3.0 V to 28 V

50 ns (Typ)

(3.6 V for Start-up)

28 V/5 A built-in FET E-Fuse, 3 V-28 V, 5 A, 16 mΩ **BD58020GW**

BD58020GW

General Description

BD58020GW is an Over Voltage, Over Current and Over Temperature Protection IC (OV, OC & OT Protection IC). BD58020GW has a built-in low ON-resistance 16 mQ (Typ) Nch FET which immediately prevents damage to the downstream components, when fault condition occurs. The BD58020GW also has temperature protection function for 2 external NTC thermistors input which allows monitoring 2 different places in an application. The Over Voltage and Over Current level can be set by external resistors or internal fixed resistors.

Features

- Programmable Over Voltage Protection with External Resistors
- Programmable Over Current Limit with External Resistor
- Ultra-Fast Over Voltage Response Time: Typ 50 ns
- Built-in 16 mΩ NMOS FET
- Over Temperature Protection & 2 Different Thermal Monitor Support with NTC
- **Programmable Brownout Detection**
- Bi-directional I/O for Providing Temperature Fault Condition
- Active Discharge Support at VOUT
- Battery Mode Support
- USB On the Go (OTG) Support

Applications

- Smart Home Appliances
- Plug Adapter or Battery Applications
- Portable Device

Typical Application Circuits

Key Specifications

- Input Voltage Range:
- - BAT Voltage Range: 2.7 V to 5.5 V
 - Max Continuous Current: 5.0 A (Typ) $16 \text{ m}\Omega (Typ)$
- Nch FET ON Resistance:
- OVP Response Time:
- Quiescent Current: 128 µA (Typ), 200 µA (Max)
- Low Iq Mode / VBAT Current: 2.77 µA (Typ)
- Operating Junction Temperature:-40 °C to +125 °C

Package

UCSP55M1C (16Pin)

W (Typ) x D (Typ) x H (Max) 1.7 mm x 1.7 mm x 0.62 mm

0.4 mm pitch 16-Balls

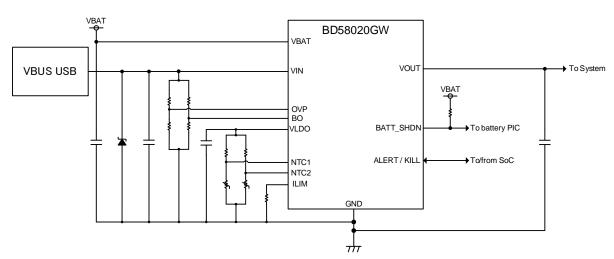


Figure 1. Typical Application Circuit

OProduct structure : Silicon integrated circuit OThis product has no designed protection against radioactive rays.

Contents

General Description	1
Features	1
Applications	1
Key Specifications	1
Package	1
Typical Application Circuits	1
Contents	2
Pin Configuration	3
Pin Descriptions	3
Block Diagram	4
Description of Blocks	5
Absolute Maximum Ratings	7
ESD Ratings	7
Thermal Resistance	7
Recommended Operating Conditions	8
Electrical Characteristics	9
Typical Performance Curves	11
State Transition Diagram	17
Startup and Shutdown Sequence	18
Function Descriptions	19
Application Information	28
Application Examples	32
I/O Equivalence Circuits	34
Operational Notes	35
Ordering Information	37
Marking Diagrams	37
Physical Dimension and Packing Information	
Revision History	39

Pin Configuration

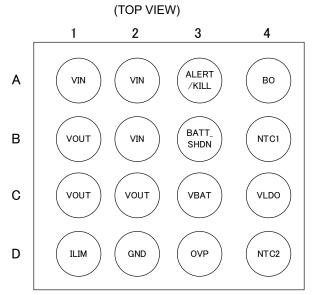
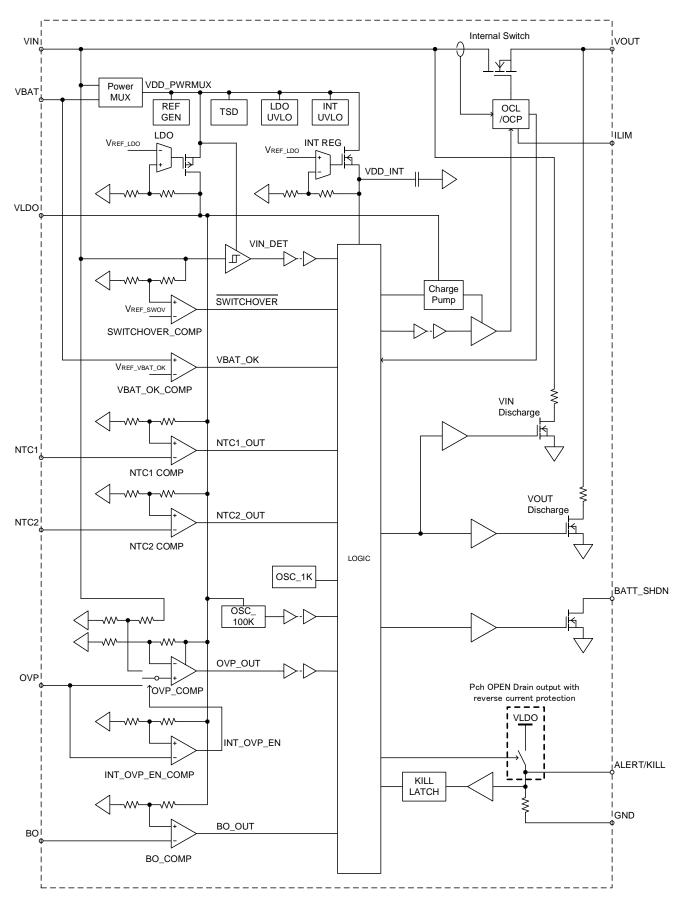



Figure 2. Pin Configuration (TOP VIEW)

Pin Descriptions

Ball No.	Pin Name	Function
A1, A2, B2	VIN	Dedicated power to protection IC.
A3	ALERT/KILL	ALERT (output): provides temp fault status. KILL (input): kill signal from SoC to shut off system power.
C3	VBAT	Input from battery.
B1, C1, C2	VOUT	Output of internal switch.
B3	BATT_SHDN	Open-drain output to disconnect battery pack from charger.
B4	NTC1	Input to NTC sensing comparator 1.
A4	BO	Input to brownout detection.
C4	VLDO	Voltage rail for NTC thermistor.
D1	ILIM	Pin to set OC limit threshold using an external resistor.
D2	GND	Ground pin.
D3	OVP	Input to over voltage protection circuit.
D4	NTC2	Input to NTC sensing comparator 2.

Block Diagram

Description of Blocks

Power MUX

The power multiplexer block. See Function Descriptions for details.

LDO

The LDO generates 1.8 V from Power MUX output, VDD_PWRMUX, to be supplied to thermistors and internal circuits.

LDO UVLO

UVLO circuit for LDO, which monitors the output voltage of LDO and turns off the switch when the output voltage drops.

INT REG

An internal regulator circuit that operates even when power is supplied from the VBAT to power the internal logic circuit.

INT UVLO

UVLO circuit for INT REG. The IC shuts down when INT REG falls below the minimum voltage required to operate the internal logic circuit.

REF GEN

The REF GEN generates the reference voltage for the LDO.

TSD

Thermal shutdown circuit to protect ASIC from internal over temperature. When TSD event occurs, internal switch is turned OFF. Switch turns ON after temperature hysteresis is overcome.

VIN DET

The block detects that power is connected to VIN. LDO turns on continuously when VIN DET is detected.

SWITCHOVER COMP

The comparator that detects a drop in VIN.

When VIN falls below $V_{SWITCHOVER}$, internal switch turns OFF and the power supply of the internal power supply switches from VIN to VBAT.

VBAT OK COMP

The comparator that detects VBAT voltage.

When the VBAT voltage exceeds V_{REF_VBAT_OK}, the multiplexer generates internal power supply voltages from VBAT. However, it gives priority to the logic of SWITCHOVER COMP.

NTC1 COMP / NTC2 COMP

The comparator that detects over temperature by comparing NTC1, NTC2 pin voltage with the reference voltage. When over temperature is detected, NTCX_OUT goes high.

See Function Descriptions for the operation when overtemperature is detected.

OVP COMP

The comparator that detects overvoltage of VIN by comparing the OVP pin voltage with the reference voltage. When overvoltage is detected, OVP_OUT goes high. See Function Descriptions for the operation when overvoltage detected.

INTERNAL OVP ENABLE COMP

The comparator detects that the OVP pin is shorted to GND and enables the Internal OVP.

