

# A/D Converter Series for Automotive

# **Successive Approximation A/D Converter** 12 bit, 8-channel, I<sup>2</sup>C Interface

# BD79124MUF-C

#### **General Description**

The BD79124MUF-C is a general purpose, 12 bit 8channel successive approximation A/D converter.

#### Features

- AEC-Q100 Qualified<sup>(Note 1)</sup>
- Low Power Consumption
- Small VQFN16FV3030 Package
- 2-wire Serial Bus Interface
- (Supports up to 3.4 MHz)
- Single-ended Inputs
- Alert Function
- (Note 1) Grade 1

#### **Applications**

- Cluster Displays
- Infotainment
- Battery Management Systems (BMS)

# **Key Specifications**

- Input Voltage Range (VDD): 2.70 V to 5.25 V
- Input Voltage Range (IOVDD): 1.65 V to 5.25 V
- Power Consumption:
- (In High-speed mode) 0.9 mW @  $V_{DD}$  = 3.6 V (Typ)
  - 1.8 mW @ V<sub>DD</sub> = 5.25 V (Typ)
  - INL:
  - DNL:
    - ±0.99 LSB @ V<sub>DD</sub> = 3 V (Typ) 72 dB @ V<sub>DD</sub> = 3 V (Typ)
    - 72 dB @  $V_{DD}$  = 3 V (Typ)
- SINAD: ■ Operating Temperature Range: -40 °C to +125 °C

### Package

VQFN16FV3030

SNR:

# W (Typ) x D (Typ) x H (Max)

±1.0 LSB @ V<sub>DD</sub> = 3 V (Typ)

3.0 mm x 3.0 mm x 1.0 mm



# **Typical Application Circuit**



OProduct structure : Silicon integrated circuit OThis product has no designed protection against radioactive rays.

# Contents

| General Description                        | 1  |
|--------------------------------------------|----|
| Features                                   | 1  |
| Applications                               | 1  |
| Key Specifications                         | 1  |
| Package                                    | 1  |
| Typical Application Circuit                | 1  |
| Pin Configuration                          | 3  |
| Pin Descriptions                           | 3  |
| Block Diagram                              | 3  |
| Absolute Maximum Ratings                   | 4  |
| Thermal Resistance                         | 4  |
| Recommended Operating Conditions           | 5  |
| Electrical Characteristics                 | 6  |
| Timing Specifications                      | 8  |
| Term Definitions                           | 9  |
| Typical Performance Curves                 | 11 |
| I <sup>2</sup> C Communication Format      | 15 |
| I <sup>2</sup> C Target Address Selector   | 17 |
| Register Map                               | 18 |
| Control Sequence                           | 30 |
| Application Example                        | 35 |
| I/O Equivalence Circuits                   | 35 |
| Operational Notes                          | 36 |
| Ordering Information                       | 38 |
| Marking Diagram                            | 38 |
| Physical Dimension and Packing Information | 39 |
| Revision History                           | 40 |

# **Pin Configuration**



#### **Pin Descriptions**

| Pin No. | Pin Name | Function                                                                                                                                                                               |
|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | IN2      | Analog input pin 2. The input voltage range must be between 0 V and $V_{DD}$ . Or GPO pin.                                                                                             |
| 2       | IN3      | Analog input pin 3. The input voltage range must be between 0 V and $V_{DD}$ . Or GPO pin.                                                                                             |
| 3       | IN4      | Analog input pin 4. The input voltage range must be between 0 V and $V_{DD}$ . Or GPO pin.                                                                                             |
| 4       | IN5      | Analog input pin 5. The input voltage range must be between 0 V and $V_{DD}$ . Or GPO pin.                                                                                             |
| 5       | IN6      | Analog input pin 6. The input voltage range must be between 0 V and $V_{\text{DD}}.$ Or GPO pin.                                                                                       |
| 6       | IN7      | Analog input pin 7. The input voltage range must be between 0 V and $V_{DD}$ . Or GPO pin.                                                                                             |
| 7       | VDD      | Analog/Digital power supply pin. This voltage is the full scale of the AD conversion.                                                                                                  |
| 8       | TOUT     | Output pin for IOVDD voltage. This pin can be used as an ADDR pin pull-up destination.<br>If used, do not connect a bypass capacitor to this pin.<br>If not used, leave this pin OPEN. |
| 9       | GND      | Analog/Digital ground pin. This voltage is the zero scale of the AD conversion.                                                                                                        |
| 10      | IOVDD    | Digital I/O power supply pin.                                                                                                                                                          |
| 11      | ADDR     | Input pin for selecting the device I <sup>2</sup> C address.                                                                                                                           |
| 12      | ALERT    | Output pin for Digital alert.                                                                                                                                                          |
| 13      | SCL      | Input pin for serial clock.                                                                                                                                                            |
| 14      | SDA      | Input/output pin for serial data.                                                                                                                                                      |
| 15      | IN0      | Analog input pin 0. The input voltage range must be between 0 V and $V_{DD}$ . Or GPO pin.                                                                                             |
| 16      | IN1      | Analog input pin 1. The input voltage range must be between 0 V and $V_{DD}$ . Or GPO pin.                                                                                             |
| -       | EXP-PAD  | The EXP-PAD is connected to GND.                                                                                                                                                       |

### **Block Diagram**



# Absolute Maximum Ratings (Ta = 25 °C)

| Parameter                     | Symbol          | Rating                        | Unit |
|-------------------------------|-----------------|-------------------------------|------|
| Analog/Digital Supply Voltage | V <sub>DD</sub> | 5.7                           | V    |
| Digital I/O Supply Voltage    | VIOVDD          | V <sub>DD</sub> +0.3, max 5.7 | V    |
| Analog Input Voltage          | V <sub>IN</sub> | -0.3 to V <sub>DD</sub> +0.3  | V    |
| Digital Input Voltage         | VDIN            | -0.3 to VIOVDD+0.3            | V    |
| Maximum Junction Temperature  | Tjmax           | 150                           | °C   |
| Storage Temperature Range     | Tstg            | -55 to +150                   | °C   |

Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating.

#### Thermal Resistance (Note 2)

| Derometor                                                      | Symbol      | Thermal Res            | Linit                    |      |  |
|----------------------------------------------------------------|-------------|------------------------|--------------------------|------|--|
| Parameter                                                      | Symbol      | 1s <sup>(Note 4)</sup> | 2s2p <sup>(Note 5)</sup> | Unit |  |
| VQFN16FV3030                                                   |             |                        |                          |      |  |
| Junction to Ambient                                            | θја         | 189.0                  | 57.5                     | °C/W |  |
| Junction to Top Characterization Parameter <sup>(Note 3)</sup> | $\Psi_{JT}$ | 23                     | 10                       | °C/W |  |

(Note 2) Based on JESD51-2A (Still-Air).

(Note 3) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package.

(Note 4) Using a PCB board based on JESD51-3.

| Laver Number of                                                                                                                                      |                                                              |                                                                                            |                                        |                                                                                  |                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Measurement Board                                                                                                                                    | Material                                                     | Board Size                                                                                 |                                        |                                                                                  |                                                                     |
| Single                                                                                                                                               | FR-4                                                         | 114.3 mm x 76.2 mm >                                                                       | c 1.57 mmt                             |                                                                                  |                                                                     |
| Тор                                                                                                                                                  |                                                              |                                                                                            |                                        |                                                                                  |                                                                     |
| Copper Pattern                                                                                                                                       | Thickness                                                    |                                                                                            |                                        |                                                                                  |                                                                     |
| Footprints and Traces                                                                                                                                | 70 µm                                                        |                                                                                            |                                        |                                                                                  |                                                                     |
| Layer Number of                                                                                                                                      | Material                                                     | Deerd Cine                                                                                 | 5 10                                   |                                                                                  | (Note 6)                                                            |
| Measurement Board                                                                                                                                    | Material                                                     | Board Size                                                                                 | -                                      | Pitch                                                                            | Diameter                                                            |
| 4 Layers                                                                                                                                             | FR-4                                                         | 114.3 mm x 76.2 mm x 1.6 mmt                                                               |                                        | 1.20 mm                                                                          | Ф0.30 mm                                                            |
| Тор                                                                                                                                                  | Тор                                                          |                                                                                            | ers                                    | Botton                                                                           | I                                                                   |
| Copper Pattern                                                                                                                                       | Thickness                                                    | Copper Pattern                                                                             | Thickness                              | Copper Pattern                                                                   | Thickness                                                           |
| Footprints and Traces                                                                                                                                | 70 µm                                                        | 74.2 mm x 74.2 mm                                                                          | 35 µm                                  | 74.2 mm x 74.2 mm                                                                | n 70 µm                                                             |
| Top<br>Copper Pattern<br>Footprints and Traces<br>Layer Number of<br>Measurement Board<br>4 Layers<br>Top<br>Copper Pattern<br>Footprints and Traces | Thickness<br>70 μm<br>Material<br>FR-4<br>Thickness<br>70 μm | Board Size<br>114.3 mm x 76.2 mm<br>2 Internal Laye<br>Copper Pattern<br>74.2 mm x 74.2 mm | x 1.6 mmt<br>ers<br>Thickness<br>35 µm | Thermal Via<br>Pitch<br>1.20 mm<br>Botton<br>Copper Pattern<br>74.2 mm x 74.2 mm | <sub>(Note 6)</sub><br>Diamete<br>Φ0.30 mi<br>1<br>Thickr<br>η 70 μ |

(Note 6) This thermal via connect with the copper pattern of layers 1,2, and 4. The placement and dimensions obey a land pattern.

