

SPICE Modeling Report 1200V High Voltage High and Low Side Driver BM60213FV-C

General Description

ROHM

This is a report of the BM60213FV-C SPICE Model. The correlation between actual measurement and simulation result were summarized.

Simulation Environment

Circuit Simulator

: PSpice / Cadence Design System, Inc. : 17.2-2016

- Version InformationOS Information
- : 17.2-2016 :Windows 10 64-bit Edition
- File Information
 - Library File Name
 - Symbol File Name
 - Subcircuit and Symbol
- : BM60213FV.lib
- : BM60213FV.olb

Table 1. Correspondence Table

Product Name	Subcircuit	Symbol
BM60213FV-C	BM60213FV (Rev:2.01)	BM60213FV

Caution

- These model characteristics are specifically at Ta=25°C. Thus, the simulation result with temperature variances may significantly differ from the result with the one done at actual application board (actual measurement).
- The simulation result and characteristics described in this report may differ depending on the board design. It is recommended to perform the measurement on the actual board to verify the result.
- The values from the simulation results are not guaranteed. Please use these results as a guide for your design.
- Actual measurement was done using a specific sample, thus the measured data is just as a reference.

BM60213FV-C SPICE MODEL

Terminal Information

	NC1		
	NUT	GND1_2	
	GND2_1	PGND	-
	NC2	OUTBL	—
	NC3	OUTBH	—
	OUTAL	VCCB	—
-	OUTAH	VREG	—
-	VCCA	INB	—
	NC4	INA	—
_	GND2_2	ENA	-
-	NC5	GND1_1	—
	BM60213EV		J
			/

Table 2. Pin Table

Terminal No.	Terminal Name	Terminal No.	Terminal Name
1	NC1	11	GND1_1
2 GND2_1		12	ENA
3 NC2		13	INA
4	NC3	14	INB
5	OUTAL	15	VREG
6	OUTAH	16	VCCB
7	VCCA	17	OUTBH
8	NC4	18	OUTBL
9	GND2_2	19	PGND
10	NC5	20	GND1_2

Figure 1. Symbol of BM60213FV-C

Verifiable Characteristics

-

Electrical Characteristics (vs. Datasheet)	3-4
Characteristics in SPICE (vs. Measured Waveform)	
✓ VCCB Circuit Current 1 vs Low-side Supply Voltage (OUTB=L)	5
✓ VCCB Circuit Current 2 vs Low-side Supply Voltage (OUTB=H)	6
✓ VCCB Circuit Current 3 vs Low-side Supply Voltage (INA=10kHz, Duty=50%)	7
✓ VCCB Circuit Current 4 vs Low-side Supply Voltage (INA=20kHz, Duty=50%)	8
✓ VCCA Circuit Current 1 vs High-side Floating Supply Voltage (OUTA=L)	9
✓ VCCA Circuit Current 2 vs High-side Floating Supply Voltage (OUTA=H)	10
✓ OUTA Output Voltage vs Logic Input Voltage (VCCB=15V, VCCA=15V, Ta=+25°C)	11

Electrical Characteristics (vs. Datasheet)

Table 3. Electrical Characteristics Comparison

Unless otherwise specified, Ta=25°C, V_{CCA}-GND2=15V, V_{CCB}=15V

	Madalad	Value Value					
Parameter	(Note 1)	Datasheet (Typ.)	SPICE	Unit	Error	Condition	
General							
VCCB Circuit Current 1	Yes	1.00	0.970	mA	-3.0%	OUTB=L	
VCCB Circuit Current 2	Yes	1.00	0.990	mA	-1.0%	OUTB=H	
VCCB Circuit Current 3	Yes	2.40	2.383	mA	-0.7%	INA=10kHz, Duty=50%	
VCCB Circuit Current 4	Yes	2.45	2.412	mA	-1.6%	INA=20kHz, Duty=50%	
VCCA Circuit Current 1	Yes	0.57	0.582	mA	2.1%	OUTA=L	
VCCA Circuit Current 2	Yes	0.47	0.473	mA	0.6%	OUTA=H	
Logic Block							
Logic High Level Input Voltage	Yes	1.50	1.500	V	0.0%	INA, INB, ENA	
Logic Low Level Input Voltage	Yes	1.36	1.360	V	0.0%	INA, INB, ENA	
Logic Pull-down Resistance	Yes	50	50.0	kΩ	0.0%	INA<3V, INB<3V, ENA<3V	
Logic Pull-down Current	Yes	50	50.0	μA	0.0%	INA≥3V, INB≥3V, ENA≥3V	
ENA Input Mask Time	Yes	1.0	1.04	μs	4.0%	ENA	
Output							
OUT ON Resistance (Source)	Yes	0.9	0.93	Ω	3.3%	IOUT=-40mA, OUTA, OUTB	
OUT ON Resistance (Sink)	Yes	0.6	0.62	Ω	3.3%	Iout=40mA, OUTA, OUTB	
OUT Turn ON Time	Yes	55	52.7	ns	-4.2%	OUTA, OUTB	
OUT Turn OFF Time	Yes	55	51.2	ns	-6.9%	OUTA, OUTB	
OUT Propagation Distortion	Yes	0	-1.5	ns	-	TPOFF - TPON, OUTA, OUTB	
OUT Rise Time	Yes	50	46.2	ns	-7.6%	OUT-GND 10nF, OUTA, OUTB	
OUT Fall Time	Yes	50	45.2	ns	-9.6%	OUT-GND 10nF, OUTA, OUTB	
VREG Output Voltage	Yes	4.7	4.70	V	0.0%		