BO COMP

The comparator that detects brownout by comparing BO pin voltage with the reference voltage. When brownout is detected, BO_OUT goes high. See Function Descriptions for the operation when brownout detected.

OSC_1K, OSC_100K

The oscillator for internal clock generation.

Description of Blocks – continued

Internal Switch

A low ON-resistance Nch MOSFET switch. See Function Descriptions for the Logic of the Internal switch when the protection function is detected.

Charge Pump

The charge pump circuit that generates the gate voltage of the internal switch.

OCL / OCP

The overcurrent limit and overcurrent protection block.

Controls the current flowing through the internal switch so that it does not exceed the overcurrent threshold. See Function Descriptions for details.

VOUT Discharge, VIN Discharge

Internal resistive discharge path from VOUT to GND when internal switch is turned OFF for all fault conditions except OVP. At the same time, VIN pin is also pulled down at 10 k Ω .

BATT_SHDN

The open drain output pin to output the shutdown signal to the battery.

ALERT/KILL

I/O pin for ALERT signal output and KILL signal input. This pin is equipped with the reverse protection as indicated in the block diagram.

Absolute Maximum Ratings (Ta = 25 °C)

Parameter	Symbol	Rating	Unit
VBAT Pin Voltage	V _{VBAT}	-0.3 to +7.0	V
VIN Pin Voltage	V _{VIN}	-0.3 to +30	V
VOUT Pin Voltage	Vout	-0.3 to +30	V
ALERT/KILL Pin Voltage	VALERT	-0.3 to +4.5	V
OVP Pin Voltage	Vovp	-0.3 to +2.2	V
BATT_SHDN Pin Voltage	VBATT_SHDN	-0.3 to +7.0	V
BO Pin Voltage	VBO	-0.3 to +2.2	V
VLDO Pin Voltage	V _{LDO}	-0.3 to +4.5	V
NTC1 Pin Voltage	VNTC1	-0.3 to +4.5	V
NTC2 Pin Voltage	V _{NTC2}	-0.3 to +2.2	V
ILIM Pin Voltage	VILIM	-0.3 to +2.2	V
VOUT to VIN Current at OFF	IOUT_OFF	0.500	Α
Maximum Junction Temperature	Tjmax	150	°C
Storage Temperature Range	Tstg	-55 to +150	°C

Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating.

ESD Ratings

Parameter	Value	Unit
Human-body model (HBM)	±2000	V
Charged-device model (CDM)	±500	V

Thermal Resistance (Note 1)

Devenueter	Cumhal	Thermal Re	1.1		
Parameter	Symbol	1s ^(Note 3)	2s2p ^(Note 3)	Unit	
UCSP55M1C					
Junction to Ambient	θ _{JA}	178.5	75.8	°C/W	
Junction to Top Characterization Parameter (Note 2)	Ψ_{JT}	9.0	8.0	°C/W	

(Note 1) Based on JESD51-2A (Still-Air). (Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package. (Note 3) Using a PCB board based on JESD51-9.

Layer Number of Measurement Board	Material	Board Size			
Single	FR-4	114.5 mm x 101.5 mm	n x 1.6 mmt		
Тор					
Copper Pattern	Thickness				
Footprints and Traces	70 µm				
Layer Number of Measurement Board	Material	Board Size			
4 Layers	FR-4	114.5 mm x 101.5 mm	n x 1.6 mmt		
Тор		2 Internal Layers		Bottom	
Copper Pattern	Thickness	Copper Pattern	Thickness	Copper Pattern	Thickness
Footprints and Traces	70 µm	99.5 mm x 99.5 mm	35 µm	99.5 mm x 99.5 mm	70 µm

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Operating Junction Temperature	Topr	-40	+25	+125	°C	
VIN Pin Voltage	V _{VIN}	3.0	-	28	V	3.6 V for Start-up
VBAT Pin Voltage	VVBAT	2.7	-	5.5	V	
VLDO Capacitor ^(Note 4)	6	0.10	0.22	0.70	μF	Ta = 0 °C to +125 °C
	C _{LDO}	0.19	0.47	0.70	μF	Ta = -40 °C to +125 °C
VIN Capacitor (Note 4)	CVIN	0.10	-	-	μF	
VOUT Capacitor (Note 4)	C _{VOUT}	0.10	-	2200	μF	
BATT_SHDN Pin Voltage	VBATT_SH DN	0	-	5.5	V	
ALERT/KILL Pin Voltage	VALERT	0	-	3.6	V	
BO Pin Voltage	V _{BO}	0	-	V _{LDO}	V	
OVP Pin Voltage	Vovp	0	-	Vldo	V	
NTC1 Pin Voltage	V _{NTC1}	0	-	3.6	V	
NTC2 Pin Voltage ^(Note 5)	V _{NTC2}	0	-	Vldo	V	
ILIM Pin Voltage	VILIM	0	-	Vldo	V	

(Note 4) Ceramic capacitor is recommended. The capacitor value including temperature change, DC bias change, and aging change must be considered. (Note 5) NTC2 has lower operational max voltage as there is a internal diode at the pin toward VLDO for test purpose. That is the reason why NTC2 has lower operational max compared to NTC1.

Electrical Characteristics (Unless otherwise specified V_{VIN} = 5.0 V, Ta = 25 °C)

uncal characteristics (Un	liess otherwise	specificu	VIN - 3.0	, 1a - 20	6)	1
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Power Supply Inputs	1					
VIN Consumption Current 1	I _{q_VIN1}	-	128	200	μA	VIN = 5.0 V
VIN Consumption Current 2	Iq_VIN2	-	138	200	μA	VIN = 24 V
VBAT Consumption Current	Iq_VBAT1	-	2.77	3.90	μΑ	VBAT = 5.0 V, VIN = 0 V, $C_{LDO} = 0.22 \ \mu\text{F}, ,$ VLDO 50 kΩ pull down, $D_{NTC} = 0.20 \ \% (Typ), 0.25 \ \%$ (Max), Ta = 25 °C
		-	2.77	4.40	μA	Ta = -40 °C to +50 °C
VBAT Consumption Current 2	I_{q_VBAT2}	-	19	-	μA	VBAT = 5.0 V, VIN = 0 V, During T_NTC_ON, VLDO: no load
VBAT Consumption Current 3	Iq_VBAT3	-	2.5	-	μA	VBAT = 5.0 V, VIN = 0 V, During T_NTC_OFF, VLDO: no load
VBAT Consumption Current 4	Iq_VBAT4	-	1	-	μA	VBAT = 5 V, VIN = 5 V, VLDO: no load VIN > V _{SWITCHOVER}
Power MUX Switchover Threshold	Vswitchover	2.870	3.000	3.130	V	VIN sweep down
Power MUX Switchover Release Threshold	Vswitchover_rel	3.450	3.600	3.750	V	VIN sweep up
VBAT OK Threshold	Vvbat_ok	2.400	2.500	2.600	V	VBAT sweep up
VBAT OK Release Threshold	VVBAT_OK_REL	2.067	2.167	2.267	V	VBAT sweep down
Internal Switch						
Internal Switch ON Resistance	Rdson	-	16	24	mΩ	At nominal supply voltage output for USB (VIN = 5 V)
Internal Switch Current	Isw	5.0	-	-	Α	Continuous current
SOFTSTART Slew Rate	SR _{SS}	0.128	0.160	0.192	V/ms	
Inrush Current	I _{INRUSH}	-	-	200	mA	Peak current while VOUT ramps up to VIN (24 V), COUT = 1000 μF
VIN Discharge Resistance	RDIS_VIN	7	10	13	kΩ	VIN = 5.0 V
VOUT Discharge Resistance	Rdis_vout	200	300	400	Ω	VOUT = 2.0 V
LDO						
LDO Output Voltage	Vldo	1.773	1.800	1.827	V	
LDO Current Capability	I _{LDO}	2.0	-	-	mA	
LDO UVLO Threshold	Vldo_uvlo	1.623	1.674	1.724	V	VLDO sweep down
LDO UVLO Hysteresis	VLDO_HYS	36	54	72	mV	

Electrical Characteristics (Unless otherwise specified V_{VIN} = 5.0 V, Ta = 25 °C) – continued