# **Recommended Operating Conditions**

| Parameter                     | Symbol          | Min  | Тур | Max             | Unit |
|-------------------------------|-----------------|------|-----|-----------------|------|
| Analog/Digital Supply Voltage | V <sub>DD</sub> | 2.70 | -   | 5.25            | V    |
| Digital I/O Supply Voltage    | VIOVDD          | 1.65 | -   | V <sub>DD</sub> | V    |
| Analog Input Voltage          | Vin             | 0    | -   | Vdd             | V    |
| Digital Input Voltage         | Vdin            | 0    | -   | VIOVDD          | V    |
| Operating Temperature         | Topr            | -40  | +25 | +125            | °C   |
| Clock Frequency               | fscl            | 100  | -   | 3400            | kHz  |
| Sampling Rate                 | f <sub>S</sub>  | -    | -   | 140             | kSPS |

# **Electrical Characteristics**

Unless otherwise specified, Ta = -40 °C to +125 °C (typical: Ta = 25 °C),  $V_{DD}$  = 2.7 V to 5.25 V,  $V_{IOVDD}$  = 1.65 V to 5.25 V,  $f_{SCL}$  = 3.4 MHz

| Parameter                                          | Symbol                  | Min                    | Тур   | Max   | Unit | Conditions                                                        |
|----------------------------------------------------|-------------------------|------------------------|-------|-------|------|-------------------------------------------------------------------|
| Statistic Converter Characteristics                |                         |                        |       |       | ·    |                                                                   |
| Resolution with No Missing Codes                   | Res                     | -                      | 12    | -     | bit  |                                                                   |
| Integral Non-linearity1                            | I <sub>NL1</sub>        | -1.2                   | -     | +1.2  | LSB  | Ta = 25 °C, V <sub>DD</sub> = 5.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Integral Non-linearity2                            | I <sub>NL2</sub>        | -1.0                   | -     | +1.0  | LSB  | Ta = 25 °C, V <sub>DD</sub> = 3.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Differential Non-linearity1                        | D <sub>NL1</sub>        | -0.99                  | -     | +0.99 | LSB  | Ta = 25 °C, V <sub>DD</sub> = 5.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Differential Non-linearity2                        | D <sub>NL2</sub>        | -0.99                  | -     | +0.99 | LSB  | Ta = 25 °C, V <sub>DD</sub> = 3.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Offset Error1                                      | O <sub>E1</sub>         | -2.9                   | ±1.1  | +2.9  | LSB  | Ta = 25 °C, V <sub>DD</sub> = 5.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Offset Error2                                      | O <sub>E2</sub>         | -2.3                   | ±1.1  | +2.3  | LSB  | Ta = 25 °C, V <sub>DD</sub> = 3.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Gain Error1                                        | G <sub>E1</sub>         | -2.2                   | ±0.8  | +2.2  | LSB  | Ta = 25 °C, V <sub>DD</sub> = 5.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Gain Error2                                        | G <sub>E2</sub>         | -2.0                   | ±0.8  | +2.0  | LSB  | Ta = 25 °C, V <sub>DD</sub> = 3.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Dynamic Converter Characteristics (f <sub>IN</sub> | = 2 kHz, V <sub>I</sub> | <sub>N</sub> = -0.02 ( | dBFS) |       |      | -                                                                 |
| Signal to Noise and Distortion Ratio1              | SINAD1                  | 70                     | 72    | -     | dB   | Ta = 25 °C, V <sub>DD</sub> = 5.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Signal to Noise and Distortion Ratio2              | SINAD2                  | 70                     | 72    | -     | dB   | Ta = 25 °C, V <sub>DD</sub> = 3.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Signal to Noise Ratio1                             | SNR1                    | 70.8                   | 72    | -     | dB   | Ta = 25 °C, V <sub>DD</sub> = 5.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Signal to Noise Ratio2                             | S <sub>NR2</sub>        | 70.8                   | 72    | -     | dB   | Ta = 25 °C, V <sub>DD</sub> = 3.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Total Harmonic Distortion                          | T <sub>HD</sub>         | -                      | -80   | -     | dB   | Ta = 25 °C, V <sub>DD</sub> = 5.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Spurious-free Dynamic Range                        | Sfdr                    | -                      | 82    | -     | dB   | Ta = 25 °C, V <sub>DD</sub> = 5.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Effective Number of Bits1                          | E <sub>NOB1</sub>       | 11.3                   | 11.6  | -     | bit  | Ta = 25 °C, V <sub>DD</sub> = 5.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Effective Number of Bits2                          | ENOB2                   | 11.3                   | 11.6  | -     | bit  | Ta = 25 °C, V <sub>DD</sub> = 3.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Inter-channel Isolation1                           | Iso1                    | -                      | -90   | -     | dB   | Ta = 25 °C, V <sub>DD</sub> = 5.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| Inter-channel Isolation2                           | Iso2                    | -                      | -90   | -     | dB   | Ta = 25 °C, V <sub>DD</sub> = 3.0 V<br>V <sub>IOVDD</sub> = 3.0 V |
| AD Conversion Time1                                | tconv1                  | -                      | 1.2   | 1.8   | μs   | BUSYTIME = 00                                                     |
| AD Conversion Time2                                | t <sub>CONV2</sub>      | -                      | 6.0   | 10    | μs   | BUSYTIME = 11                                                     |
| Track/Hold Acquisition Time1                       | thold1                  | 0.15                   | 0.25  | -     | μs   | BUSYTIME = 00                                                     |
| Track/Hold Acquisition Time2                       | thold2                  | 0.6                    | 1.0   | -     | μs   | BUSYTIME = 11                                                     |

Electrical Characteristics – continued Unless otherwise specified, Ta = -40 °C to +125 °C (typical: Ta = 25 °C), V<sub>DD</sub> = 2.7 V to 5.25 V, V<sub>IOVDD</sub> = 1.65 V to 5.25 V, <u>f<sub>SCL</sub> = 3.4 MHz</u>

| Parameter                               | Symbol           | Min                          | Тур                       | Max             | Unit | Conditions                                                         |  |  |  |
|-----------------------------------------|------------------|------------------------------|---------------------------|-----------------|------|--------------------------------------------------------------------|--|--|--|
| Analog Input Characteristics            | I                | I                            |                           | I               |      |                                                                    |  |  |  |
| Input Capacitance                       | Сѕн              | -                            | 28                        | -               | pF   | V <sub>DD</sub> = 5 V                                              |  |  |  |
| Input Range                             | VIN              | 0                            | -                         | Vdd             | V    |                                                                    |  |  |  |
| Digital Input Characteristics (SCL,SDA) |                  |                              |                           |                 |      |                                                                    |  |  |  |
| High Input Voltage                      | VIH              | 0.7 x<br>Viovdd              | -                         | -               | V    |                                                                    |  |  |  |
| Low Input Voltage                       | VIL              | -                            | -                         | 0.3 x<br>Viovdd | V    |                                                                    |  |  |  |
| Digital Output Characteristics (SDA)    |                  |                              |                           |                 |      |                                                                    |  |  |  |
| Output Low Voltage1                     | V <sub>OL1</sub> | -                            | -                         | 0.4             | V    | I <sub>SINK</sub> = 2 mA,<br>V <sub>IOVDD</sub> > 2 V              |  |  |  |
| Output Low Voltage2                     | V <sub>OL2</sub> | -                            | -                         | VIOVDD X<br>0.2 | V    | $I_{SINK} = 2 \text{ mA},$<br>$V_{IOVDD} \le 2 \text{ V}$          |  |  |  |
| Output Low Current1                     | Iol1             | -                            | -                         | 3               | mA   | VoL = 0.4 V,<br>Standard and Fast<br>mode                          |  |  |  |
| Output Low Current2                     | IOL2             | -                            | -                         | 6               | mA   | $V_{OL} = 0.6 V,$<br>Fast mode                                     |  |  |  |
| Output Low Current3                     | Iol3             | -                            | -                         | 20              | mA   | V <sub>OL</sub> = 0.4 V,<br>Fast mode plus                         |  |  |  |
| Digital Output Characteristics (GPO)    |                  |                              |                           |                 |      |                                                                    |  |  |  |
| Output High Voltage                     | V <sub>OH</sub>  | 0.8 x V <sub>DD</sub>        | -                         | V <sub>DD</sub> | V    |                                                                    |  |  |  |
| Output Low Voltage                      | Vol              | 0                            | -                         | Vdd x 0.2       | V    |                                                                    |  |  |  |
| Digital Output Characteristics (ALER    | Г)               |                              |                           | Γ               | 1    | 1                                                                  |  |  |  |
| Output High Voltage1                    | Voh1             | V <sub>IOVDD</sub> -<br>0.20 | V <sub>IOVDD</sub> - 0.03 | -               | V    | I <sub>SOURCE</sub> = 200 µA                                       |  |  |  |
| Output High Voltage2                    | V <sub>OH2</sub> | -                            | VIOVDD - 0.1              | -               | V    | Isource = 1 mA                                                     |  |  |  |
| Output Low Voltage1                     | V <sub>OL1</sub> | -                            | 0.02                      | 0.40            | V    | I <sub>SINK</sub> = 200 μA                                         |  |  |  |
| Output Low Voltage2                     | V <sub>OL2</sub> | -                            | 0.1                       | -               | V    | I <sub>SINK</sub> = 1 mA                                           |  |  |  |
| Current Consumption                     | T                |                              | 1                         |                 |      |                                                                    |  |  |  |
| Operational Current Consumption1        | I <sub>A1</sub>  | -                            | 340                       | 500             | μA   | $V_{DD} = V_{IOVDD} = 5.25 V,$<br>I <sup>2</sup> C High-speed mode |  |  |  |
| Operational Current Consumption2        | I <sub>A2</sub>  | -                            | 260                       | 320             | μA   | $V_{DD} = V_{IOVDD} = 3.6 V,$<br>I <sup>2</sup> C High-speed mode  |  |  |  |
| Operational Current Consumption3        | I <sub>A3</sub>  | -                            | 140                       | 185             | μA   | $V_{DD} = V_{IOVDD} = 5.25 V,$<br>I <sup>2</sup> C Fast mode plus  |  |  |  |
| Operational Current Consumption4        | I <sub>A4</sub>  | -                            | 100                       | 140             | μA   | $V_{DD} = V_{IOVDD} = 3.6 V,$<br>I <sup>2</sup> C Fast mode plus   |  |  |  |
| Operational Current Consumption5        | I <sub>A5</sub>  | -                            | 76                        | 104             | μA   | $V_{DD} = V_{IOVDD} = 5.25 V,$<br>I <sup>2</sup> C Fast mode       |  |  |  |
| Operational Current Consumption6        | I <sub>A6</sub>  | -                            | 45                        | 65              | μA   | $V_{DD} = V_{IOVDD} = 3.6 V,$<br>I <sup>2</sup> C Fast mode        |  |  |  |
| Operational Current Consumption7        | IA7              | -                            | 49                        | 63.5            | μA   | $V_{DD} = V_{IOVDD} = 5.25 V,$<br>I <sup>2</sup> C Standard mode   |  |  |  |
| Operational Current Consumption8        | I <sub>A8</sub>  | -                            | 25.5                      | 37.5            | μA   | $V_{DD} = V_{IOVDD} = 3.6 V,$<br>I <sup>2</sup> C Standard mode    |  |  |  |
| Operational Current Consumption9        | I <sub>A9</sub>  | -                            | 40                        | 50              | μA   | $V_{DD} = V_{IOVDD} = 5.25 V,$<br>No conversion                    |  |  |  |
| Operational Current Consumption10       | I <sub>A10</sub> | -                            | 20                        | 30              | μA   | $V_{DD} = V_{IOVDD} = 3.6 V,$<br>No conversion                     |  |  |  |

