of the C assignment operators:

symbol = expression ;
symbol += expression ;
symbol -= expression ;
symbol *= expression ;
symbol /= expression ;
symbol <<= expression ;
symbol >>= expression ;
symbol &= expression ;
symbol |= expression ;

The first case will define symbol to the value of expression. In the other cases, symbol
must already be defined, and the value will be adjusted accordingly.

The special symbol name `.' indicates the location counter. You may only use this within
a SECTIONS command.

The semicolon after expression is required.

Expressions are defined below; see section Expressions in Linker Scripts.

You may write symbol assignments as commands in their own right, or as statements
within a SECTIONS command, or as part of an output section description in a SECTIONS
command.

The section of the symbol will be set from the section of the expression; for more
information, see section The Section of an Expression.

Here is an example showing the three different places that symbol assignments may be
used:

floating_point = 0;
SECTIONS
{
 .text :
 {
 *(.text)
 _etext = .;
 }
 _bdata = (. + 3) & ~ 4;
 .data : { *(.data) }
}

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC14

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC15

In this example, the symbol `floating_point' will be defined as zero. The symbol `_etext'
will be defined as the address following the last `.text' input section. The symbol `_bdata'
will be defined as the address following the `.text' output section aligned upward to a 4
byte boundary.

PROVIDE

In some cases, it is desirable for a linker script to define a symbol only if it is referenced
and is not defined by any object included in the link. For example, traditional linkers
defined the symbol `etext'. However, ANSI C requires that the user be able to use `etext'
as a function name without encountering an error. The PROVIDE keyword may be used to
define a symbol, such as `etext', only if it is referenced but not defined. The syntax is
PROVIDE(symbol = expression).

Here is an example of using PROVIDE to define `etext':

SECTIONS
{
 .text :
 {
 *(.text)
 _etext = .;
 PROVIDE(etext = .);
 }
}

In this example, if the program defines `_etext' (with a leading underscore), the linker will
give a multiple definition error. If, on the other hand, the program defines `etext' (with no
leading underscore), the linker will silently use the definition in the program. If the
program references `etext' but does not define it, the linker will use the definition in the
linker script.

SECTIONS command

The SECTIONS command tells the linker how to map input sections into output sections, and
how to place the output sections in memory.

The format of the SECTIONS command is:

SECTIONS
{
 sections-command
 sections-command
 ...
}

Each sections-command may of be one of the following:

an ENTRY command (see section Setting the entry point)
a symbol assignment (see section Assigning Values to Symbols)
an output section description
an overlay description

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC16

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC17

The ENTRY command and symbol assignments are permitted inside the SECTIONS command
for convenience in using the location counter in those commands. This can also make the
linker script easier to understand because you can use those commands at meaningful
points in the layout of the output file.

Output section descriptions and overlay descriptions are described below.

If you do not use a SECTIONS command in your linker script, the linker will place each input
section into an identically named output section in the order that the sections are first
encountered in the input files. If all input sections are present in the first file, for
example, the order of sections in the output file will match the order in the first input file.
The first section will be at address zero.

Output Section Description: Output section description
Output Section Name: Output section name
Output Section Address: Output section address
Input Section: Input section description
Output Section Data: Output section data
Output Section Keywords: Output section keywords
Output Section Discarding: Output section discarding
Output Section Attributes: Output section attributes
Overlay Description: Overlay description

Output section description

The full description of an output section looks like this:

section [address] [(type)] : [AT(lma)]
 {
 output-section-command
 output-section-command
 ...
 } [>region] [:phdr :phdr ...] [=fillexp]

Most output sections do not use most of the optional section attributes.

The whitespace around section is required, so that the section name is unambiguous.
The colon and the curly braces are also required. The line breaks and other white space
are optional.

Each output-section-command may be one of the following:

a symbol assignment (see section Assigning Values to Symbols)
an input section description (see section Input section description)
data values to include directly (see section Output section data)
a special output section keyword (see section Output section keywords)

Output section name

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC18

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC19

The name of the output section is section. section must meet the constraints of your
output format. In formats which only support a limited number of sections, such as a.out,
the name must be one of the names supported by the format (a.out, for example, allows
only `.text', `.data' or `.bss'). If the output format supports any number of sections, but
with numbers and not names (as is the case for Oasys), the name should be supplied as
a quoted numeric string. A section name may consist of any sequence of characters, but
a name which contains any unusual characters such as commas must be quoted.

The output section name `/DISCARD/' is special; section Output section discarding.

Output section address

The address is an expression for the VMA (the virtual memory address) of the output
section. If you do not provide address, the linker will set it based on region if present, or
otherwise based on the current value of the location counter.

If you provide address, the address of the output section will be set to precisely that. If
you provide neither address nor region, then the address of the output section will be set
to the current value of the location counter aligned to the alignment requirements of the
output section. The alignment requirement of the output section is the strictest alignment
of any input section contained within the output section.

For example,

.text . : { *(.text) }

and

.text : { *(.text) }

are subtly different. The first will set the address of the `.text' output section to the
current value of the location counter. The second will set it to the current value of the
location counter aligned to the strictest alignment of a `.text' input section.

The address may be an arbitrary expression; section Expressions in Linker Scripts. For
example, if you want to align the section on a 0x10 byte boundary, so that the lowest
four bits of the section address are zero, you could do something like this:

.text ALIGN(0x10) : { *(.text) }

This works because ALIGN returns the current location counter aligned upward to the
specified value.

Specifying address for a section will change the value of the location counter.

Input section description

The most common output section command is an input section description.

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC20

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC21

The input section description is the most basic linker script operation. You use output
sections to tell the linker how to lay out your program in memory. You use input section
descriptions to tell the linker how to map the input files into your memory layout.

Input Section Basics: Input section basics
Input Section Wildcards: Input section wildcard patterns
Input Section Common: Input section for common symbols
Input Section Keep: Input section and garbage collection
Input Section Example: Input section example

Input section basics

An input section description consists of a file name optionally followed by a list of section
names in parentheses.

The file name and the section name may be wildcard patterns, which we describe further
below (see section Input section wildcard patterns).

The most common input section description is to include all input sections with a
particular name in the output section. For example, to include all input `.text' sections,
you would write:

*(.text)

Here the `*' is a wildcard which matches any file name.

There are two ways to include more than one section:

*(.text .rdata)
*(.text) *(.rdata)

The difference between these is the order in which the `.text' and `.rdata' input sections
will appear in the output section. In the first example, they will be intermingled. In the
second example, all `.text' input sections will appear first, followed by all `.rdata' input
sections.

You can specify a file name to include sections from a particular file. You would do this if
one or more of your files contain special data that needs to be at a particular location in
memory. For example:

data.o(.data)

If you use a file name without a list of sections, then all sections in the input file will be
included in the output section. This is not commonly done, but it may by useful on
occasion. For example:

data.o

When you use a file name which does not contain any wild card characters, the linker will
first see if you also specified the file name on the linker command line or in an INPUT

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC22

command. If you did not, the linker will attempt to open the file as an input file, as
though it appeared on the command line. Note that this differs from an INPUT command,
because the linker will not search for the file in the archive search path.