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
VREF						
VREF THERM	VREF_THERM	0.873	0.900	0.927	V	NTC1 / NTC2 sweep dowr
VREF THERM Release	VREF_THERM_REL	1.240	1.280	1.320	V	
Ratio of VREF_THERM to VLDO	αtrip	0.4925	0.5000	0.5075	V/V	VREF_THERM / VLDO
Ratio of V VREF_THERM_REL to	A TRIP REL	0.7001	0.7111	0.7221	V/V	VREF_THERM_REL / VLDO
V _{LDO} Over Temperature Trip Point Accuracy	TTRIP	-1	-	+1	°C	THERM : NCP15WF104F03RC, Excluding R_{BIAS} and NCP15WF104F03RC error, Ta > 50 °C
VREF OVP	V _{REF_OVP}	1.164	1.200	1.236	V	OVP sweep up
VREF OVP Hysteresis	VREF_OVP_HYS	-	100	-	mV	
VREF BO	VREF BO	1.164	1.200	1.236	V	BO sweep down
VREF BO Hysteresis	VREF_BO_HYS	-	100	-	mV	
OVP	V REF_BO_H13		100		IIIV	
Internal OVP Enable Threshold	Vovp_int_en	120	160	200	mV	OVP sweep down
Internal OVP Enable Threshold Hysteresis	VOVP_INT_EN_HYS	-	40	-	mV	
Internal OVP Threshold	V _{OVP_INT}	5.82	6.00	6.18	V	VIN sweep up
Internal OVP Threshold Hysteresis	VOVP_INT_HYS	-	200	-	mV	
OVP Pin Capacitance	Covp	-	-	10	pF	
Over Current Limit						
OCL Setting 1	IOCL1	0.178	0.214	0.251	Α	R _{ILIM} = 13 kΩ
OCL Setting 2	IOCL2	0.443	0.515	0.588	Α	R _{ILIM} = 4.7 kΩ
OCL Setting 3	I _{OCL3}	0.843	0.958	1.073	Α	R _{ILIM} = 2.4 kΩ
OCL Setting 4	IOCL4	1.50	1.66	1.83	Α	R _{ILIM} = 1.3 kΩ
OCL Setting 5	I _{OCL5}	1.94	2.09	2.24	А	R _{ILIM} = 1.0 kΩ
TSD						
TSD Detect Temperature	TTSDH	-	150	-	°C	
TSD Release Temperature	T _{TSDL}	-	125	-	°C	
I/O						
BATT_SHDN Pulldown Resistor	RSHDN	-	20	30	Ω	BATT_SHDN = 50 μA
ALERT/KILL Pulldown Resistor	Ralert	100	150	200	kΩ	ALERT/KILL = 1 V
ALERT Output High Level	V _{ALERT_H}	V _{LDO} -0.2	-	V _{LDO}	V	
KILL Input High Level	VKILL_H	1.26	-	3.60	V	
KILL Input Low Level	VKILL_L	-0.30	-	+0.54	V	
Output Logic Timing	_	I I				
Wait Delay Time	tdelay_wait	20.7	23.7	26.8	ms	
ALERT Delay Time	t _{delay_alert}	400	500	600	ms	
KILL Delay Time	tdelay kill	0.8	1.0	1.2	s	
OCL Debounce Time	t _{ocl_blnk}	80	100	120	ms	
OCL Release Time	tocl_rel	80	100	120	ms	
OCP Recovery Time	tocp_rec	200	250	300	ms	
OVP Delay Time	tdelay_ovp	_	50	100	ns	
OVP Recovery Time	tdelay_ovp_rec	24	30	36	ms	
BROWNOUT Recovery Time	t _{DELAY_BO_REC}	400	500	600	ms	
NTC Sampling Interval Time	tNTC_SAMPLE	2.36	2.62	2.88	s	
Duty Cycle for NTC Sampling	DNTC	-	0.20	0.25	%	

Typical Performance Curves

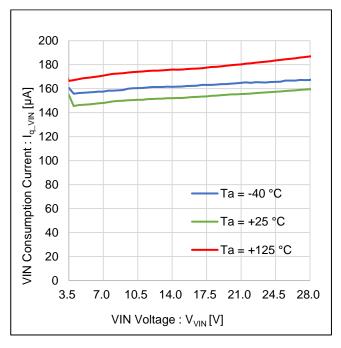


Figure 4. VIN Consumption Current vs VIN Voltage

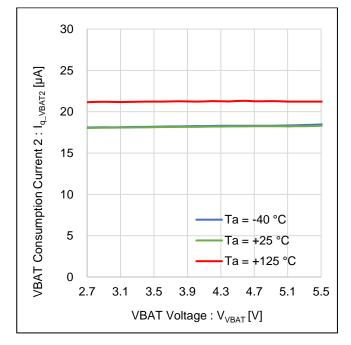


Figure 6. VBAT Consumption Current 2 vs VBAT Voltage

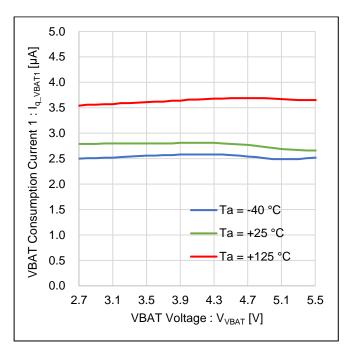


Figure 5. VBAT Consumption Current 1 vs VBAT Voltage

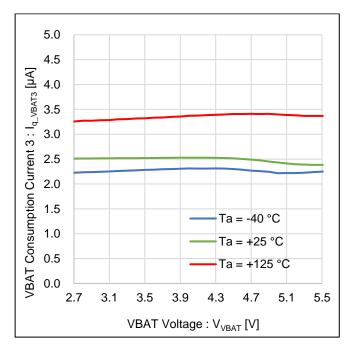


Figure 7. VBAT Consumption Current 3 vs VBAT Voltage

1.25

1.20

1.15

1.10

1.05

VREF OVP : V_{REF_OVP} [V]

Typical Performance Curves - continued

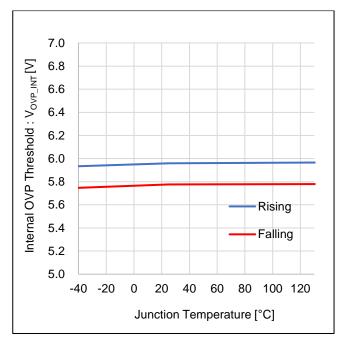
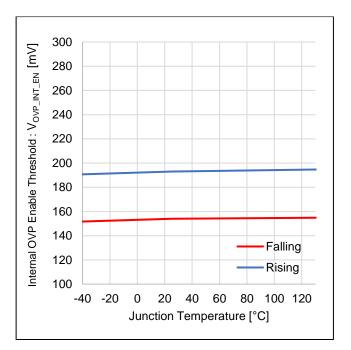



Figure 8. Internal OVP Threshold vs Temperature

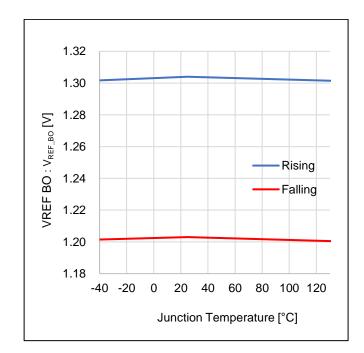


Figure 11. VREF BO vs Temperature

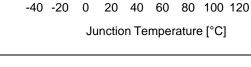


Figure 10. VREF OVP vs Temperature

Rising

Falling

Typical Performance Curves - continued

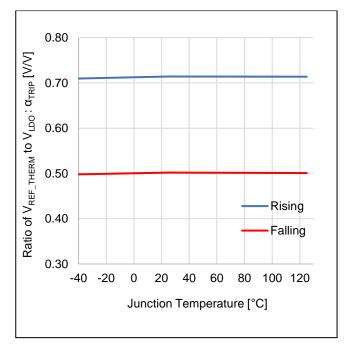
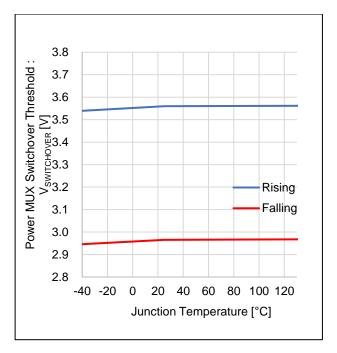