# **Timing Specifications**

Unless otherwise specified, Ta = -40 °C to +125 °C (typical: Ta = 25 °C), V<sub>DD</sub> = 2.7 V to 5.25 V, V<sub>IOVDD</sub> = 1.65 V to 5.25 V

### High-speed Mode

| Parameter                                 | Symbol              | Min | Тур | Max | Unit | Conditions |
|-------------------------------------------|---------------------|-----|-----|-----|------|------------|
| SCL clock frequency                       | fscl                | -   | -   | 3.4 | MHz  |            |
| Setup time for a repeated START condition | tsu_sta             | 160 | -   | -   | ns   |            |
| Hold time for START condition             | thd_sta             | 160 | -   | -   | ns   |            |
| Low period of the SCL pin                 | t∟ow                | 160 | -   | -   | ns   |            |
| High period for the SCL pin               | t <sub>HIGH</sub>   | 60  | -   | -   | ns   |            |
| Data in hold time                         | thd_dat             | 0   | -   | 70  | ns   |            |
| Data in setup time                        | t <sub>su_dat</sub> | 10  | -   | -   | ns   |            |
| STOP condition setup time                 | tsu_sto             | 160 | -   | -   | ns   |            |
| SDA/SCL rise time                         | t <sub>R</sub>      | -   | -   | 80  | ns   |            |
| SDA/SCL fall time                         | t⊧                  | -   | -   | 80  | ns   |            |
| Capacitive load for each bus line         | Св                  | -   | -   | 15  | pF   |            |
| Suppressible spike pulse width            | t <sub>SP</sub>     | 0   | -   | 10  | ns   |            |

#### Standard Mode, Fast Mode, and Fast Mode Plus

| Parameter                                 | Symbol              | Min | Тур | Max | Unit | Conditions |
|-------------------------------------------|---------------------|-----|-----|-----|------|------------|
| SCL clock frequency                       | fscl                | -   | -   | 1   | MHz  |            |
| Setup time for a repeated START condition | t <sub>su_sta</sub> | 260 | -   | -   | ns   |            |
| Hold time for START condition             | thd_sta             | 260 | -   | -   | ns   |            |
| Low period of the SCL pin                 | t <sub>LOW</sub>    | 500 | -   | -   | ns   |            |
| High period for the SCL pin               | thigh               | 260 | -   | -   | ns   |            |
| Data in hold time                         | thd_dat             | 0   | -   | -   | ns   |            |
| Data in setup time                        | tsu_dat             | 50  | -   | -   | ns   |            |
| STOP condition setup time                 | tsu_sto             | 260 | -   | -   | ns   |            |
| SDA/SCL rise time                         | t <sub>R</sub>      | -   | -   | 120 | ns   |            |
| SDA/SCL fall time                         | t⊧                  | -   | -   | 120 | ns   |            |
| Capacitive load for each bus line         | CB                  | -   | -   | 60  | pF   |            |
| Suppressible spike pulse width            | t <sub>SP</sub>     | 0   | -   | 50  | ns   |            |



| E         | <b>•</b> • • • | 0.1.1  | <b>D</b> | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | <b>T</b> | 01    |
|-----------|----------------|--------|----------|------------------------------------------|----------|-------|
| Figure 1. | 2-wire         | Serial | вus      | Interface                                | Iming    | Chart |

# **Term Definitions**

INTEGRAL NON-LINEARLITY (INL):

It is a measure of the deviation of each individual code from a line drawn from zero scale (0.5 LSB below the first code transition) through full scale (0.5 LSB above the last code transition). The deviation of any given code from this straight line is measured from the center of that code value.

DIFFERENTIAL NON-LINEARLITY (DNL):

It is the measure of the maximum deviation from the ideal step size of 1 LSB.

#### OFFSET ERROR (OE):

It is the deviation of the first code transition "(000...000) to (000...001)" from the ideal of 1.0 LSB.

#### FULL SCALE ERROR (FSE):

It is the deviation of the last code transition "(111...110) to (111...111)" from the ideal of "V<sub>DD</sub>-1.0 LSB".

GAIN ERROR (GE):

It is defined as full scale error minus offset error.

#### Ideal Transfer Characteristics

Figure 2 shows the ideal transfer characteristics of this product. Code transitions occur midway between successive integer LSB values, such as 1.0 LSB, 2.0 LSB, and so on. The LSB size for this product is  $V_{DD}$  / 4096. The output code format of the A/D converter is straight binary.



Figure 2. Ideal Transfer Characteristics

# **Term Definitions - continued**

#### TOTAL HARMONIC DISTORTION (THD):

It is the ratio, expressed in dB or dBc, of the RMS total of the first 5 harmonic components at the output to the RMS level of the input signal frequency as seen at the output. THD is calculated as

THD=20 · log<sub>10</sub> 
$$\sqrt{\frac{A_{f2}^2 + \dots + A_{f6}^2}{A_{f1}^2}}$$

where  $A_{f1}$  is the RMS power of the input frequency at the output and  $A_{f2}$  through  $A_{f6}$  are the RMS power in the first 5 harmonic frequencies.

#### SIGNAL TO NOISE AND DISTORTION RATIO (SINAD):

It is the ratio, expressed in dB, of the RMS value of the input signal to the RMS value of all other spectral components below half the sampling frequency, including harmonics but excluding DC component.

#### EFFECTIVE NUMBER OF BITS (ENOB):

It is another method of specifying Signal to Noise and Distortion Ratio. ENOB is defined as "(SINAD-1.76) / 6.02" and says that the converter is equivalent to a perfect A/D converter of this number of bits.

#### SIGNAL TO NOISE RATIO (SNR):

It is the ratio, expressed in dB, of the RMS value of the input signal to the RMS value of all other spectral components below half the sampling frequency, not including harmonics and DC component.

#### SPURIOUS FREE DYNAMIC RANGE (SFDR):

It is the difference, expressed in dB, between the RMS value of the input signal to the RMS value of the peak spurious spectral component, where a peak spurious spectral component is any spurious signal present in the output spectrum that is not present at the input.

#### CONVERSION TIME:

It is the required time for the A/D converter to convert the input signal to the digital code.

# **Typical Performance Curves**

(Reference Data)

Unless otherwise specified, Ta = -40 °C to +125 °C (typical: Ta = 25 °C), VDD = 2.7 V to 5.25 V, VIOVDD = 1.65 V to 5.25 V



Figure 3. Differential Non-linearity vs OUTPUT CODE (V<sub>IOVDD</sub> = 3 V, V<sub>DD</sub> = 5 V)







Figure 5. Amplitude vs Frequency (V<sub>IOVDD</sub> = 3 V, V<sub>DD</sub> = 5 V,  $f_{IN}$  = 2 kHz)

# **Typical Performance Curves - continued**

(Reference Data)

Unless otherwise specified, Ta = -40 °C to +125 °C (typical: Ta = 25 °C), V<sub>DD</sub> = 2.7 V to 5.25 V, V<sub>IOVDD</sub> = 1.65 V to 5.25 V



Figure 6. Differential Non-linearity vs Analog/Digital Supply Voltage



Figure 8. Integral Non-linearity vs Analog/Digital Supply Voltage



Figure 7. Differential Non-linearity vs Temperature



Figure 9. Integral Non-linearity vs Temperature

# **Typical Performance Curves - continued**

(Reference Data)

Unless otherwise specified, Ta = -40 °C to +125 °C (typical: Ta = 25 °C), V<sub>DD</sub> = 2.7 V to 5.25 V, V<sub>IOVDD</sub> = 1.65 V to 5.25 V



Figure 10. Offset Error vs Analog/Digital Supply Voltage







Figure 12. Gain Error vs Analog/Digital Supply Voltage



Figure 13. Gain Error vs Temperature

# **Typical Performance Curves - continued**

(Reference Data)

Unless otherwise specified, Ta = -40 °C to +125 °C (typical: Ta = 25 °C), V<sub>DD</sub> = 2.7 V to 5.25 V, V<sub>IOVDD</sub> = 1.65 V to 5.25 V



Figure 14. Operational Current Consumption vs Analog/Digital Supply Voltage



Figure 15. Operational Current Consumption vs Temperature

# I<sup>2</sup>C Communication Format

# Protocol Features

| Item                                     | Send Data                                                    |
|------------------------------------------|--------------------------------------------------------------|
| General Call                             | 0x00                                                         |
| General Call + Software Reset            | 0x00 + 0x06                                                  |
| General Call + Address Update            | 0x00 + 0x04                                                  |
| High-speed Mode Configuration            | 0x08 or 0x09 or 0x0A or 0x0B or 0x0C or 0x0D or 0x0E or 0x0F |
| Read ADC at Manual or Auto Sequence Mode | 7-bit Target Address, 1 (Read)                               |
| Write or Read Register                   | 7-bit Target Address, 1 (Write) + OPCODE                     |

# OPCODE for Commands

| OPCODE | Command Description                    |
|--------|----------------------------------------|
| 0x10   | Single Register Read                   |
| 0x08   | Single Register Write                  |
| 0x18   | Set bit                                |
| 0x20   | Clear bit                              |
| 0x30   | Reading a Continuous Block of Register |
| 0x28   | Writing a Continuous Block of Register |

# I<sup>2</sup>C Frame Acronyms

| OPCODE | Command Description                              |
|--------|--------------------------------------------------|
| S      | Start condition for the I <sup>2</sup> C frame   |
| Sr     | Restart condition for the I <sup>2</sup> C frame |
| Р      | Stop condition for the I <sup>2</sup> C frame    |
| А      | ACK (Low)                                        |
| R      | Read bit (High)                                  |
| W      | Write bit (Low)                                  |

# 1. Reading ADC Result

In the Reading ADC result sequence, you can read the ADC results of Manual mode and Auto Sequence mode. When sending this sequence, insert t<sub>CONV</sub> (SCL = Low) immediately before the data.



from target to controller



### I<sup>2</sup>C Communication Format - continued

#### 2. Single Register Read

In the Single Register Read sequence, you can read 1 byte register data.

| S | 7-bit Target Address | w | А | OPCODE 0x10 | A | 8-bit Register | А | Sr | 7-bit Target Address | R | А | 8-bit Register Data | A | Ρ |
|---|----------------------|---|---|-------------|---|----------------|---|----|----------------------|---|---|---------------------|---|---|
|---|----------------------|---|---|-------------|---|----------------|---|----|----------------------|---|---|---------------------|---|---|

