LDO Regulators with Watch Dog and Timer Voltage Detector

550 mA Output LDO Regulator with WDT and Voltage Detector

BD4271HFP-C BD4271FP2-C

General Description

BD4271HFP-C is an automotive voltage regulator with watchdog timer and offers the output current of 550mA while limiting the quiescent current low. A logical "HIGH" at the CTL pin enables the LDO regulator and "LOW" disables the LDO regulator and keeps current consumption low. A reset signal is generated for an output voltage \(V_O \) of Typ 4.65V. The reset delay time and watchdog time (WDT) can be programmed by the external capacitor.

Features

- Low ESR ceramic capacitors applicable for output
- Low drop voltage: PDMOS output transistor
- Power on and under-voltage reset
- Programmable reset delay and watchdog time by external capacitor

Applications

- Onboard vehicle device
 (Engine ECU, Body-control, Car Stereos, Satellite Navigation System, etc.)

Typical Application Circuit

\[C_{IN} \geq 0.1 \mu F, \ C_{CT} = 0.001 \mu F \text{ to } 10 \mu F, \ C_{O} \geq 6 \mu F \]

Key Specifications

- AEC-Q100 qualified *(Note 1)*
- Qualified for Automotive Applications
- Wide Temperature Range (\(T_J \)): \(-40 ^\circ \text{C} \) to \(+150 ^\circ \text{C} \)
- Wide Operating Input Range: \(-0.3 \text{ V} \) to \(45 \text{ V} \)
- Low Quiescent Current: 75 \(\mu \text{A} \) (Typ)
- Output Load Current: 550 mA
- Output Voltage: 5.0 V (Typ) ± 2 %
- Reset Detect Voltage Accuracy: 4.53 V to 4.77 V
 4.65 V (Typ)
- Enable input
- Over Current Protection (OCP)
- Thermal Shut Down (TSD)
 (Note1: Grade 1)

Package

- HFP: HRP7 9.395 mm \times 10.540 mm \times 2.005 mm
- FP2: TO263-7 10.00 mm \times 14.95 mm \times 4.50 mm

*Product structure : Silicon monolithic integrated circuit
This product is not designed protection against radioactive rays

TSZ02201-0G9G0AN00610-1-2
21-Jun.2016 Rev.002*
Pin Configurations

![TO263-7 (TOP VIEW)](image1)

![HRP7 (TOP VIEW)](image2)

Pin Descriptions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>Input</td>
</tr>
<tr>
<td>2</td>
<td>CTL</td>
<td>Output control</td>
</tr>
<tr>
<td>3</td>
<td>RO</td>
<td>Reset output</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>CT</td>
<td>Setting Reset Delay Time and WDT time</td>
</tr>
<tr>
<td>6</td>
<td>CLK</td>
<td>Input CLK from Microcomputer</td>
</tr>
<tr>
<td>7</td>
<td>VO</td>
<td>Output</td>
</tr>
<tr>
<td>FIN</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Block Diagram
Block Descriptions

<table>
<thead>
<tr>
<th>Block Name</th>
<th>Function</th>
<th>Description of Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSD</td>
<td>Thermal shutdown protection</td>
<td>The TSD protects the device from overheating. If the chip temperature (T_j) reaches ca. 175 °C (Typ), the output is turned off.</td>
</tr>
<tr>
<td>Reference</td>
<td>Reference voltage</td>
<td>The Reference generates the Reference Voltage.</td>
</tr>
<tr>
<td>OCP</td>
<td>Over current protection</td>
<td>The OCP protects the device from damage caused by over current.</td>
</tr>
<tr>
<td>UVLO</td>
<td>Under voltage lock out</td>
<td>The UVLO prevents malfunction of the reset block in case of very low output voltage.</td>
</tr>
<tr>
<td>Error Amplifier</td>
<td>Error amplifier</td>
<td>The Error Amplifier amplifies the difference between the feedback voltage of the output voltage and the reference voltage.</td>
</tr>
<tr>
<td>Control</td>
<td>RESET + WDT time control</td>
<td>The reset delay time and watchdog time can be programmed.</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>VCC</td>
<td>-0.3 to +45.0</td>
<td>V</td>
</tr>
<tr>
<td>Output Control Voltage</td>
<td>VCTL</td>
<td>-0.3 to +45.0</td>
<td>V</td>
</tr>
<tr>
<td>RO Voltage</td>
<td>VRO</td>
<td>-0.3 to +7.0 (≤ VO + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>VO</td>
<td>-0.3 to +7.0</td>
<td>V</td>
</tr>
<tr>
<td>CLK Voltage</td>
<td>VCLK</td>
<td>-0.3 to VO</td>
<td>V</td>
</tr>
<tr>
<td>Junction Temperature Range</td>
<td>Tj</td>
<td>-40 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>Tstg</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>Tjmax</td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Caution: Exceeding the absolute maximum rating for supply voltage, operating temperature or other parameters can result in damages to or destruction of the chip. In this event it also becomes impossible to determine the cause of the damage (e.g. short circuit, open circuit, etc.). Therefore, if any special mode is being considered with values expected to exceed the absolute maximum ratings, implementing physical safety measures, such as adding fuses, should be considered.