Figure 12. α_{TRIP} (V_{REF_THERM} / V_{LDO}) vs Temperature

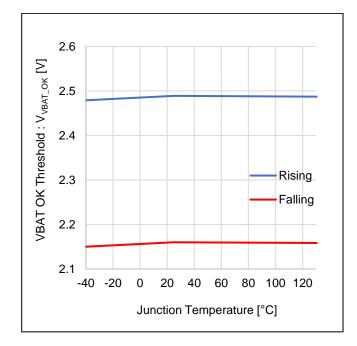


Figure 14. VBAT OK Threshold vs Temperature

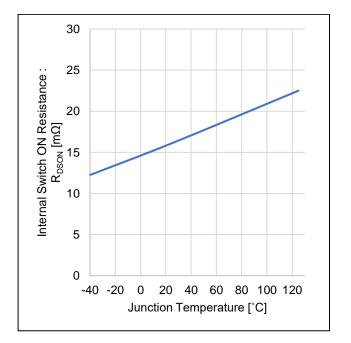


Figure 15. Internal Switch ON Resistance vs Temperature

Typical Performance Curves - continued

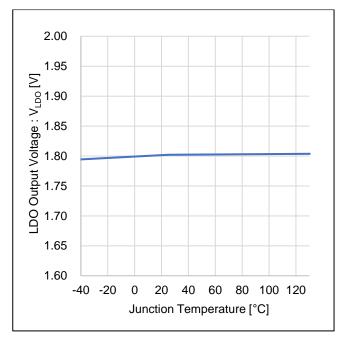


Figure 16. LDO Output Voltage vs Temperature

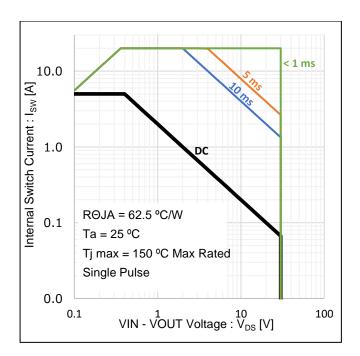


Figure 17. Safe Operation Area (SOA)

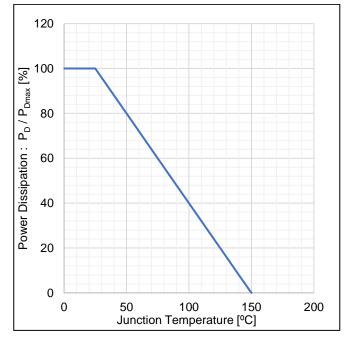


Figure 18. Derating Curve for SOA

VIN: 2 V/div

VOUT : 2 V/div

VLDO:1V/div

VIN:2V/div

VOUT:2V/div

NTC2:1V/div

ALERT/KILL:1V/div

BATT_SHDN:5V/div

ALERT/KILL : 1 V/div

BATT_SHDN : 5 V/div

Typical Performance Curves - continued



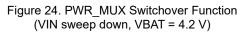

Figure 19. Start Up through VIN

Figure 22. Shutdown through NTC Pin

Figure 20. Shutdown through VIN

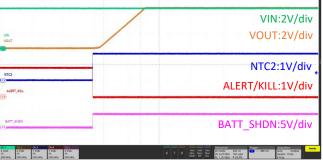
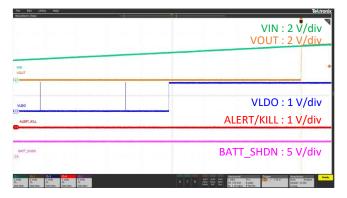
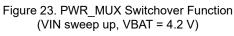




Figure 21. Start Up through NTC Pin

Typical Performance Curves - continued

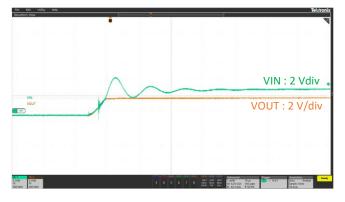


Figure 25. OVP Response (OVP Pin = GND)

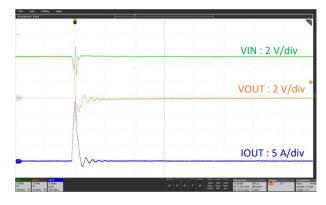


Figure 26. Short Circuit Protection Response

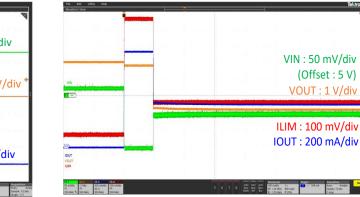


Figure 28. OCL Function (OCL = 500 mA Setting)

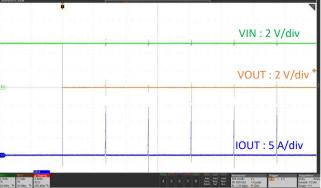


Figure 27. Short Circuit Protection Response (Zoom out)

State Transition Diagram

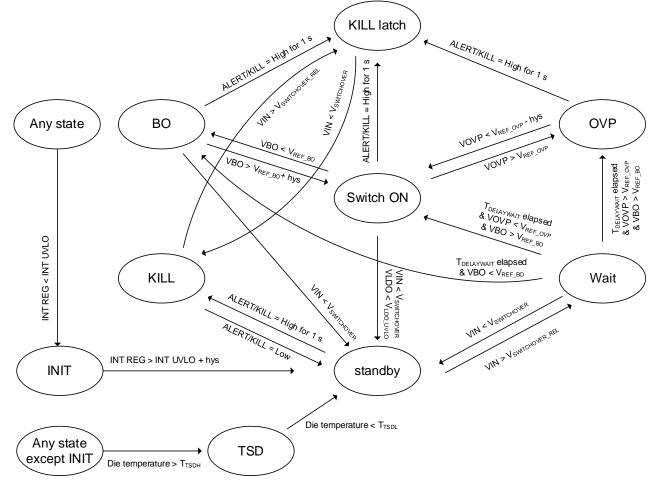


Figure 29. State Transition Diagram

	INIT	standby	KILL	Wait	Switch	BO	OVP	KILL	Over	TSD
					ON			latch	Temp	
LDO	ON(UVLO)	Burst	ON	ON	ON	ON	ON	ON	ON	OFF
Internal Switch	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
VIN Discharge	OFF	ON	ON	ON	OFF	ON	OFF	ON	ON	OFF
VOUT Discharge	OFF	ON	ON	ON	OFF	ON	OFF	ON	ON	OFF
BATT_SHDN	HiZ	HiZ	Hiz	HiZ	HiZ	HiZ	HiZ	L	L	HiZ
ALERT/KILL	HiZ	L	-	L	L	L		-	Н	L
Over Temp Sense	OFF	ON	ON	OFF	ON	ON	ON	ON	ON	OFF

Table 1. Outputs in Each State

When NTCx (x = 1, 2) < V_{REF_THERM} , the Over Temp state will be overlapped. When the Over Temp state is overlapped, the Over Temp state takes priority over the outputs. When NTCx > $V_{REF_THERM_REL}$, the Over Temp state is released, and the state return to the original state.

During the Wait state, hysteresis of comparators for OVP, BO and Over Temp detection are disabled, those of thresholds are fixed V_{REF_OVP} , V_{REF_BO} , and V_{REF_THERM} . Also, ALERT/KILL is fixed at Low. And delay time of $t_{DELAY_OVP_REC}$, $t_{DELAY_BO_REC}$, and t_{DELAY_ALERT} is eliminated and immediate response.

Startup and Shutdown Sequence

The startup and shutdown sequence are shown in the figure below. When VIN voltage exceeds the threshold of $V_{SWITCHOVER_REL}$, the transition to the Wait state duration of t_{DELAY_WAIT} . During the Wait state, hysteresis of comparators for OVP, BO and Over Temp detection are disabled, those of thresholds are fixed V_{REF_OVP} , V_{REF_BO} , and V_{REF_THERM} . And delay time of $t_{DELAY_OVP_REC}$, $t_{DELAY_BO_{REC}}$ and t_{DELAY_ALERT} is eliminated and immediate response. After t_{DELAY_WAIT} , VOUT ramps up if the following conditions.

OVP < VREF_OVP & BO > VREF_BO & NTC1, NTC2 > VREF_THERM

Figure 30. Startup and shutdown sequence when VIN only supplied

Function Descriptions

LDO UVLO

LDO UVLO is built-in to prevent the IC from malfunctioning when the output voltage of LDO is low. When LDO UVLO is detected, Internal Switch turns OFF and all protection functions are stopped. It is necessary to input the following voltage to VIN and VBAT to release LDO UVLO because the voltage drops between VIN and VLDO, and between VBAT and VLDO.

VIN > 3.6 V or VBAT > 2.5 V

Once LDO UVLO is released, the dropout voltage between VIN and VLDO is suppressed, and then IC can be operated down to the following voltages.

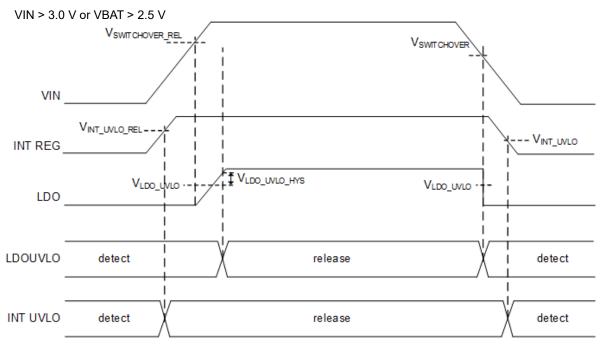


Figure 31. LDO UVLO Detection, Release Condition

Burst Operation LDO

While power is supplied from the VBAT, the LDO operates intermittently (burst operation) to reduce the current consumption of the VBAT. The LDO is on once every 2.62 s for about 5 ms. But when over temperature is detected, it keeps on until the over temperature is released. Also, over Temperature detection is masked for about 2.5 ms after LDO UVLO is released, and after the masking time, transition to the Over Temp state.