Figure 17. Single Register Read sequence

#### 3. Single Register Write

In Single Register Write sequence, you can write 1 byte data to a register.

| S | 7-bit Target Address | W | А | OPCODE 0x08 | А | 8-bit Register<br>Address | А | 8-bit Register Data | А | Ρ |  |
|---|----------------------|---|---|-------------|---|---------------------------|---|---------------------|---|---|--|
|---|----------------------|---|---|-------------|---|---------------------------|---|---------------------|---|---|--|

Figure 18. Single Register Write sequence

#### 4. Set bit

In Set bit sequence, you can write 1 to the specified bit and the other bits can hold their values. For example, if the data in the register is 0xF0 (0b11110000) and 0xCC (0b11001100) is specified, the data in the register is updated to 0xFC (0b11111100).

| S | 7-bit Target Address | w | А | OPCODE 0x18 | А | 8-bit Register | А | 8-bit Set  | А | Р |
|---|----------------------|---|---|-------------|---|----------------|---|------------|---|---|
|   |                      |   |   |             |   | I AUULESS      |   | DICDUSICUT |   |   |

Figure 19. Set bit sequence

#### 5. Clear bit

In Clear bit sequence, you can write 0 to the specified bit and the other bits can hold their values. For example, if the data in the register is 0xF0 (0b11110000) and 0xCC (0b11001100) is specified, the data in the register is updated to 0x30 (0b00110000).

| c | 7 bit Target Address | 14/ |   |             | ٨ | 8-bit Register |   | 8-bit Clear  |   | р   |
|---|----------------------|-----|---|-------------|---|----------------|---|--------------|---|-----|
| 3 | 7-bit larget Address | ~~  | A | OFCODE 0X20 | A | Address        | A | bit position | A | L F |

Figure 20. Clear bit sequence

#### 6. Reading a Continuous Block of Register

In Reading a Continuous Block of Register sequence, you can read data from registers at continuous addresses in order. In this case, the first data to be read is the data at the specified address, and the next data is the data in the register next one.

| Aduless | s | 7-bit Target Address W | A | OPCODE 0x30 | А | 8-bit Register<br>Address | А | Sr | 7-bit Target Address | R | А | 8-bit Register Data | А | 8-bit Register Data | А |  | Р |  |
|---------|---|------------------------|---|-------------|---|---------------------------|---|----|----------------------|---|---|---------------------|---|---------------------|---|--|---|--|
|---------|---|------------------------|---|-------------|---|---------------------------|---|----|----------------------|---|---|---------------------|---|---------------------|---|--|---|--|

Figure 21. Reading a Continuous Block of Register sequence

#### 7. Writing a Continuous Block of Register

In Writing a Continuous Block of Register sequence, you can write data to registers at continuous addresses in order. In this case, the first data to be written is written to the specified address, and the next data is written to the register next one.

| S 7. | 7-bit Target Address | w | А | OPCODE 0x28 | A | 8-bit Register | А | 8-bit Register Data | А | 8-bit Register Data | A |  | Р |  |
|------|----------------------|---|---|-------------|---|----------------|---|---------------------|---|---------------------|---|--|---|--|
|------|----------------------|---|---|-------------|---|----------------|---|---------------------|---|---------------------|---|--|---|--|

Figure 22. Writing a Continuous Block of Register sequence

# I<sup>2</sup>C Target Address Selector

You can select the I<sup>2</sup>C target address according to the ADDR pin setting. The I<sup>2</sup>C target address is updated by either power-on, software reset by the RST register, or address update by General Call. I<sup>2</sup>C target addresses are shown in Figure 23 and Table 1.



Figure 23. ADDR pin input circuit

| R1 <sup>(Note 7)</sup> | R2 <sup>(Note 7)</sup> | I <sup>2</sup> C Address |
|------------------------|------------------------|--------------------------|
| 0 Ω                    | OPEN                   | 001 0111                 |
| 100 kΩ                 | OPEN                   | 001 0100                 |
| OPEN                   | 0 Ω                    | 001 0000                 |
| OPEN                   | 100 kΩ                 | 001 0011                 |

Table 1. I<sup>2</sup>C Address Selection

(Note 7) Tolerance for R1, R2  $\leq \pm 5$  %.

# Register Map<sup>(Note 8)</sup>

| Address | Register Name   | R/W | Initial | Bit7                                          | Bit6           | Bit5          | Bit4           | Bit3       | Bit2    | Bit1       | Bit0      |
|---------|-----------------|-----|---------|-----------------------------------------------|----------------|---------------|----------------|------------|---------|------------|-----------|
| 0x00    | SYSTEM_STATUS   | R/W | 0x81    | RSVD                                          | SEQ_<br>STATUS | I2C_<br>SPEED | 0              | 0          | 0       | 0          | BOR       |
| 0x01    | GENERAL_CFG     | R/W | 0x00    | 0                                             | 0              | STATS<br>_EN  | DWC_EN         | 0          | 0       | 0          | RST       |
| 0x02    | DATA_CFG        | R/W | 0x00    | FIX_PAT                                       | 0              | APPEND<br>[1  | _STATUS<br>:0] | 0          | 0       | 0          | 0         |
| 0x03    | BUSY_CFG        | R/W | 0x00    | BUSY_T                                        | IME [1:0]      | 0             | 0              | 0          | 0       | 0          | 0         |
| 0x04    | OPMODE_CFG      | R/W | 0x00    | 0                                             | CONV_M         | ODE [1:0]     | 0              | 0          | 0       | CLK_D      | IV [1:0]  |
| 0x05    | PIN_CFG         | R/W | 0x00    |                                               |                |               | PIN_CF         | G [7:0]    |         |            |           |
| 0x0B    | GPO_VALUE       | R/W | 0x00    |                                               |                |               | GPO_VA         | LUE [7:0]  |         |            |           |
| 0x10    | SEQUENCE_CFG    | R/W | 0x00    | 0                                             | 0              | 0             | SEQ_<br>START  | 0          | 0       | SEQ_MO     | DDE [1:0] |
| 0x11    | MANUAL_CH_SEL   | R/W | 0x00    | 0                                             | 0              | 0             | 0              |            | MANUAL_ | CHID [3:0] |           |
| 0x12    | AUTO_SEQ_CH_SEL | R/W | 0x00    |                                               |                | AU            | ITO_SEQ_       | CH_SEL [7  | 7:0]    |            |           |
| 0x14    | ALERT_CH_SEL    | R/W | 0x00    |                                               |                |               | ALERT_CH       | I_SEL [7:0 | ]       |            |           |
| 0x18    | EVENT_FLAG      | R   | 0x00    |                                               |                |               | EVENT_F        | LAG [7:0]  |         |            |           |
| 0x1A    | EVENT_HIGH_FLAG | R/W | 0x00    |                                               |                | E١            | /ENT_HIG       | H_FLAG [7  | ':0]    |            |           |
| 0x1C    | EVENT_LOW_FLAG  | R/W | 0x00    |                                               |                | E١            | VENT_LOV       | V_FLAG [7  | :0]     |            |           |
| 0x1E    | EVENT_RGN       | R/W | 0x00    |                                               |                |               | EVENT_F        | RGN [7:0]  |         |            |           |
| 0x20    | HYSTERESIS_CH0  | R/W | 0xF0    | HIGH_THRESHOLD_CH0 [3:0] HYSTERESIS_CH0 [3:0] |                |               |                |            |         |            |           |
| 0x21    | HIGH_TH_CH0     | R/W | 0xFF    |                                               |                | HIGH          | _THRESH        | OLD_CH0    | [11:4]  |            |           |
| 0x22    | EVENT_COUNT_CH0 | R/W | 0x00    | LOW                                           | _THRESH        | OLD_CH0       | [3:0]          | EV         | ENT_COU | NT_CH0 [   | 3:0]      |
| 0x23    | LOW_TH_CH0      | R/W | 0x00    |                                               |                | LOW           | _THRESH        | OLD_CH0    | [11:4]  |            |           |
| 0x24    | HYSTERESIS_CH1  | R/W | 0xF0    | HIGH                                          | I_THRESH       | IOLD_CH1      | [3:0]          | Н          | YSTERES | IS_CH1 [3: | 0]        |
| 0x25    | HIGH_TH_CH1     | R/W | 0xFF    |                                               |                | HIGH          | _THRESH        | OLD_CH1    | [11:4]  |            |           |
| 0x26    | EVENT_COUNT_CH1 | R/W | 0x00    | LOW                                           | _THRESH        | OLD_CH1       | [3:0]          | EV         | ENT_COU | NT_CH1 [   | 3:0]      |
| 0x27    | LOW_TH_CH1      | R/W | 0x00    |                                               |                | LOW           | _THRESH        | OLD_CH1    | [11:4]  |            |           |
| 0x28    | HYSTERESIS_CH2  | R/W | 0xF0    | HIGH                                          | I_THRESF       | IOLD_CH2      | 2 [3:0]        | Н          | YSTERES | IS_CH2 [3: | 0]        |
| 0x29    | HIGH_TH_CH2     | R/W | 0xFF    |                                               |                | HIGH          | _THRESH        | OLD_CH2    | [11:4]  |            |           |
| 0x2A    | EVENT_COUNT_CH2 | R/W | 0x00    | LOW                                           | _THRESH        | OLD_CH2       | [3:0]          | EV         | ENT_COU | NT_CH2 [   | 3:0]      |
| 0x2B    | LOW_TH_CH2      | R/W | 0x00    | 00 LOW_THRESHOLD_CH2 [11:4]                   |                |               |                |            |         |            |           |
| 0x2C    | HYSTERESIS_CH3  | R/W | 0xF0    | HIGH                                          | I_THRESH       | IOLD_CH3      | 8 [3:0]        | Н          | YSTERES | IS_CH3 [3: | 0]        |
| 0x2D    | HIGH_TH_CH3     | R/W | 0xFF    |                                               |                | HIGH          | _THRESH        | OLD_CH3    | [11:4]  |            |           |
| 0x2E    | EVENT_COUNT_CH3 | R/W | 0x00    | LOW                                           | _THRESH        | OLD_CH3       | [3:0]          | EV         | ENT_COU | NT_CH3 [   | 3:0]      |
| 0x2F    | LOW_TH_CH3      | R/W | 0x00    | 00 LOW_THRESHOLD_CH3 [11:4]                   |                |               |                |            |         |            |           |

(Note 8) Do not write any commands to other addresses except above. Do not write '1' to the fields in which value is '0' in above table.

