

Automotive Intelligent Power Device Single Channel 9 mΩ High Side Switch

BV1HBC08EFJ-C

General Description

The BV1HBC08EFJ-C single channel 9 mΩ Intelligent High Side Power Device integrates an Overcurrent load protection, a dual Temperature Shutdown mechanism which limits the internal thermal transients and reduces the mechanical stress of the IC, and a smart Active-Clamp circuit to dissipate the magnetic energy while switching off inductive loads and to protect internal circuits from overvoltage surges. Embedded Current Sense and Diagnostic features provide real time load current information and open or short circuit feedback in both on and off state. A 3 V and 5 V CMOS compatible input pin offers direct microcontroller connection without special interfaces or level shifters. These in conjunction with a wide input voltage range make the High Side IPD a highperformance component suitable for 12 V battery connected automotive applications.

Features

- AEC-Q100 Qualified(Note 1)
- Short Circuit Load Protection
- Overcurrent Limitation
- Active Clamp and Overvoltage Protection
- Dual Temperature Shutdown
- Undervoltage Lock Out
- Integrated Current SENSE Circuit
- Loss of Ground Protection
- Reverse Battery Connection Protection
- Open Load and Short to Battery Diagnostics (Note 1) Grade 1

Applications

- Driver for Resistive, Inductive and Capacitive Loads
- MOSFET, Relay and Fuse Replacement
- Intelligent Power Device for 12 V Automotive Applications

Key Specifications

■ Supply Nominal Voltage Range:

■ Low Operating Voltage (cranking):

■ Overvoltage Protection:

■ ON Resistance:

■ Overcurrent Limit:

■ Sleep Current:

■ Operating Current:

■ Operating Current:

■ Junction Temperature Range (Tj):

-40 °C to +150 °C

Package

W (Typ) x D (Typ) x H (Max) HTSOP-J8 4.9 mm x 6.0 mm x 1.0 mm

- Thermally Enhanced Thin Small-Outline 8 pin package with 1.27 mm Pin Pitch
- Exposed Pad for improved thermal performance

Typical Application Circuit

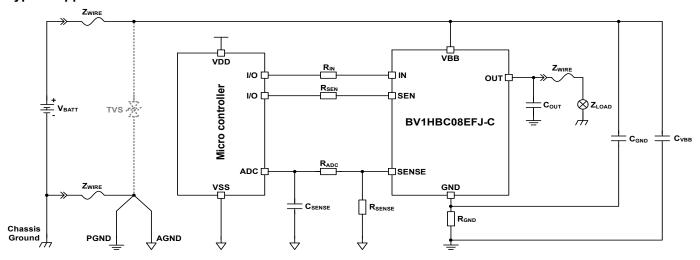


Figure 1. Typical Application Diagram

OProduct structure: Silicon integrated circuit OThis product has no designed protection against radioactive rays.

Table of Contents

General Description	1
Features	1
Applications	1
Key Specifications	1
Package	1
Typical Application Circuit	1
Table of Contents	2
Pin Configuration	3
Pin Description	3
Definitions	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	6
Thermal Resistance	7
Electrical Characteristics	11
Typical Performance Curves	13
Measurement Circuit Diagram	21
Block Diagram	24
Features Description	25
Application Circuit Example	35
Recommended External Components Example	35
I/O Equivalence Circuits	36
Operational Notes	37
Ordering Information	39
Marking Diagram	39
Physical Dimension and Packaging Information	40
Revision History	41

Pin Configuration

HTSOP-J8 (Top View)

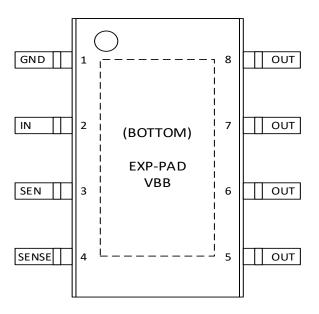


Figure 2. Pin Configuration

Pin Description

Pin No.	Pin Name	Function				
1	GND	Device Ground pin				
2	IN	Input Pin. Turns on the Switch. Active "High"				
3	SEN	Current Sense and diagnostic enable. Active "High"				
4	SENSE	Current Sense analog output pin				
5 to 8	OUT	High Side Switch Power Output(Note 1)				
EXP-PAD	VBB	Exposed-Pad. Power Supply Voltage Line Input				

(Note 1) Output pins are internally shorted. Please connect the respective pins together on the PCB such as the metal traces can withstand the desired maximum current.

Definitions

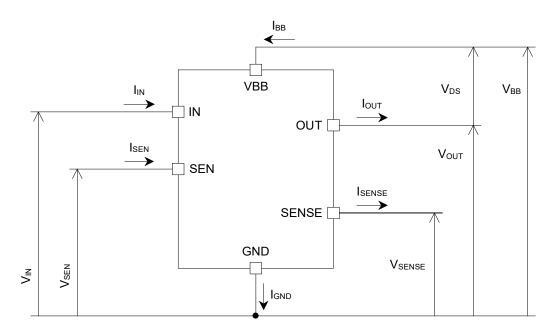


Figure 3. Voltage and Current Definitions

Absolute Maximum Ratings

Parameters	Symbol	Ratings	Unit	Conditions
[Power Supply / GND pin]				
DC Supply Voltage	V_{BB}	-0.3 to +36	V	
Supply Voltage at load dump	V_{BB_LD}	40	V	ISO16750-2, Ri = 2 Ω
Supply Voltage (Output to GND short) (Note 4)	V _{BB_SC}	-0.3 to +18	V	AEC-Q100-012
Supply Voltage (When battery is connected in reverse direction)	V_{BB_REV}	-16	V	less than 2 minutes, Tj = 25 °C, R _L > 4 Ω , R _{GND} connected
GND Pin Current	IGND	-50 to +30	mA	less than 2 minutes, Tj = 25 °C
[Input Pin]				
Input Voltage	V _{IN} , V _{SEN}	-0.3 to +7	V	
Input Current	I _{IN} , I _{SEN}	-2 to +2	mA	
Input Current (When battery is connected in reverse direction)	lin_rev, Isen_rev	-5	mA	less than 2 minutes, Tj = 25 °C, R _{IN} , R _{SEN} ≥ 4.7 kΩ
[SENSE pin]				
SENSE Voltage	V _{SENSE_ON}	-0.3 to internal limitation ^(Note 1)	V	V _{SEN} = "high"
Ğ	V_{SENSE_OFF}	-0.3 to +7	V	V _{IN} = V _{SEN} = "low"
SENSE Current	Isense	-20 to internal limitation ^(Note 1)	mA	R _{SENSE} = 1 kΩ
[OUT pin]				
Power Supply to Output Voltage	V_{DS}	-0.3 to internal limitation ^(Note 2)	V	
Maximum Output Current	Іоит	internal limitation ^(Note 3)	А	Maximum V _{BB} = 28 V
Single Pulse Energy Rating ^(Note 4)	Eas_25°C	120	mJ	Tj = 25 °C, V _{BB} = 14 V, I _{OUT(START)} = 8 A
Olligie Fulse Ellergy Ruting	Eas_150°C	70	mJ	Tj = 150 °C, V _{BB} = 14 V, I _{OUT(START)} = 8 A
[Temperature]				
Storage Temperature Range	Tstg	-55 to +150	°C	
Junction Temperature Range	Tj	-40 to +150	°C	
Maximum Junction Temperature	Tjmax	150	°C	
[ESD] (Note 5)				
Electrostatic-Discharge Capability	OUT pins	±2	KV	
Human Body Model - HBM	VBB,IN, SEN, SENSE pins	±2	KV	
Electrostatic-Discharge Capability Charged Device Model - CDM	All pins	±750	V	

⁽Note 1) Internal limitation by SENSE voltage clamp and current-limitation protection. Please see the "Electrical Characteristics" section for more details.

- Caution 1: Exposure to the absolute maximum ratings may cause permanent damage to the IC, may affect the device reliability and lifetime. Therefore, operation at or above the absolute maximum ratings is not recommended. The above-described values represent stress ratings and functional operation is not implied. In addition, no destructive conditions such as short or open can be assumed.
- Caution 2: If the IC is used in a manner that exceeds the maximum junction temperature the original characteristics of the IC will be degraded. If the junction temperature exceeds the maximum specified temperature, increase the board size, increase the area of copper foil for heat dissipation, or use a heat sink. Consider reducing the thermal resistance so that the maximum junction temperature is not exceeded.
- Caution 3: When an inductive load is turned off, the Vout voltage drops below ground level. An integrated active-clamp (overvoltage) protection limits the maximum V_{DS} across the power transistor and the inductive energy is dissipated internally. The energy can be calculated using the following simplified equation:

⁽Note 2) Internal limitation by output active-clamp overvoltage protection. Please see the "Electrical Characteristics" section for more details.

⁽Note 3) Internal limitation by output overcurrent protection. Please see the "Electrical Characteristics" section for more details. (Note 4) Specified by design and/or statistical analysis of correlated parameters tested in production. (Note 5) Measured as per EIA/JEDEC and AEC-Q100 Standard. HMB-Measured as per JESD22-A114D and AEC-Q100-002. CDM-Measured as per JESD22-C101C and AEC-Q100-011.

Absolute Maximum Ratings - continued

$$E_L = V_{DSCLP} \times \left[\frac{V_{BB} - V_{DSCLP}}{R_L} \times \ln \left(1 - \frac{R_L \times I_{OUT(START)}}{V_{BB} - V_{DSCLP}} \right) + I_{OUT(START)} \right] \times \frac{L}{R_L}$$

Where:

 ${\it L\,}$ is the inductance value of the inductive load.

 R_L is the resistance value of the load.

 V_{BB} is the supply voltage.

 V_{DSCLP} is the clamping voltage.

 $I_{
m OUT(START)}$ is the current flowing through the inductive load at the instance the inductive load is turned off.

In simplified form, if R_L is neglected.

$$E_L = \frac{1}{2} \times L \times I_{OUT(START)}^2 \times \left(1 - \frac{V_{BB}}{V_{BB} - V_{DSCLP}}\right)$$

Caution 4: The maximum E_L energy the device can dissipate for a given $I_{OUT(START)}$ is limited by the maximum thermal transient the power transistor can handle, hence the maximum inductance L must be selected with respect to the maximum given $I_{OUT(START)}$.