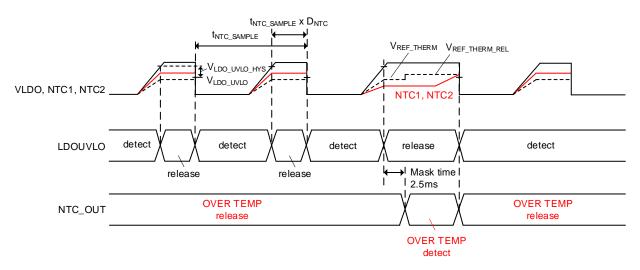


Figure 32. Timing Chart of Burst Operation LDO (When VBAT only supplied)

Soft Start

The soft start function suppresses the inrush current. The soft start function is activated every time when the device returns from each protection function.

Over Temperature Protection

The over temperature can be detected by connecting the point where the voltage between the LDO output and GND is divided by a resistor and NTC thermistor to the NTCx pin. When the NTC voltage falls below V_{REF_THERM} , the ALERT and BATT_SHDN signals are output, and the internal switch is turned off. When the NTC voltage exceeds $V_{REF_THERM_REL}$, the internal switch is turned on with a soft start. There are two detection pin NTC1 and NTC2. When over temperature protection is not used, connect all NTCx pin to the VLDO. If there is only one temperature monitoring point, connect the unused NTCx pin to the VLDO, or short circuit multiple NTCx pin and connect them to the thermistor. Each pin has the same threshold and the operation when detection and release is also same as follows. The delay time of t_{DELAY_ALERT} is counted separately for NTC1 and NTC2.

Also, during tDELAY_WAIT, hysteresis is disabled, threshold is fixed VREF_THERM. ALERT/KILL is also fixed at Low during tDELAY_WAIT.

Monitor pin: NTC1, NTC2 Detect threshold: V_{REF_THERM} Release threshold: V_{REF_THERM_REL}

When detection,

Internal load switch: OFF, after t_DELAY_ALERT Active discharge: ON, after t_DELAY_ALERT ALERT/KILL: H, immediately BATT_SHDN: L, after t_DELAY_ALERT

When release,

Internal load switch: ON with soft start function Active discharge: OFF, immediately ALERT/KILL: L, immediately BATT_SHDN: H, immediately

NTCx	V _{REF_THERM}			VREF_THERM_REL
ALERT/KILL				ļ
Internal load switch	ON	i i i	OFF	ON
 BATT_SHDN		t _{DELAY_ALERT}		
UIN discharge	OFF	\	ON	OFF
 VOUT discharge 	OFF	¥	ON	OFF

Figure 33. Over Temperature Protection Timing Chart

When Use NTC1 Pin as EN

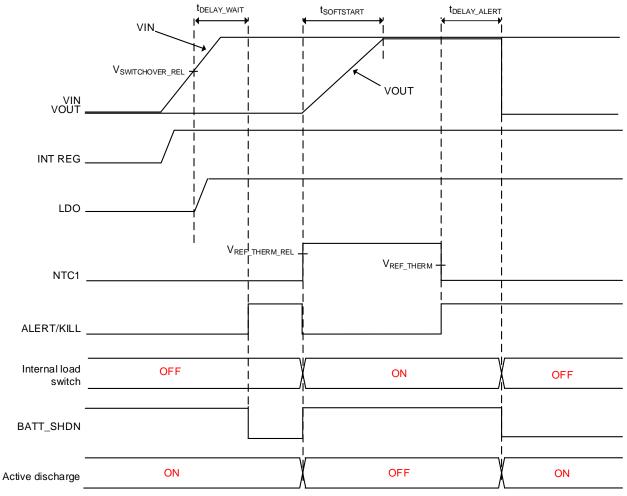


Figure 34. Timing Chart when use NTC1 as EN

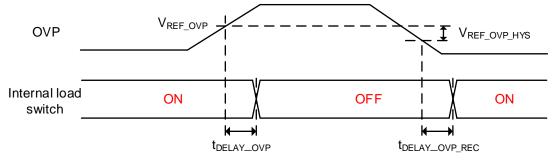
The NTC1 pin can also be used as EN.

The Internal switch turns ON with a soft start at the timing when the NTC1 pin voltage exceeds VREF_THERM_REL.

ALERT/KILL goes High when the NTC1 pin voltage drops below V_{REF_THERM}, and after t_{DELAY_ALERT}, the switch turns off and BATT_SHDN goes Low.

Over Voltage Protection

By connecting the resistive divider point between VIN pin and GND to the OVP pin, the overvoltage of VIN can be detected. When the OVP voltage exceed V_{REF_OVP} , the internal switch is turned off, immediately. When the OVP voltage falls below the threshold, the internal switch is turned on with a soft start. The detection threshold, hysteresis, and operations when detection and release are as follows. Also, during t_{DELAY_WAIT} , hysteresis is disabled, threshold is fixed V_{REF_OVP} . The OVP pin has a parasitic capacitance of 10 pF (Max), so pay attention to the voltage divider resistor value.


Monitor pin: OVP Detect threshold: V_{REF_OVP} Hysteresis: V_{REF_OVP_HYS}

When detection,

Internal load switch: OFF, after t_{DELAY_OVP} Active discharge: -ALERT/KILL: -BATT_SHDN: -

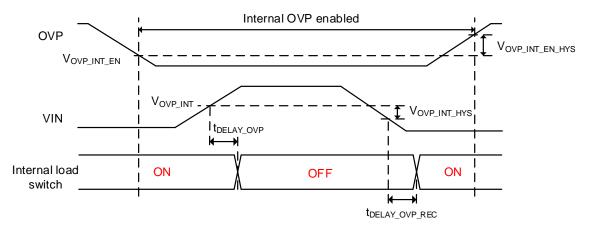
When release,

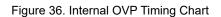
Internal load switch: ON with soft start, after t_{DELAY_OVP_REC} Active discharge: -ALERT/KILL: -BATT_SHDN: -

Internal Over Voltage Protection

The IC has an internal OVP function in case the OVP pin is shorted to ground. When the OVP voltage drops below $V_{OVP_INT_EN}$, the internal OVP is enabled and directly monitors the VIN pin voltage. When the OVP pin voltage exceeds $V_{OVP_INT_EN} + V_{OVP_INT_EN} + V_{OVP_INT_EN}$, it returns to OVP pin monitoring. The detection threshold, hysteresis, and operations when detection and release are as follows.

Monitor pin: VIN


Detect threshold: V_{OVP_INT} Hysteresis: V_{OVP_INT_HYS}


When detection,

Internal load switch: OFF, after t_{DELAY_OVP} Active discharge: -ALERT/KILL: -BATT_SHDN: -

When release,

Internal load switch: ON, after t_{DELAY_OVP_REC} Active discharge: -ALERT/KILL: -BATT_SHDN: -

Over Current Limit Function and Over Current Protection Function and Internal Thermal Shutdown

The BD58020GW has an overcurrent limiting function (OCL), which limits the current flowing through the internal switch when an overload is connected to VOUT. When the current flowing through the internal switch exceeds I_{OCL} , the OCL feedback is enabled and the current through the switch is limited after t_{OCL_BLNK} . Also, OCL feedback is disabled after the overcurrent is released and t_{OCL_REL} . If the overcurrent condition continues and the junction temperature reaches the thermal shutdown detection temperature 150 °C (Typ), the LDO and the internal switch are turned off. The thermal shutdown function has hysteresis; when the junction temperature drops to 125 °C (Typ), the IC restarts with a soft start. Also, if an overcurrent flows during $t_{SOFTSTART}$, the current is immediately limited.

If the catastrophic overcurrent exceeding the I_{OCP}, the overcurrent protection (OCP) is activated and the internal switch is immediately turned off. After t_{OCP_REC}, and then restarts.