Recommended Operating Conditions (-40°C ≤ Tj ≤ +150°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (Io ≤ 300 mA)</td>
<td>VCC</td>
<td>5.5</td>
<td>45.0</td>
<td>V</td>
</tr>
<tr>
<td>Supply Voltage (Io ≤ 550 mA)</td>
<td>VCC</td>
<td>6.0</td>
<td>45.0</td>
<td>V</td>
</tr>
<tr>
<td>Output Control Voltage</td>
<td>VCTL</td>
<td>0</td>
<td>45.0</td>
<td>V</td>
</tr>
<tr>
<td>Start -Up Voltage (Note 1)</td>
<td>VCC</td>
<td>3.0</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>Io</td>
<td>0</td>
<td>550</td>
<td>mA</td>
</tr>
<tr>
<td>Operating Ratings Temperature</td>
<td>Ta</td>
<td>-40</td>
<td>+125</td>
<td>°C</td>
</tr>
</tbody>
</table>

(Note 1) When Io = 0 mA.
Thermal Resistance (Note 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Thermal Resistance (Typ)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction to Ambient</td>
<td>θ_{JA}</td>
<td>96.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Junction to Top Characterization Parameter (Note 2)</td>
<td>Ψ_{JT}</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

TO263-7

| Junction to Ambient | θ_{JA} | 80.7 | 20.3 | °C/W |
| Junction to Top Characterization Parameter (Note 2) | Ψ_{JT} | 8 | 2 | °C/W |

(Note 1) Based on JESD51-2A (Still-Air)

(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package.

(Note 3) Using a PCB board based on JESD51-3.

Measurement Board Specifications

<table>
<thead>
<tr>
<th>Layer Number of Measurement Board</th>
<th>Material</th>
<th>Board Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>FR-4</td>
<td>114.3mm x 76.2mm x 1.57mmt</td>
</tr>
</tbody>
</table>

Copper Pattern Thickness

| Footprints and Traces | 70μm |

(Note 4) Using a PCB board based on JESD51-5, 7.

Thermal Via Specifications (Note 5)

<table>
<thead>
<tr>
<th>Layer Number of Measurement Board</th>
<th>Material</th>
<th>Board Size</th>
<th>Thermal Via (Note 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Layers</td>
<td>FR-4</td>
<td>114.3mm x 76.2mm x 1.6mmt</td>
<td>Pitch 1.20mm Diameter Φ0.30mm</td>
</tr>
<tr>
<td>Top</td>
<td>2 Internal Layers</td>
<td>Bottom</td>
<td></td>
</tr>
<tr>
<td>Copper Pattern</td>
<td>Thickness</td>
<td>Copper Pattern Thickness</td>
<td>Copper Pattern Thickness</td>
</tr>
<tr>
<td>Footprints and Traces</td>
<td>70μm</td>
<td>74.2mm x 74.2mm</td>
<td>74.2mm x 74.2mm</td>
</tr>
</tbody>
</table>