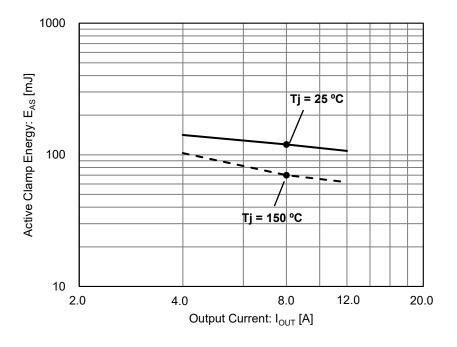


Figure 4. Active Clamp Energy vs Output Current

Recommended Operating Conditions

confinenced Operating Conditions					
Parameters	Symbol	MIN	TYP	MAX	Unit
Supply Nominal Voltage Range (Note 1)	V _{BB}	6	14	28	V
Input Voltage	VIN, VSEN	0	-	5.5	V
Operating Junction Temperature	Tj	-40	+25	+150	°C
Input Frequency	fin	-	-	1	kHz

(Note 1) An extended supply operating voltage range from 4.0 V up to 28 V is possible after start-up; protections are operational. The device is functional up to 36 V and protections are active, however parameter deviations are possible. Please refer to the "Electrical Characteristics" section and the "Features Description" section.

Thermal Resistance (Note 1)

ici indi Nesistance		ı	1		
Parameters	Symbol	TYP	Unit	Cond	itions
HTSOP-J8			1	•	
Thermal Resistance between junction and ambient temperature		122.2	°C/W	1s	(Note 2)
	θја	37.0	°C/W	2s	(Note 3)
		24.8	°C/W	2s2p	(Note 4)
Thermal characterization parameter between		7	°C/W	1s	(Note 2)
junction and top center of the outside surface of the component package	$\Psi_{ m JT}$	3	°C/W	2s	(Note 3)
		2	°C/W	2s2p	(Note 4)

⁽Note 1) Based on JESD51-2A(Still-Air). Specified by design.

Caution: The values presented here were measured/simulated under a specific set of conditions and should be regarded only as a guideline on how to estimate the thermal behavior of the application and should not be used as design parameters. A careful evaluation of the actual application values should be done to confirm the estimated results

■ PCB Layout 1 Layer (1s)

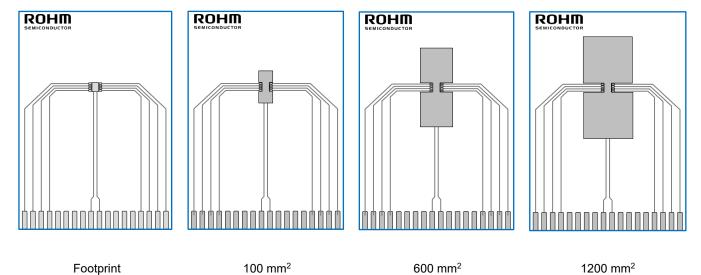


Figure 5. PCB Layout 1 Layer (1s)

Dimension	Value	
Board Finish Thickness	1.57 mm	
Board Dimension	76.2 mm x 114.3 mm	
Board Material	FR4	
Copper Thickness	0.070 mm (Cu: 2 oz)	
Copper Foil Area	Footprint / 100 mm ² / 600 mm ² / 1200 mn	

⁽Note 2) Using a PCB board based on JESD51-3.

⁽Note 3) Using a PCB board based on JESD51-5.

⁽Note 4) Using a PCB board based on JESD51-5, 7.

Thermal Resistance - continued

■ PCB Layout 2 Layers (2s)

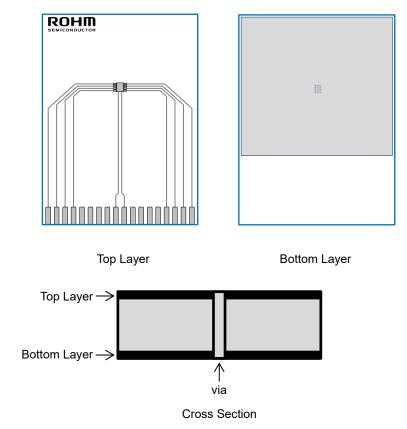


Figure 6. PCB Layout 2 Layers (2s)

Dimension	Value			
Board Finish Thickness	1.60 mm			
Board Dimension	76.2 mm x 114.3 mm			
Board Material	FR4			
Copper Thickness (Top / Bottom Layers)	0.070 mm (Cu: 1 oz + plating)			
Thermal Vias Separation / Diameter	1.2 mm / 0.3 mm			

Thermal Resistance - continued

■ PCB Layout 4 Layers (2s2p)

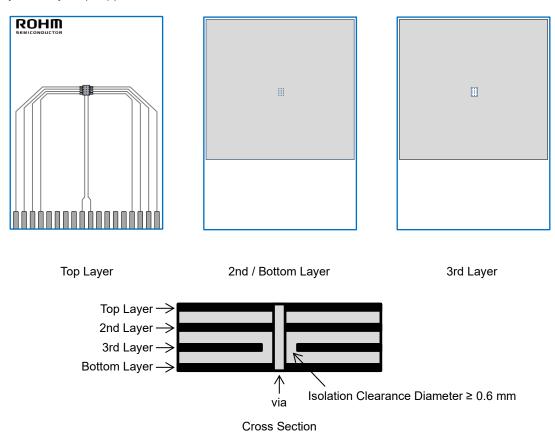
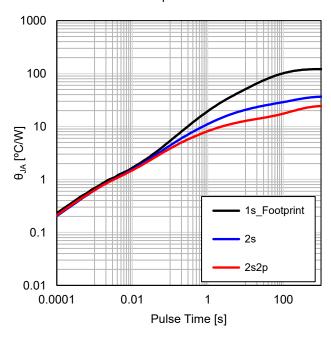



Figure 7. PCB Layout 4 Layers (2s2p)

Dimension	Value
Board Finish Thickness	1.60 mm
Board Dimension	76.2 mm x 114.3 mm
Board Material	FR4
Copper Thickness (Top / Bottom Layers)	0.070 mm (Cu: 1 oz + plating)
Copper Thickness (Inner Layers)	0.035 mm
Thermal Vias Separation / Diameter	1.2 mm / 0.3 mm

Thermal Resistance - continued

■ Thermal Resistance Graphs

120 100 80 80 40 20 0 200 400 600 800 1000 1200 Copper Foil Area (1s) [mm²]

140

Figure 8. Transient Thermal Resistance

Figure 9. Thermal Resistance

Electrical Characteristics

(Unless otherwise specified V_{BR} = 6 V to 28 V. Ti = -40 °C to +150 °C)

Parameters	Symbol	= -40 °C to +150 °C) Ratings		Unit	Conditions	
		MIN	TYP	MAX		
[Power Supply Section]					1	
	I _{BBL1}	-	-	0.5	μA	$V_{BB} = 18 \text{ V}, V_{IN} = 0 \text{ V}, V_{SEN} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, Tj = 25 °C$
Sleep Mode Current	I _{BBL2} (Note 1)	-	-	1.0	μΑ	$V_{BB} = 18 \text{ V}, V_{IN} = 0 \text{ V}, V_{SEN} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, Tj = 85 °C$
	I _{BBL3}	-	-	30	μA	$V_{BB} = 18 \text{ V}, V_{IN} = 0 \text{ V}, V_{SEN} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, Tj = 150 °C$
Standby Mode Current (Diagnostic Function ON)	I _{GNDL}	-	1.0	2.0	mA	V _{BB} = 18 V, V _{IN} = 0 V, V _{SEN} = 5 V
Operating Mode Current	IGNDH	-	3.5	6.0	mA	V _{BB} = 18 V, V _{IN} = 5 V
UVLO Threshold Voltage	Vuvloh	4.7	5.1	5.5	V	V_{BB} : sweep-up, V_{IN} = 5 V, V_{OUT} reaches more than V_{BB} - 1 V
	V _{UVLOL}	3.0	3.5	4.0	V	V _{BB} : sweep-down, V _{IN} = 5 V, V _{OUT} reaches less than 1 V
UVLO Hysteresis Voltage	V _{UVHYS}	-	1.6	-	V	V _{UVHYS} = V _{UVLOH} - V _{UVLOL}
V _{BB} Overvoltage Protection	V _{BBCLP}	41	45	49	V	I _{BB} = 10 mA
[Input Section (IN / SEN pin)]			1			
High Level Input Voltage	ViH	2.1	-	-	V	
Low Level Input Voltage	VIL	-	-	0.9	V	
Input Hysteresis Voltage	V _{IHYS}	-	0.2	-	V	
High Level Input Current	I _{IH}	-	50	100	μΑ	V _{IN} , V _{SEN} = 5 V
Low Level Input Current	Iμ	-	5	10	μΑ	V_{IN} , $V_{SEN} = 0.5 V$
[Output Section]						
	R _{ON1}	-	9	12	mΩ	$V_{BB} \ge 8 \text{ V, Tj} = 25 \text{ °C, } I_{OUT} = 7 \text{ A}$
Output ON Resistance	R _{ON2}	-	-	22	mΩ	V _{BB} ≥ 8 V, Tj = 150 °C, I _{OUT} = 7 A
	R _{ON3}	-	-	20	mΩ	V _{BB} = 6 V, Tj = 25 °C, I _{OUT} = 7 A
Output ON Resistance in Reverse Battery Connection	Ron(rev)	-	8	-	mΩ	V _{BB} = -14 V, Tj = 25 °C
	I _{OUTL1}	-	-	0.5	μA	$V_{BB} = 18 \text{ V}, V_{IN} = 0 \text{ V}, V_{SEN} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, Tj = 25 °C$
Output Leakage Current	I _{OUTL2} (Note 1)	-	-	1.0	μΑ	$V_{BB} = 18 \text{ V}, V_{IN} = 0 \text{ V}, V_{SEN} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, Tj = 85 °C$
Catput Lounage Carroni	I _{OUTL3} (Note 1)	-	-	15	μΑ	$V_{BB} = 18 \text{ V}, V_{IN} = 0 \text{ V}, V_{SEN} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, Tj = 125 °C$
	I _{OUTL4}	-	-	30	μA	$V_{BB} = 18 \text{ V}, V_{IN} = 0 \text{ V}, V_{SEN} = 0 \text{ V},$ $V_{OUT} = 0 \text{ V}, T_{j} = 150 \text{ °C}$
V _{DS} Voltage at Light Load	V _{DSSL}	-	13	27	mV	V _{IN} = 5 V, I _{OUT} = 100 mA
Output Slew Rate when ON	SRon	-	0.25	0.70	V/µs	V_{BB} = 14 V, R_L = 2 Ω , T_j = 25 °C, V_{OUT} = 30 % to 70 % of V_{BB}
Output Slew Rate when OFF	-SR _{OFF}	-	0.25	0.70	V/µs	V_{BB} = 14 V, R _L = 2 Ω , Tj = 25 °C, V_{OUT} = 70 % to 30 % of V_{BB}
Output Propagation Time Delay when Turning ON	t _{OD_ON}	-	70	150	μs	V_{BB} = 14 V, R_L = 2 Ω , T_j = 25 °C, V_{OUT} rises at 20 % of V_{BB}
Output Propagation Time Delay when Turning OFF	t _{OD_OFF}	-	30	100	μs	V_{BB} = 14 V, R_L = 2 Ω , Tj = 25 °C, V_{OUT} drops at 80 % of V_{BB}
Switch ON Energy	Eon	-	0.91	-	mJ	$V_{BB} = 14 \text{ V}, R_L = 2 \Omega, Tj = 25 ^{\circ}\text{C}$
Switch OFF Energy	Eoff	-	0.91	-	mJ	V _{BB} = 14 V, R _L = 2 Ω, Tj = 25 °C
Reverse Current ^(Note 1)	I _{REVC}	-	-7	-	Α	V _{IN} = 5 V, Tj = 25 °C
Body Diode Voltage	V _{DSDI}	-	0.5	0.9	V	I _{ОUТ} = -10 mA, Tj = 150 °C
V _{DS} Active Clamping Voltage	V _{DSCLP}	41	45	49	V	I _{OUT} = 30 mA