(Note 1) Yes : There is a good correlation between measurement result and simulation result.

No : No correlation between measurement result and simulation result.

(Note 2) t_{PON} : OUT Turn ON Time , t_{POFF} : OUT Turn OFF Time , t_{RISE} : Rise Time, t_{FALL} : Fall Time,

Figure 2. Timing Chart of IN-OUT (Note 2)

	Modeled	Va	Value				
Parameter	(Note 1)	Datasheet (Typ.)	SPICE	Unit	Error	Condition	
Protection Function							
UVLO OFF Voltage	Yes	9.5	9.50	V	0.0%	V _{CCA} , V _{CCB}	
UVLO ON Voltage	Yes	8.5	8.50	V	0.0%	V _{CCA} , V _{CCB}	
UVLO Mask Time	Yes	2.5	2.51	μs	0.4%	V _{CCA} , V _{CCB}	

(Note 1) Yes : There is a good correlation between measurement result and simulation result.

No : No correlation between measurement result and simulation result.

Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
VCCB Circuit Current 1	0.97	0.97	mA	0.0%	

(Note 1) Convert the horizontal axis of simulation result into V(VCCB)

VCCB Circuit Current1:lcc11 [mA]

Table 5. Companson of Characteristic	Table 5.	Comparison	of Charac	cteristics
--------------------------------------	----------	------------	-----------	------------

Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
VCCB Circuit Current 2	0.99	0.99	mA	0.0%	

(Note 1) Convert the horizontal axis of simulation result into V(VCCB)

Table 6.	Comp	arison	of	Charact	eristics
	• • • · · · p		•••	0	0

Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
VCCB Circuit Current 3	2.40	2.38	mA	-0.8%	

(Note 1) Convert the horizontal axis of simulation result into V(VCCB)

Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
VCCB Circuit Current 4	2.43	2.41	mA	-0.8%	

(Note 1) Convert the horizontal axis of simulation result into V(VCCB)

VCCB Circuit Current4:lcc14 [mA]

Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
VCCA Circuit Current 1	0.57	0.58	V	1.8%	

(Note 1) Convert the horizontal axis of simulation result into V(VCCA)

VCCA Circuit Current1:lcc21 [mA]

Table 9	. Com	parison	of	Charact	eristics
Tuble 0	. 00111	panson	01	onarao	Cholioc

Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
VCCA Circuit Current 2	0.47	0.47	V	0.0%	

(Note 1) Convert the horizontal axis of simulation result into V(VCCA)

VCCA Circuit Current2:lcc22 [mA]

Table 1	0. Comparison	of Characteristics
---------	---------------	--------------------

Unless	otherwise s	pecified	Ta=25°C	VCCA-GND2=15V	VCCB=15V
0111033	001010000	peomea,	1u-20 0,		, , , , , , , , , , , , , , , , , , , ,

Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
Logic High Level Input Voltage	1.50	1.50	V	0.0%	Sweep up
Logic Low Level 1.36		1.36	V	0.0%	Sweep down

(Note 1) Convert the horizontal axis of simulation result into V(INA)

OUTA Output Voltage [V]

Revision History

Date	Revision	Changes
Aug.2020	001	New Release

	Notes
1)	The information contained herein is subject to change without notice.
2)	Before you use our Products, please contact our sales representative and verify the latest specifications :
3)	Although ROHM is continuously working to improve product reliability and quality, semicon- ductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
4)	Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
5)	The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
6)	The Products specified in this document are not designed to be radiation tolerant.
7)	For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative : transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
8)	Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
9)	ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
10)	ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
11)	Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
12)	When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
13)	This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/