(Note 5) This thermal via connects with the copper pattern of all layers.
Electrical Characteristics (LDO)
(Unless otherwise specified, $T_j = -40 \, ^\circ C$ to $+150 \, ^\circ C$, $V_{CC} = 13.5 \, V$, $V_{CTL} = 5 \, V$, $I_O = 0 \, mA$, the typical value is defined at $T_j = 25 \, ^\circ C$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Circuit Current</td>
<td>I_{CC}</td>
<td>$-$</td>
<td>75</td>
<td>150 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$I_O = 0 , mA$</td>
</tr>
<tr>
<td>Standby Current</td>
<td>I_{ST}</td>
<td>$-$</td>
<td>2.0</td>
<td>9.0 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{CTL} = 0 , V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T_j \leq 125 , ^\circ C$</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V_O</td>
<td>4.90</td>
<td>5.00</td>
<td>5.10 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$6 , V \leq V_{CC} \leq 40 , V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0 , mA \leq I_O \leq 300 , mA$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T_j \leq 125 , ^\circ C$</td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>ΔV_d</td>
<td>$-$</td>
<td>0.2</td>
<td>0.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{CC} = 4.75 , V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$I_O = 300 , mA$</td>
</tr>
<tr>
<td>Ripple Rejection</td>
<td>$R.R.$</td>
<td>$-$</td>
<td>60</td>
<td>$-$ dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$f = 120 , Hz$, $e_{in} = 1 , V_{rms}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$I_O = 100 , mA$</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>$Reg.I$</td>
<td>-30</td>
<td>$-$</td>
<td>30 mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$8 , V \leq V_{CC} \leq 16 , V$</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>$Reg.L$</td>
<td>$-$</td>
<td>10</td>
<td>40 mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$10 , mA \leq I_O \leq 300 , mA$</td>
</tr>
<tr>
<td>Thermal Shut Down</td>
<td>TSD</td>
<td>$-$</td>
<td>175</td>
<td>$-$ $^\circ C$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T_j at TSD ON</td>
</tr>
<tr>
<td>Over Current Protection</td>
<td>I_O</td>
<td>550</td>
<td>$-$</td>
<td>$-$ mA</td>
</tr>
<tr>
<td>CTL ON Mode Voltage</td>
<td>V_{IH}</td>
<td>2.7</td>
<td>$-$</td>
<td>$-$ V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Active Mode</td>
</tr>
<tr>
<td>CTL OFF Mode Voltage</td>
<td>V_{IL}</td>
<td>$-$</td>
<td>0.8</td>
<td>$-$ V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off Mode</td>
</tr>
<tr>
<td>CTL Input Current</td>
<td>I_{CTL}</td>
<td>$-$</td>
<td>15</td>
<td>30 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{CTL} = 5 , V$</td>
</tr>
</tbody>
</table>
Electrical Characteristics (Reset, WDT Function)

(Unless otherwise specified, Tj = -40 °C to +150 °C, VCC = 13.5 V, VCTL = 5 V, IO = 0 mA, the typical value is defined at Tj = 25 °C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Reset Detection Voltage</td>
<td>VRT</td>
<td>4.53</td>
<td>4.65</td>
<td>4.77 V</td>
</tr>
<tr>
<td>Reset Detection Hysteresis</td>
<td>VRHY</td>
<td>25</td>
<td>60</td>
<td>100 mV</td>
</tr>
<tr>
<td>Reset Pull-up Resistance</td>
<td>RRO</td>
<td>18</td>
<td>30</td>
<td>46 kΩ</td>
</tr>
<tr>
<td>Reset Low Voltage</td>
<td>VR0</td>
<td>—</td>
<td>—</td>
<td>0.4 V</td>
</tr>
<tr>
<td>CT Upper-side Threshold</td>
<td>VCTH</td>
<td>—</td>
<td>1.80</td>
<td>—</td>
</tr>
<tr>
<td>CT Lower-side Threshold</td>
<td>VCTL</td>
<td>—</td>
<td>0.45</td>
<td>—</td>
</tr>
<tr>
<td>CT Charge Current</td>
<td>ICT</td>
<td>—</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>CT Discharge Current</td>
<td>ICT</td>
<td>—</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Delay Time L→H</td>
<td>td</td>
<td>8</td>
<td>11.5</td>
<td>16 ms</td>
</tr>
<tr>
<td>WDT Monitor Time</td>
<td>tWH</td>
<td>30</td>
<td>45</td>
<td>66 ms</td>
</tr>
<tr>
<td>WDT Reset Time</td>
<td>tWL</td>
<td>5</td>
<td>9</td>
<td>15 ms</td>
</tr>
<tr>
<td>WDT OFF threshold Voltage</td>
<td>VHCLK</td>
<td>VO × 0.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>WDT ON threshold Voltage</td>
<td>VLCLK</td>
<td>0</td>
<td>—</td>
<td>VO × 0.3 V</td>
</tr>
<tr>
<td>CLK Input Current</td>
<td>ICLK</td>
<td>1.5</td>
<td>5</td>
<td>15 μA</td>
</tr>
<tr>
<td>CLK Input Pulse Width</td>
<td>tPCLK</td>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Minimum Operation Voltage</td>
<td>VOFFR</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(Notes)