Input section wildcard patterns

In an input section description, either the file name or the section name or both may be
wildcard patterns.

The file name of `*' seen in many examples is a simple wildcard pattern for the file
name.

The wildcard patterns are like those used by the Unix shell.

`*'

matches any number of characters
`?'

matches any single character
`[chars]'

matches a single instance of any of the chars; the `-' character may be used to
specify a range of characters, as in `[a-z]' to match any lower case letter

`\'

quotes the following character

When a file name is matched with a wildcard, the wildcard characters will not match a `/'
character (used to separate directory names on Unix). A pattern consisting of a single `*'
character is an exception; it will always match any file name, whether it contains a `/' or
not. In a section name, the wildcard characters will match a `/' character.

File name wildcard patterns only match files which are explicitly specified on the
command line or in an INPUT command. The linker does not search directories to expand
wildcards.

If a file name matches more than one wildcard pattern, or if a file name appears explicitly
and is also matched by a wildcard pattern, the linker will use the first match in the linker
script. For example, this sequence of input section descriptions is probably in error,
because the `data.o' rule will not be used:

.data : { *(.data) }

.data1 : { data.o(.data) }

Normally, the linker will place files and sections matched by wildcards in the order in
which they are seen during the link. You can change this by using the SORT keyword,
which appears before a wildcard pattern in parentheses (e.g., SORT(.text*)). When the SORT
keyword is used, the linker will sort the files or sections into ascending order by name
before placing them in the output file.

If you ever get confused about where input sections are going, use the `-M' linker option
to generate a map file. The map file shows precisely how input sections are mapped to

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC23

output sections.

This example shows how wildcard patterns might be used to partition files. This linker
script directs the linker to place all `.text' sections in `.text' and all `.bss' sections in
`.bss'. The linker will place the `.data' section from all files beginning with an upper case
character in `.DATA'; for all other files, the linker will place the `.data' section in `.data'.

SECTIONS {
 .text : { *(.text) }
 .DATA : { [A-Z]*(.data) }
 .data : { *(.data) }
 .bss : { *(.bss) }
}

Input section for common symbols

A special notation is needed for common symbols, because in many object file formats
common symbols do not have a particular input section. The linker treats common
symbols as though they are in an input section named `COMMON'.

You may use file names with the `COMMON' section just as with any other input sections.
You can use this to place common symbols from a particular input file in one section
while common symbols from other input files are placed in another section.

In most cases, common symbols in input files will be placed in the `.bss' section in the
output file. For example:

.bss { *(.bss) *(COMMON) }

Some object file formats have more than one type of common symbol. For example, the
MIPS ELF object file format distinguishes standard common symbols and small common
symbols. In this case, the linker will use a different special section name for other types
of common symbols. In the case of MIPS ELF, the linker uses `COMMON' for standard
common symbols and `.scommon' for small common symbols. This permits you to map the
different types of common symbols into memory at different locations.

You will sometimes see `[COMMON]' in old linker scripts. This notation is now considered
obsolete. It is equivalent to `*(COMMON)'.

Input section and garbage collection

When link-time garbage collection is in use (`--gc-sections'), it is often useful to mark
sections that should not be eliminated. This is accomplished by surrounding an input
section's wildcard entry with KEEP(), as in KEEP(*(.init)) or KEEP(SORT(*)(.ctors)).

Input section example

The following example is a complete linker script. It tells the linker to read all of the
sections from file `all.o' and place them at the start of output section `outputa' which

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC24

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC25

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC26

starts at location `0x10000'. All of section `.input1' from file `foo.o' follows immediately, in
the same output section. All of section `.input2' from `foo.o' goes into output section
`outputb', followed by section `.input1' from `foo1.o'. All of the remaining `.input1' and
`.input2' sections from any files are written to output section `outputc'.

SECTIONS {
 outputa 0x10000 :
 {
 all.o
 foo.o (.input1)
 }
 outputb :
 {
 foo.o (.input2)
 foo1.o (.input1)
 }
 outputc :
 {
 *(.input1)
 *(.input2)
 }
}

Output section data

You can include explicit bytes of data in an output section by using BYTE, SHORT, LONG, QUAD,
or SQUAD as an output section command. Each keyword is followed by an expression in
parentheses providing the value to store (see section Expressions in Linker Scripts). The
value of the expression is stored at the current value of the location counter.

The BYTE, SHORT, LONG, and QUAD commands store one, two, four, and eight bytes
(respectively). After storing the bytes, the location counter is incremented by the number
of bytes stored.

For example, this will store the byte 1 followed by the four byte value of the symbol
`addr':

BYTE(1)
LONG(addr)

When using a 64 bit host or target, QUAD and SQUAD are the same; they both store an 8
byte, or 64 bit, value. When both host and target are 32 bits, an expression is computed
as 32 bits. In this case QUAD stores a 32 bit value zero extended to 64 bits, and SQUAD
stores a 32 bit value sign extended to 64 bits.

If the object file format of the output file has an explicit endianness, which is the normal
case, the value will be stored in that endianness. When the object file format does not
have an explicit endianness, as is true of, for example, S-records, the value will be stored
in the endianness of the first input object file.

You may use the FILL command to set the fill pattern for the current section. It is
followed by an expression in parentheses. Any otherwise unspecified regions of memory
within the section (for example, gaps left due to the required alignment of input sections)
are filled with the two least significant bytes of the expression, repeated as necessary. A

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC27

FILL statement covers memory locations after the point at which it occurs in the section
definition; by including more than one FILL statement, you can have different fill patterns
in different parts of an output section.

This example shows how to fill unspecified regions of memory with the value `0x9090':

FILL(0x9090)

The FILL command is similar to the `=fillexp' output section attribute (see section Output
section fill), but it only affects the part of the section following the FILL command, rather
than the entire section. If both are used, the FILL command takes precedence.

Output section keywords

There are a couple of keywords which can appear as output section commands.

CREATE_OBJECT_SYMBOLS

The command tells the linker to create a symbol for each input file. The name of
each symbol will be the name of the corresponding input file. The section of each
symbol will be the output section in which the CREATE_OBJECT_SYMBOLS command
appears. This is conventional for the a.out object file format. It is not normally used
for any other object file format.