# Register Map<sup>(Note 8)</sup> – continued

| Address | Register Name   | R/W | Initial | Bit7  | Bit6    | Bit5        | Bit4     | Bit3       | Bit2    | Bit1       | Bit0 |
|---------|-----------------|-----|---------|-------|---------|-------------|----------|------------|---------|------------|------|
| 0x30    | HYSTERESIS_CH4  | R/W | 0xF0    | HIGH_ | _THRESH | IOLD_CH4    | [3:0]    | H          | YSTERES | IS_CH4 [3: | .0]  |
| 0x31    | HIGH_TH_CH4     | R/W | 0xFF    |       |         | HIGH_       | THRESH   | OLD_CH4    | [11:4]  |            |      |
| 0x32    | EVENT_COUNT_CH4 | R/W | 0x00    | LOW_  | THRESH  | OLD_CH4 [   | [3:0]    | EVI        | ENT_COU | NT_CH4 [   | 3:0] |
| 0x33    | LOW_TH_CH4      | R/W | 0x00    |       |         | LOW_        | THRESHO  | OLD_CH4 [  | [11:4]  |            |      |
| 0x34    | HYSTERESIS_CH5  | R/W | 0xF0    | HIGH_ | THRESH  | IOLD_CH5    | [3:0]    | H          | STERES  | IS_CH5 [3: | 0]   |
| 0x35    | HIGH_TH_CH5     | R/W | 0xFF    |       |         | HIGH_       | THRESH   | OLD_CH5    | [11:4]  |            |      |
| 0x36    | EVENT_COUNT_CH5 | R/W | 0x00    | LOW_  | THRESH  | OLD_CH5 [   | [3:0]    | EVI        | ENT_COU | NT_CH5 [   | 3:0] |
| 0x37    | LOW_TH_CH5      | R/W | 0x00    |       |         | LOW_        | THRESHO  | OLD_CH5 [  | [11:4]  |            |      |
| 0x38    | HYSTERESIS_CH6  | R/W | 0xF0    | HIGH  | THRESH  | IOLD_CH6    | [3:0]    | H          | STERES  | IS_CH6 [3: | 0]   |
| 0x39    | HIGH_TH_CH6     | R/W | 0xFF    |       |         | HIGH_       | THRESH   | OLD_CH6    | [11:4]  |            |      |
| 0x3A    | EVENT_COUNT_CH6 | R/W | 0x00    | LOW_  | THRESH  | OLD_CH6 [   | [3:0]    | EVI        | ENT_COU | NT_CH6 [   | 3:0] |
| 0x3B    | LOW_TH_CH6      | R/W | 0x00    |       |         | LOW_        | THRESHO  | OLD_CH6 [  | [11:4]  |            |      |
| 0x3C    | HYSTERESIS_CH7  | R/W | 0xF0    | HIGH_ | THRESH  | IOLD_CH7    | [3:0]    | H          | STERES  | IS_CH7 [3: | 0]   |
| 0x3D    | HIGH_TH_CH7     | R/W | 0xFF    |       |         | HIGH_       | THRESH   | OLD_CH7    | [11:4]  |            |      |
| 0x3E    | EVENT_COUNT_CH7 | R/W | 0x00    | LOW_  | THRESH  | OLD_CH7 [   | [3:0]    | EVI        | ENT_COU | NT_CH7 [:  | 3:0] |
| 0x3F    | LOW_TH_CH7      | R/W | 0x00    |       |         | LOW_        | THRESHO  | OLD_CH7 [  | [11:4]  |            |      |
| 0xA0    | RECENT_CH0_LSB  | R   | 0x00    | LA    | ST_VALU | IE_CH0 [3:0 | )]       | 0          | 0       | 0          | 0    |
| 0xA1    | RECENT_CH0_MSB  | R   | 0x00    |       |         | LAS         | ST_VALUE | E_CH0 [11: | :4]     |            |      |
| 0xA2    | RECENT_CH1_LSB  | R   | 0x00    | LA    | ST_VALU | IE_CH1 [3:0 | )]       | 0          | 0       | 0          | 0    |
| 0xA3    | RECENT_CH1_MSB  | R   | 0x00    |       |         | LAS         | ST_VALUE | E_CH1 [11: | :4]     |            |      |
| 0xA4    | RECENT_CH2_LSB  | R   | 0x00    | LA    | ST_VALU | E_CH2 [3:0  | )]       | 0          | 0       | 0          | 0    |
| 0xA5    | RECENT_CH2_MSB  | R   | 0x00    |       |         | LAS         | ST_VALUE | E_CH2 [11: | :4]     |            |      |
| 0xA6    | RECENT_CH3_LSB  | R   | 0x00    | LA    | ST_VALU | E_CH3 [3:0  | )]       | 0          | 0       | 0          | 0    |
| 0xA7    | RECENT_CH3_MSB  | R   | 0x00    |       |         | LAS         | ST_VALUE | E_CH3 [11: | :4]     | 1          |      |
| 0xA8    | RECENT_CH4_LSB  | R   | 0x00    | LA    | ST_VALU | E_CH4 [3:0  | )]       | 0          | 0       | 0          | 0    |
| 0xA9    | RECENT_CH4_MSB  | R   | 0x00    |       |         | LAS         | ST_VALUE | E_CH4 [11: | :4]     | l          |      |
| 0xAA    | RECENT_CH5_LSB  | R   | 0x00    | LA    | ST_VALU | E_CH5 [3:0  | )]       | 0          | 0       | 0          | 0    |
| 0xAB    | RECENT_CH5_MSB  | R   | 0x00    |       |         | LAS         | ST_VALUE | E_CH5 [11: | :4]     |            |      |
| 0xAC    | RECENT_CH6_LSB  | R   | 0x00    | LA    | ST_VALU | E_CH6 [3:0  | )]       | 0          | 0       | 0          | 0    |
| 0xAD    | RECENT_CH6_MSB  | R   | 0x00    |       |         | LAS         | ST_VALUE | E_CH6 [11: | :4]     | 1          |      |
| 0xAE    | RECENT_CH7_LSB  | R   | 0x00    | LA    | ST_VALU | E_CH7 [3:0  | )]       | 0          | 0       | 0          | 0    |
| 0xAF    | RECENT_CH7_MSB  | R   | 0x00    |       |         | LAS         | ST_VALUE | E_CH7 [11: | :4]     |            | L    |

(Note 8) Do not write any commands to other addresses except above. Do not write '1' to the fields in which value is '0' in above table.

#### SYSTEM\_STATUS

| Address | R/W | Initial | Bit7 | Bit6           | Bit5      | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|----------------|-----------|------|------|------|------|------|
| 0x00    | R/W | 0x81    | RSVD | SEQ_<br>STATUS | I2C_SPEED | 0    | 0    | 0    | 0    | BOR  |

RSVD (Read Only)

Fixed value, always 1

#### SEQ\_STATUS (Read Only)

Status of the Channel Sequencer. When two or more CH are selected in AUTO\_SEQ\_CH\_SEL and SEQ\_START = 1, Channel Sequencer is in progress.

0: stop

1: in progress

#### I2C\_SPEED (Read Only)

Status of I<sup>2</sup>C

- 0: Except High-speed Mode
- 1: High-speed Mode

#### BOR

Brown out reset indicator. Writing 1 will set it to 0.

- 0: BOR is not detected.
- 1: BOR is detected.

#### GENERAL\_CFG

| Address | R/W | Initial | Bit7 | Bit6 | Bit5     | Bit4   | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|------|----------|--------|------|------|------|------|
| 0x01    | R/W | 0x00    | 0    | 0    | STATS_EN | DWC_EN | 0    | 0    | 0    | RST  |

#### STATS\_EN

- 0: Do not update LAST\_VALUE
- 1: Update LAST\_VALUE

#### DWC\_EN

Enable Digital Window Comparator

- 0: Disable
- 1: Enable

#### RST

Software Reset

0: Normal operation

#### DATA\_CFG

| Address | R/W Ini | ial Bit7   | Bit6 | Bit5     | Bit4        | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|---------|------------|------|----------|-------------|------|------|------|------|
| 0x02    | R/W 0x  | 00 FIX_PAT | 0    | APPEND_S | TATUS [1:0] | 0    | 0    | 0    | 0    |

#### FIX\_PAT

- Fix the ADC result to 0xA5A.
  - 0: Disable
  - 1: Enable

#### APPEND\_STATUS

Output data format in the Reading ADC result sequence

- 00: 12 bit Data output + 4'b0000
- 01: 12 bit Data output + 4 bit Channel ID
- 10: 12 bit Data output + 3'b100 + ALERT
- 11: Reserved

Enable LAST\_VALUE update in Address A0 to AF

<sup>1:</sup> Execute Software Reset and update I<sup>2</sup>C address.

BUSY CFG

|         | -   |         |        |           |      |      |      |      |      |      |
|---------|-----|---------|--------|-----------|------|------|------|------|------|------|
| Address | R/W | Initial | Bit7   | Bit6      | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| 0x03    | R/W | 0x00    | BUSY_T | IME [1:0] | 0    | 0    | 0    | 0    | 0    | 0    |

BUSY\_TIME

AD conversion time

00: 1.2 µs

01: Reserved

10: Reserved

11: 6.0 µs

#### OPMODE CFG

| Address R/W Initia | al Bit7 | Bit6   | Bit5      | Bit4 | Bit3 | Bit2 | Bit1  | Bit0     |
|--------------------|---------|--------|-----------|------|------|------|-------|----------|
| 0x04 R/W 0x00      | 0 0     | CONV_M | ODE [1:0] | 0    | 0    | 0    | CLK_D | IV [1:0] |

#### CONV\_MODE

Select AD conversion mode

00: Manual Mode or Auto Sequence Mode

01: Autonomous Mode

10: Reserved

11: Reserved

#### CLK\_DIV

Select interval time at Autonomous Mode

00: 0.75 ms

01: 1.5 ms

10: 3 ms 11: 6 ms

11.011

#### PIN\_CFG

|         | -   |         |      |      |      |        |                      |      |      |      |
|---------|-----|---------|------|------|------|--------|----------------------|------|------|------|
| Address | R/W | Initial | Bit7 | Bit6 | Bit5 | Bit4   | Bit3                 | Bit2 | Bit1 | Bit0 |
| 0x05    | R/W | 0x00    |      |      |      | PIN_CF | <sup>-</sup> G [7:0] |      |      |      |

# PIN\_CFG

Enable GPO for IN0 to IN7

Bit0 corresponds to IN0, Bit7 corresponds to IN7

0: Disable

1: Enable

# GPO\_VALUE

| Address | R/WI | nitial | Bit7 | Bit6 | Bit5 | Bit4   | Bit3      | Bit2 | Bit1 | Bit0 |
|---------|------|--------|------|------|------|--------|-----------|------|------|------|
| 0x0B    | R/W  | 0x00   |      |      |      | GPO_VA | LUE [7:0] |      |      |      |