- td, tWH, and tWL can be varied by changing the CT capacitance value. (0.001 μF to 0.1 μF available)
- tH (ms) = tH (the Delay Time at 0.1μF) × CCTL (μF) / 0.1 for example: when CCTL = 1μF, 80ms ≤ tH ≤ 160 ms
- tWH (ms) = tWH (the WDT Monitor Time at 0.1μF) × CCTL (μF) / 0.1 for example: when CCTL = 1μF, 300ms ≤ tWH ≤ 660 ms
- tWL (ms) = tWL (the WDT Reset Time at 0.1μF) × CCTL (μF) / 0.1 for example: when CCTL = 1μF, 50ms ≤ tWL ≤ 150 ms
- tD (ms) = tD (the Delay Time at 0.1μF) × CCTL (μF) / 0.1 ± 0.1 for example: when CCTL = 0.01μF, 0.7ms ≤ tD ≤ 1.7 ms
- tWH (ms) = tWH (the WDT Monitor Time at 0.1μF) × CCTL (μF) / 0.1 ± 0.1 for example: when CCTL = 0.01μF, 2.9ms ≤ tWH ≤ 6.7 ms
- tWL (ms) = tWL (the WDT Reset Time at 0.1μF) × CCTL (μF) / 0.1 ± 0.1 for example: when CCTL = 0.01μF, 0.4ms ≤ tWL ≤ 1.6 ms

CT Capacitor: 0.1μF ≤ CCTL ≤ 10 μF

CT Capacitor: 0.1μF ≤ CCTL ≤ 10 μF

CT Capacitor: 0.1μF ≤ CCTL ≤ 10 μF

CT Capacitor: 0.01μF ≤ CCTL ≤ 0.1 μF
Typical Performance Curves (Unless otherwise specified, $T_j = 25 \, ^\circ C$, $V_{CC} = 13.5 \, V$, $V_{CTL} = 5 \, V$)

![Figure 1. Output Voltage vs Supply Voltage ($R_L = 25 \, \Omega$)](image1)

![Figure 2. Output Voltage vs Supply Voltage ($R_L = 25 \, \Omega$)](image2)

![Figure 3. Output Voltage vs Junction Temperature ($R_L = 1 \, k\Omega$)](image3)

![Figure 4. Circuit Current vs Supply Voltage](image4)
Typical Performance Curves - continued

Figure 5. Circuit Current vs Junction Temperature

Figure 6. Circuit Current vs Output Current

Figure 7. Output Voltage vs. Output Current (Over Current Protection)

Figure 8. Output Current vs Junction Temperature
Typical Performance Curves - continued

Figure 9. Drop Voltage vs Output Current (VCC = 4.75 V)

Figure 10. Output Voltage vs Junction Temperature (Thermal Shut Down)

Figure 11. Output Voltage vs CTL Voltage

Figure 12. CTL Voltage vs Junction Temperature
Typical Performance Curves - continued

Figure 13. Output Voltage vs CTL Current

Figure 14. Output Detecting Voltage vs Junction Temperature

Figure 15. RO Voltage vs Output Voltage

Figure 16. RO Voltage vs Output Voltage
Typical Performance Curves - continued

Figure 17. CT Current vs Junction Temperature

Figure 18. CT Voltage vs Junction Temperature

Figure 19. Power on Reset Time vs Junction Temperature (C\textsubscript{CT} = 0.1 \textmu F)

Figure 20. Power on Reset Time vs CT Capacitance
Typical Performance Curves - continued

Figure 21. Watch Dog Time vs Junction Temperature

Figure 22. Watch Dog Time vs CT Capacitance
Measurement Circuit

Measurement setup for Figure 1,2,3,10.

