Precautions when using Shunt Resistor

Effect of PCB Design on Temperature Coefficient of Resistance

● Summary

While resistance, power rating and size are important considerations when using shunt resistors, tolerances that affect the accuracy of the detected voltage must also be considered. These tolerances include the temperature coefficient of resistance and the tolerance of resistance at room temperature (Class F: ±1%).

The temperature coefficient of resistance indicates the change in resistance value due to a change in temperature of the resistor. Since resistance is affected by component temperature rise as current flows through and power is consumed, and ambient temperature changes, the temperature coefficient of resistance is an important factor in accurately detecting current values.

● Measuring the voltage across a shunt resistor

Shunt resistors typically have very low resistance, between a few µΩ and several hundred mΩ.

For voltage measurements at such low resistances, it is necessary to use a 4-terminal Kelvin connection. However, as shown in Figure 1, if the sensing lines are arranged outside the pads of the shunt resistor, an accurate measurement is not possible because the resistance of the copper foil and the solder in the wiring will be included.

In addition, the temperature coefficient of resistance of the wiring copper foil is about 3900 ppm/K, which is much larger than the intrinsic value of the shunt resistor, so the sensing lines must be arranged inside the pads of the shunt resistor, as shown in Figure 2, in order to reduce the influence of the copper foil from the perspective of temperature coefficient of resistance.

As an example, Figure 3 shows a comparison of the temperature coefficients of resistance (20°C to 125°C) for each sensing line for each resistance value of the GMR50.

For sensing lines (2) to (4), there is no significant difference, but for sensing line (1), the temperature coefficient of resistance is much higher. It can also be seen that the effect of the copper foil increases as the resistance decreases.

![Figure 1. Example of incorrect sensing line layout](image1)

![Figure 2. Example of correct sensing line layout](image2)
Effect of Board Design on Temperature Coefficient of Resistance

Application Note

● Influence of temperature coefficient of resistance

[Resistance range: 10 mΩ or more]

There are two types of shunt resistors with resistance of 10 mΩ or more: thick film resistors and metal film resistors. Generally, thick film resistors use materials containing silver as the resistive element, which have a higher temperature coefficient of resistance, while metal film resistors use alloys with a lower temperature coefficient of resistance. Therefore, metal film resistors show better resistance temperature characteristics as the value of resistance decreases.

As a typical example, the following is the result of comparing change in resistance versus temperature for the thick film resistor LTR50 and the metal film resistor GMR50. (Figure 4)

*The resistance value at 20℃ is used as a reference.

Figure 3. Comparison of the temperature coefficient of resistance of sensing lines

Figure 4. Comparison of change in resistance versus temperature for a thick film resistor and metal film resistor
Effect of Board Design on Temperature Coefficient of Resistance

[Resistance range: 10 mΩ or less]

When using shunt resistors of 10 mΩ or less, the temperature coefficient of resistance is affected by the copper foil of the mounting board and the copper electrodes of the product even if the sensing lines are arranged inside the pads of the shunt resistor as shown in Figure 2. This must be taken into account when designing the board. There are four factors that affect the temperature coefficient of the resistor:

- The location of the sensing lines
- The copper foil thickness
- The difference in gap width between a product’s electrodes and its pads
- The current path

① Sensing line position

For shunt resistors of 10 mΩ or less, the temperature coefficient of resistance may vary depending on the location of the sensing lines, even within the pads, due to the influence of the copper foil and copper electrodes. In general, the lower the resistance value, the greater the effect.

Therefore, it is necessary to arrange the sensing lines in a position that minimizes these effects even within the pads.

As a typical example, the following shows the temperature coefficient of resistance (20ºC to 125ºC) of the PSR100/0.3 mΩ sensing lines measured from the centers (sensing location A) and the edges (sensing location B) of the pads. (Figure 5)

The results show that the temperature coefficient of resistance is higher when the sensing wires are positioned at the edges of the pads due to the copper foil.

The ROHM guaranteed values given in the datasheet are based on measurements taken on a board with the sensing lines arranged in the centers of the pads.

![Sensing line position diagram](image)

Figure 5. Comparison of temperature coefficient of resistance of PSR100/0.3 mΩ at different sensing positions
② Influence of copper foil thickness

In some cases, it is necessary to increase the thickness of the copper foil on the PCB to carry high currents or to improve heat dissipation. But the influence of temperature coefficient of resistance becomes larger as the thickness of the copper foil increases. As a typical example, the following is a comparison of the temperature coefficient of resistance (20°C to 125°C) of PSR100/0.3 mΩ at different board copper thicknesses. (Figure 6)

The temperature coefficient of resistance guaranteed by ROHM is based on the use of 35 µm copper foil.

![Figure 6. Comparison of temperature coefficient of resistance of PSR100/0.3 mΩ at different copper foil thicknesses](image)

③ Difference in gap width between a product's electrodes and its pads

Since shunt resistors usually have different electrode dimensions, it is not always possible to use the manufacturer's recommended pad dimensions when purchasing from two suppliers. In this way, the temperature coefficient of resistance is also affected by the difference in gap width for the pads versus the product's electrode gap width.

As a typical example, the following is a comparison of the temperature coefficient of resistance (20°C to 125°C) of PSR100/1 mΩ at different pad gap widths. (Figure 7)

The results show that the temperature coefficient of resistance increases when the pad gap width is wider than the product's electrode gap width.

* This effect may vary depending on the structure of the product.

![Figure 7. Influence of pad gap width on the temperature coefficient of resistance of PMR100/1 mΩ](image)
As explained earlier, the influence on temperature coefficient of resistance can be reduced if the sensing lines are arranged in the centers of the inner sides of the pads, but temperature coefficient of resistance is also influenced by the current path. As a typical example, the following is a comparison of the temperature coefficient of resistance (20°C to 125°C) of PSR100/0.3 mΩ for three different current paths. (Figure 8)

This comparison is based on the assumption that the product may be misaligned with respect to the sensing lines due to board manufacturing accuracy or mounting misalignment.

The results show that the influence of misalignment between the product and the sensing lines on the temperature coefficient of resistance varies depending on the current path.

In the case of current path B, it can be said that the temperature coefficient of resistance is improved when the sensing lines are designed to be shifted in the negative direction from the center of the product (pad), as shown in Figure 8.

![Diagram showing different current paths and their effects on temperature coefficient of resistance](image)

Figure 8. Influence of different current paths on temperature coefficient of resistance of PSR100/0.3 mΩ
Summary

The magnitude of these effects on the temperature coefficient of resistance depends on the product (product structure, size, copper electrode thickness, and resistance).

In general, the lower the resistance of the product, the greater the effect.
Notice

Notes

1) The information contained herein is subject to change without notice.

2) Before you use our Products, please contact our sales representative and verify the latest specifications.

3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Products beyond the rating specified by ROHM.

4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.

6) The Products specified in this document are not designed to be radiation tolerant.

7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e., cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.

8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.

9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.

10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.

11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.

12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.

13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

https://www.rohm.com/contact/