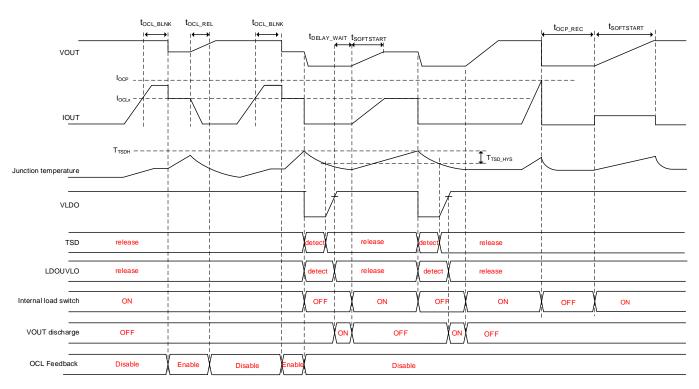


Figure 37. Over Current Limit Function and Over Current Protection Function Timing Chart

Short Circuit Protection

If the VOUT voltage is low, the current flowing through the internal switch cannot be detected correctly. Therefore, a short circuit protection function is provided to prevent destruction of the IC. If the VOUT voltage does not rise even if the gate voltage of the internal switch rises, the internal switch is turned off, waits for OCP recovery time, t_{OCP_REC} , and then restarts.

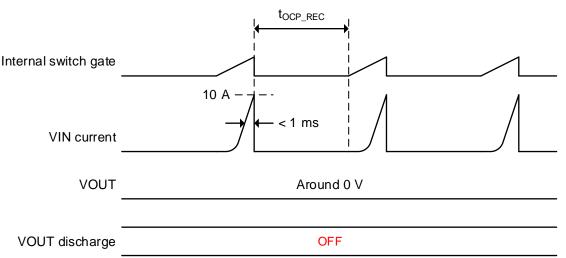
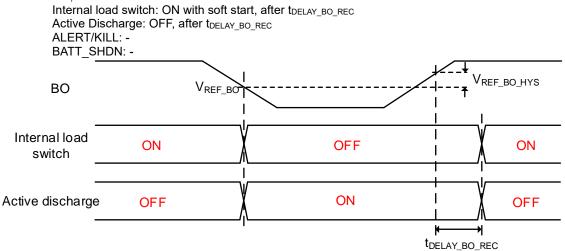
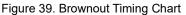


Figure 38. Short Circuit Protection Timing Chart

Brownout Protection

The brownout can be detected by connecting the resistor divider point between VIN pin and GND to BO pin. When the BO voltage falls below V_{REF_BO} , the internal switch is turned off. When the BO voltage exceeds the threshold, the internal switch is turned on with a soft start. When Brownout protection feature is not used, please connect BO pin to VLDO. The detection threshold, hysteresis, and operation at detection and release are as follows. Also, during t_{DELAY_WAIT} , hysteresis is disabled, threshold is fixed V_{REF_BO} .


Monitor pin: BO


Detect threshold: V_{REF_BO} Hysteresis: V_{REF_BO_HYS}

When detection,

Internal load switch: OFF, immediately Active Discharge: ON, immediately ALERT/KILL: -BATT_SHDN: -

When release,

KILL Function

When the KILL signal is input to the ALERT/KILL pin for more than the t_{DELAY_KILL} period, the KILL latch is latched high. While the KILL latch is high, the internal switch logic is off and BATT_SHDN is low. The KILL latch is reset by a voltage drop on the VIN pin. The detection threshold, the release threshold, and operations when detection and release are as follows.

Monitor pin detect: ALERT/KILL Monitor pin release: VIN Detect threshold: V_{KILL_H} Release threshold: V_{SWITCHOVER}

When detection,

Internal load switch: OFF, after t_{DELAY_KILL} Active discharge: ON, after t_{DELAY_KILL} ALERT/KILL: -BATT_SHDN: L, after t_{DELAY_KILL}

When release,

KILL latch: L, immediately Internal load switch: ON, after VIN exceeds Vswitchover_Rel and tolay_wait elapses Active discharge: OFF, after VIN exceeds Vswitchover_Rel and tolay_wait elapses ALERT/KILL: -BATT_SHDN: H, immediately

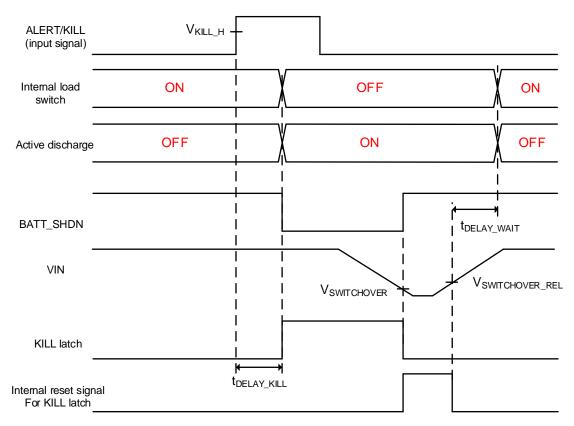


Figure 40. KILL Function Timing Chart

KILL Function (When VIN voltage is below VSWITCHOVER)

Even if the VIN voltage is lower than V_{SWITCHOVER}(VBAT is applied), when ALERT/KILL pin is driven to H for more than the t_{DELAY_KILL} period, the IC enters the KILL state and BATT_SHDN becomes L. However, the KILL state is not latched, and BATT_SHDN becomes H as soon as ALERT/KILL is driven to L. Also, when the t_{DELAY_KILL} period, VLDO keeps on. After the t_{DELAY_KILL} period, the LDO operates intermittently (burst operation) to reduce the current consumption of the VBAT.

Monitor pin detect: ALERT/KILL Monitor pin release: ALERT/KILL Detect threshold: V_{KILL_H} Release threshold: V_{KILL_L}

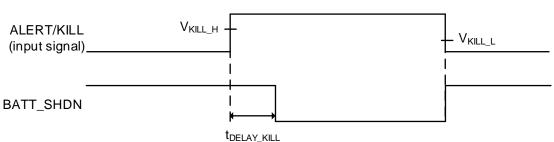
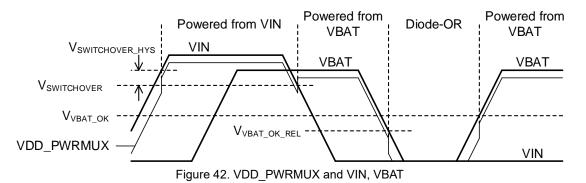


Figure 41. KILL Function (When VIN is below VSWITCHOVER) Timing Chart


Power MUX Function

Power MUX generates power supply, VDD_PWRMUX, for internal circuits and LDO from VIN or VBAT according to input conditions. When VIN voltage exceeds the threshold of V_{SWITCHOVER_REL} VDD_PWRMUX is generated from VIN. On the other hand, when VIN voltage is lower than V_{SWITCHOVER} and VBAT voltage is higher than V_{VBAT_OK}, VDD_PWRMUX is generated from VBAT. When VIN voltage is lower than V_{SWITCHOVER} and VBAT voltage is lower than V_{VBAT_OK}, VDD_PWRMUX is generated from higher voltage source between VIN and VBAT by diode-or circuit. When VIN is below V_{SWITCHOVER}, the circuits except for the overheat protection stop, and the current consumption is suppressed.

VIN > V_{SWITCHOVER}: VDD_PWRMUX is powered from VIN

VIN < V_{SWITCHOVER} and VBAT > V_{VBAT_OK}: VDD_PWRMUX is powered from VBAT

VIN < $V_{SWITCHOVER}$ and VBAT < V_{VBAT_OK} : VDD_PWRMUX is powered from higher voltage source between VIN and VBAT

Host/OTG Mode

In OTG mode, power is first supplied from VOUT to VIN through the body diode of the Internal Nch MOSFET. When VIN voltage exceeds $V_{\text{SWITCHOVER_REL}}$, and BO voltage exceeds $V_{\text{REF_BO}}$, the Internal switch turns on. When VIN grounded, large current flows from VOUT to VIN. To prevent the large current from flowing, please limit the current of the power supply connected to the VOUT.

Application Information

Over Temperature Protection Setting

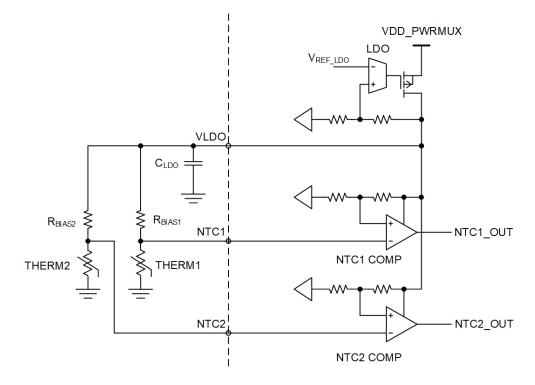


Figure 43. Circuit Diagram around Over Temperature Protection Setting

The detection temperature is set by R_{BIASx} and THERMx. Set R_{BIASx} according to the following formula.

$$R_{\rm BIASx} = \left(\frac{1 - \alpha_{\rm TRIP}}{\alpha_{\rm TRIP}}\right) R_{\rm NTC_TEMP_TRIP}$$

Where:

 $R_{\text{NTC_TEMP_TRIP}}$ is the resistance of the thermistor at the detection temperature. α_{TRIP} is the ratio of V_{REF_THERM} to V_{LDO}.