CONSTRUCTORS

When linking using the a.out object file format, the linker uses an unusual set
construct to support C++ global constructors and destructors. When linking object
file formats which do not support arbitrary sections, such as ECOFF and XCOFF, the
linker will automatically recognize C++ global constructors and destructors by
name. For these object file formats, the CONSTRUCTORS command tells the linker to
place constructor information in the output section where the CONSTRUCTORS command
appears. The CONSTRUCTORS command is ignored for other object file formats. The
symbol __CTOR_LIST__ marks the start of the global constructors, and the symbol
__DTOR_LIST marks the end. The first word in the list is the number of entries, followed
by the address of each constructor or destructor, followed by a zero word. The
compiler must arrange to actually run the code. For these object file formats GNU
C++ normally calls constructors from a subroutine __main; a call to __main is
automatically inserted into the startup code for main. GNU C++ normally runs
destructors either by using atexit, or directly from the function exit. For object file
formats such as COFF or ELF which support arbitrary section names, GNU C++ will
normally arrange to put the addresses of global constructors and destructors into
the .ctors and .dtors sections. Placing the following sequence into your linker script
will build the sort of table which the GNU C++ runtime code expects to see.

 __CTOR_LIST__ = .;
 LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)
 *(.ctors)
 LONG(0)
 __CTOR_END__ = .;
 __DTOR_LIST__ = .;
 LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)
 *(.dtors)

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC28

 LONG(0)
 __DTOR_END__ = .;

If you are using the GNU C++ support for initialization priority, which provides some
control over the order in which global constructors are run, you must sort the
constructors at link time to ensure that they are executed in the correct order. When
using the CONSTRUCTORS command, use `SORT(CONSTRUCTORS)' instead. When using the
.ctors and .dtors sections, use `*(SORT(.ctors))' and `*(SORT(.dtors))' instead of just `*
(.ctors)' and `*(.dtors)'. Normally the compiler and linker will handle these issues
automatically, and you will not need to concern yourself with them. However, you
may need to consider this if you are using C++ and writing your own linker scripts.

Output section discarding

The linker will not create output section which do not have any contents. This is for
convenience when referring to input sections that may or may not be present in any of
the input files. For example:

.foo { *(.foo) }

will only create a `.foo' section in the output file if there is a `.foo' section in at least one
input file.

If you use anything other than an input section description as an output section
command, such as a symbol assignment, then the output section will always be created,
even if there are no matching input sections.

The special output section name `/DISCARD/' may be used to discard input sections. Any
input sections which are assigned to an output section named `/DISCARD/' are not included
in the output file.

Output section attributes

We showed above that the full description of an output section looked like this:

section [address] [(type)] : [AT(lma)]
 {
 output-section-command
 output-section-command
 ...
 } [>region] [:phdr :phdr ...] [=fillexp]

We've already described section, address, and output-section-command. In this section
we will describe the remaining section attributes.

Output Section Type: Output section type
Output Section LMA: Output section LMA
Output Section Region: Output section region
Output Section Phdr: Output section phdr
Output Section Fill: Output section fill

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC29

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC30

Output section type

Each output section may have a type. The type is a keyword in parentheses. The
following types are defined:

NOLOAD

The section should be marked as not loadable, so that it will not be loaded into
memory when the program is run.

DSECT
COPY
INFO
OVERLAY

These type names are supported for backward compatibility, and are rarely used.
They all have the same effect: the section should be marked as not allocatable, so
that no memory is allocated for the section when the program is run.

The linker normally sets the attributes of an output section based on the input sections
which map into it. You can override this by using the section type. For example, in the
script sample below, the `ROM' section is addressed at memory location `0' and does not
need to be loaded when the program is run. The contents of the `ROM' section will appear
in the linker output file as usual.

SECTIONS {
 ROM 0 (NOLOAD) : { ... }
 ...
}

Output section LMA

Every section has a virtual address (VMA) and a load address (LMA); see section Basic
Linker Script Concepts. The address expression which may appear in an output section
description sets the VMA (see section Output section address).

The linker will normally set the LMA equal to the VMA. You can change that by using the
AT keyword. The expression lma that follows the AT keyword specifies the load address of
the section.

This feature is designed to make it easy to build a ROM image. For example, the
following linker script creates three output sections: one called `.text', which starts at
0x1000, one called `.mdata', which is loaded at the end of the `.text' section even though its
VMA is 0x2000, and one called `.bss' to hold uninitialized data at address 0x3000. The
symbol _data is defined with the value 0x2000, which shows that the location counter holds
the VMA value, not the LMA value.

SECTIONS
 {
 .text 0x1000 : { *(.text) _etext = . ; }
 .mdata 0x2000 :
 AT (ADDR (.text) + SIZEOF (.text))
 { _data = . ; *(.data); _edata = . ; }
 .bss 0x3000 :
 { _bstart = . ; *(.bss) *(COMMON) ; _bend = . ;}
}

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC31

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC32

The run-time initialization code for use with a program generated with this linker script
would include something like the following, to copy the initialized data from the ROM
image to its runtime address. Notice how this code takes advantage of the symbols
defined by the linker script.

extern char _etext, _data, _edata, _bstart, _bend;
char *src = &_etext;
char *dst = &_data;

/* ROM has data at end of text; copy it. */
while (dst < &_edata) {
 *dst++ = *src++;
}

/* Zero bss */
for (dst = &_bstart; dst< &_bend; dst++)
 *dst = 0;

Output section region

You can assign a section to a previously defined region of memory by using `>region'. See
section MEMORY command.

Here is a simple example:

MEMORY { rom : ORIGIN = 0x1000, LENGTH = 0x1000 }
SECTIONS { ROM : { *(.text) } >rom }

Output section phdr

You can assign a section to a previously defined program segment by using `:phdr'. See
section PHDRS Command. If a section is assigned to one or more segments, then all
subsequent allocated sections will be assigned to those segments as well, unless they use
an explicitly :phdr modifier. You can use :NONE to tell the linker to not put the section in any
segment at all.

Here is a simple example:

PHDRS { text PT_LOAD ; }
SECTIONS { .text : { *(.text) } :text }

Output section fill

You can set the fill pattern for an entire section by using `=fillexp'. fillexp is an expression
(see section Expressions in Linker Scripts). Any otherwise unspecified regions of memory
within the output section (for example, gaps left due to the required alignment of input
sections) will be filled with the two least significant bytes of the value, repeated as
necessary.

You can also change the fill value with a FILL command in the output section commands;
see section Output section data.

Here is a simple example:

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC33

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC34

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC35

SECTIONS { .text : { *(.text) } =0x9090 }

Overlay description

An overlay description provides an easy way to describe sections which are to be loaded
as part of a single memory image but are to be run at the same memory address. At run
time, some sort of overlay manager will copy the overlaid sections in and out of the
runtime memory address as required, perhaps by simply manipulating addressing bits.
This approach can be useful, for example, when a certain region of memory is faster than
another.