Measurement setup for Figure 4,5.

Measurement setup for Figure 6.

Measurement setup for Figure 7,8.

Measurement setup for Figure 9.

Measurement setup for Figure 11,12,13.

Measurement setup for Figure 14,15,16.

Measurement setup for Figure 17,18.

Measurement setup for Figure 19,20,21,22.

Figure 23. Measurement Circuit
Timing Chart

1. When supply voltage V_{CC} is ON \leftrightarrow OFF (Not to input CLK voltage V_{CLK} when output voltage V_O = Low)

Figure 24. Timing Chart 1
Timing Chart — continued

2. When output control voltage V_{CTL} is ON \leftrightarrow OFF (Not to input CLK voltage V_{CLK} when output voltage $V_O = \text{Low}$)

The Delay Time (t_d) is estimated roughly by following calculation.

$$t_d [s] \approx \frac{V_{CTH}[V] \times C_{CT}[F]}{I_{CT}(\text{charge})[A]}$$

Basically, verify the Delay Time (t_d) by the ratio of the value at $C_{CT} = 0.1\mu F$ specified in datasheet and the actual C_{CT} capacitance used to calculate.
Timing Chart – continued

3. When WDT threshold Voltage V_{CLK} is ON ↔ OFF

The WDT Monitor Time (t_{WH}) and the WDT Reset Time (t_{WL}) is estimated roughly by the following calculation.

$$t_{\text{WH}}[s] \approx \frac{|V_{\text{CTH}} - V_{\text{CTL}}|[V] \times C_{\text{CT}}[\mu \text{F}]}{I_{\text{CT}}\text{(discharge)}[\text{A}]}$$

$$t_{\text{WL}}[s] \approx \frac{|V_{\text{CTL}} - V_{\text{CTH}}|[V] \times C_{\text{CT}}[\mu \text{F}]}{I_{\text{CT}}\text{(charge)}[\text{A}]}$$

Basically, verify the WDT Monitor Time (t_{WH}) and the WDT Reset Time (t_{WL}) by the ratio of the value at $C_{\text{CT}} = 0.1\mu \text{F}$ specified in datasheet and the actual C_{CT} capacitance used to calculate.
Selection of Components Externally Connected

• VCC pin capacitor
 Insert capacitors with a capacitance of 0.1 μF or higher between the VCC and GND pin. We recommend using ceramic capacitor generally featuring good high frequency characteristic. When selecting a ceramic capacitor, please be consider about temperature and DC - biasing characteristics. Place capacitors closest possible to VCC - GND pin. When input impedance is high, e.g. in case there is distance from battery, line voltage drop needs to be prevented by large capacitor. Choose the capacitance according to the line impedance between the power smoothing circuit and the VCC pin. Selection of the capacitance also depends on the applications. Verify the application and allow sufficient margins in the design. We recommend using a capacitor with excellent voltage and temperature characteristics.

• Output pin capacitor
 In order to prevent oscillation, a capacitor needs to be placed between the output pin and GND pin. We recommend using a ceramic capacitor with a capacitance of 6 μF or higher. In selecting the capacitor, ensure that the capacitance of 6 μF or higher is maintained at the intended applied voltage and temperature range. Due to changes in temperature the capacitor's capacitance can fluctuate possibly resulting in oscillation.
 In actual applications the stable operating range is influenced by the PCB impedance, input supply impedance and load impedance. Therefore verification of the final operating environment is needed. When selecting a ceramic capacitor, we recommend using X7R or better components with excellent temperature and DC - biasing characteristics and high voltage tolerance.
 In case of the transient input voltage and the load current fluctuation, output voltage may fluctuate. In case this fluctuation can be problematic for the application, connect low ESR capacitor (capacitance > 6 μF, ESR < 1 Ω) in paralleled to large capacitor with a capacitance of 13 μF or higher and ESR of 5 Ω or lower. Electrolytic and tantalum capacitors can be used as large capacitor. When selecting an electrolytic capacitor, please consider about increasing ESR and decreasing capacitance at cold temperature.
 Place the capacitor closest possible to output pin.

![Figure 27. Output Capacitance ESR Available Area](image-url)
Power Dissipation

HRP7

IC mounted on ROHM standard board based on JEDEC.