To calculate the error in detection temperature, calculate min/max of $R_{\text{NTC}_\text{TEMP}_\text{TRIP}}$ from min/max of α_{TRIP} and R_{BIASx} in reverse order of the above procedure.

$$R_{\text{NTC}_\text{TEMP}_\text{TRIP}_\text{max}} = \left(\frac{\alpha_{\text{TRIP}_\text{max}}}{1 - \alpha_{\text{TRIP}_\text{max}}}\right) R_{\text{BIASx}_\text{max}}$$
$$R_{\text{NTC}_\text{TEMP}_\text{TRIP}_\text{min}} = \left(\frac{\alpha_{\text{TRIP}_\text{min}}}{1 - \alpha_{\text{TRIP}_\text{min}}}\right) R_{\text{BIASx}_\text{min}}$$

The temperature of the thermistor at min/max of $R_{NTC_TEMP_TRIP}$ is the min/max of the detection temperature. When calculating the temperature from $R_{NTC_TEMP_TRIP}$, the tolerance of the thermistor must be included in the calculation. To calculate the release temperature, replace α_{TRIP} with α_{TRIP_REL} in the above procedure.

Application Information - continued

Examples of the detection temperature setting is presented below. B: Constants that describe the relationship between temperature and resistance of thermistor. R0: Resistance value of the thermistor at Ta = 25 °C

Detect temperature = 80 °C

Thermistor: NCP15WF104F03RC (without variability, β = 4250 K (25/50 °C), R0 = 100 k Ω) R_{BIAS}: 10.5 k Ω ± 0 %

	Min	Тур	Max	Unit
Detect temperature	79.3	80.2	81.0	°C
Release temperature	54.8	56.2	57.5	°C
Thermal hysteresis	23.5	24.0	24.5	°C

Detect temperature = 70 °C

Thermistor: NCP15WF104F03RC (without variability, β = 4250 K (25/50 °C), R0 = 100 k Ω) R_{BIAS}: 15 k Ω ± 0 %

	Min	Тур	Max	Unit
Detect temperature	69.5	70.3	71.1	°C
Release temperature	46.1	47.4	48.7	°C
Thermal hysteresis	22.4	22.9	23.4	°C

Detect temperature = 60 °C

Thermistor: NCP15WF104F03RC (without variability, β = 4250 K (25/50 °C), R0 = 100 k Ω) R_{BIAS}: 22.1 k Ω ± 0 %

	Min	Тур	Max	Unit
Detect temperature	59.4	60.1	60.9	°C
Release temperature	37.1	38.4	39.6	°C
Thermal hysteresis	21.3	21.8	22.2	°C

Detect temperature = 50 °C

Thermistor: NCP15WF104F03RC (without variability, β = 4250 K (25/50 °C), R0 = 100 k Ω) R_{BIAS}: 33.2 k Ω ± 0 %

	Min	Тур	Max	Unit
Detect temperature	49.3	50.0	50.7	°C
Release temperature	28.2	29.3	30.5	°C
Thermal hysteresis	20.2	20.7	21.1	°C

Application Information - continued

OVP, BO Settings

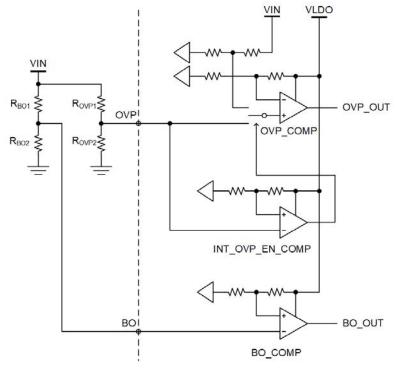


Figure 44. Circuit Diagram around OVP, BO Setting

OVP and BO are detected by comparing the resistive divider between VIN and GND with the reference voltage as shown in the figure. The detector threshold can be set by the following formula.

$$V_{\text{OVP}} = V_{\text{REF}_{\text{OVP}}} \times \frac{R_{\text{OVP1}} + R_{\text{OVP2}}}{R_{\text{OVP2}}}$$
$$V_{\text{BO}} = V_{\text{REF}_{\text{BO}}} \times \frac{R_{\text{BO1}} + R_{\text{BO2}}}{R_{\text{BO2}}}$$

The OVP function can be changed to internal OVP with fixed threshold by connecting the OVP pin to GND. The internal OVP monitors the VIN pin voltage, and the threshold value is V_{OVP_INT} .

Application Information - continued

OCL Settings

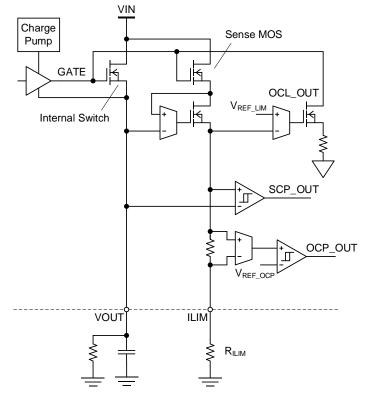


Figure 45. Circuit Diagram around OCL Setting

The overcurrent limit can be set by the resistance R_{ILIM} between the ILIM pin and GND. The R_{ILIM} should be placed in the vicinity of the IC. The current flowing through the ILIM pin is proportional to that flowing through the VOUT pins. The resistor R_{ILIM} connected to the ILIM pin converts this current to a voltage. When the ILIM voltage reaches V_{REF_LIM} , it lowers gate voltage of the internal switch and limits the current. The current limit is as following formula.

$$I_{\text{OCL}} = 999.34 \times R_{ILIM}^{-0.8928}$$

 $R_{ILIM} = 2289.53 \times I_{OCL}^{-1.1201}$

LDO Output Capacitor

The BD58020GW has a built-in LDO for reference of over temperature protection and internal circuit power supply. Even if the over temperature protection function is not used, connect a ceramic capacitor C_{LDO} with an effective capacitance of 0.1 μ F or more between the V_{LDO} and GND. The C_{LDO} should be placed in the vicinity of the IC.

Application Examples

USB and Battery configuration

Example design parameters VBAT = 2.7 V to 5.5 V VIN = 0 V to 5.25 V OVP threshold = 6.0 V BO threshold = 4.0 V OverTempProtection1 = OverTempProtection2 = 60 °C OCL threshold = 2.09 A

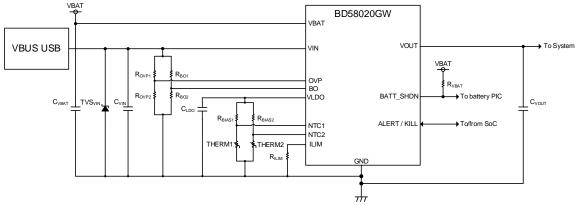


Figure 46. Application Circuits of USB and Battery Configuration

Contents	Reference	Manufacturer	Parts Name	Descriptions	Size (mm)
TVS diode	TVS _{VIN}	ROHM semiconductor	VS6V3UC1QST18R	6.3V TVS diode	1006
Capacitor	CVIN	Murata Electronics	GRM153R61A105ME95	1.0 μF	1005
Capacitor	Суопт	Murata Electronics	GRM153R61A105ME95	1.0 μF	1005
Capacitor	Суват	Murata Electronics	GRM153R61A105ME95	1.0 μF	1005
Consoitor	Curr	Murata Electronics	GRM155R71A224KE01	0.22 μF ^(Note 6)	1005
Capacitor	CLDO	Murata Electronics	GRM155R71A474KE01	0.47 µF (Note 7)	1005
Resistor	Rovp1	ROHM semiconductor	MCR01SMQPF4023	402 kΩ	1005
Resistor	Rovp2	ROHM semiconductor	MCR01SMQPF1003	100 kΩ	1005
Resistor	R _{BO1}	ROHM semiconductor	MCR01SMQPF3483	348 kΩ	1005
Resistor	R _{BO2}	ROHM semiconductor	MCR01SMQPF1503	150 kΩ	1005
Resistor	RILIM	ROHM semiconductor	MCR01SMQPF1001	1 kΩ	1005
Resistor	R _{BIAS1}	ROHM semiconductor	MCR01SMQPF2212	22.1 kΩ	1005
Resistor	R _{BIAS2}	ROHM semiconductor	MCR01SMQPF2212	22.1 kΩ	1005
Resistor	R _{VBAT}	ROHM semiconductor	MCR01SMQPF1003	100 kΩ	1005
Thermistor	THERM1	Murata Electronics	NCP15WF104F03RC	100 kΩ / 4250 K	1005
Thermistor	THERM2	Murata Electronics	NCP15WF104F03RC	100 kΩ / 4250 K	1005