GPO\_VALUE

Select GPO output polarity for IN0 to IN7

Bit0 corresponds to IN0, Bit7 corresponds to IN7

0: Low 1: High



### SEQUENCE\_CFG

| Address | R/W | Initial | Bit7 | Bit6 | Bit5 | Bit4      | Bit3 | Bit2 | Bit1   | Bit0      |
|---------|-----|---------|------|------|------|-----------|------|------|--------|-----------|
| 0x10    | R/W | 0x00    | 0    | 0    | 0    | SEQ_START | 0    | 0    | SEQ_MC | DDE [1:0] |

#### SEQ\_START

Start/Stop of Channel Sequencer

- 0: Stop
- 1: Start

#### SEQ\_MODE

Select Sequence Mode

00: Manual Mode, select channel in MANUAL\_CHID

01: Auto Sequence Mode or Autonomous Mode, select channel in AUTO\_SEQ\_CH\_SEL

10: Reserved

11: Reserved

#### MANUAL\_CH\_SEL

| Address | R/W | Initial | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2    | Bit1       | Bit0 |
|---------|-----|---------|------|------|------|------|------|---------|------------|------|
| 0x11    | R/W | 0x00    | 0    | 0    | 0    | 0    |      | MANUAL_ | CHID [3:0] |      |

MANUAL\_CHID

Select channel at Manual Mode 0000: IN0 0001: IN1 0010: IN2 0011: IN3 0100: IN4 0101: IN5 0110: IN6 0111: IN7 1xxx: Reserved

AUTO\_SEQ\_CH\_SEL

| Address | R/W | Initial | Bit7 | Bit6 | Bit5 | Bit4      | Bit3         | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|------|------|-----------|--------------|------|------|------|
| 0x12    | R/W | 0x00    |      |      |      | AUTO_SEQ_ | CH_SEL [7:0] |      |      |      |

AUTO\_SEQ\_CH\_SEL

Select channel at Auto Sequence Mode and Autonomous Mode Execute AD conversion in order by the selected channel.

Bit0 corresponds to IN0, Bit7 corresponds to IN7

0: Not selected

1: Selected

ALERT CH SEL

| Address | R/W | Initial | Bit7 | Bit6 | Bit5 | Bit4     | Bit3        | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|------|------|----------|-------------|------|------|------|
| 0x14    | R/W | 0x00    |      |      |      | ALERT_CH | I_SEL [7:0] |      |      |      |

ALERT\_CH\_SEL

Select channel for ALERT flag to be output on ALERT pin, Bit0 corresponds to IN0, Bit7 corresponds to IN7

0: Not selected

1: Selected

#### EVENT\_FLAG

| Address | R/W | Initial | Bit7 | Bit6 | Bit5 | Bit4    | Bit3      | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|------|------|---------|-----------|------|------|------|
| 0x18    | R   | 0x00    |      |      |      | EVENT_F | LAG [7:0] |      |      |      |

#### EVENT\_FLAG

Indicate ALERT flag for each channel, Bit0 corresponds to IN0, Bit7 corresponds to IN7

0: Not flagged

1: Flagged

#### EVENT\_HIGH\_FLAG

| Address | R/W | Initial | Bit7 | Bit6 | Bit5 | Bit4      | Bit3         | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|------|------|-----------|--------------|------|------|------|
| 0x1A    | R/W | 0x00    |      |      |      | EVENT_HIG | H_FLAG [7:0] |      |      |      |

#### EVENT\_HIGH\_FLAG

Indicate ALERT High flag for each channel. Writing 1 will clear the flag and set it to 0.

Bit0 corresponds to IN0, Bit7 corresponds to IN7

0: Not flagged

1: Flagged

#### EVENT\_LOW\_FLAG

| Address | R/W | Initial | Bit7 | Bit6 | Bit5 | Bit4      | Bit3         | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|------|------|-----------|--------------|------|------|------|
| 0x1C    | R/W | 0x00    |      |      |      | EVENT_LOV | V_FLAG [7:0] |      |      |      |

#### EVENT\_LOW\_FLAG

Indicate ALERT Low flag for each channel. Writing 1 will clear the flag and set it to 0.

Bit0 corresponds to IN0, Bit7 corresponds to IN7

0: Not flagged

1: Flagged

#### EVENT\_RGN

| _       |     |         |      |      |      |         |           |      |      |      |
|---------|-----|---------|------|------|------|---------|-----------|------|------|------|
| Address | R/W | Initial | Bit7 | Bit6 | Bit5 | Bit4    | Bit3      | Bit2 | Bit1 | Bit0 |
| 0x1E    | R/W | 0x00    |      |      |      | EVENT_F | RGN [7:0] |      |      |      |

#### EVENT\_RGN

Select a region for Digital Window Comparator, Bit0 corresponds to IN0, Bit7 corresponds to IN7

0: Detecting outside

1: Detecting inside



#### HYSTERESIS CH0, HIGH TH CH0

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3        | Bit2     | Bit1         | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|-------------|----------|--------------|------|
| 0x20    | R/W | 0xF0    | н    | GH_THRESH | IOLD_CH0 [3 | :0]       |             | HYSTERES | IS_CH0 [3:0] |      |
| 0x21    | R/W | 0xFF    |      |           | HI          | GH_THRESH | OLD_CH0 [11 | 1:4]     |              |      |

#### EVENT\_COUNT\_CH0, LOW\_TH\_CH0

| Address | R/W | Initial | Bit7 | Bit6      | Bit5       | Bit4     | Bit3        | Bit2      | Bit1          | Bit0 |
|---------|-----|---------|------|-----------|------------|----------|-------------|-----------|---------------|------|
| 0x22    | R/W | 0x00    | L    | OW_THRESH | OLD_CH0 [3 | :0]      |             | EVENT_COU | INT_CH0 [3:0] | ]    |
| 0x23    | R/W | 0x00    |      |           | LC         | W_THRESH | OLD_CH0 [11 | :4]       |               |      |

# HIGH\_THRESHOLD\_CH0

High threshold for CH0

#### HYSTERESIS\_CH0

Hysteresis for high and low thresholds. Apply a 4 bit setting with a 3 bit left shift.

# LOW\_THRESHOLD\_CH0

Low threshold for CH0

### EVENT\_COUNT\_CH0

Configure the number of times the Event Counter for CH0. Flagged when the AD conversion result exceeds the threshold n+1 times.

#### HYSTERESIS\_CH1, HIGH\_TH\_CH1

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3        | Bit2     | Bit1        | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|-------------|----------|-------------|------|
| 0x24    | R/W | 0xF0    | н    | GH_THRESH | IOLD_CH1 [3 | :0]       |             | HYSTERES | S_CH1 [3:0] |      |
| 0x25    | R/W | 0xFF    |      |           | HI          | GH_THRESH | OLD_CH1 [11 | :4]      |             |      |

#### EVENT\_COUNT\_CH1, LOW\_TH\_ CH1

|         |     |         | ,    | -         |            |          |             |           |              |      |
|---------|-----|---------|------|-----------|------------|----------|-------------|-----------|--------------|------|
| Address | R/W | Initial | Bit7 | Bit6      | Bit5       | Bit4     | Bit3        | Bit2      | Bit1         | Bit0 |
| 0x26    | R/W | 0x00    | LC   | OW_THRESH | OLD_CH1 [3 | :0]      |             | EVENT_COU | NT_CH1 [3:0] |      |
| 0x27    | R/W | 0x00    |      |           | LC         | W_THRESH | OLD_CH1 [11 | :4]       |              |      |

#### HIGH\_THRESHOLD\_CH1 High threshold for CH1

HYSTERESIS CH1

Hysteresis for high and low thresholds. Apply a 4 bit setting with a 3 bit left shift.

#### LOW\_THRESHOLD\_CH1 Low threshold for CH1

EVENT\_COUNT\_CH1

Configure the number of times the Event Counter for CH1. Flagged when the AD conversion result exceeds the threshold n+1 times.

#### HYSTERESIS CH2, HIGH TH CH2

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3        | Bit2     | Bit1         | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|-------------|----------|--------------|------|
| 0x28    | R/W | 0xF0    | н    | GH_THRESH | IOLD_CH2 [3 | :0]       |             | HYSTERES | IS_CH2 [3:0] |      |
| 0x29    | R/W | 0xFF    |      |           | HI          | GH_THRESH | OLD_CH2 [11 | 1:4]     |              |      |

#### EVENT\_COUNT\_CH2, LOW\_TH\_CH2

| Address | R/W | Initial | Bit7 | Bit6      | Bit5       | Bit4     | Bit3        | Bit2      | Bit1         | Bit0 |
|---------|-----|---------|------|-----------|------------|----------|-------------|-----------|--------------|------|
| 0x2A    | R/W | 0x00    | L    | OW_THRESH | OLD_CH2 [3 | :0]      |             | EVENT_COU | NT_CH2 [3:0] | ]    |
| 0x2B    | R/W | 0x00    |      |           | LC         | W_THRESH | OLD_CH2 [11 | :4]       |              |      |

# HIGH\_THRESHOLD\_CH2

High threshold for CH2

#### HYSTERESIS\_CH2

Hysteresis for high and low thresholds. Apply a 4 bit setting with a 3 bit left shift.

# LOW\_THRESHOLD\_CH2

Low threshold for CH2

# EVENT\_COUNT\_CH2

Configure the number of times the Event Counter for CH2. Flagged when the AD conversion result exceeds the threshold n+1 times.

#### HYSTERESIS\_CH3, HIGH\_TH\_CH3

| Address | R/W | Initial | Bit7 | Bit6      | Bit5       | Bit4      | Bit3        | Bit2     | Bit1         | Bit0 |
|---------|-----|---------|------|-----------|------------|-----------|-------------|----------|--------------|------|
| 0x2C    | R/W | 0xF0    | н    | GH_THRESH | OLD_CH3 [3 | :0]       |             | HYSTERES | IS_CH3 [3:0] |      |
| 0x2D    | R/W | 0xFF    |      |           | HI         | GH_THRESH | OLD_CH3 [11 | :4]      |              |      |

#### EVENT\_COUNT\_CH3, LOW\_TH\_ CH3

| = |         |     |         | <u> </u> |           |            |          |             |           |              |      |
|---|---------|-----|---------|----------|-----------|------------|----------|-------------|-----------|--------------|------|
| A | Address | R/W | Initial | Bit7     | Bit6      | Bit5       | Bit4     | Bit3        | Bit2      | Bit1         | Bit0 |
|   | 0x2E    | R/W | 0x00    | LC       | OW_THRESH | OLD_CH3 [3 | :0]      |             | EVENT_COU | NT_CH3 [3:0] |      |
|   | 0x2F    | R/W | 0x00    |          |           | LC         | W_THRESH | OLD_CH3 [11 | :4]       |              |      |

#### HIGH\_THRESHOLD\_CH3 High threshold for CH3

HYSTERESIS\_CH3

Hysteresis for high and low thresholds. Apply a 4 bit setting with a 3 bit left shift.