1. 1-layer PCB
 - (Copper foil area on the reverse side of PCB: 0 mm x 0 mm)
 - Board material: FR4
 - Board size: 114.3 mm x 76.2 mm x 1.57 mmt
 - Mount condition: PCB and exposed pad are soldered.
 - Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper.

2. 4-layer PCB
 - (2 inner layers and Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm)
 - Board material: FR4
 - Board size: 114.3 mm x 76.2 mm x 1.60 mmt
 - Mount condition: PCB and exposed pad are soldered.
 - Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper.
 - 2 inner layers copper foil area of PCB: 74.2 mm x 74.2 mm, 1 oz. copper.
 - Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm, 2 oz. copper.

Condition 1: \(\theta_{JA} = 96.0 \, ^{\circ}\text{C}/\text{W}, \Psi_{JT} \text{ (top center)} = 6 \, ^{\circ}\text{C}/\text{W} \)
Condition 2: \(\theta_{JA} = 22.0 \, ^{\circ}\text{C}/\text{W}, \Psi_{JT} \text{ (top center)} = 2 \, ^{\circ}\text{C}/\text{W} \)

![Figure 28. HRP7 Package Data](image)

TO263-7

IC mounted on ROHM standard board based on JEDEC.

1. 1-layer PCB
 - (Copper foil area on the reverse side of PCB: 0 mm x 0 mm)
 - Board material: FR4
 - Board size: 114.3 mm x 76.2 mm x 1.57 mmt
 - Mount condition: PCB and exposed pad are soldered.
 - Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper.

2. 4-layer PCB
 - (2 inner layers and Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm)
 - Board material: FR4
 - Board size: 114.3 mm x 76.2 mm x 1.60 mmt
 - Mount condition: PCB and exposed pad are soldered.
 - Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper.
 - 2 inner layers copper foil area of PCB: 74.2 mm x 74.2 mm, 1 oz. copper.
 - Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm, 2 oz. copper.

Condition 1: \(\theta_{JA} = 80.7 \, ^{\circ}\text{C}/\text{W}, \Psi_{JT} \text{ (top center)} = 8 \, ^{\circ}\text{C}/\text{W} \)
Condition 2: \(\theta_{JA} = 20.3 \, ^{\circ}\text{C}/\text{W}, \Psi_{JT} \text{ (top center)} = 2 \, ^{\circ}\text{C}/\text{W} \)

![Figure 29. TO263-7 Package Data](image)
Thermal Design

This product exposes a frame on the back side of the package for thermal efficiency improvement. Within this IC, the power consumption is decided by the dropout voltage condition, the load current and the circuit current. Refer to power dissipation curves illustrated in Figure 28, 29 when using the IC in an environment of Ta ≥ 25 °C. Even if the ambient temperature Ta is at 25 °C, depending on the input voltage and the load current, chip junction temperature can be very high. Consider the design to be Tj ≤ Tjmax = 150 °C in all possible operating temperature range. Should by any condition the maximum junction temperature Tjmax = 150°C rating be exceeded by the temperature increase of the chip, it may result in deterioration of the properties of the chip. The thermal impedance in this specification is based on recommended PCB and measurement condition by JEDEC standard. Verify the application and allow sufficient margins in the thermal design by the following method is used to calculate the junction temperature Tj. Tj can be calculated by either of the two following methods.

1. The following method is used to calculate the junction temperature Tj.
 \[Tj = Ta + PC \times \theta_{JA} \]

 \[\begin{align*}
 Tj &: \text{Junction Temperature} \\
 Ta &: \text{Ambient Temperature} \\
 PC &: \text{Power Consumption} \\
 \theta_{JA} &: \text{Thermal Impedance (Junction to Ambient)}
 \end{align*} \]

2. The following method is also used to calculate the junction temperature Tj.
 \[Tj = TT + PC \times \Psi_{JT} \]

 \[\begin{align*}
 Tj &: \text{Junction Temperature} \\
 TT &: \text{Top Center of Case's (mold) Temperature} \\
 PC &: \text{Power Consumption} \\
 \Psi_{JT} &: \text{Thermal Impedance (Junction to Top Center of Case)}
 \end{align*} \]

The following method is used to calculate the power consumption Pc (W).