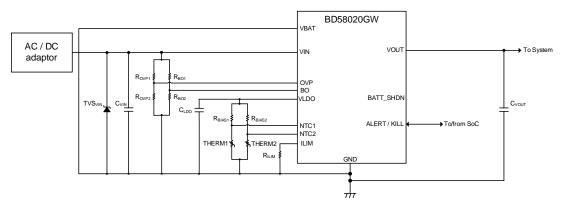
Table 2. BOM List of USB and Battery Configuration

(Note 6) When Ta = 0 °C to +125 °C (Note 7) When Ta = -40 °C to +125 °C

Application Examples - continued

AC/DC Adapter System - configuration

Example design parameters VIN = 0 V to 18.9 V OVP threshold = 21.6 V BO threshold = 15 V OverTempProtection1 = OverTempProtection2 = 60 °C OCL threshold = 2.09 A



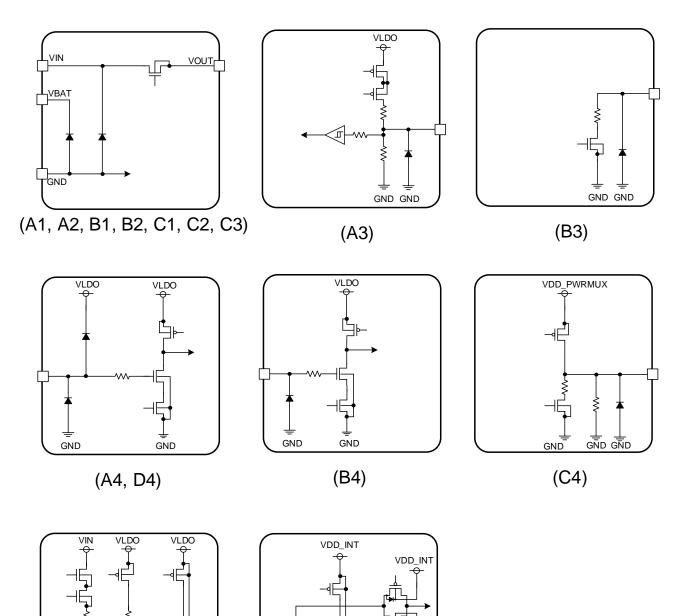

Figure 47. Application Circuits of AC/DC Adapter System Configuration

Table 3.	BOM List	of AC/DC Ada	pter System	Configuration

Contents	Reference	Manufacturer	Parts Name	Descriptions	Size (mm)
TVS diode	TVS _{VIN}	ROHM semiconductor	SMF20V	20 V TVS diode	1.6 x 3.5
Capacitor	CVIN	Murata Electronics	GRM155R61E105MA12D	1.0 μF	1005
Capacitor	C _{VOUT}	Murata Electronics	GRM155R61E105MA12D	1.0 μF	1005
Consoitor	Curre	Murata Electronics	GRM155R71A224KE01	0.22 μF ^(Note 6)	1005
Capacitor	CLDO	Murata Electronics	GRM155R71A474KE01	0.47 μF ^(Note 7)	1005
Resistor	R _{OVP1}	ROHM semiconductor	MCR01SMQPF5103	510 kΩ	1005
Resistor	Rovp2	ROHM semiconductor	MCR01SMQPF3002	30 kΩ	1005
Resistor	R _{BO1}	ROHM semiconductor	MCR01SMQPF1503	150 kΩ	1005
Resistor	R _{BO2}	ROHM semiconductor	MCR01SMQPF1302	13 kΩ	1005
Resistor	RILIM	ROHM semiconductor	MCR01SMQPF1001	1 kΩ	1005
Resistor	R _{BIAS1}	ROHM semiconductor	MCR01SMQPF2212	22.1 kΩ	1005
Resistor	R _{BIAS2}	ROHM semiconductor	MCR01SMQPF2212	22.1 kΩ	1005
Thermistor	THERM1	Murata Electronics	NCP15WF104F03RC	100 kΩ / 4250 K	1005
Thermistor	THERM2	Murata Electronics	NCP15WF104F03RC	100 kΩ / 4250 K	1005

(*Note 6*) When Ta = 0 °C to +125 °C (*Note 7*) When Ta = -40 °C to +125 °C

I/O Equivalence Circuits

GND

GND

(D1)

GND

GND

(D3)

GND

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.

2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.

3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.

4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Recommended Operating Conditions

The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics.

6. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.

7. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.

8. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

9. Unused Input Pins

Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.

Operational Notes – continued

10. Regarding the Input Pin of the IC

This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below):

When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor.

Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.

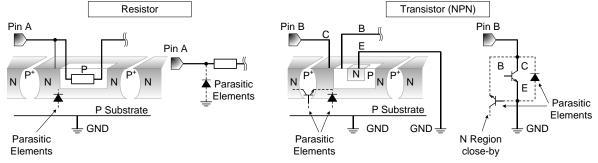


Figure 48. Example of Monolithic IC Structure

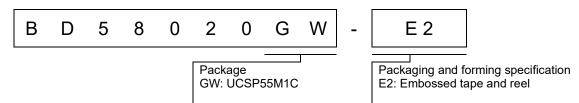
11. Ceramic Capacitor

When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.

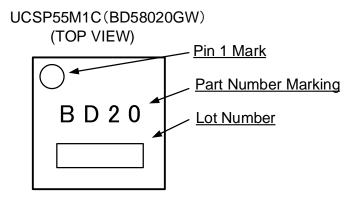
12. Thermal Shutdown Circuit (TSD)

This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the IC's maximum junction temperature rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation.

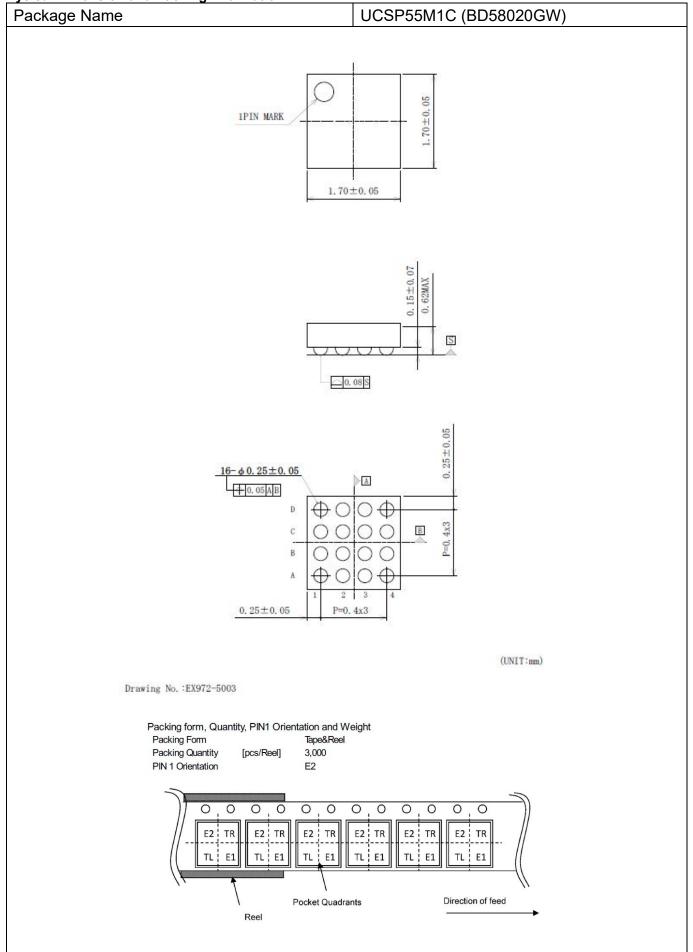
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage.


13. Over Current Protection Circuit (OCP)

This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit.


14. Disturbance Light

In a device where a portion of silicon is exposed to light such as in a WL-CSP and chip products, IC characteristics may be affected due to photoelectric effect. For this reason, it is recommended to come up with countermeasures that will prevent the chip from being exposed to light.


Ordering Information

Marking Diagrams

Revision History

Date	Revision	Changes				
27.Mar.2024	001	New Release				

Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (^{Note 1)}, transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JÁPAN	USA	EU	CHINA	
CLASSⅢ	CLASSⅢ	CLASS II b	CLASSⅢ	
CLASSⅣ	CLASSIII	CLASSⅢ	CLASSI	

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used. However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
- 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
- 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

- 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.