#### LOW\_THRESHOLD\_CH3 Low threshold for CH3

EVENT\_COUNT\_CH3

Configure the number of times the Event Counter for CH3. Flagged when the AD conversion result exceeds the threshold n+1 times.

#### HYSTERESIS CH4, HIGH TH CH4

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3        | Bit2     | Bit1         | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|-------------|----------|--------------|------|
| 0x30    | R/W | 0xF0    | н    | GH_THRESH | IOLD_CH4 [3 | :0]       |             | HYSTERES | IS_CH4 [3:0] |      |
| 0x31    | R/W | 0xFF    |      |           | HI          | GH_THRESH | OLD_CH4 [11 | 1:4]     |              |      |

#### EVENT\_COUNT\_CH4, LOW\_TH\_CH4

| Address | R/W | Initial | Bit7 | Bit6      | Bit5       | Bit4     | Bit3        | Bit2      | Bit1         | Bit0 |
|---------|-----|---------|------|-----------|------------|----------|-------------|-----------|--------------|------|
| 0x32    | R/W | 0x00    | L    | OW_THRESH | OLD_CH4 [3 | :0]      |             | EVENT_COU | NT_CH4 [3:0] | ]    |
| 0x33    | R/W | 0x00    |      |           | LC         | W_THRESH | OLD_CH4 [11 | :4]       |              |      |

# HIGH\_THRESHOLD\_CH4

High threshold for CH4

#### HYSTERESIS\_CH4

Hysteresis for high and low thresholds. Apply a 4 bit setting with a 3 bit left shift.

# LOW\_THRESHOLD\_CH4

Low threshold for CH4

### EVENT\_COUNT\_CH4

Configure the number of times the Event Counter for CH4. Flagged when the AD conversion result exceeds the threshold n+1 times.

#### HYSTERESIS\_CH5, HIGH\_TH\_CH5

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3        | Bit2     | Bit1         | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|-------------|----------|--------------|------|
| 0x34    | R/W | 0xF0    | н    | GH_THRESH | IOLD_CH5 [3 | :0]       |             | HYSTERES | IS_CH5 [3:0] |      |
| 0x35    | R/W | 0xFF    |      |           | HI          | GH_THRESH | OLD_CH5 [11 | :4]      |              |      |

#### EVENT COUNT CH5, LOW TH CH5

| - 2 |         |     |         |      |           |            |          |             |           |              |      |
|-----|---------|-----|---------|------|-----------|------------|----------|-------------|-----------|--------------|------|
|     | Address | R/W | Initial | Bit7 | Bit6      | Bit5       | Bit4     | Bit3        | Bit2      | Bit1         | Bit0 |
|     | 0x36    | R/W | 0x00    | LC   | OW_THRESH | OLD_CH5 [3 | :0]      |             | EVENT_COU | NT_CH5 [3:0] |      |
|     | 0x37    | R/W | 0x00    |      |           | LC         | W_THRESH | OLD_CH5 [11 | :4]       |              |      |

#### HIGH\_THRESHOLD\_CH5 High threshold for CH5

HYSTERESIS CH5

Hysteresis for high and low thresholds. Apply a 4 bit setting with a 3 bit left shift.

#### LOW\_THRESHOLD\_CH5 Low threshold for CH5

# EVENT\_COUNT\_CH5

Configure the number of times the Event Counter for CH5. Flagged when the AD conversion result exceeds the threshold n+1 times.

#### HYSTERESIS CH6, HIGH TH CH6

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3        | Bit2     | Bit1         | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|-------------|----------|--------------|------|
| 0x38    | R/W | 0xF0    | н    | GH_THRESH | IOLD_CH6 [3 | :0]       |             | HYSTERES | IS_CH6 [3:0] |      |
| 0x39    | R/W | 0xFF    |      |           | HI          | GH_THRESH | OLD_CH6 [11 | 1:4]     |              |      |

#### EVENT\_COUNT\_CH6, LOW\_TH\_CH6

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4     | Bit3        | Bit2      | Bit1          | Bit0 |
|---------|-----|---------|------|-----------|-------------|----------|-------------|-----------|---------------|------|
| 0x3A    | R/W | 0x00    | L    | OW_THRESH | IOLD_CH6 [3 | :0]      |             | EVENT_COU | INT_CH6 [3:0] | ]    |
| 0x3B    | R/W | 0x00    |      |           | LC          | W_THRESH | OLD_CH6 [11 | :4]       |               |      |

# HIGH\_THRESHOLD\_CH6

High threshold for CH6

#### HYSTERESIS\_CH6

Hysteresis for high and low thresholds. Apply a 4 bit setting with a 3 bit left shift.

# LOW\_THRESHOLD\_CH6

Low threshold for CH6

### EVENT\_COUNT\_CH6

Configure the number of times the Event Counter for CH6. Flagged when the AD conversion result exceeds the threshold n+1 times.

#### HYSTERESIS\_CH7, HIGH\_TH\_CH7

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3        | Bit2     | Bit1         | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|-------------|----------|--------------|------|
| 0x3C    | R/W | 0xF0    | н    | GH_THRESH | IOLD_CH7 [3 | :0]       |             | HYSTERES | IS_CH7 [3:0] |      |
| 0x3D    | R/W | 0xFF    |      |           | HI          | GH_THRESH | OLD_CH7 [11 | 1:4]     |              |      |

#### EVENT COUNT CH7, LOW TH CH7

|         |     |         | ,    |           |            |          |             |           |              |      |
|---------|-----|---------|------|-----------|------------|----------|-------------|-----------|--------------|------|
| Address | R/W | Initial | Bit7 | Bit6      | Bit5       | Bit4     | Bit3        | Bit2      | Bit1         | Bit0 |
| 0x3E    | R/W | 0x00    | LC   | OW_THRESH | OLD_CH7 [3 | :0]      |             | EVENT_COU | NT_CH7 [3:0] |      |
| 0x3F    | R/W | 0x00    |      |           | LC         | W_THRESH | OLD_CH7 [11 | :4]       |              |      |

#### HIGH\_THRESHOLD\_CH7 High threshold for CH7

HYSTERESIS CH7

Hysteresis for high and low thresholds. Apply a 4 bit setting with a 3 bit left shift.

#### LOW\_THRESHOLD\_CH7 Low threshold for CH7

EVENT\_COUNT\_CH7

Configure the number of times the Event Counter for CH7. Flagged when the AD conversion result exceeds the threshold n+1 times.

# RECENT CH0 LSB, RECENT CH0 MSB

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3         | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|--------------|------|------|------|
| 0xA0    | R   | 0x00    |      | LAST_VALU | E_CH0 [3:0] |           | 0            | 0    | 0    | 0    |
| 0xA1    | R   | 0x00    |      |           |             | LAST_VALU | E_CH0 [11:4] |      |      |      |

LAST\_VALUE\_CH0 Recent ADC result at CH0

#### RECENT CH1 LSB, RECENT CH1 MSB

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3         | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|--------------|------|------|------|
| 0xA2    | R   | 0x00    |      | LAST_VALU | E_CH1 [3:0] |           | 0            | 0    | 0    | 0    |
| 0xA3    | R   | 0x00    |      |           |             | LAST_VALU | E_CH1 [11:4] |      |      |      |

LAST\_VALUE\_CH1 Recent ADC result at CH1

# RECENT CH2 LSB, RECENT CH2 MSB

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3         | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|--------------|------|------|------|
| 0xA4    | R   | 0x00    |      | LAST_VALU | E_CH2 [3:0] |           | 0            | 0    | 0    | 0    |
| 0xA5    | R   | 0x00    |      |           |             | LAST_VALU | E_CH2 [11:4] |      |      |      |

LAST\_VALUE\_CH2

Recent ADC result at CH2

#### RECENT\_CH3\_LSB, RECENT\_CH3\_MSB

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3         | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|--------------|------|------|------|
| 0xA6    | R   | 0x00    |      | LAST_VALU | E_CH3 [3:0] |           | 0            | 0    | 0    | 0    |
| 0xA7    | R   | 0x00    |      |           |             | LAST_VALU | E_CH3 [11:4] |      |      |      |

LAST\_VALUE\_CH3 Recent ADC result at CH3

# RECENT CH4 LSB, RECENT CH4 MSB

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3         | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|--------------|------|------|------|
| 0xA8    | R   | 0x00    |      | LAST_VALU | E_CH4 [3:0] |           | 0            | 0    | 0    | 0    |
| 0xA9    | R   | 0x00    |      |           |             | LAST_VALU | E_CH4 [11:4] |      |      |      |

LAST\_VALUE\_CH4 Recent ADC result at CH4

#### RECENT CH5 LSB, RECENT CH5 MSB

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3         | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|--------------|------|------|------|
| 0xAA    | R   | 0x00    |      | LAST_VALU | E_CH5 [3:0] |           | 0            | 0    | 0    | 0    |
| 0xAB    | R   | 0x00    |      |           |             | LAST_VALU | E_CH5 [11:4] |      |      |      |

LAST\_VALUE\_CH5 Recent ADC result at CH5

# RECENT CH6 LSB, RECENT CH6 MSB

| Address | R/W | Initial | Bit7                  | Bit6      | Bit5        | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|-----------------------|-----------|-------------|------|------|------|------|------|
| 0xAC    | R   | 0x00    |                       | LAST_VALU | E_CH6 [3:0] |      | 0    | 0    | 0    | 0    |
| 0xAD    | R   | 0x00    | LAST_VALUE_CH6 [11:4] |           |             |      |      |      |      |      |

LAST\_VALUE\_CH6

Recent ADC result at CH6

### RECENT CH7 LSB, RECENT CH7 MSB

| Address | R/W | Initial | Bit7 | Bit6      | Bit5        | Bit4      | Bit3         | Bit2 | Bit1 | Bit0 |
|---------|-----|---------|------|-----------|-------------|-----------|--------------|------|------|------|
| 0xAE    | R   | 0x00    |      | LAST_VALU | E_CH7 [3:0] |           | 0            | 0    | 0    | 0    |
| 0xAF    | R   | 0x00    |      |           |             | LAST_VALU | E_CH7 [11:4] |      |      |      |

LAST\_VALUE\_CH7 Recent ADC result at CH7

# **Control Sequence**

#### 1 Power-up Sequence

When VDD and IOVDD are supplied from separate power supplies, the power supply start-up order is arbitrary. Communication via  $I^2C$  should be performed after  $t_{PU}$  after all power has been supplied.