Overlays are described using the OVERLAY command. The OVERLAY command is used within a
SECTIONS command, like an output section description. The full syntax of the OVERLAY
command is as follows:

OVERLAY [start] : [NOCROSSREFS] [AT (ldaddr)]
 {
 secname1
 {
 output-section-command
 output-section-command
 ...
 } [:phdr...] [=fill]
 secname2
 {
 output-section-command
 output-section-command
 ...
 } [:phdr...] [=fill]
 ...
 } [>region] [:phdr...] [=fill]

Everything is optional except OVERLAY (a keyword), and each section must have a name
(secname1 and secname2 above). The section definitions within the OVERLAY construct are
identical to those within the general SECTIONS contruct (see section SECTIONS command),
except that no addresses and no memory regions may be defined for sections within an
OVERLAY.

The sections are all defined with the same starting address. The load addresses of the
sections are arranged such that they are consecutive in memory starting at the load
address used for the OVERLAY as a whole (as with normal section definitions, the load
address is optional, and defaults to the start address; the start address is also optional,
and defaults to the current value of the location counter).

If the NOCROSSREFS keyword is used, and there any references among the sections, the
linker will report an error. Since the sections all run at the same address, it normally does
not make sense for one section to refer directly to another. See section Other linker script
commands.

For each section within the OVERLAY, the linker automatically defines two symbols. The
symbol __load_start_secname is defined as the starting load address of the section. The
symbol __load_stop_secname is defined as the final load address of the section. Any
characters within secname which are not legal within C identifiers are removed. C (or

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC36

assembler) code may use these symbols to move the overlaid sections around as
necessary.

At the end of the overlay, the value of the location counter is set to the start address of
the overlay plus the size of the largest section.

Here is an example. Remember that this would appear inside a SECTIONS construct.

 OVERLAY 0x1000 : AT (0x4000)
 {
 .text0 { o1/*.o(.text) }
 .text1 { o2/*.o(.text) }
 }

This will define both `.text0' and `.text1' to start at address 0x1000. `.text0' will be
loaded at address 0x4000, and `.text1' will be loaded immediately after `.text0'. The
following symbols will be defined: __load_start_text0, __load_stop_text0, __load_start_text1,
__load_stop_text1.

C code to copy overlay .text1 into the overlay area might look like the following.

 extern char __load_start_text1, __load_stop_text1;
 memcpy ((char *) 0x1000, &__load_start_text1,
 &__load_stop_text1 - &__load_start_text1);

Note that the OVERLAY command is just syntactic sugar, since everything it does can be
done using the more basic commands. The above example could have been written
identically as follows.

 .text0 0x1000 : AT (0x4000) { o1/*.o(.text) }
 __load_start_text0 = LOADADDR (.text0);
 __load_stop_text0 = LOADADDR (.text0) + SIZEOF (.text0);
 .text1 0x1000 : AT (0x4000 + SIZEOF (.text0)) { o2/*.o(.text) }
 __load_start_text1 = LOADADDR (.text1);
 __load_stop_text1 = LOADADDR (.text1) + SIZEOF (.text1);
 . = 0x1000 + MAX (SIZEOF (.text0), SIZEOF (.text1));

MEMORY command

The linker's default configuration permits allocation of all available memory. You can
override this by using the MEMORY command.

The MEMORY command describes the location and size of blocks of memory in the target.
You can use it to describe which memory regions may be used by the linker, and which
memory regions it must avoid. You can then assign sections to particular memory
regions. The linker will set section addresses based on the memory regions, and will
warn about regions that become too full. The linker will not shuffle sections around to fit
into the available regions.

A linker script may contain at most one use of the MEMORY command. However, you can
define as many blocks of memory within it as you wish. The syntax is:

MEMORY
 {
 name [(attr)] : ORIGIN = origin, LENGTH = len

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC37

 ...
 }

The name is a name used in the linker script to refer to the region. The region name has
no meaning outside of the linker script. Region names are stored in a separate name
space, and will not conflict with symbol names, file names, or section names. Each
memory region must have a distinct name.

The attr string is an optional list of attributes that specify whether to use a particular
memory region for an input section which is not explicitly mapped in the linker script. As
described in section SECTIONS command, if you do not specify an output section for
some input section, the linker will create an output section with the same name as the
input section. If you define region attributes, the linker will use them to select the
memory region for the output section that it creates.

The attr string must consist only of the following characters:

`R'

Read-only section
`W'

Read/write section
`X'

Executable section
`A'

Allocatable section
`I'

Initialized section
`L'

Same as `I'
`!'

Invert the sense of any of the preceding attributes

If a unmapped section matches any of the listed attributes other than `!', it will be
placed in the memory region. The `!' attribute reverses this test, so that an unmapped
section will be placed in the memory region only if it does not match any of the listed
attributes.

The origin is an expression for the start address of the memory region. The expression
must evaluate to a constant before memory allocation is performed, which means that
you may not use any section relative symbols. The keyword ORIGIN may be abbreviated to
org or o (but not, for example, ORG).

The len is an expression for the size in bytes of the memory region. As with the origin
expression, the expression must evaluate to a constant before memory allocation is
performed. The keyword LENGTH may be abbreviated to len or l.

In the following example, we specify that there are two memory regions available for
allocation: one starting at `0' for 256 kilobytes, and the other starting at `0x40000000' for
four megabytes. The linker will place into the `rom' memory region every section which is
not explicitly mapped into a memory region, and is either read-only or executable. The

linker will place other sections which are not explicitly mapped into a memory region into
the `ram' memory region.

MEMORY
 {
 rom (rx) : ORIGIN = 0, LENGTH = 256K
 ram (!rx) : org = 0x40000000, l = 4M
 }

Once you define a memory region, you can direct the linker to place specific output
sections into that memory region by using the `>region' output section attribute. For
example, if you have a memory region named `mem', you would use `>mem' in the output
section definition. See section Output section region. If no address was specified for the
output section, the linker will set the address to the next available address within the
memory region. If the combined output sections directed to a memory region are too
large for the region, the linker will issue an error message.

PHDRS Command

The ELF object file format uses program headers, also knows as segments. The
program headers describe how the program should be loaded into memory. You can print
them out by using the objdump program with the `-p' option.

When you run an ELF program on a native ELF system, the system loader reads the
program headers in order to figure out how to load the program. This will only work if
the program headers are set correctly. This manual does not describe the details of how
the system loader interprets program headers; for more information, see the ELF ABI.

The linker will create reasonable program headers by default. However, in some cases,
you may need to specify the program headers more precisely. You may use the PHDRS
command for this purpose. When the linker sees the PHDRS command in the linker script, it
will not create any program headers other than the ones specified.

The linker only pays attention to the PHDRS command when generating an ELF output file.
In other cases, the linker will simply ignore PHDRS.

This is the syntax of the PHDRS command. The words PHDRS, FILEHDR, AT, and FLAGS are
keywords.

PHDRS
{
 name type [FILEHDR] [PHDRS] [AT (address)]
 [FLAGS (flags)] ;
}

The name is used only for reference in the SECTIONS command of the linker script. It is not
put into the output file. Program header names are stored in a separate name space, and
will not conflict with symbol names, file names, or section names. Each program header
must have a distinct name.

