

4ch White LED Driver Built-in Current Driver Boost DC/DC Converter for Automotive BD83A24EFV-M Evaluation Board

User's Guide

<High Voltage Safety Precautions>

♦ Read all safety precautions before use

Please note that this document covers only the BD83A24EFV-M evaluation board (REFLED005-EVK-001) and its functions. For additional information, please refer to the datasheet.

To ensure safe operation, please carefully read all precautions before handling the evaluation board

Depending on the configuration of the board and voltages used,

Potentially lethal voltages may be generated.

Therefore, please make sure to read and observe all safety precautions described in the red box below.

Before Use

- [1] Verify that the parts/components are not damaged or missing (i.e. due to the drops).
- [2] Check that there are no conductive foreign objects on the board.
- [3] Be careful when performing soldering on the module and/or evaluation board to ensure that solder splash does not occur.
- [4] Check that there is no condensation or water droplets on the circuit board.

During Use

- [5] Be careful to not allow conductive objects to come into contact with the board.
- [6] Brief accidental contact or even bringing your hand close to the board may result in discharge and lead to severe injury or death.

Therefore, DO NOT touch the board with your bare hands or bring them too close to the board. In addition, as mentioned above please exercise extreme caution when using conductive tools such as tweezers and screwdrivers.

- [7] If used under conditions beyond its rated voltage, it may cause defects such as short-circuit or, depending on the circumstances, explosion or other permanent damages.
- [8] Be sure to wear insulated gloves when handling is required during operation.

After Use

- [9] The ROHM Evaluation Board contains the circuits which store the high voltage. Since it stores the charges even after the connected power circuits are cut, please discharge the electricity after using it, and please deal with it after confirming such electric discharge.
- [10] Protect against electric shocks by wearing insulated gloves when handling.

This evaluation board is intended for use only in research and development facilities and should by handled **only by qualified personnel familiar with all safety and operating procedures**.

We recommend carrying out operation in a safe environment that includes the use of high voltage signage at all entrances, safety interlocks, and protective glasses.

www.rohm.com HVA01E

LED Driver for Automotive Panel Backlight

4ch White LED Driver Built-in Current Driver **Boost DC/DC Converter for Automotive BD83A24EFV-M Evaluation Board**

REFLED005-EVK-001

Introduction

This user's guide will provide the necessary steps to operate the Evaluation Board of ROHM's BD83A24EFV-M LED Driver. This document includes the external parts, operating procedures and application data.

Description

This Evaluation Board was developed for ROHM's LED Driver BD83A24EFV-M. BD83A24EFV-M is a white LED driver for LCD backlight. It has 4ch Current Driver for LED Drive, and it is suitable for high illumination LED drive. It is suitable for middle size LCD panel drive because LED pin maximum voltage is 50 V.

The dimming is controlled by the PWM signal and can be set up to 20,000: 1@100 Hz.

It also supports analog dimming and can accommodate even higher brightness ranges by combining with PWM dimming. DC/DC converters can be controlled for boost applications, and the input operating voltage range is 4.5 V to 48V.

Application

Automotive backlight application for CID, cluster panel, car navigation, HUD, or car audio system.

Evaluation board operating condition (default setting)

Table 1. Evaluation board operating condition (default setting)

		•	0,	
Parameter	Min	Тур	Max	Unit
Power supply voltage *1	7	13.5	18	V
LEDs in series	6	-	10	pcs
LEDs in parallel	-	4	-	ch
Output voltage *2	19	-	36	V
Output current (per channel)	-	80	-	mA
DC/DC oscillation frequency	-	415 *3	-	kHz
Over voltage limit	-	41.1	-	V
Over current limit	-	3.6	-	Α

^{*1} This indicates the voltage near the VCC pin. Be careful of voltage drop by the impedance of power line.

© 2023 ROHM Co., Ltd. 66UG037E Rev.001 1/10 Jul.2023

^{*2} Output voltage is determined by the Vf value of the connected LED and the numbers of series. Since this evaluation board has a boost-configuration, output voltage should be higher than input voltage. Also, output voltage should be lower than OVP voltage.

