• **QuiCur™** technology provides outstanding output characteristics
 (QuiCur™ is a trademark name for ROHM’s original Quick Current circuit that achieves high-speed load response)
 Role-sharing using two error amps improves both output stability and response performance

• **Delivers low voltage output via** Nano Pulse Control™
 Low voltage output of less than 1V from 5V input is possible while maintaining a high switching frequency of 2.2MHz

• **Built-in gain selection function increases design flexibility**
 Gain settings can be optimized to meet set specifications

Details of QuiCur™ High-Speed Load Response Technology

Feedback Circuit (DC-DC Converter IC)

- **Conventional Circuit**
 - Two-stage error amp configuration utilized for shared signal processing

- **QuiCur™ Circuit**
 - Ultra-high-speed pulse control technology
 - Nano Pulse Control™ Buck operation from 5V to less than 1V in one step

Frequency Response Graphs by Bode Plot

- **Stable Control Area**
 - Gain (dB) vs. Frequency Response Graphs
 - **COUT Adjustment** (Constant)
 - **fPC** (Zero Cross Frequency)
 - **f0** (Index of response performance)

- **Wide Stable Control Area**
 - **Unstable**

- **Unusable**
 - Difficult
 - Oscillation

Response Performance Comparison

Conventional DC-DC Converter IC

- **Output Capacitance**: 44μF (22μF x 2)
- **Board Image**: [Image]
- **Zero Cross Frequency f0**: 100kHz
- **Load Response Waveforms**:
 - **VOUT = 50mV/div**
 - **IOUT = 1A/div**
 - **ΔV = 100mV**

QuiCur™-Equipped BD9S402MUF-C

- **Output Capacitance**: 44μF (22μF x 2)
- **Board Image**: [Image]
- **Zero Cross Frequency f0**: 300kHz
- **Load Response Waveforms**:
 - **VOUT = 50mV/div**
 - **IOUT = 1A/div**
 - **ΔV = 33mV**

Good response performance with minimal voltage fluctuation
BD9S402MUFC (QuiCur™ + Nano Pulse Control™) Advantages

- **Process Miniaturization and Core Voltage Reduction**
 - Nano Pulse Control™ technology supports lower CPU/DSP (load) voltage
 - ±50mV

- **Application Circuit (BD9S402MUFC-C)**
 - V_IN × 0.75
 - Load Response Waveforms
 - Good response performance with minimal voltage fluctuation

- **2.2MHz Automotive Secondary DC-DC Converter IC BD9S402MUFC Specifications**

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Rated Voltage (V)</th>
<th>Output Current (Max) (A)</th>
<th>Input Voltage (V)</th>
<th>Output Voltage (V)</th>
<th>Output Voltage Accuracy (%)</th>
<th>Switching Frequency (MHz)</th>
<th>ON Resistance (Typ) (mΩ)</th>
<th>Operating Temperature (℃)</th>
<th>ComfySIL™ Functional Safety Category</th>
<th>Package (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD9S402MUFC-C</td>
<td>7.0</td>
<td>4.0</td>
<td>2.7 to 5.5</td>
<td>Adj. (0.6 to V_IN × 0.75)</td>
<td>±1</td>
<td>2.2±10%</td>
<td>60</td>
<td>35</td>
<td>-40 to +125</td>
<td>VQFN16F3030 (3.0x3.0x1.0)</td>
</tr>
</tbody>
</table>

Gain Setting Accommodates Various Set Specifications

- **Mode selection function contributes to design optimization and reduced man-hours**
 - **Gain Terminal Setting**
 - High
 - Low
 - **Output Capacitance**
 - 44μF (22μF x 2)
 - 44μF (22μF x 2)
 - 22μF (22μF x 1)
 - **Board Image**
 - **Load Response Waveforms**
 - Phase Margin 45°
 - Phase Margin 60°
 - Phase Margin 45° (Ensures a large oscillation margin)

- **3-mode selection based on set specifications contributes to optimal design and reduced man-hours**

- **2.2MHz Automotive Secondary DC-DC Converter IC BD9S402MUFC Specifications**

The content specified herein is for the purpose of introducing ROHM’s products (hereinafter “Products”). If you wish to use any of the Products, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or others. ROHM shall bear no responsibility whatsoever for any disputes arising from the use of such technical information. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

ROHM Co., Ltd.
21 Sain Mizoaki-cho, Ukyo-ku,
Kyoto 615-8585 Japan
www.rohm.com

The information contained in this document is current as of August 1, 2022. © 2022 ROHM Co., Ltd.