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC38

Certain program header types describe segments of memory which the system loader
will load from the file. In the linker script, you specify the contents of these segments by
placing allocatable output sections in the segments. You use the `:phdr' output section
attribute to place a section in a particular segment. See section Output section phdr.

It is normal to put certain sections in more than one segment. This merely implies that
one segment of memory contains another. You may repeat `:phdr', using it once for each
segment which should contain the section.

If you place a section in one or more segments using `:phdr', then the linker will place all
subsequent allocatable sections which do not specify `:phdr' in the same segments. This
is for convenience, since generally a whole set of contiguous sections will be placed in a
single segment. You can use :NONE to override the default segment and tell the linker to
not put the section in any segment at all.

You may use the FILEHDR and PHDRS keywords appear after the program header type to
further describe the contents of the segment. The FILEHDR keyword means that the
segment should include the ELF file header. The PHDRS keyword means that the segment
should include the ELF program headers themselves.

The type may be one of the following. The numbers indicate the value of the keyword.

PT_NULL (0)
Indicates an unused program header.

PT_LOAD (1)
Indicates that this program header describes a segment to be loaded from the file.

PT_DYNAMIC (2)
Indicates a segment where dynamic linking information can be found.

PT_INTERP (3)
Indicates a segment where the name of the program interpreter may be found.

PT_NOTE (4)
Indicates a segment holding note information.

PT_SHLIB (5)
A reserved program header type, defined but not specified by the ELF ABI.

PT_PHDR (6)
Indicates a segment where the program headers may be found.

expression
An expression giving the numeric type of the program header. This may be used for
types not defined above.

You can specify that a segment should be loaded at a particular address in memory by
using an AT expression. This is identical to the AT command used as an output section
attribute (see section Output section LMA). The AT command for a program header
overrides the output section attribute.

The linker will normally set the segment flags based on the sections which comprise the
segment. You may use the FLAGS keyword to explicitly specify the segment flags. The
value of flags must be an integer. It is used to set the p_flags field of the program header.

Here is an example of PHDRS. This shows a typical set of program headers used on a native
ELF system.

PHDRS
{
 headers PT_PHDR PHDRS ;
 interp PT_INTERP ;
 text PT_LOAD FILEHDR PHDRS ;
 data PT_LOAD ;
 dynamic PT_DYNAMIC ;
}

SECTIONS
{
 . = SIZEOF_HEADERS;
 .interp : { *(.interp) } :text :interp
 .text : { *(.text) } :text
 .rodata : { *(.rodata) } /* defaults to :text */
 ...
 . = . + 0x1000; /* move to a new page in memory */
 .data : { *(.data) } :data
 .dynamic : { *(.dynamic) } :data :dynamic
 ...
}

VERSION Command

The linker supports symbol versions when using ELF. Symbol versions are only useful
when using shared libraries. The dynamic linker can use symbol versions to select a
specific version of a function when it runs a program that may have been linked against
an earlier version of the shared library.

You can include a version script directly in the main linker script, or you can supply the
version script as an implicit linker script. You can also use the `--version-script' linker
option.

The syntax of the VERSION command is simply

VERSION { version-script-commands }

The format of the version script commands is identical to that used by Sun's linker in
Solaris 2.5. The version script defines a tree of version nodes. You specify the node
names and interdependencies in the version script. You can specify which symbols are
bound to which version nodes, and you can reduce a specified set of symbols to local
scope so that they are not globally visible outside of the shared library.

The easiest way to demonstrate the version script language is with a few examples.

VERS_1.1 {
 global:

 foo1;
 local:

 old*;
 original*;
 new*;

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC39

};

VERS_1.2 {
 foo2;

} VERS_1.1;

VERS_2.0 {
 bar1; bar2;

} VERS_1.2;

This example version script defines three version nodes. The first version node defined is
`VERS_1.1'; it has no other dependencies. The script binds the symbol `foo1' to `VERS_1.1'. It
reduces a number of symbols to local scope so that they are not visible outside of the
shared library.

Next, the version script defines node `VERS_1.2'. This node depends upon `VERS_1.1'. The
script binds the symbol `foo2' to the version node `VERS_1.2'.

Finally, the version script defines node `VERS_2.0'. This node depends upon `VERS_1.2'. The
scripts binds the symbols `bar1' and `bar2' are bound to the version node `VERS_2.0'.

When the linker finds a symbol defined in a library which is not specifically bound to a
version node, it will effectively bind it to an unspecified base version of the library. You
can bind all otherwise unspecified symbols to a given version node by using `global: *'
somewhere in the version script.

The names of the version nodes have no specific meaning other than what they might
suggest to the person reading them. The `2.0' version could just as well have appeared
in between `1.1' and `1.2'. However, this would be a confusing way to write a version
script.

When you link an application against a shared library that has versioned symbols, the
application itself knows which version of each symbol it requires, and it also knows which
version nodes it needs from each shared library it is linked against. Thus at runtime, the
dynamic loader can make a quick check to make sure that the libraries you have linked
against do in fact supply all of the version nodes that the application will need to resolve
all of the dynamic symbols. In this way it is possible for the dynamic linker to know with
certainty that all external symbols that it needs will be resolvable without having to
search for each symbol reference.

The symbol versioning is in effect a much more sophisticated way of doing minor version
checking that SunOS does. The fundamental problem that is being addressed here is that
typically references to external functions are bound on an as-needed basis, and are not
all bound when the application starts up. If a shared library is out of date, a required
interface may be missing; when the application tries to use that interface, it may
suddenly and unexpectedly fail. With symbol versioning, the user will get a warning when
they start their program if the libraries being used with the application are too old.

There are several GNU extensions to Sun's versioning approach. The first of these is the
ability to bind a symbol to a version node in the source file where the symbol is defined

instead of in the versioning script. This was done mainly to reduce the burden on the
library maintainer. You can do this by putting something like:

__asm__(".symver original_foo,foo@VERS_1.1");

in the C source file. This renames the function `original_foo' to be an alias for `foo' bound
to the version node `VERS_1.1'. The `local:' directive can be used to prevent the symbol
`original_foo' from being exported.

The second GNU extension is to allow multiple versions of the same function to appear in
a given shared library. In this way you can make an incompatible change to an interface
without increasing the major version number of the shared library, while still allowing
applications linked against the old interface to continue to function.

To do this, you must use multiple `.symver' directives in the source file. Here is an
example:

__asm__(".symver original_foo,foo@");
__asm__(".symver old_foo,foo@VERS_1.1");
__asm__(".symver old_foo1,foo@VERS_1.2");
__asm__(".symver new_foo,foo@@VERS_2.0");

In this example, `foo@' represents the symbol `foo' bound to the unspecified base version
of the symbol. The source file that contains this example would define 4 C functions:
`original_foo', `old_foo', `old_foo1', and `new_foo'.