Electrical Characteristics – continued

(Unless otherwise specified $V_{BB} = 6 \text{ V}$ to 28 V, Tj = -40 °C to +150 °C)

Parameters	Symbol		Unit	Conditions				
		MIN	TYP	MAX				
[Output Protection Section]								
	I _{OCD_14V}	46	66	90	Α	V _{BB} = 14 V Tj = 25 °C		
Overcurrent Detection Value	IOCD_28V	32	46	63	Α	V _{BB} = 28 V Tj = 25 °C		
(Note 1) (Note 2)	locd_14VH	27	40	55	Α	V _{BB} = 14 V Tj = 150 °C		
	locd_tsd	20	30	41	Α	V _{BB} = 14 V , after TSD Detection		
Temperature Shutdown Detection Threshold ^(Note 1) (Note 2)	T _{TSD}	150	175	200	°C			
Temperature Shutdown Detection Hysteresis ^(Note 1)	T _{TSDHYS}	-	15	-	°C			
Dynamic Temperature Protection Threshold ^(Note 1) (Note 2)	T_{DTj}	20	30	40	K	Differential temperature		
[Diagnostic / SENSE Section]		1			ı			
Open Load at OFF V _{DS} Threshold	VDSOL	1.5	2.5	3.5	V	V _{IN} = 0 V, V _{SEN} = 5 V		
Output Pull Down Current	IOUTPD	-	35	-	μA	V _{OUT} = 5 V		
CENCE Laskana Cumant	I _{SENSEL}	-	-	0.5	μΑ	$V_{IN} = 0 \text{ V}, V_{SEN} = 0 \text{ V}, V_{SENSE} = 0 \text{ V}$		
SENSE Leakage Current	ISENSELD	-	-	0.5	μA	V _{IN} = 0 V, V _{SEN} = 5 V, V _{SENSE} = 0 V, V _{OUT} = 0 V		
Diagnostic Error Flag Current	ISENSEH	10	20	50	mA	V _{BB} = 8 V, V _{SENSE} = 0 V		
Diagnostic Error Flag Voltage	V _{SENSEH}	4.0	5.5	6.5	V	$V_{BB} \ge 8 \text{ V}, \text{ R}_{SENSE} = 1 \text{ k}\Omega$		
SENSE Output Delay Time when the Device Turns ON	t _{DS_ON}	-	100	250	μs	$R_L = 2 \Omega$, $V_{SEN} = V_{IN} = 0 V to 5 V$, $R_{SENSE} = 1 k\Omega$		
SENSE Output Delay Time when Diagnostic Turns ON	t _{DS_DON}	-	10	50	μs	$R_L = 2 \Omega$, $V_{IN} = 5 V$, $V_{SEN} = 0 V$ to 5 V, $R_{SENSE} = 1 k\Omega$		
SENSE Output Delay Time when Diagnostic Turns OFF	t _{DS_DOFF}	-	10	50	μs	$R_L = 2 \Omega$, $V_{IN} = 5 V$, $V_{SEN} = 5 V$ to 0 V, $R_{SENSE} = 1 k\Omega$		
SENSE Settling Time during	t _{DS_CHG_H}	-	-	20	μs	$V_{IN} = V_{SEN} = 5 \text{ V},$ $I_{OUT} = 5 \text{ A to } 10 \text{ A}, \text{ Rsense} = 1 \text{ k}\Omega$		
Load Current Switching	t _{DS_CHG_L}	-	0.6	2.0	ms	V_{IN} = V_{SEN} = 5 V, I_{OUT} = 5 A to 50 mA, R _{SENSE} = 1 k Ω		
Open Load at OFF Detection Mask Time ^(Note 1) (Note 2)	t _{OLDMSK}	-	300	800	μs	V _{DS} = 0 V, V _{SEN} = 5 V, V _{IN} = 5 V to 0 V		
Diagnostic Error Flag Release Delay Time ^(Note 1) (Note 2)	terrfd	-	550	1200	μs	V _{IN} = 0 V, V _{SEN} = 5 V, V _{DS} = 0 V to 5 V		
Current Sense Ratio 1	K ₁	-45 %	5400	+45 %	-	V _{BB} = 14 V, I _{OUT} = 0.1 A, V _{IN} = V _{SEN} = 5 V		
Current Sense Ratio 2	K ₂	-30 %	5350	+30 %	-	V _{BB} = 14 V, I _{OUT} = 0.25 A, V _{IN} = V _{SEN} = 5 V		
Current Sense Ratio 3	K ₃	-25 %	5300	+25 %	-	V _{BB} = 14 V, I _{OUT} = 0.5 A, V _{IN} = V _{SEN} = 5 V V _{BB} = 14 V, I _{OUT} = 1 A,		
Current Sense Ratio 4	K ₄	-22 %	5250	+22 %	-	$V_{BB} = 14 \text{ V, I_{OUT}} = 1 \text{ A,}$ $V_{IN} = V_{SEN} = 5 \text{ V}$ $V_{BB} = 14 \text{ V, I_{OUT}} = 2 \text{ A,}$		
Current Sense Ratio 5	K ₅	-16 %	5200	+16 %	-	$V_{BB} = 14 \text{ V, } I_{OUT} = 2 \text{ A,}$ $V_{IN} = V_{SEN} = 5 \text{ V}$ $V_{BB} = 14 \text{ V, } I_{OUT} = 4 \text{ A,}$		
Current Sense Ratio 6	K ₆	-12 %	5200	+12 %	-	V _{BB} = 14 V, I _{OUT} = 4 A, V _{IN} = V _{SEN} = 5 V V _{BB} = 14 V, I _{OUT} = 10 A,		
Current Sense Ratio 7	K ₇	-8 %	5200	+8 %	-	V _{BB} = 14 V, I _{OUT} = 10 A, V _{IN} = V _{SEN} = 5 V V _{BB} = 14 V, I _{OUT} = 15 A,		
Current Sense Ratio 8	K ₈	-8 %	5200	+8 %	-	$V_{IN} = V_{SEN} = 5 V$		
Current Sense Derating ^(Note 1)	ΔK ₁	-30 -5	-	+30	%	K ₁ vs K ₂ , Tj = 25 °C K ₄ vs K ₅ , Tj = 25 °C		
Output Load Once Data time ON	ΔK ₂	-5	-	+5		· •		
Output Load Open Detection ON (Note 1) Specified by design and/or statistic	lout_onold	29.7	54.0	78.3	mA	I _{SENSE} = 10 μA = (54 mA / 5400)		

(Note 1) Specified by design and/or statistical analysis of correlated parameters tested in production. (Note 2) Functional test only.

Typical Performance Curves

(Unless otherwise specified V_{BB} = 14 V, Tj = 25 °C)

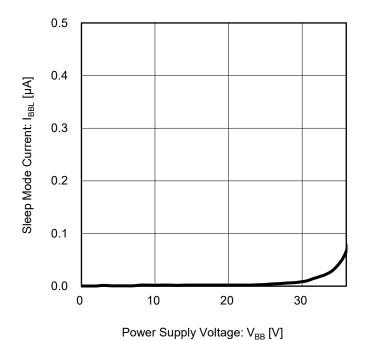


Figure 10. Sleep Mode Current vs Power Supply Voltage

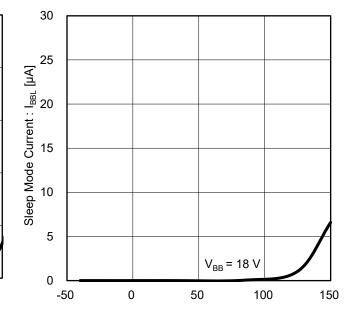


Figure 11. Sleep Mode Current vs Junction Temperature

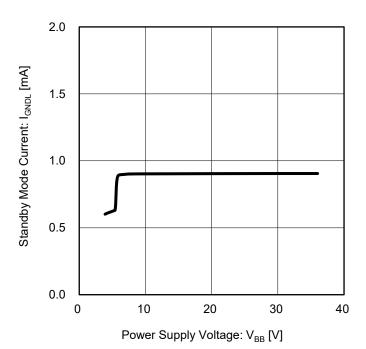


Figure 12. Standby Mode Current vs Power Supply Voltage

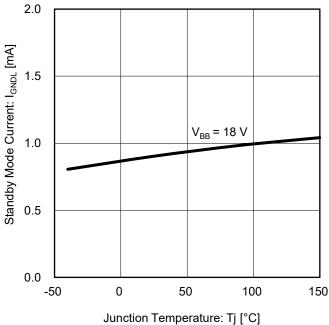


Figure 13. Standby Mode Current vs Junction Temperature

Typical Performance Curves – continued

(Unless otherwise specified V_{BB} = 14 V, Tj = 25 °C)