^{*3} The default frequency is set to 415kHz so that it is higher than the EMC standard (LW: 150kHz to 300kHz) even if variations and SSCG functions are considered.

Evaluation board

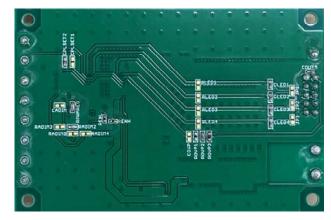


Figure 1. Top view

Figure 2. Bottom view

Evaluation board setup

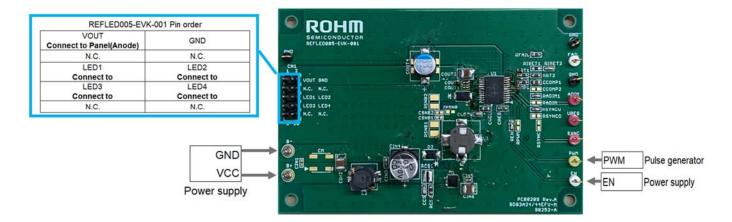


Figure 3. Evaluation board setup

Operating procedure

- 1. Connect panel or LEDs to evaluation board. (Anode to VOUT-pin. Cathode to LEDx-pin.)
- 2. Connect power supply to +B-pin and –B-pin of the evaluation board.
- 3. Connect power supply to EN-pin. It must be less than 7V.
- 4. Connect pulse generator to PWM-pin. It should be 100Hz to 25kHz and the minimum pulse width must be longer than 0.5µs.
- 5. Turn on the power supply for +B-pin.
- 6. Turn on the power supply for EN-pin.
- 7. Turn on the pulse generator for PWM-pin.

Operation mode settings

The table below describes the settings for SYNC terminals.

Table 2. Mode settings

Terminal	Setting	Function		
	GND or OPEN	Fixed Frequency Mode Determined by RRT		
SYNC REG		Spread Spectrum Mode (SSCG) of the Frequency Determined by RRT		
	Pulse Input	Synchronizing to the frequency applied in SYNC pin		

For unused channels, pull down the LED pin to GND with $10k\Omega$.

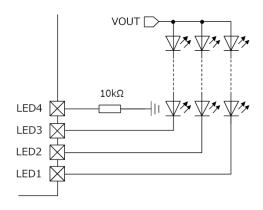


Figure 4. Setting LED4 to Unused

The ISET terminal voltage can be adjusted according to the voltage input to the ADIM_P terminal.

The LED current can be calculated from the following equation.

$$I_{LED} = \frac{V_{ISET}}{R_{ISET}} \times \frac{10}{9} \times 10^6$$
 [mA]

$$V_{ISET} = 1.089 \text{ [V]} \text{ (when } 90\% \leq D_{\text{ADIM_P}} \leq 100\% \text{)}$$

$$V_{ISET}=1.089 imes rac{10}{9} imes D_{ADIM_P}$$
 [V] (when 18% < D_{ADIM_P} < 90%)

 I_{LED} is the output current per 1ch (LED current)

(Recommended operating condition: 20 mA to 120 mA)

 R_{ISET} is the LED current setting resistor

(Recommended operating condition : $11k\Omega$ to $53k\Omega$)

 D_{ADIM_P} is the ADIM_P pin input On Duty

(Recommended operating condition: 18% to 100%)

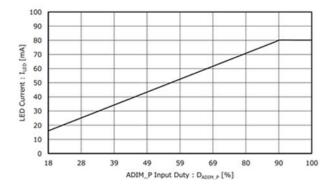


Figure 5. ILED vs DADIM_P (RISET = 15.1 k Ω)