When you have multiple definitions of a given symbol, there needs to be some way to
specify a default version to which external references to this symbol will be bound. You
can do this with the `foo@@VERS_2.0' type of `.symver' directive. You can only declare one
version of a symbol as the default in this manner; otherwise you would effectively have
multiple definitions of the same symbol.

If you wish to bind a reference to a specific version of the symbol within the shared
library, you can use the aliases of convenience (i.e. `old_foo'), or you can use the `.symver'
directive to specifically bind to an external version of the function in question.

Expressions in Linker Scripts

The syntax for expressions in the linker script language is identical to that of C
expressions. All expressions are evaluated as integers. All expressions are evaluated in
the same size, which is 32 bits if both the host and target are 32 bits, and is otherwise
64 bits.

You can use and set symbol values in expressions.

The linker defines several special purpose builtin functions for use in expressions.

Constants: Constants
Symbols: Symbol Names

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC40

Location Counter: The Location Counter
Operators: Operators
Evaluation: Evaluation
Expression Section: The Section of an Expression
Builtin Functions: Builtin Functions

Constants

All constants are integers.

As in C, the linker considers an integer beginning with `0' to be octal, and an integer
beginning with `0x' or `0X' to be hexadecimal. The linker considers other integers to be
decimal.

In addition, you can use the suffixes K and M to scale a constant by respectively. For
example, the following all refer to the same quantity:

 _fourk_1 = 4K;
 _fourk_2 = 4096;
 _fourk_3 = 0x1000;

Symbol Names

Unless quoted, symbol names start with a letter, underscore, or period and may include
letters, digits, underscores, periods, and hyphens. Unquoted symbol names must not
conflict with any keywords. You can specify a symbol which contains odd characters or
has the same name as a keyword by surrounding the symbol name in double quotes:

 "SECTION" = 9;
 "with a space" = "also with a space" + 10;

Since symbols can contain many non-alphabetic characters, it is safest to delimit symbols
with spaces. For example, `A-B' is one symbol, whereas `A - B' is an expression involving
subtraction.

The Location Counter

The special linker variable dot `.' always contains the current output location counter.
Since the . always refers to a location in an output section, it may only appear in an
expression within a SECTIONS command. The . symbol may appear anywhere that an
ordinary symbol is allowed in an expression.

Assigning a value to . will cause the location counter to be moved. This may be used to
create holes in the output section. The location counter may never be moved backwards.

SECTIONS
{
 output :
 {
 file1(.text)
 . = . + 1000;
 file2(.text)

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC41

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC42

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC43

 . += 1000;
 file3(.text)
 } = 0x1234;
}

In the previous example, the `.text' section from `file1' is located at the beginning of the
output section `output'. It is followed by a 1000 byte gap. Then the `.text' section from
`file2' appears, also with a 1000 byte gap following before the `.text' section from
`file3'. The notation `= 0x1234' specifies what data to write in the gaps (see section
Output section fill).

Operators

The linker recognizes the standard C set of arithmetic operators, with the standard
bindings and precedence levels: { @obeylines@parskip=0pt@parindent=0pt
@dag@quad Prefix operators. @ddag@quad See section Assigning Values to Symbols. }

Evaluation

The linker evaluates expressions lazily. It only computes the value of an expression when
absolutely necessary.

The linker needs some information, such as the value of the start address of the first
section, and the origins and lengths of memory regions, in order to do any linking at all.
These values are computed as soon as possible when the linker reads in the linker script.

However, other values (such as symbol values) are not known or needed until after
storage allocation. Such values are evaluated later, when other information (such as the
sizes of output sections) is available for use in the symbol assignment expression.

The sizes of sections cannot be known until after allocation, so assignments dependent
upon these are not performed until after allocation.

Some expressions, such as those depending upon the location counter `.', must be
evaluated during section allocation.

If the result of an expression is required, but the value is not available, then an error
results. For example, a script like the following

SECTIONS
 {
 .text 9+this_isnt_constant :
 { *(.text) }
 }

will cause the error message `non constant expression for initial address'.

The Section of an Expression

When the linker evaluates an expression, the result is either absolute or relative to some
section. A relative expression is expressed as a fixed offset from the base of a section.

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC44

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC45

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC46

The position of the expression within the linker script determines whether it is absolute or
relative. An expression which appears within an output section definition is relative to the
base of the output section. An expression which appears elsewhere will be absolute.

A symbol set to a relative expression will be relocatable if you request relocatable output
using the `-r' option. That means that a further link operation may change the value of
the symbol. The symbol's section will be the section of the relative expression.

A symbol set to an absolute expression will retain the same value through any further
link operation. The symbol will be absolute, and will not have any particular associated
section.

You can use the builtin function ABSOLUTE to force an expression to be absolute when it
would otherwise be relative. For example, to create an absolute symbol set to the
address of the end of the output section `.data':

SECTIONS
 {
 .data : { *(.data) _edata = ABSOLUTE(.); }
 }

If `ABSOLUTE' were not used, `_edata' would be relative to the `.data' section.

Builtin Functions

The linker script language includes a number of builtin functions for use in linker script
expressions.

ABSOLUTE(exp)

Return the absolute (non-relocatable, as opposed to non-negative) value of the
expression exp. Primarily useful to assign an absolute value to a symbol within a
section definition, where symbol values are normally section relative. See section
The Section of an Expression.

ADDR(section)

Return the absolute address (the VMA) of the named section. Your script must
previously have defined the location of that section. In the following example,
symbol_1 and symbol_2 are assigned identical values:

SECTIONS { ...
 .output1 :
 {
 start_of_output_1 = ABSOLUTE(.);
 ...
 }
 .output :
 {
 symbol_1 = ADDR(.output1);
 symbol_2 = start_of_output_1;
 }
... }

ALIGN(exp)

Return the location counter (.) aligned to the next exp boundary. exp must be an
expression whose value is a power of two. This is equivalent to

(. + exp - 1) & ~(exp - 1)

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC47

ALIGN doesn't change the value of the location counter--it just does arithmetic on it.
Here is an example which aligns the output .data section to the next 0x2000 byte
boundary after the preceding section and sets a variable within the section to the
next 0x8000 boundary after the input sections:

SECTIONS { ...
 .data ALIGN(0x2000): {
 *(.data)
 variable = ALIGN(0x8000);
 }
... }

The first use of ALIGN in this example specifies the location of a section because it is
used as the optional address attribute of a section definition (see section Output
section address). The second use of ALIGN is used to defines the value of a symbol.
The builtin function NEXT is closely related to ALIGN.

BLOCK(exp)

This is a synonym for ALIGN, for compatibility with older linker scripts. It is most
often seen when setting the address of an output section.

DEFINED(symbol)

Return 1 if symbol is in the linker global symbol table and is defined, otherwise
return 0. You can use this function to provide default values for symbols. For
example, the following script fragment shows how to set a global symbol `begin' to
the first location in the `.text' section--but if a symbol called `begin' already existed,
its value is preserved:

SECTIONS { ...
 .text : {
 begin = DEFINED(begin) ? begin : . ;
 ...
 }
 ...
}

LOADADDR(section)

Return the absolute LMA of the named section. This is normally the same as ADDR,
but it may be different if the AT attribute is used in the output section definition (see
section Output section LMA).