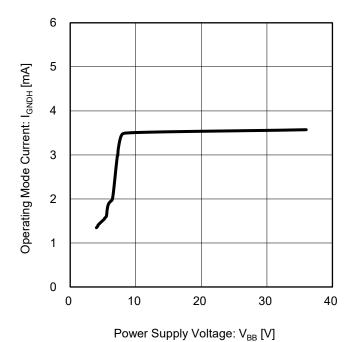


Figure 14. Operating Mode Current vs Power Supply Voltage

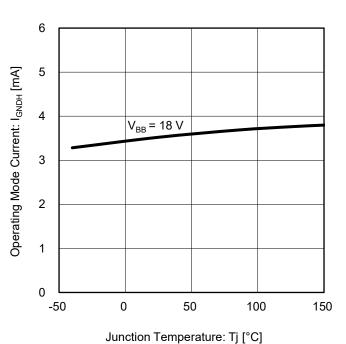


Figure 15. Operating Mode Current vs Junction Temperature

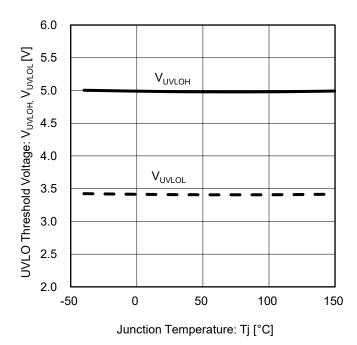


Figure 16. UVLO Threshold Voltage vs Junction Temperature

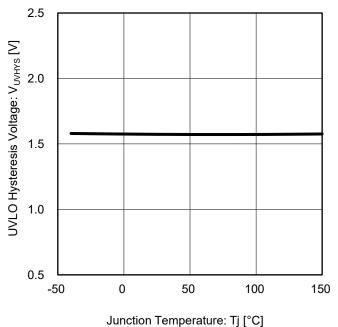


Figure 17. UVLO Hysteresis Voltage vs Junction Temperature

Typical Performance Curves - continued

(Unless otherwise specified V_{BB} = 14 V, Tj = 25 °C)

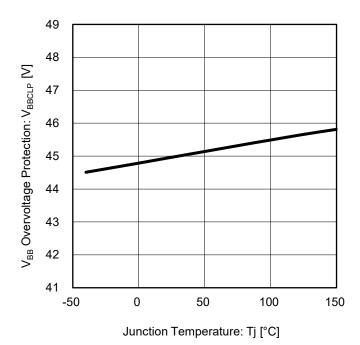


Figure 18. V_{BB} Overvoltage Protection vs Junction Temperature

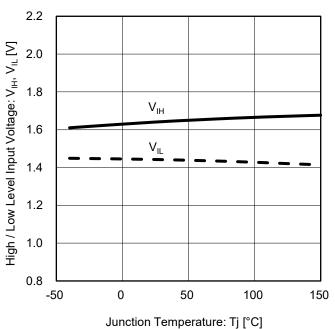


Figure 19. High / Low Level Input Voltage vs Junction Temperature

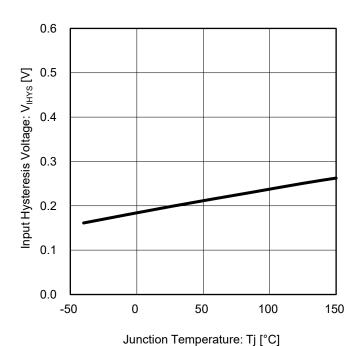


Figure 20. Input Hysteresis Voltage vs Junction Temperature

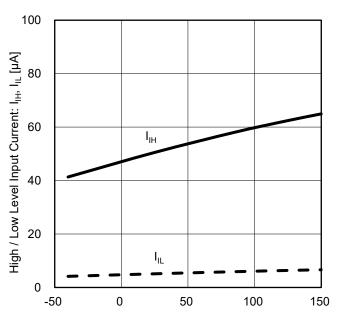


Figure 21. High / Low Level Input Current vs Junction Temperature

Typical Performance Curves – continued

(Unless otherwise specified V_{BB} = 14 V, Tj = 25 °C)

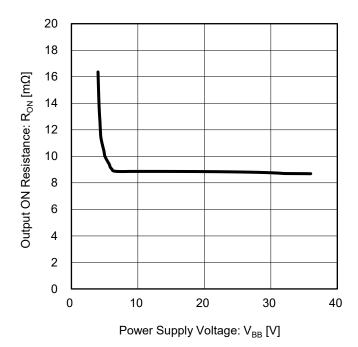


Figure 22. Output ON Resistance vs Power Supply Voltage

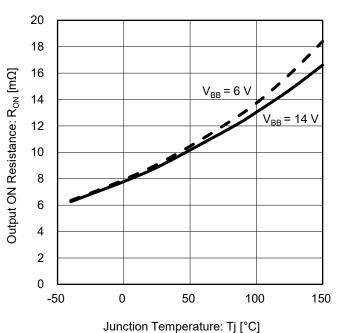


Figure 23. Output ON Resistance vs Junction Temperature

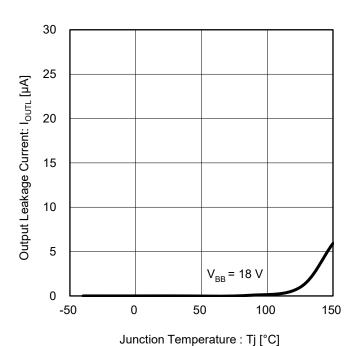


Figure 24. Output Leakage Current vs Junction Temperature

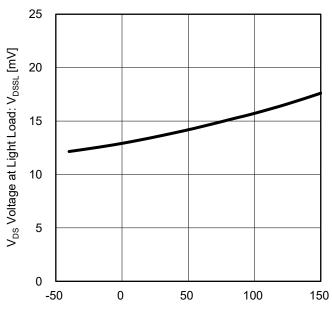


Figure 25. V_{DS} Voltage at Light Load vs Junction Temperature

Typical Performance Curves - continued

(Unless otherwise specified V_{BB} = 14 V, Tj = 25 °C)

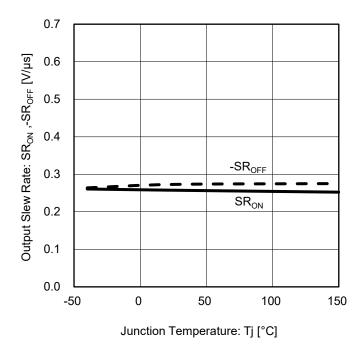


Figure 26. Output Slew Rate vs Junction Temperature

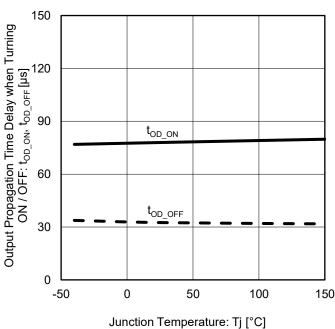


Figure 27. Output Propagation Time Delay when Turning ON / OFF vs Junction Temperature

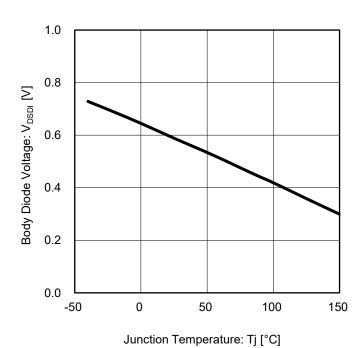


Figure 28. Body Diode Voltage vs Junction Temperature

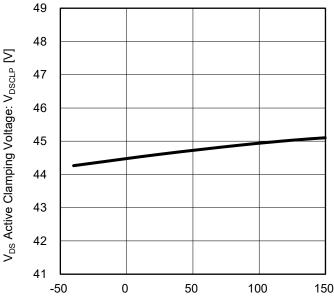


Figure 29. V_{DS} Active Clamping Voltage vs Junction Temperature

Typical Performance Curves - continued

(Unless otherwise specified V_{BB} = 14 V, Tj = 25 °C)

Figure 30. Overcurrent Detection Value vs Junction Temperature

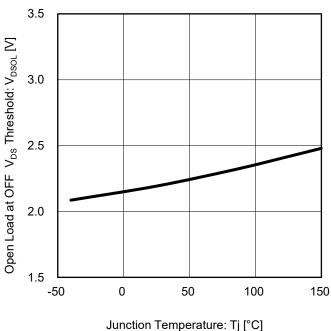


Figure 31. Open Load at OFF V_{DS} Threshold vs Junction Temperature

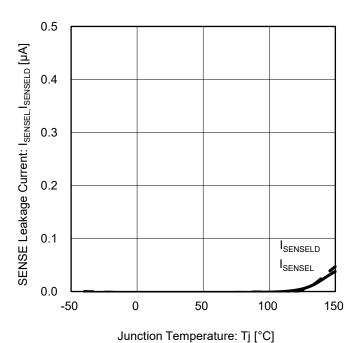
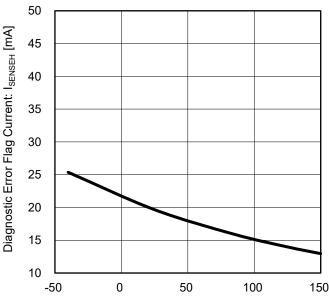



Figure 32. SENSE Leakage Current vs Junction Temperature

Junction Temperature: Tj [°C]

Figure 33. Diagnostic Error Flag Current vs Junction Temperature

Typical Performance Curves – continued

(Unless otherwise specified V_{BB} = 14 V, Tj = 25 °C)

