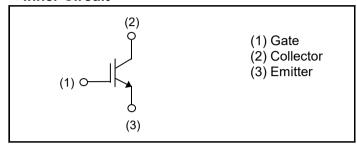
MG6303WZ

650V 30A Insulated Gate Bipolar Transistor

Datasheet


V _{CES}	650V
I _{C (Nominal)}	30A
V _{CE(sat) (Typ.)}	1.5V
Max. Possible Chips per Wafer	1137pcs

•Outline Wafer

Features

- 1) Trench Light Punch Through Type
- 2) Low Collector Emitter Saturation Voltage
- 3) High Speed Switching
- 4) Low Switching Loss & Soft Switching

●Inner Circuit

Application

PFC

UPS

Welding

Solar Inverter

ΙH

Absolute Maximum Ratings

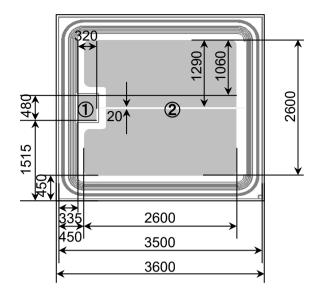
7 100 0 0 1010 1110 1110 1110 11190			
Parameter	Symbol	Value	Unit
Collector - Emitter Voltage, T _j = 25°C	V_{CES}	650	V
Gate - Emitter Voltage	V_{GES}	±30	V
Collector Current	I _C ^{*1}	*1)	А
Pulsed Collector Current	I _{CP} *2	120	Α
Operating Junction Temperature	T _j	-40 to +175	°C

^{*1} Depending on thermal properties of assembly

^{*2} Pulse width limited by $T_{jmax.}$

●Design Assurance

Parameter	Symbol	Conditions	Values			Unit	
- Farameter	Symbol	bol Conditions		Тур.	Max.	Onit	
Davenes Dies Cofe On systimus	$I_C = 120A, V_{CC} = 520V,$						
Reverse Bias Safe Operating Area	RBSOA*3	$V_P = 650V, V_{GE} = 15V,$	FULL SQUARE		-		
		$R_G = 100\Omega, T_j = 175^{\circ}C$					

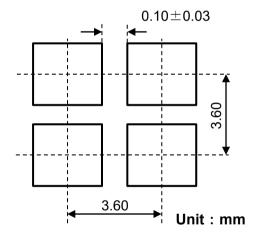

^{*3} Design assurance without measurement

●Electrical Characteristics (at T_i = 25°C unless otherwise specified, in case of TO-247N package)

Parameter Symbol Conditions		Values			l l	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Collector - Emitter Breakdown Voltage	BV _{CES}	$I_{C} = 10 \mu A, V_{GE} = 0 V$	650	ı	ı	V
Collector Cut - off Current	I _{CES}	V _{CE} = 650V, V _{GE} = 0V	1	ı	10	μΑ
Gate - Emitter Leakage Current	I _{GES}	$V_{GE} = \pm 30V, V_{CE} = 0V$	-	ı	±200	nA
Gate - Emitter Threshold Voltage	$V_{\text{GE(th)}}$	$V_{CE} = 5V, I_{C} = 20.0 \text{mA}$	5.0	6.0	7.0	V
Collector - Emitter Saturation Voltage	V _{CE(sat)} *3	$I_{C} = 30A, V_{GE} = 15V,$ $T_{j} = 25^{\circ}C$ $T_{j} = 175^{\circ}C$	-	1.5 1.85	1.9 -	V
Input Capacitance	C _{ies}	V _{CE} = 30V,	-	2530		
Output Capacitance	C _{oes}	$V_{GE} = 0V$,	-	65	-	pF
Reverse transfer Capacitance	C _{res}	f = 1MHz	-	46	-	
Total Gate Charge	Q_g	V _{CE} = 400V,	-	84	-	
Gate - Emitter Charge	Q_ge	I _C = 30A,	-	17	-	nC
Gate - Collector Charge	Q_gc	V _{GE} = 15V	-	31	-	

^{*3} Design assurance without measurement

●Chip Information


Unit: µm

: Pad Area

① : Gate Bonding Pad

② : Emitter Bonding Pad

Backside: Collector

Wafer Size	150mm
Wafer Thickness	0.07±0.01mm
Chip Size	3.60mm×3.60mm
Cut Line Width	0.10±0.03mm
Top Side Metallization	AlSiCu:4.4µm
Back Side Metallization	Ti/Ni:0.4μm/Au:0.05μm
Passivation	Polyimide

•Further Electrical Characteristics

Switching characteristics and thermal properties are depending strongly on module design and mounting technology and can therefore not be specified for a bare die.

This chip data sheet refers to the device data sheet	RGW60TS65

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/