MAX(exp1, exp2)

Returns the maximum of exp1 and exp2.
MIN(exp1, exp2)

Returns the minimum of exp1 and exp2.
NEXT(exp)

Return the next unallocated address that is a multiple of exp. This function is closely
related to ALIGN(exp); unless you use the MEMORY command to define discontinuous
memory for the output file, the two functions are equivalent.

SIZEOF(section)

Return the size in bytes of the named section, if that section has been allocated. If
the section has not been allocated when this is evaluated, the linker will report an
error. In the following example, symbol_1 and symbol_2 are assigned identical values:

SECTIONS{ ...
 .output {
 .start = . ;
 ...
 .end = . ;
 }
 symbol_1 = .end - .start ;

 symbol_2 = SIZEOF(.output);
... }

SIZEOF_HEADERS
sizeof_headers

Return the size in bytes of the output file's headers. This is information which
appears at the start of the output file. You can use this number when setting the
start address of the first section, if you choose, to facilitate paging. When producing
an ELF output file, if the linker script uses the SIZEOF_HEADERS builtin function, the
linker must compute the number of program headers before it has determined all
the section addresses and sizes. If the linker later discovers that it needs additional
program headers, it will report an error `not enough room for program headers'. To avoid
this error, you must avoid using the SIZEOF_HEADERS function, or you must rework your
linker script to avoid forcing the linker to use additional program headers, or you
must define the program headers yourself using the PHDRS command (see section
PHDRS Command).

Implicit Linker Scripts

If you specify a linker input file which the linker can not recognize as an object file or an
archive file, it will try to read the file as a linker script. If the file can not be parsed as a
linker script, the linker will report an error.

An implicit linker script will not replace the default linker script.

Typically an implicit linker script would contain only symbol assignments, or the INPUT,
GROUP, or VERSION commands.

Any input files read because of an implicit linker script will be read at the position in the
command line where the implicit linker script was read. This can affect archive searching.

Go to the first, previous, next, last section, table of contents.

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html#TOC48

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_1.html

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_2.html

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_4.html

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_8.html

https://home.cs.colorado.edu/~main/cs1300/doc/gnu/ld_toc.html

Linker Scripts (LD).pdf

29/29

© 2025 ROHM Co.、 Ltd. No. 68UG027E Rev.003

2025.3

User's Guide mtld user's guide

5. Open Source Software

The linker (mtld) includes, in addition to the software in which ROHM is entitled or licensed, open source software (hereinafter

referred to as the "Open Source Software Program") provided under the following licensing terms.

In the event of any conflict between the license terms of the open source software program and this material, the license terms of

the open source software program will prevail, since the respective license terms will apply to the open source software program.

Software contained and its licensing terms

・libc (Apache License Version 2.0)

・binutils (GPL Version 2)

・crt (GPL Version 3)

6. For trademarks

”Windows™” is a trademark or registered trademark of a Microsoft Group company.

"Intel™" and “Core™” are a trademark or registered trademark of Intel Corporation.

"tinyMicon MatisseCORE™" is a trademark or a registered trademark of ROHM Corporation.

Notice

www.rohm.co.jp
© 2024 ROHM Co., Ltd. All rights reserved.

Caution

1. The information written in these materials regarding the software and system (hereinafter collectively “Software”) and the contents of the

materials are current as of the date of the material’s issuance, and may be changed by ROHM, at any time and for any reason, without prior

notice.

2. If you plan to use the Software in connection with any equipment or device (such as the medical equipment, transportation equipment,

traffic equipment, aerospace equipment, nuclear power control equipment, vehicle equipment including the fuel control system and/or car

accessories, and/or various kinds of safety devices etc.) which require extremely high reliability, and whose breakdown or malfunction relate

to the risk of personal injury or death, or any other serious damage (such usage is hereinafter called “Special Usage”), you must first consult

with the ROHM’s sales representative. ROHM is not responsible for any loss, injury, or damage etc. incurred by you or any other third party

caused by any Special Usage without ROHM’s prior written approval.

3. Semiconductor products may break or malfunction due to various factors. You are responsible for designing, testing, and implementing safety

measures in connection with your use of any ROHM products using the Software (such ROHM products are hereinafter called “Product”) Such

safety measures include, but are not limited to, derating, reductant design, fire spread prevention, backup, and/or fail safe etc. in order to

prevent the accident resulting in injury or death and/or fire damage etc.. ROHM is not responsible and hereby disclaims liability for any

damage in relation to your use beyond the rated value, or the non-compliance with any precaution for use.

4. ROHM is not responsible for any direct and/or indirect damage to you, or any third parties, (including the damage caused by loss of

intangible asset such as information, data, or program etc., loss and/or interruption of profit) which is caused by the use or impossibility to

use of the Software.

5. Since the Software, these materials, and/or the Product contain confidential information of ROHM’, including technical information, and/or

trade secrets, you are prohibited from engaging in any of the following acts in whole or part, without ROHM’s prior written approval:

(i) disclosing any ROHM confidential information to a third party;

(ii) disassembling, reverse engineering, and/or any other analysis;

(iii) reprinting, copy, and/or reproduction; or

(iv) removing the copyright notice included in the Software.

6. When exporting the Software, or the technology and/or confidential information written in these materials, you are required to follow the

applicable export control laws and regulations such as “Foreign Exchange and Foreign Tarade Act” and/or “Export Administration Regulations

(EAR).”.

7. ROHM disclaims all warranties, statutory or otherwise, and ROHM hereby disclaims any warranty for non-infringement for the Software

and/or the information written in these materials. Accordingly, ROHM is not liable to you for any direct or third-party claims of infringement

of rights.

8. No license, whether expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties

with respect to the Software or Products or the information contained in these materials.

9. You agree to indemnify, defend and hold harmless ROHM and ROHM’s officers and/or employees from responsibility, and hold them harmless,

and defend them from any damage, loss, penalty, or cost caused by any claim of liability (including but not limited to the attorney fees)

resulting from, or incurred relating to the following acts:

(1) any alleged infringement of a third party’s rights or the violation of laws caused by reading, download, encryption, summarization, copy,

or transfer etc.; or

(2) violation of these materials.

10. ROHM does not guarantee that these materials or the Software is error free. ROHM shall not be in any way responsible or liable for any

damages, expenses, or losses incurred by you or third parties resulting from errors contained in these materials.

Thank you for using ROHM products.

For inquiries about our products, please contact us.