\[PC = (VCC - VO) \times IO + VCC \times ICC \]

\[\begin{align*}
PC &: \text{Power Consumption} \\
VCC &: \text{Supply Voltage} \\
VO &: \text{Output Voltage} \\
IO &: \text{Load Current} \\
ICC &: \text{Circuit Current}
\end{align*} \]

Calculation Example

If VCC = 13.5 V, VO = 5.0 V, IO = 200 mA, ICC = 85 μA, the power consumption Pc can be calculated as follows:

\[PC = (13.5 V - 5.0 V) \times 200 mA + 13.5 V \times 85 \mu A \]
\[= 1.7 W \]

At the ambient temperature Tamax = 85°C, the thermal impedance (Junction to Ambient) \(\theta_{JA} = 22.0 °C / W \) (4-layer PCB),

\[Tj = Tamax + PC \times \theta_{JA} \]
\[= 85 °C + 1.7 W \times 22.0 °C / W \]
\[= 122.4 °C \]

When operating the IC, the top center of case's (mold) temperature TT = 100°C, \(\Psi_{JT} = 6 °C / W \) (1-layer PCB),

\[Tj = TT + PC \times \Psi_{JT} \]
\[= 100 °C + 1.7 W \times 6 °C / W \]
\[= 110.2 °C \]

For optimum thermal performance, it is recommended to expand the copper foil area of the board, increasing the layer and thermal via between thermal land pad.
Application Examples

- **Applying positive surge to the VCC**
 If the possibility exists that surges higher than 45 V will be applied to the VCC, a Zener Diode should be placed between the VCC and GND as shown in the figure below.

![Positive Surge Diagram](image1)

- **Applying negative surge to the VCC**
 If the possibility exists that negative surges lower than the GND are applied to the VCC, a Shottky Diode should be placed between the VCC and GND as shown in the figure below.

![Negative Surge Diagram](image2)

- **Implementing a Protection Diode**
 If the possibility exists that a large inductive load is connected to the output pin resulting in back-EMF at time of startup and shutdown, a protection diode should be placed as shown in the figure below.

![Protection Diode Diagram](image3)

- **Reverse Polarity Diode**
 In some applications, the VCC and the VO potential might be reversed, possibly resulting in circuit internal damage or damage to the elements. For example, the accumulated charge in the output pin capacitor flowing backward from the VO to the VCC when the VCC shorts to the GND. In order to minimize the damage in such case, use a capacitor with a capacitance less than 1000 μF. Also by inserting a reverse polarity diode in series to the VCC, it can prevent reverse current from reverse battery connection or the case. When the point A is short-circuited GND, if there may be any possible case point B is short-circuited to GND, we also recommend using a bypass diode between the VCC and the VO.

![Reverse Polarity Diagram](image4)
I/O Equivalence Circuits *(Note 1)*

<table>
<thead>
<tr>
<th></th>
<th>1 VCC</th>
<th>2 CTL</th>
<th>3 RO</th>
<th>5 CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>CTL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Note 1) Resistance value is Typical.
Operational Notes

1. **Reverse Connection of Power Supply**
 Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply terminals.

2. **Power Supply Lines**
 Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.

3. **Ground Voltage**
 Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient conditions.

4. **Ground Wiring Pattern**
 When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. **Thermal Consideration**
 The power dissipation under actual operating conditions should be taken into consideration and a sufficient margin should be allowed for in the thermal design. On the reverse side of the package this product has an exposed heat pad for improving the heat dissipation. Use both the front and reverse side of the PCB to increase the heat dissipation pattern as far as possible. The amount of heat generated depends on the voltage difference across the input and output, load current, and bias current. Therefore, when actually using the chip, ensure that the generated heat does not exceed the Pd rating. Should by any condition the maximum junction temperature $T_{J \text{max}} = 150^\circ\text{C}$ be exceeded by the temperature increase of the chip, it may result in deterioration of the properties of the chip. The thermal impedance in this specification is based on recommended PCB and measurement condition by JEDEC standard. Verify the application and allow sufficient margins in the thermal design.

6. **Recommended Operating Conditions**
 These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.

7. **Rush Current**
 When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.

8. **Testing on Application Boards**
 When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.

9. **Inter-pin Short and Mounting Errors**
 Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.
Operational Notes – continued

10. Unused Input Terminals
Input terminals of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input terminals should be connected to the power supply or ground line.