Pin configuration

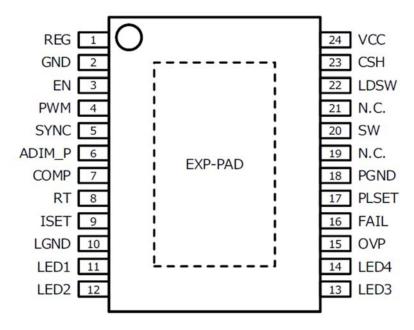


Figure 6. Pin configuration

Evaluation board schematic

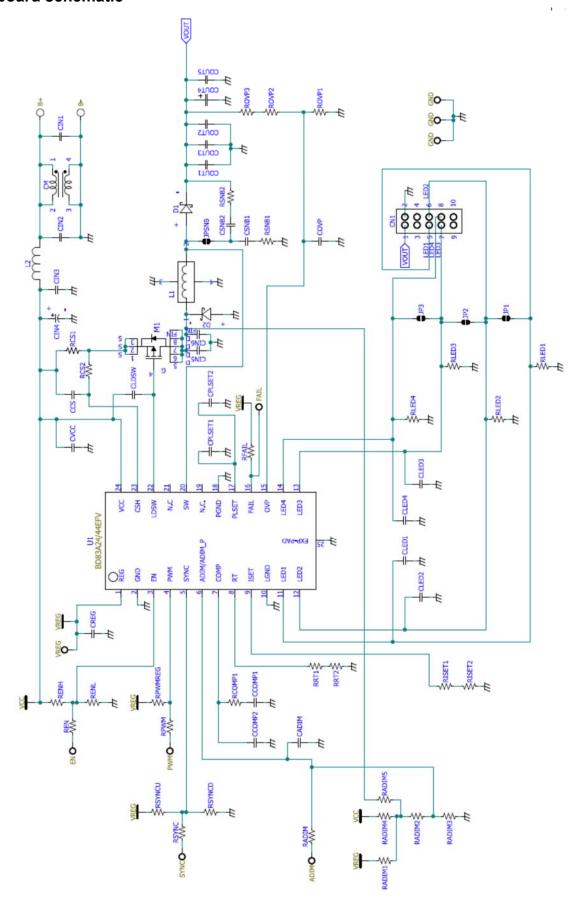


Figure 7. Evaluation board schematic

Parts list

Table 3. Parts list

No	Package	Parameters	Part name(series)	Туре	Manufacturer
CIN1	-	Open	-	-	-
CIN2	3225	10μF, X7S, 50V	GCM32EC71H106KA01	Ceramic	Murata
CIN3	1608	0.01µF, R, 50V	GCM188R11H103KA01	Ceramic	Murata
CIN4	φ8 x L10mm	220µF/35V	UCD1V221MNL1GS	Electrolytic	Nichicon
CIN5	1005	0.1μF, X7S, 50V	GCM155R71H104KE37	Ceramic	Murata
CIN6	3225	10μF, X7S, 50V	GCM32EC71H106KA01	Ceramic	Murata
CVCC	2012	1μF, X7S, 50V	GCM21BR71H105KA01	Ceramic	Murata
СМ	-	-	-	-	-
RCS1	1632	15mΩ	LTR18	Resistor	Rohm
RCS2	1608	100Ω	MCR03 series	Resistor	Rohm
ccs	1608	100pF	GCM1882C1H101JA01	Ceramic	Murata
CLDSW	1608	100pF	GCM1882C1H101JA01	Ceramic	Murata
RCOMP1	1608	100Ω	MCR03 series	Resistor	Rohm
CCOMP1	1005	1μF, X7S, 10V	GCM155C71A105KE38	Ceramic	Murata
CCOMP2	-	Open	-	-	-
RRT1	1608	13kΩ, 1/10W	MCR03 series	Resistor	Rohm
RRT2	1608	12kΩ, 1/10W	MCR03 series	Resistor	Rohm
RFAIL	1608	100kΩ, 1/10W	MCR03 series	Resistor	Rohm
CREG	2012	2.2µF, X7R, 16V	GCM21BR71C225KA01	Ceramic	Murata
L1	W7.0×L7.4×H4.5mm	22µH	SPM7054VT-220M	Inductor	TDK
M1	W3.3×L3.3×H0.8mm	-40V/-27A	RQ3G270BJ	MOSFET	Rohm
L2	W6.3×L6.0×H4.5mm	3.3µH	CLF6045NIT-3R3N-D	Inductor	TDK
D1	W4.7×L2.5×H0.95mm	60V/5A	RB088LAM-60	SBD	Rohm
D2	W3.5×L1.6×H0.8mm	60V/1A	RBR1MM60ATF	SBD	Rohm
COUT1	1005	0.01µF, R, 50V	GCM155R11H103KA40	Ceramic	Murata
COUT2	1005	0.1μF, X7S, 50V	GCM155R71H104KE37	Ceramic	Murata
COUT3	3225	10μF, X7S, 50V	GCM32EC71H106KA01	Ceramic	Murata
COUT4	φ6.3 x L7.7mm	33µF/50V	50HVPF33M	Hybrid	SunCon
COUT5	1005	0.1μF, X7S, 50V	GCM155R71H104KE37	Ceramic	Murata
ROVP1	1608	10kΩ, 1/10W	MCR03 series	Resistor	Rohm
ROVP2	-	Short	-	-	-
ROVP3	1608	330kΩ, 1/10W	MCR03 series	Resistor	Rohm
COVP	-	Open	-	-	-
RISET1	1608	15kΩ, 1/10W	MCR03 series	Resistor	Rohm
RISET2	-	Short	-	-	-
CPLSET1	-	Open	-	-	-
CPLSET2	1005	1500pF, R, 50V	GCM155R11H152KA01	Ceramic	Murata