ROHM Customer Support System
https://www.rohm.co.jp/contactus

	1. Overview
	1.1. Characteristics

	2. Operating Environment
	2.1. System Requirements
	2.2. Install

	3. How to use
	3.1. Starting mtld
	3.2. Command Line Options List
	3.3. Command-line option details
	3.3.1. -o
	3.3.1.1. Description
	3.3.1.2. Examples of Use

	3.3.2. --program-size=
	3.3.2.1. Description
	3.3.2.2. Examples of Use

	3.3.3. --data-size=
	3.3.3.1. Description
	3.3.3.2. Examples of Use

	3.3.4. --ex-program-size=
	3.3.4.1. Description
	3.3.4.2. Examples of Use

	3.3.5. -L
	3.3.5.1. Description
	3.3.5.2. Examples of Use

	3.3.6. -l
	3.3.6.1. Description
	3.3.6.2. Examples of Use

	3.3.7. -defsym
	3.3.7.1. Description
	3.3.7.2. Examples of Use

	3.3.8. --script
	3.3.8.1. Description
	3.3.8.2. Examples of Use

	3.3.9. -Map=
	3.3.9.1. Description
	3.3.9.2. Examples of Use

	3.3.10. --exclude-mul=
	3.3.10.1. Description
	3.3.10.2. Examples of Use
	3.3.10.3. Details

	3.3.11. --crt
	3.3.11.1. Description
	3.3.11.2. Examples of Use

	3.3.12. --libc
	3.3.12.1. Description
	3.3.12.2. Examples of Use

	3.3.13. --gc-sections
	3.3.13.1. Description
	3.3.13.2. Examples of Use

	3.3.14. -v
	3.3.14.1. Description
	3.3.14.2. Examples of Use

	3.3.15. -h
	3.3.15.1. Description
	3.3.15.2. Examples of Use

	3.4. Linker script
	3.4.1. Linker script overview
	3.4.1.1. Section
	3.4.1.2. Symbol
	3.4.1.3. LMA and VMA

	3.4.2. Linker script format
	3.4.3. Comments
	3.4.3.1. Description
	3.4.3.2. Examples of Use

	3.4.4. Top level commands
	3.4.4.1. Assignment expression
	3.4.4.1.1 Syntax
	3.4.4.1.1.1 Examples of Use

	3.4.4.2. Expressions
	3.4.4.2.1 Immediate value
	3.4.4.2.1.1 Syntax
	3.4.4.2.1.2 Examples of Use

	3.4.4.2.2 Arithmetic expressions
	3.4.4.2.2.1 Syntax
	3.4.4.2.2.2 Examples of Use

	3.4.4.2.3 Comparison expressions
	3.4.4.2.3.1 Syntax
	3.4.4.2.3.2 Examples of Use

	3.4.4.2.4 .variable (dot variable)
	3.4.4.2.4.1 Description
	3.4.4.2.4.2 Syntax
	3.4.4.2.4.3 Examples of Use

	3.4.5. ENTRY command
	3.4.5.1. Description
	3.4.5.2. Command syntax
	3.4.5.3. Examples of Use

	3.4.6. PROVIDE keyword
	3.4.6.1. Description
	3.4.6.2. Syntax
	3.4.6.3. Examples of Use

	3.4.7. ASSERT command
	3.4.7.1. Description
	3.4.7.2. Command syntax
	3.4.7.3. Examples of Use

	3.4.8. SIZEOF function
	3.4.8.1. Description
	3.4.8.2. Function syntax
	3.4.8.3. Examples of Use

	3.4.9. ADDR function
	3.4.9.1. Description
	3.4.9.2. Function syntax
	3.4.9.3. Examples of Use

	3.4.10. LOADADDR function
	3.4.10.1. Description
	3.4.10.2. Function syntax
	3.4.10.3. Examples of Use

	3.4.11. ALIGN function
	3.4.11.1. Description
	3.4.11.2. Command syntax
	3.4.11.3. Examples of Use

	3.4.12. SECTIONS command
	3.4.12.1. Description
	3.4.12.2. Command syntax
	3.4.12.3. section-command
	3.4.12.3.1 Description of the output section
	3.4.12.3.1.1 section name
	3.4.12.3.1.2 address
	3.4.12.3.1.3 (type)
	3.4.12.3.1.4 AT(lma)
	3.4.12.3.1.5 ALIGN(boundary)
	3.4.12.3.1.6 SUBALIGN(boundary)
	3.4.12.3.1.7 >region
	3.4.12.3.1.8 AT>region
	3.4.12.3.1.9 =fillexp

	3.4.12.3.2 Assignment expression
	3.4.12.3.2.1 Description
	3.4.12.3.2.2 Examples of Use

	3.4.12.3.3 PROVIDE keyword
	3.4.12.3.3.1 Description
	3.4.12.3.3.2 Examples of Use

	3.4.12.3.4 SIZEOF function
	3.4.12.3.4.1 Description
	3.4.12.3.4.2 Examples of Use

	3.4.12.3.5 ADDR function
	3.4.12.3.5.1 Description
	3.4.12.3.5.2 Examples of Use

	3.4.12.3.6 LOADADDR function
	3.4.12.3.6.1 Description
	3.4.12.3.6.2 Examples of Use

	3.4.12.3.7 ALIGN function
	3.4.12.3.7.1 Description
	3.4.12.3.7.2 Examples of Use

	3.4.12.4. output-section-command
	3.4.12.4.1 Description of the input section
	3.4.12.4.1.1 Description
	3.4.12.4.1.2 Command syntax
	3.4.12.4.1.3 Wildcards
	3.4.12.4.1.4 Examples of Use

	3.4.12.4.2 Assignment expression
	3.4.12.4.2.1 Description
	3.4.12.4.2.2 Examples of Use

	3.4.12.4.3 PROVIDE keyword
	3.4.12.4.3.1 Description
	3.4.12.4.3.2 Examples of Use

	3.4.12.4.4 SIZEOF function
	3.4.12.4.4.1 Description
	3.4.12.4.4.2 Examples of Use

	3.4.12.4.5 ADDR function
	3.4.12.4.5.1 Description
	3.4.12.4.5.2 Examples of Use

	3.4.12.4.6 LOADADDR Function
	3.4.12.4.6.1 Description
	3.4.12.4.6.2 Examples of Use

	3.4.12.4.1 ALIGN function
	3.4.12.4.1.1 Description
	3.4.12.4.1.2 Examples of Use

	3.4.12.4.2 KEEP keyword
	3.4.12.4.2.1 Description
	3.4.12.4.2.2 Syntax
	3.4.12.4.2.3 Examples of Use

	3.4.12.5. SECTIONS command example

	3.4.13. MEMORY command
	3.4.13.1. Description
	3.4.13.2. Command syntax
	3.4.13.2.1 name
	3.4.13.2.2 attr
	3.4.13.2.3 ORIGIN
	3.4.13.2.4 LENGTH

	3.4.13.3. Examples of Use

	4. No assurance function
	4.1. Command line option
	4.2. linker script

	5. Open Source Software
	6. For trademarks