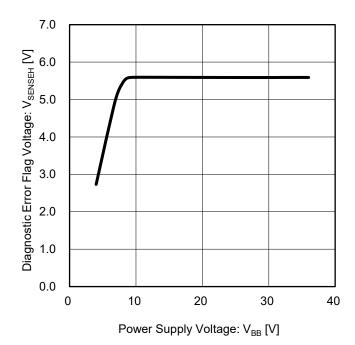


Figure 34. Diagnostic Error Flag Voltage vs Power Supply Voltage

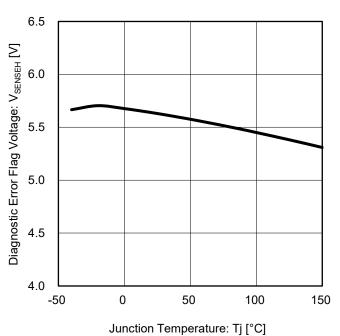


Figure 35. Diagnostic Error Flag Voltage vs Junction Temperature

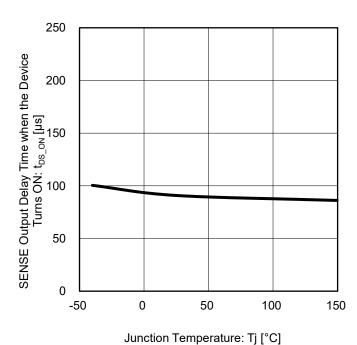


Figure 36. SENSE Output Delay Time when the Device Turns ON vs Junction Temperature

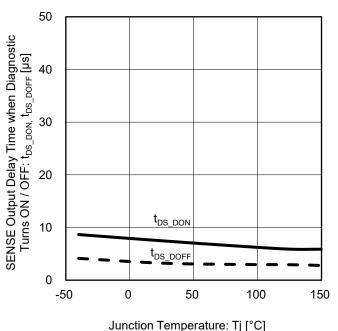
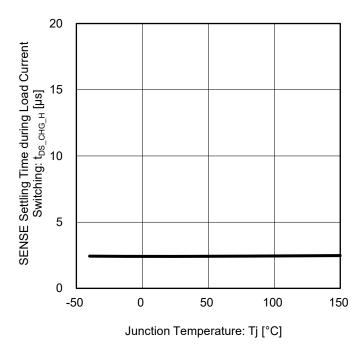



Figure 37. SENSE Output Delay Time when Diagnostic Turns ON / OFF vs Junction Temperature

Typical Performance Curves - continued

(Unless otherwise specified V_{BB} = 14 V, Tj = 25 °C)

2.0 SENSE Settling Time during Load Current Switching: t_{DS_CHG_L} [ms] 1.8 1.6 1.4 1.2 1.0 8.0 0.6 0.4 0.2 0.0 -50 0 50 100 150 Junction Temperature: Tj [°C]

Figure 38. SENSE Settling Time during Load Current Switching vs Junction Temperature

Figure 39. SENSE Settling Time during Load Current Switching vs Junction Temperature

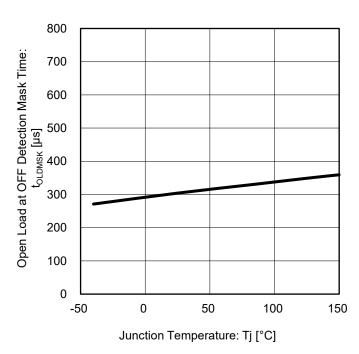


Figure 40. Open Load at OFF Detection Mask Time vs Junction Temperature

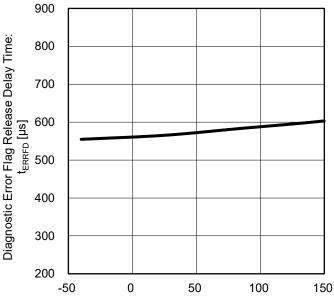


Figure 41. Diagnostic Error Flag Release Delay Time vs Junction Temperature

Typical Performance Curves – continued (Unless otherwise specified V_{BB} = 14 V, T_j = 25 °C)

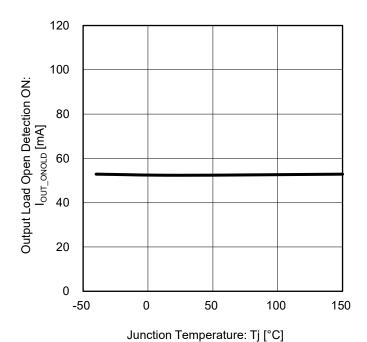


Figure 42. Output Load Open Detection ON vs Junction Temperature

Measurement Circuit Diagram

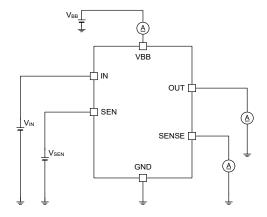


Figure 43. Sleep Mode Current OUT Leakage Current SENSE Leakage Current

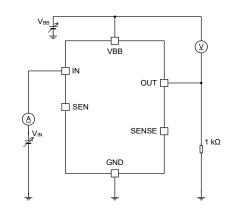


Figure 45. UVLO Threshold / Hysteresis Voltage High / Low Level Input Voltage (IN) Input Hysteresis Voltage (IN) High / Low Level Input Current (IN)

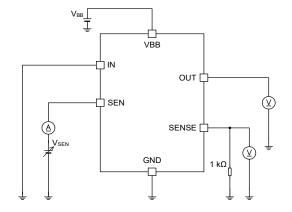


Figure 47. High / Low Level Input Voltage (SEN)
Input Hysteresis Voltage (SEN)
High / Low Level Input Current (SEN)

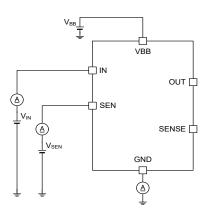


Figure 44. Standby Mode Current Operating Mode Current

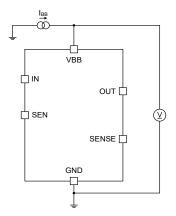


Figure 46. V_{BB} Overvoltage Protection

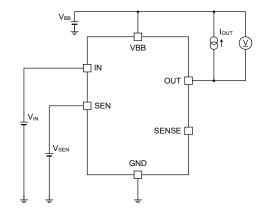


Figure 48. Output ON Resistance
VDS Voltage at Light Load
Body Diode Voltage
VDS Active Clamping Voltage

Measurement Circuit Diagram - continued

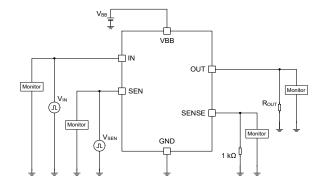


Figure 49. Output Slew Rate when ON / OFF
Output Propagation Delay Time when
Turning ON / OFF
SENSE Output Delay Time when the
Device Turns ON
SENSE Output Delay Time when
Diagnostic Turns ON / OFF

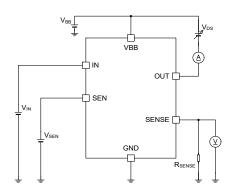


Figure 50. Open Load at OFF V_{DS} Threshold Diagnostic Error Flag Voltage

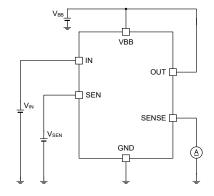


Figure 51. SENSE Leak Current
Diagnostic Error Flag Current

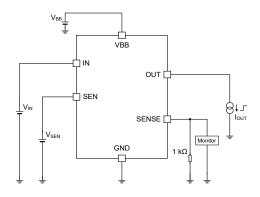


Figure 52. SENSE Settling Time During Load Current Switching

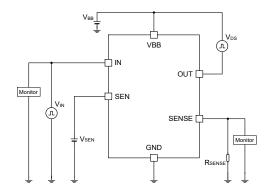


Figure 53. Open Load at OFF Detection Mask Time Diagnostic Error Flag Release Delay Time

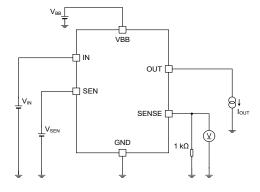


Figure 54. Current Sense Ratio

Block Diagram



Figure 55. Block Diagram

Features Description

Input Pins

The input circuitry is compatible with 3.3 V and 5 V microcontrollers. The IN and SEN pins must be connected to the microcontroller via 4.7 k Ω resistors. In case not used, the pins shall be connected to ground via resistors; 4.7 k Ω or more is recommended

The input circuitry reacts to voltage thresholds and avoids undefined states by use of internal hysteresis. Setting the IN pin voltage above 2.1 V the High Side Power Switch output turns on. The device is in Operating mode. Setting the SEN pin voltage above 2.1 V the diagnostic functions are activated. Setting the IN pin voltage below 0.9 V the output is turned off. Setting the SEN pin voltage below 0.9 V the diagnostic functions are deactivated.

With IN and SEN input pins "low" the device enters Sleep mode; all internal circuits are switched off to prevent current consumption from the power supply, output is turned off and no protection is active. In case the IN pin is de-asserted i.e., IN is "low" and the SEN pin is kept "high" then the device enters in a Standby mode with diagnostic functions activated. In this scenario the current consumption is reduced, but not stopped.

In case the connection is interrupted, the input pins are pulled down internally; only in case all input pins are low the Sleep mode is activated. The internal pull-down is implemented with a resistance. Furthermore, internal de-bounce filters make sure the circuits are not activated or deactivated by high frequency noise or other voltage spikes at the pins.

Figure 56. State Diagram

Internal Supply and Under Voltage Lock Out (UVLO)

The Power Supply Line Input V_{BB} is used to energize and supply internal circuitry and generate internal volage references. The Intelligent High Side Power Device is designed to operate down to very low battery cranking voltages. However, as with any battery powered device it still needs a certain minimum voltage to operate. An under voltage protection circuit with hysteresis makes sure the device does nothing until the supply voltage is high enough and a predictable behavior can be maintained. The UVLO circuit prevents an undefined output state and/or unintended diagnostic functions turn on when the V_{BB} voltage is below the specified threshold.