Figure 24. Power-up sequence

| Parameter                                             | Symbol              | Min | Тур | Max | Unit | Conditions |
|-------------------------------------------------------|---------------------|-----|-----|-----|------|------------|
| VDD off time                                          | t <sub>VDDOFF</sub> | 1   | -   | -   | ms   |            |
| IOVDD off time                                        | tiovddoff           | 1   | -   | -   | ms   |            |
| I <sup>2</sup> C command available time from Power-up | t₽U                 | 0.1 | -   | -   | ms   |            |

# **Control Sequence - continued**

# 2 AD Conversion

| There are | three AD | conv | ersion | modes: |
|-----------|----------|------|--------|--------|
|           |          |      |        |        |

| Manual Mode        | Only one channel can be selected from IN0 to IN7.                                            |
|--------------------|----------------------------------------------------------------------------------------------|
|                    | Each time the Reading ADC result sequence is transmitted, AD conversion is performed.        |
| Auto Sequence Mode | Multiple channels can be selected from IN0 to IN7.                                           |
|                    | Each time the Reading ADC result sequence is transmitted, AD conversion is performed on the  |
|                    | next channel.                                                                                |
| Autonomous Mode    | One or multiple channels can be selected from IN0 to IN7.                                    |
|                    | Each interval, AD conversion is automatically performed without Reading ADC result sequence. |

#### 2.1 Manual Mode

In this mode, each time the Reading ADC result sequence is transmitted, AD conversion is performed on only one selected channel from IN0 to IN7.

To change the channel, set it again in the MANUAL\_CHID register.



Figure 25. Manual Mode measurement flow example

End

The Reading ADC result sequence is I<sup>2</sup>C commands as shown in the Figure 26. The ADC result is MSB first, and the 4 bits after that are fixed to 0. By setting the APPEND\_STATUS register in the DATA\_CFG register, you can output CHID or flag in the back 4 bits.



Figure 26. Reading ADC result sequence

#### 2 AD Conversion – continued

#### 2.2 Auto Sequence Mode

In this mode, each time the Reading ADC result sequence is transmitted, AD conversion is performed on the selected channels from IN0 to IN7 in order. When you change the selected channels, set SEQ\_START register to 0 first, then reconfigure AUTO\_SEQ\_CH\_SEL register, then set SEQ\_START register to 1. Optionally, by setting the APPEND\_STATUS register, you can know which CH has been AD converted.



#### Figure 27. Auto Sequence Mode measurement flow example

#### 2.2.1 AUTO\_SEQ\_CH\_SEL

For example, if the value of AUTO\_SEQ\_CH\_SEL register is set to 0x96, i.e., CH1, 2, 4 and 7 are selected, after CH1 is AD converted and the result is read, CH2 is going to be AD converted. Next to CH7 AD conversion is CH1.



Figure 28. Auto Sequence Mode operation example

#### 2.2.2 APPEND\_STATUS

For example, if the value of APPEND\_STATUS register is set to 0b10 and CH4 is AD converted, the 12 bit AD conversion result and 0b0100 which indicates the CH4 is converted are output. If it is CH0 that is AD converted, the output is 0b0000, and if it is CH7, the output is 0b0111.



Figure 29. APPEND\_STATUS output example

#### 2 AD Conversion – continued

#### 2.3 Autonomous Mode

In this mode, each interval, AD conversion is automatically performed without Reading ADC result sequence. The AD conversion results are stored in LAST\_VALUE\_CHx (x = 0 to 7) register, If the STATS\_EN register is set to 0, the value will not be updated.

If you use ALERT function (DWC, Digital Window Comparator), the ALERT pin outputs low level if the result exceeds threshold. ALERT function is available in Manual Mode and Auto Sequence Mode, too.

| Table 4. Autonomous Mode measurement flow example |                                                 |                      |                                             |  |  |  |  |
|---------------------------------------------------|-------------------------------------------------|----------------------|---------------------------------------------|--|--|--|--|
|                                                   | Register Name                                   | Address              | Data                                        |  |  |  |  |
| Step1                                             | SEQ_MODE                                        | 0x10                 | 0x01                                        |  |  |  |  |
| Step2                                             | AUTO_SEQ_CH_SEL                                 | 0x12                 | SELECT                                      |  |  |  |  |
| Step3                                             | CONV_MODE<br>STATS_EN                           | 0x04<br>0x01         | 0x01<br>0x20                                |  |  |  |  |
| Step4                                             | DWC_EN<br>SEQ_START                             | 0x01<br>0x10         | 0x30<br>0x11                                |  |  |  |  |
| (Option)                                          | EVENT_FLAG<br>EVENT_HIGH_FLAG<br>EVENT_LOW_FLAG | 0x18<br>0x1A<br>0x1C | Read Only<br>Read or Clear<br>Read or Clear |  |  |  |  |
| (Option)                                          | LAST_VALUE_CHx                                  | 0xA0 –<br>0xAF       | Read Only                                   |  |  |  |  |
| Stop5                                             | Stop Measurement? = \                           | ſes                  |                                             |  |  |  |  |
| Sieps                                             | SEQ_START<br>DWC_EN                             | 0x10<br>0x01         | 0x01<br>0x20                                |  |  |  |  |



Figure 30. Autonomous Mode measurement flow example

# **Control Sequence - continued**

#### 3 ALERT Function

#### 3.1 Summary

Depending on the AD conversion result, the ALERT pin can output an interrupt. The ALERT pin is an open drain (Low active) output. When using this pin, pull it up to IOVDD.

If the AD conversion result meets the set condition, it is stored as a flag. Which CH flag causes an interrupt to be generated on the ALERT pin can be selected by setting the corresponding bit in the ALERT\_CH\_SEL register to 1. If a flag is stored on a CH that is not selected, the ALERT pin will not output an interrupt.

#### 3.2 Flag Condition

Threshold, counts, hysteresis, and inside/outside detection can be set as conditions for the flag to be stored, all of which can be specified for each CH. The threshold can be set with the HIGH\_THRESHOLD\_CHx (x = 0 to 7) and LOW\_THRESHOLD\_CHx (x = 0 to 7) registers, the number of times with the EVENT\_COUNT\_CHx (x = 0 to 7) register, hysteresis with the HYSTERESIS\_CHx (x = 0 to 7) register, and inside/outside detection with the EVENT\_RGN register.

For example, in the case of the setting shown in Figure 31, EVENT\_RGN=0, the counter is incremented when the AD conversion result exceeds the High threshold or falls below the Low threshold in the outside detection. Also, since EVENT\_COUNT\_CHx (x = 0 to 7) = 2, the flag is set when the AD conversion result exceeds the threshold value three times in a row. In this case, the flag is distinguished which threshold is exceeded.

In the case of Figure 31, the AD conversion result exceeds the threshold value from the fourth time, so the event counter is incremented, but the sixth time the AD conversion result is below the threshold value including hysteresis, so the event counter is reset and the counting starts again from the first time when the result exceeds the threshold value again.

Regarding hysteresis, the value set is shifted 3 bits to the left, so 8 times the value written to the register is applied.



Figure 31. ALERT detection example

#### 3.3 Flag Register

Whether or not each CH is flagged can be checked by reading the EVENT\_FLAG register. Each bit of the EVENT\_FLAG register is the logical OR of each bit of the EVENT\_HIGH\_FLAG and EVENT\_LOW\_FLAG registers. Therefore, the value of the EVENT\_FLAG register is 1 when either threshold is exceeded.

To clear the flag, write 1 to the bit of the EVENT\_HIGH\_FLAG or EVENT\_LOW\_FLAG register.

# **Application Example**



# I/O Equivalence Circuits

| Pin Name                                             | Equivalence Circuit | Pin Name | Equivalence Circuit |
|------------------------------------------------------|---------------------|----------|---------------------|
| IN0<br>IN1<br>IN2<br>IN3<br>IN4<br>IN5<br>IN6<br>IN7 |                     | SCL      |                     |
| SDA                                                  |                     | ALERT    |                     |
| ADDR                                                 |                     | TOUT     |                     |

# **Operational Notes**

#### 1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.

#### 2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.

#### 3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.

### 4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

#### 5. Recommended Operating Conditions

The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics.

#### 6. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.

#### 7. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.

#### 8. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

#### 9. Unused Input Pins

Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.

# **Operational Notes – continued**

#### 10. Regarding the Input Pin of the IC

This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below):

When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor.

Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.



Figure 32. Example of Monolithic IC Structure

#### 11. Ceramic Capacitor

When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.

# **Ordering Information**



# **Marking Diagram**



# **Physical Dimension and Packing Information**



# **Revision History**

| Date        | Revision | Changes     |  |  |  |  |  |  |  |
|-------------|----------|-------------|--|--|--|--|--|--|--|
| 23.Jul.2024 | 001      | New Release |  |  |  |  |  |  |  |

# Notice

#### **Precaution on using ROHM Products**

 If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

| (Note1) Medical Equipment Classification of the Specific Application |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|

| JAPAN  | USA    | EU         | CHINA  |  |
|--------|--------|------------|--------|--|
| CLASSⅢ |        | CLASS II b |        |  |
| CLASSⅣ | CLASSI | CLASSⅢ     | CLASSI |  |

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:

[a] Installation of protection circuits or other protective devices to improve system safety

[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure

- 3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
  - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
  - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
  - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, SO<sub>2</sub>, and NO<sub>2</sub>
  - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
  - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
  - [f] Sealing or coating our Products with resin or other coating materials
  - [g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used. However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
  - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

#### Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

#### Precautions Regarding Application Examples and External Circuits

- 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

#### **Precaution for Electrostatic**

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

#### Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
  - [a] the Products are exposed to sea winds or corrosive gases, including Cl<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, SO<sub>2</sub>, and NO<sub>2</sub>
  - [b] the temperature or humidity exceeds those recommended by ROHM
  - [c] the Products are exposed to direct sunshine or condensation
  - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

#### **Precaution for Product Label**

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

#### Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

#### Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

#### **Precaution Regarding Intellectual Property Rights**

- All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
- 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
- 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

#### **Other Precaution**

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

#### **General Precaution**

- 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.