11. Regarding the Input Pin of the IC
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P/N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety of parasitic elements.
For example, in case a resistor and a transistor are connected to the pins as shown in the figure below then:
○ The P/N junction functions as a parasitic diode when the GND > pin A for the resistor, or the GND > pin B for the transistor.
○ Also, when the GND > pin B for the transistor (NPN), the parasitic diode described above combines with the N layer of the other adjacent elements to operate as a parasitic NPN transistor.
Parasitic diodes inevitably occur in the structure of the IC. Their operation can result in mutual interference between circuits and can cause malfunctions and, in turn, physical damage to or destruction of the chip. Therefore do not employ any method in which parasitic diodes can operate such as applying a voltage to an input pin that is lower than the (P substrate) GND.

12. Ceramic Capacitor
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.

13. Thermal Shutdown Circuit (TSD)
This IC incorporates an integrated thermal shutdown circuit to prevent heat damage to the IC. Normal operation should be within the power dissipation rating, if however the rating is exceeded for a continued period, the junction temperature (Tj) will rise and the TSD circuit will be activated and turn all output pins OFF. After the Tj falls below the TSD threshold the circuits are automatically restored to normal operation.
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage.

14. Over Current Protection Circuit (OCP)
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit.
Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Packaging and forming specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD4271</td>
<td>HFP: HRP7</td>
<td>TR: Embossed tape and reel</td>
</tr>
<tr>
<td></td>
<td>FP2: TO263-7</td>
<td>E2: Embossed tape and reel</td>
</tr>
</tbody>
</table>

Marking Diagram

Part Number Marking

HRP7 (TOP VIEW)

BD4271

LOT Number

1PIN MARK

TO263-7 (TOP VIEW)

BD4271

LOT Number

1PIN

<table>
<thead>
<tr>
<th>Part Number Marking</th>
<th>Package</th>
<th>Orderable Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD4271</td>
<td>HRP7</td>
<td>BD4271HFP-CTR</td>
</tr>
<tr>
<td>BD4271</td>
<td>TO263-7</td>
<td>BD4271FP2-CE2</td>
</tr>
</tbody>
</table>
Physical Dimension, Tape and Reel Information

Package Name | HRP7

<table>
<thead>
<tr>
<th>Tape</th>
<th>Embossed carrier tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>2000pcs</td>
</tr>
<tr>
<td>Direction of feed</td>
<td>TR</td>
</tr>
</tbody>
</table>

The direction is the pin 1 of product is at the upper right when you hold reel on the left hand and you pull out the tape on the right hand.
Physical Dimension, Tape and Reel Information

<table>
<thead>
<tr>
<th>Package Name</th>
<th>TO263-7</th>
</tr>
</thead>
</table>

Tape and Reel Information

<table>
<thead>
<tr>
<th>Tape Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape</td>
<td>Embossed carrier tape</td>
</tr>
<tr>
<td>Quantity</td>
<td>500pcs</td>
</tr>
<tr>
<td>Direction of feed</td>
<td>E2</td>
</tr>
</tbody>
</table>

The direction is the pin 1 of the product is at the lower left when you hold the reel on the left hand and you pull out the tape on the right hand.

![Diagram of Tape and Reel Information](image-url)
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Thermal resistance format updated.</td>
</tr>
</tbody>
</table>
Notice

Precaution on using ROHM Products

1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment, aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

<table>
<thead>
<tr>
<th>JAPAN</th>
<th>USA</th>
<th>EU</th>
<th>CHINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS III</td>
<td>CLASS III</td>
<td>CLASS II b</td>
<td>CLASS III</td>
</tr>
</tbody>
</table>

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:

[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure

3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:

[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation

4. The Products are not subject to radiation-proof design.

5. Please verify and confirm characteristics of the final or mounted products in using the Products.

6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.

7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.

8. Confirm that operation temperature is within the specified range described in the product specification.

9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.

2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification
Precautions Regarding Application Examples and External Circuits

1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.

2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - the temperature or humidity exceeds those recommended by ROHM
 - the Products are exposed to direct sunshine or condensation
 - the Products are exposed to high Electrostatic

2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.

3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.

2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).

3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.

2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.

3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.

4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.
General Precaution

1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.

2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.

3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.