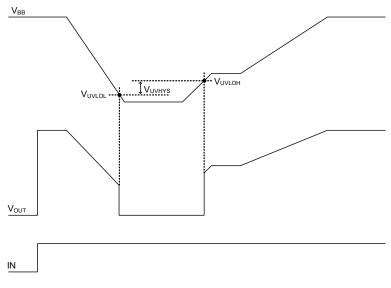


Figure 57. UVLO Functionality

Control Circuitry

The device integrates logic circuits that control the operation of the Intelligent High Side Power Switch. Based on the state of the protection circuits and given inputs the control logic performs state transitions and produces outputs as such.

Gate Control Circuitry

The device integrates a gate driving circuit that acts as interface between the control logic and the N-channel power transistor. A charge pump acts as internal supply allowing to turn on the MOSFET and drive it in the deep triode operation region. The integrated charge pump operates at a fixed frequency improving the EMI performance of the IC. Moreover, the switching behavior of the power transistor is regulated via the gate-driver hence the on and off switching times and slew rates are current-controlled to further improve the EMC.

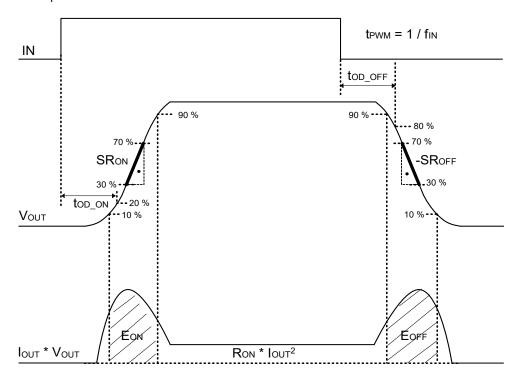


Figure 58. Switching Resistive Loads

Active Clamp Protection

An intelligent integrated active clamp protection limits the maximum V_{DS} across the power transistor when switching inductive loads at the output pin and the inductive energy is dissipated internally. Moreover, a VBB to GND internal clamp circuit protects the internal circuits from overvoltage surges.

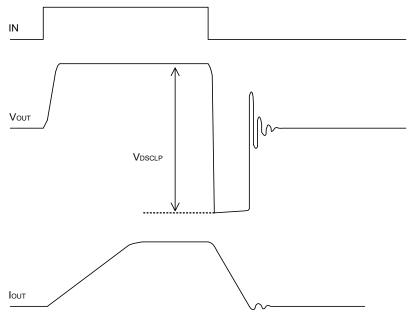


Figure 59. Switching Inductive Loads

Loss of Ground Protection

When the module's ground becomes open, the outputs switch off. However, it is recommended to add resistors connected between the input pins and the microcontroller. Furthermore, it is recommended to keep all the digital inputs pulled either all high or all low to avoid creating parasitic ground paths that could prevent the outputs from switching off. If the GND pin is open when an inductive load is driven, the active clamp protection safeguards the IC.

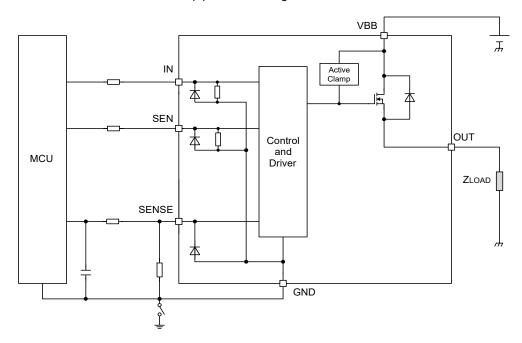


Figure 60. Loss of Ground Protection Diagram

Load Dump and Overvoltage Protection

The integrated VBB to GND overvoltage protection will safeguard the internal circuits from overvoltage transients. In order for the overvoltage protection to work a ground resistance R_{GND} is necessary. However, a ground shift needs to be considered versus the microcontroller ground when looking at the input voltage threshold levels while in normal operation. Furthermore, the active clamp protection limits the maximum V_{DS} across the power transistor. Moreover, in case the V_{BB} voltage exceeds the V_{BBCLP} level the input pins can start to conduct as well, hence input resistors are mandatory as per the above explanations.

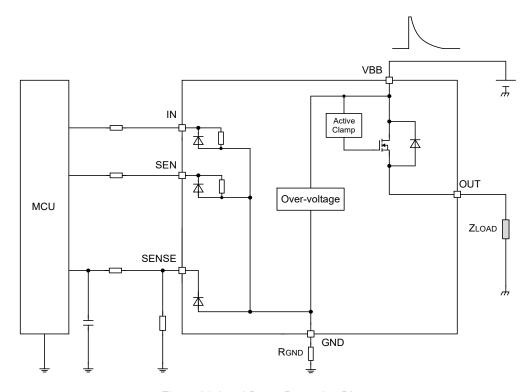


Figure 61. Load Dump Protection Diagram

Loss of Battery Protection

When the connection to the battery becomes open the device can dissipate the energy of the wire harness for inductivities up to 10 µH without degrading its robustness. The integrated VBB to GND overvoltage protection will act as a freewheeling path and the active clamp at the output will close the path for the current to flow safeguarding the IC. In applications where the nominal load currents are exceeded, and more load inductivity is expected, an external load freewheeling diode is necessary and/or a transient voltage suppressor must be present on the battery line.

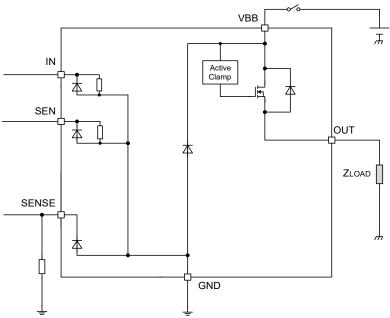


Figure 62. Loss of Battery Diagram

Reverse Battery Protection

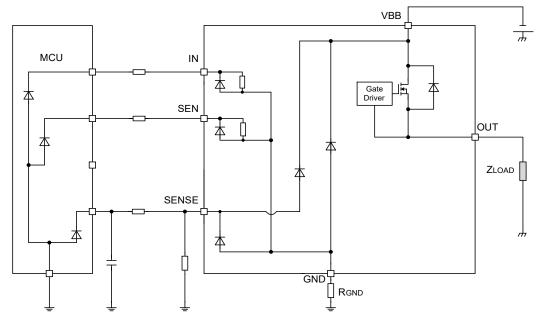


Figure 63. Reverse Battery Diagram

To limit the current through the input pins and the SENSE pin in case of reverse battery connection and negative or positive ISO transients on the battery line, the device's interface pins must be protected with resistors connected between the micro controller and the IC.

A ground resistor safeguards the IC during load dump or over voltage. However, a ground shift needs to be considered versus the micro controller ground when looking at the input voltage threshold levels due to the chip's current consumption in normal operation. Resistor power dissipation needs to be considered during reverse battery conditions.

During reverse battery the device allows the load current to flow through the power MOSFET turned on; the current must be limited by the resistance of the load. However, in case the load is inductive, special care must be taken to ensure safe operation. A reverse polarity diode on the battery line would be a possible solution.

A compromise between the above options must be found depending on the specific application requirements and the targeted loads.

Dual Temperature Shutdown Protection

A dual temperature shutdown (Dual TSD) mechanism limits the internal thermal transients and reduces the mechanical stress of the IC increasing its cyclic short-circuit robustness. The device integrates an absolute and dynamic overtemperature protection circuit. When the chip's junction temperature rises above either the T_{DTj} or the T_{TSD} threshold, the output turns off. A thermal hysteresis restart mechanism is implemented. When the chip's temperature falls below a predefined threshold, the output automatically restarts, and operation is resumed accordingly. Moreover, the TSD circuits safeguard the IC in case of overload operation (high inrush current) with the output current below the I_{OCD} thresholds i.e., before the overcurrent protection activates. When the TSD protection is triggered, the SENSE pin acts as an error flag and signals the fault to the microcontroller. The voltage at the SENSE pin is forced to be V_{SENSEH} .

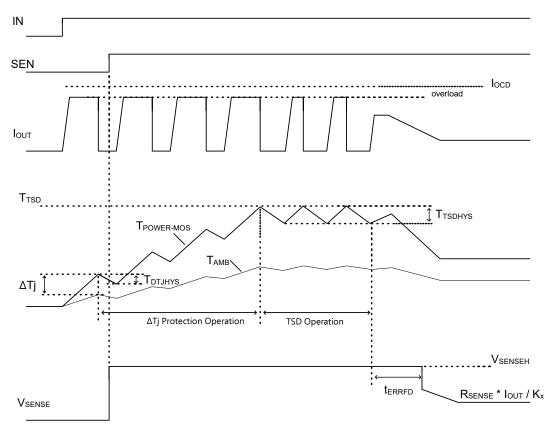


Figure 64. Overtemperature Protection

Over Current Protection

The IC has a built-in overcurrent protection feature. If an excessive current flows at the output of the High Side Power Switch, a current limitation aims to protect the IC and peripheral components. Given that a fault is present (short-circuit to ground), or high inrush current at start-up occurs, then the output current is limited to safe operating levels. Moreover, the output current limit is designed to have V_{BB} voltage dependency in favor of an increased robustness of the device. When the load current is above the I_{OCD} threshold the SENSE pin acts as an error flag and signals the fault to the microcontroller. The voltage at the SENSE pin is forced to be V_{SENSEH}. Furthermore, the overtemperature - dual temperature shutdown (TSD) protection - circuits complement the overcurrent protection. In case the overtemperature protection is triggered during current limitation the power MOSFET is turned off, a restart happens when the chip has cooled down sufficiently.

If overtemperature is detected, over protection is detected, the overcurrent detection limit is halved. This halving of the overcurrent detection limit continues until IN = 'L'.

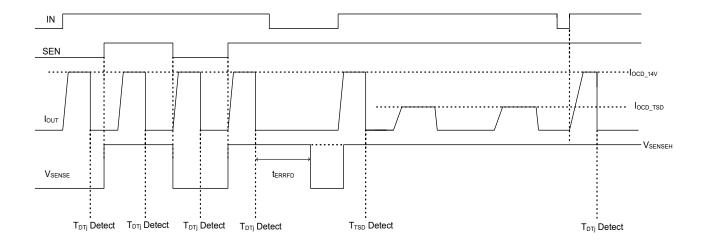


Figure 65. Overcurrent Protection and Temperature Protection Timing Chart

Reverse Current Protection

The IC allows reverse current to flow through the power MOSFET when the V_{OUT} voltage level is higher than V_{BB} . Furthermore, as long as the current is maintained within the nominal range and the package's thermal limitations are not exceeded the IC can maintain its operating state.