Parts list - continued

Table 3. Parts list - continued

No	Package	Parameters	Part name(series)	Туре	Manufacturer
JPSNB	-	Open	-	-	-
CSNB1	-	Open	-	-	-
RSNB1	-	Open	-	-	-
CSNB2	-	Open	-	-	-
RSNB2	-	Open	-	-	-
CLED1	1005	470pF, R, 50V	GCM155R11H471KA01	Ceramic	Murata
CLED2	1005	470pF, R, 50V	GCM155R11H471KA01	Ceramic	Murata
CLED3	1005	470pF, R, 50V	GCM155R11H471KA01	Ceramic	Murata
CLED4	1005	470pF, R, 50V	GCM155R11H471KA01	Ceramic	Murata
REN	-	Short	-	-	-
RENH	-	Open	-	-	-
RENL	-	Open	-	-	-
RSYNC	-	Open	-	-	-
RSYNCU	-	Short	-	-	-
RSYNCD	-	Open	-	-	-
RPWMREG	-	Open	-	-	-
RPWM	-	Short	-	-	-
RADIM	-	Open	-	-	-
RADIM1	-	Short	-	-	-
RLED1	-	Open	-	-	-
RLED2	-	Open	-	-	-
RLED3	-	Open	-	-	-
RLED4	-	Open	-	-	-
JP1	-	Open	-	-	-
JP2	-	Open	-	-	-
JP3	-	Open	-	-	-
RADIM2	-	Short	-	-	-
RADIM3	-	Open	-	-	-
RADIM4	-	Open	-	-	-
RADIM5	-	Open	-	-	-

Board layout

Evaluation board PCB information

Material	FR-4
Board thickness	1.6mm
Copper thickness	1 oz.
Number of layers	4
Board size	90X60mm
Minimum copper width	0.15mm
Minimum air gap	0.15mm
Minimum hole size	0.3mm

The layout of BD83A24EFV-M is shown below.