Capacitive Load Driving

Under the following conditions, it is possible to drive the capacitive load while repeatedly performing over current protection and dual TSD protection operations.

Parameters	Symbol	Ratings	Unit	Conditions	
Farameters	Symbol Max		Oiiit	Conditions	
Maximum driving time per cycle (Note 1)	tcld	35	ms	V _{BB} ≤ 16 V, Tj _(START) = -40 °C to	
Maximum number of driving cycle (Note 1)	C _{YC_MAX}	75	K cycle	+105 °C R _L = none	

(Note 1) Specified by design and/or statistical analysis of correlated parameters tested in production.

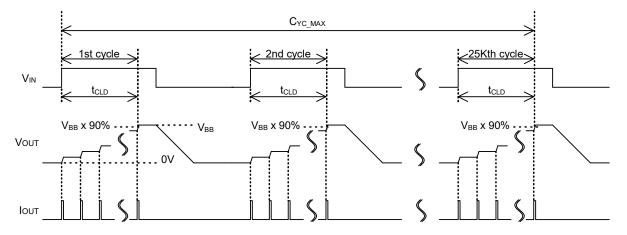


Figure 66. Capacitive Load Driving Timing Diagram

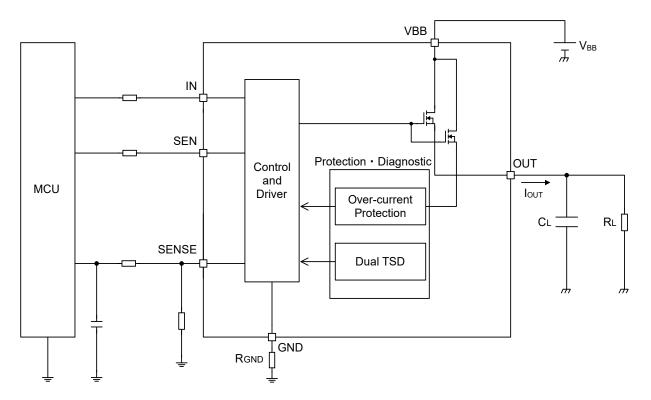


Figure 67. Capacitive Load Driving Block Diagram

Diagnostic / SENSE Functions

Diagnosis / SENSE Output(Note 1)

Diagnosis / Schoc Output				
Mode	IN	SEN	SENSE	OUT
Normal Operation	Low	High	Hi-Z	Low
Open Load	Low	High	Hi-Z	< V _{BB} - V _{DSOL}
Open Load	Low	High	Vsenseh	≥ V _{BB} - V _{DSOL}
Short to Battery	Low	High	V _{SENSEH}	High
Thermal Shutdown	Low	High	Hi-Z	Low
Short to Ground	Low	High	Hi-Z	Low
Reverse Current	Low	High	Vsenseh	High
Normal Operation	High	High	I _{OUT} / K _x	High
Open Load	High	High	I _{OUT_ONOLD} / K _x	High
Short to Battery	High	High	< I _{OUT} / K _x	High
Thermal Shutdown	High	High	Vsenseh	Low
Short to Ground	High	High	V _{SENSEH}	Low
Reverse Current	High	High	Hi-Z	High
All modes	-	Low	Hi-Z	-

(Note 1) All values in the above table are Typ values and SENSE is considered Hi-Z looking into the pin i.e., R_{SENSE} is ignored.

The current sense and diagnostic functions are enabled by setting the voltage V_{SEN} = High. The operation is as per the above table. However, an external resistor R_{SENSE} must be connected between SENSE and GND pins. The simplified implementation is described in the below diagram.

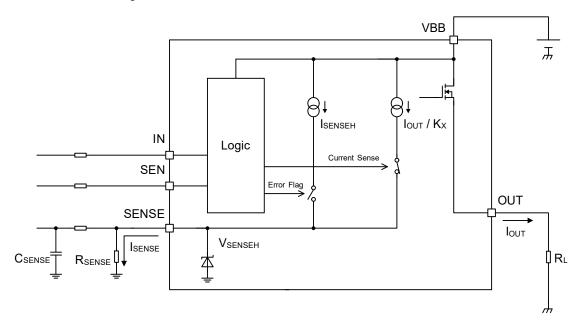


Figure 68. Diagnostic Output Block Diagram

Current Sense

When the diagnostic is enabled, and the high side power switch is turned on, a current proportional to the load current is flowing through the SENSE pin. The current I_{SENSE} becomes equal to I_{OUT} / K_x , (K_x : Current sense ratio). An external resistor R_{SENSE} is recommended, hence for example the voltage at the SENSE pin is equal to:

$$V_{SENSE} = \frac{R_{SENSE} \times I_{OUT}}{K_X}$$

Current Sense Ratio Accuracy

The below diagram shows the load current sense ration dependency vs. the output current through the power MOSFET. The accuracy of the current sense ratio depends on the load current, technological process, voltage and temperature. A higher-precision current sense ratio could be obtained with additional calibration on the application side. The device allows derating at a specific point (ΔK_x , Tj = 25 °C). Moreover, to reduce signal ripple at the microcontroller side, it is recommended to insert an external RC filter between the SENSE pin and the ADC input pin.

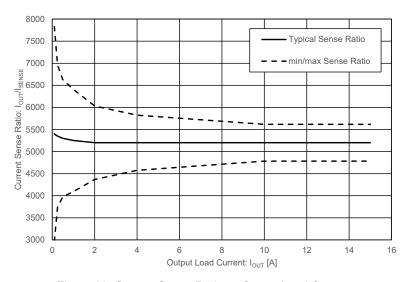


Figure 69. Current Sense Ratio vs Output Load Current

Furthermore, an open load at ON condition can be recognized via the sense ratio if the load current falls below a certain threshold. This is given by the I_{OUT_ONOLD} parameter.

Open Load Detection

Open load at off can be detected by connecting an external resistance Rold between power supply VBB and OUT.

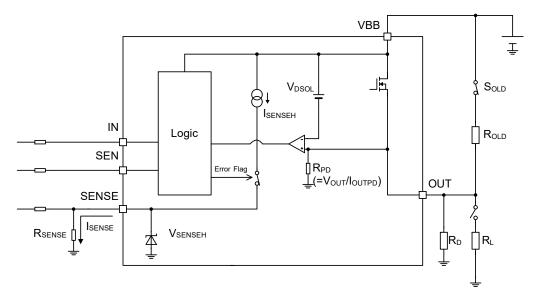


Figure 70. Open Load Detection Block Diagram

When the output load is disconnected, input pin IN is low and SEN is high, and open load will be flagged at the SENSE pin by the V_{SENSEH} voltage if the load is missing or the output is shorted to the VBB battery line. To reduce the standby current of the system, an open load switch S_{OLD} is recommended. R_{D} represents the minimum parasitic resistance at the output pin. In case R_{D} is not considered the device integrates a R_{PD} resistance.

The value of external resistance R_{OLD} is decided based on the minimum power supply voltage (V_{BB}), parasitic resistance R_{PD} and open detection threshold V_{DSOL}. The equation for calculating the R_{OLD} value is shown below.

$$R_{OLD} < \frac{R_D \times R_{PD}}{R_D + R_{PD}} \times \left(\frac{V_{DSOL}}{V_{BB(min)} - V_{DSOL}} \right)$$

Open Load Masking Time

The IC diagnoses open load detection after the mask time toldows after the IN pin is de-asserted to allow for the output voltage to drop while in normal operation (load connected).

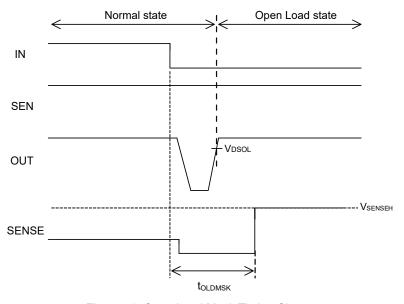


Figure 71. Open Load Mask Timing Chart

Diagnostic Timings

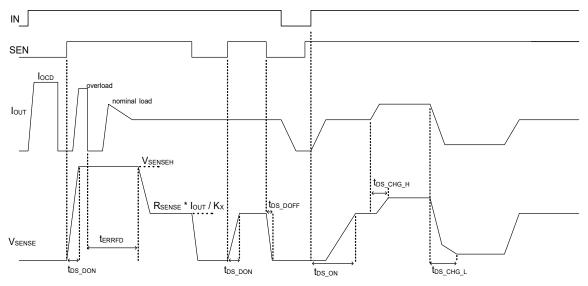
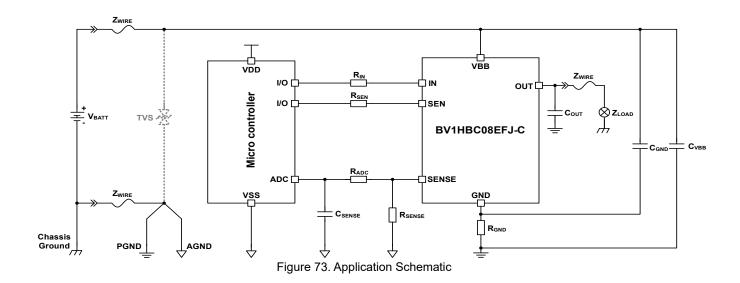
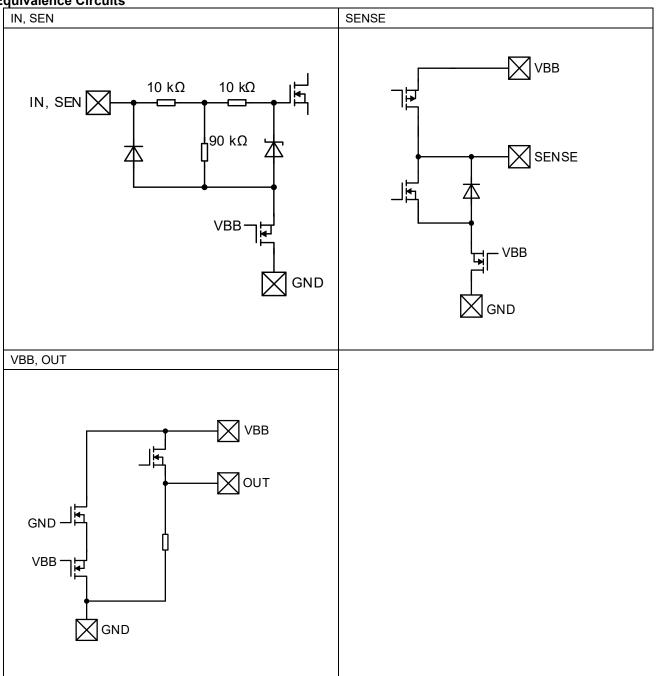