Figure 8. Top layer layout (Top view)

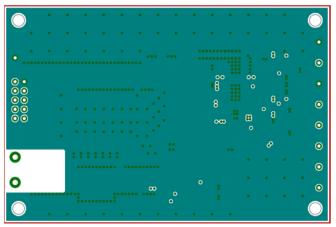


Figure 9. 2nd layer layout (Top view)

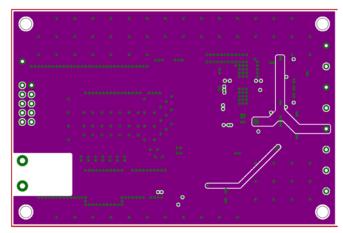


Figure 10. 3rd layer layout (Top view)

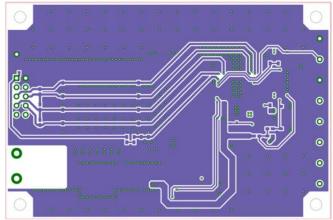


Figure 11. Bottom layer layout (Top view)

Reference application data

(Ta=25°C, Output voltage=25.6V, lout=80mA x 4ch)

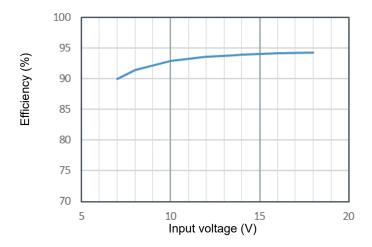


Figure 12. Efficiency vs Input voltage

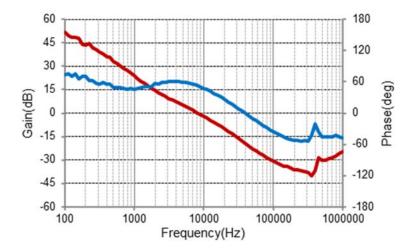


Figure 13. Gain, Phase vs Frequency (VCC=13.5V)

Revision history

Date	Revision number	Description
12. Jul. 2023	001	Initial release

Notice

- The information contained in this document is intended to introduce ROHM Group (hereafter referred to asROHM) products. When using ROHM products, please verify the latest specifications or datasheets before use.
- 2) ROHM products are designed and manufactured for use in general electronic equipment and applications (such as Audio Visual equipment, Office Automation equipment, telecommunication equipment, home appliances, amusement devices, etc.) or specified in the datasheets. Therefore, please contact the ROHM sales representative before using ROHM products in equipment or devices requiring extremely high reliability and whose failure or malfunction may cause danger or injury to human life or body or other serious damage (such as medical equipment, transportation, traffic, aircraft, spacecraft, nuclear power controllers, fuel control, automotive equipment including car accessories, etc. hereafter referred to as Specific Applications). Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses, or losses incurred by you or third parties arising from the use of ROHM Products for Specific Applications.
- 3) Electronic components, including semiconductors, can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against physical injury, and damage to any property, which a failure or malfunction of products may cause.
- 4) The information contained in this document, including application circuit examples and their constants, is intended to explain the standard operation and usage of ROHM products, and is not intended to guarantee, either explicitly or implicitly, the operation of the product in the actual equipment it will be used. As a result, you are solely responsible for it, and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses, or losses incurred by you or third parties arising from the use of such information.
- 5) When exporting ROHM products or technologies described in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, such as the Foreign Exchange and Foreign Trade Act and the US Export Administration Regulations, and follow the necessary procedures in accordance with these provisions.
- 6) The technical information and data described in this document, including typical application circuits, are examples only and are not intended to guarantee to be free from infringement of third parties intellectual property or other rights. ROHM does not grant any license, express or implied, to implement, use, or exploit any intellectual property or other rights owned or controlled by ROHM or any third parties with respect to the information contained herein.
- 7) No part of this document may be reprinted or reproduced in any form by any means without the prior written consent of ROHM.
- 8) All information contained in this document is current as of the date of publication and subject to change without notice. Before purchasing or using ROHM products, please confirm the latest information with the ROHM sales representative.
- 9) ROHM does not warrant that the information contained herein is error-free. ROHM shall not be in any way responsible or liable for any damages, expenses, or losses incurred by you or third parties resulting from errors contained in this document.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

https://www.rohm.com/contactus