Figure 72. Diagnostics Timing Diagram


Application Circuit Example

Recommended External Components Example

Item	Symbol	Standard Value	Unit
Input Pin Resistance	R _{IN}	4.7	kΩ
Diagnostic Input Pin Resistance	Rsen	4.7	kΩ
Microcontroller SENSE Pin Resistance	R _{ADC}	4.7	kΩ
SENSE Pin Resistance	Rsense	1	kΩ
SENSE Filter Capacitance	Csense	100	pF
Output EMC Capacitance	Соит	10	nF
Battery Line Filter Capacitance	Сувв	100	nF
Buffer Capacitance	C_GND	47	nF
Chip Ground Protection Impedance Network	R _{GND}	47	Ω
Transient Voltage Suppressor Diode	TVS	36	V

I/O Equivalence Circuits

Operational Notes

1. Recommended Operating Conditions

The IC is designed to operate in 12 V automotive board net applications. The functions and operation of the IC are guaranteed within the range specified by the recommended operating conditions. The characteristic values are guaranteed only under the conditions specified by the electrical characteristics. The IC can withstand transient voltages beyond the recommended operating conditions; however, parameter deviations are possible when used outside of the supply nominal voltage range. Exposure to the absolute maximum ratings may cause permanent damage to the IC.

2. Inrush Current

When a load is being activated by the IC inrush currents may flow. The IC is designed to drive high inrush current loads; however, careful consideration must be completed when pairing the IC with the load. In case special recommendations are not available in the Datasheet the minimum overcurrent protection level of the IC should be higher than the maximum expected inrush current for proper load driving.

3. Testing on Application Boards

When testing the IC on an application board, it is recommended to always discharge capacitors completely after each evaluation step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.

4. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

5. Ceramic Capacitor

When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.

6. Thermal Shutdown Function (TSD)

This IC has a built-in thermal shutdown function that prevents heat damage to the IC. Normal operation should always be within the IC's maximum junction temperature rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD function that will turn OFF power output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation.

Note that the TSD function operates in a situation that exceeds the absolute maximum ratings and therefore, except for capacitive load driving, under no circumstances, should the TSD function be used in a set design or for any purpose other than protecting the IC from heat damage.

7. Over Current Protection Function (OCP)

This IC integrates an overcurrent limitation protection function that is activated when the load is shorted towards ground. This protection function is effective in preventing damage due to sudden and unexpected fault events. However, the IC should not be used in applications characterized by continuous operation of the protection function, except for capacitive load driving.

8. Active Clamp Operation

The IC integrates the active clamp function to internally absorb the reverse energy E_L which is generated when the inductive load is turned off. When the active clamp operates, the thermal shutdown function does not work. Decide a load so that the reverse energy E_L is active clamp energy (Single Pulse) E_{AS} (refer to Figure 4. Active Clamp Energy vs Output Current) or under when inductive load is used.

9. Same Pin Connection

Connect all OUT pins to same line.

10. Reverse Battery Connection

Connecting the power supply i.e., the battery with a reversed polarity can damage the IC. Precautions must be taken against reverse polarity when connecting the power supply, such as mounting an external diode between the battery feed and the IC's power supply, blocking all current paths. Alternatively, inserting a blocking diode or resistance in series with the IC's GND pin will prevent or limit the current from flowing into the control circuits of the high side switch respectively. However, current thorough the body diode of the integrated power FET must be limited by the resistive component of the load. The current through the Digital inputs and SENSE pins must be limited too with protection resistors.

Operational Note - continued

11. Power Supply and PCB Layout

Design the PCB layout in order to provide sufficient cooling to the IC. Connect the exposed pad with sufficient thermal vias to power supply copper plane to dissipate as much as possible thermal energy to the environment. Furthermore, connect as close as possible to the IC a capacitor between power supply and ground pins. Minimize the input capacitance of the digital input pins by placing the protection resistors as close as possible to the IC. Place the ground network as close as possible to the IC. Place the sense pin resistance as close as possible to the IC and the R-C filtering network close to the microcontroller. Place the output capacitors as close as possible to the IC. Short all output pins of the respective channel on the PCB to ensure equal current distribution. It is usually recommended to use a PCB with an internal copper layer as a power supply plane and another internal copper layer as a ground plane for thermal and EMC considerations respectively.

12. Ground Shift and Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. The IC is robust against small ground shift, however, ensure that the ground traces of external components do not cause big variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. Big ground shifts could cause additional switching losses and electromagnetic emissions.

13. Reverse Current

A capacitive or inductive type of load can cause the output of the IC to rise above the input power supply level. The IC is designed to accept reverse current and normal operation is maintained as long as the reverse current is below the specified levels. Therefore, give special consideration to the maximum amount of reverse current that can flow through the device.

14. Undervoltage or Loss of Battery

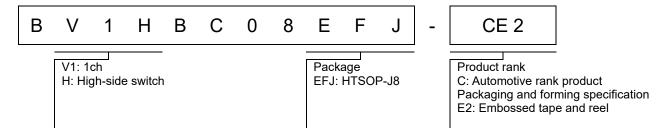
The IC is designed to automatically switch off in case of loss of battery/power supply or undervoltage events. The IC will restart once the battery exceeds the specified operation threshold. In case the load is inductive a resistor on the ground network is recommended if loss of battery is foreseen at the same time in the application.

15. Loss of Ground

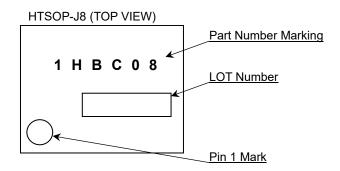
The IC cannot operate without the appropriate ground connection; nonetheless, the IC will automatically switch off in case of loss of ground. However, careful consideration of the external state of the inputs must be considered in order to avoid creating parasitic paths to another ground in the application via the external circuitry.

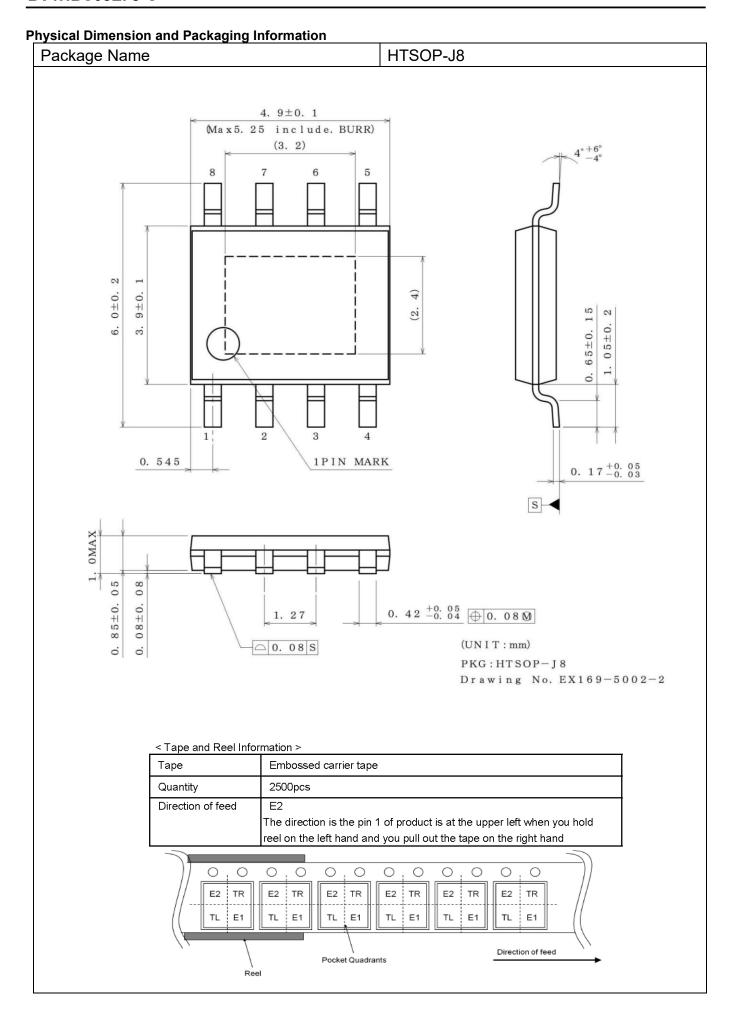
16. Load Dump and Overvoltage Protection

The IC is designed with integrated overvoltage protection to safeguard its internal circuits. For the overvoltage protection to work a ground resistance R_{GND} is necessary. Furthermore, input pins' protection resistors are mandatory. In case of Load dump external TVS protection diodes must be connected to safeguard the system.


17. Open Load or Short to Battery

An open load event is not considered dangerous to the IC; moreover, the IC can detect such failure and signal the fault to the microcontroller. In case a short to battery is present the load is turned on independent of the state of the IC. The device can be used to detect such a failure and signal the fault to the microcontroller.


18. Internally Not Connected (N.C.) Pins


Pins that are specified as internally not connected have no physical connection to the IC. For mechanical reasons it is recommended to solder them on the PCB. Electrically they can remain not connected in the circuit or may be connected to different signals especially when using high current outputs.

Ordering Information

Marking Diagram

Revision History

Date	Ver.	Contents
24.Apr.2025	001	New Release

Notice

Precaution on using ROHM Products

1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JÁPAN	USA	EU	CHINA
CLASSIII	CL ACCIII	CLASS II b	CL ACCIII
CLASSIV	CLASSⅢ	CLASSIII	CLASSⅢ

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used. However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
 may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
 exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
- 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
- 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

Notice-PAA-E Rev.004

General Precaution

- 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Notice – WE Rev.001