

0. Overview

This document explains how to use GD6112TRC3P-EVK-003, gate driver board(GD Board), to evaluate TRCDRIVE pack™ as a 3 phase traction inverter. The user must read the manual before starting the test. Also, there are few LEDs and terminals, which it is helpful for the user to monitor the board status and conduct the test. If the user would like to confirm the specification of the board, please refer to the user's guide

Figure 1. GD Board

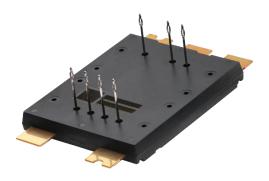


Figure 2. TRCDRIVE pack™

Figure 3. 3 phase Inverter EVK (assembled with KIT)

Table 1. SiC power module

Part Name	V _{DSS} [V]	RDS(on) [mΩ]	Heat sink assembly	Module type	Reference Part No.
BST350T12P4PSAMPLE	1200	2.8	Ag Sinter	Small	REF68004

© 2025 ROHM Co., Ltd. No. 68QS001E Rev.001 1/8

1. Pin assignment

1.1. Socket Pin and connector

Figure 4 shows GD Board pin position. The end user refers to the Table2, J1 pin assignment, to make the cable, which can provide the IO signal to the GD Board

J1 I/O Connector P/N: BM50B-SHLDS-G-TFT J1 Cable Housing P/N: SHLDP-50V-S-1(B)

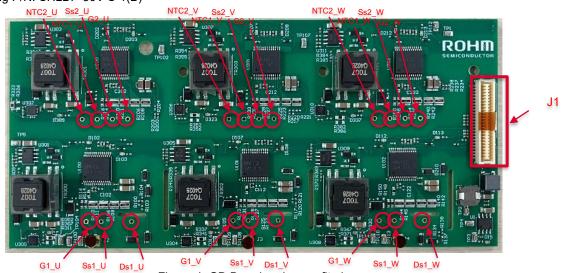


Figure 4. GD Board and press fit pin

Table 2. GD Board pressfit pin list

Pin Name	Details
G1_U	U High side Gate
Ss1_U	U High side Source Sense
Ds1_U	U High side Drain Sense
G2_U	U Low side Gate
Ss2_U	U Low side Source Sense
NTC1_U	U phase power module NTC
NTC2 _U	U phase power module NTC
G1_V	V High side Gate
Ss1_V	V High side Source Sense
Ds1_V	V High side Drain Sense
G2_V	V Low side Gate
Ss2_V	V Low side Source Sense
NTC1_V	V phase power module NTC
NTC2 _V	V phase power module NTC
G1_W	W High side Gate
Ss1_W	W High side Source Sense
Ds1_W	W High side Drain Sense
G2_W	W Low side Gate
Ss2_W	W Low side Source Sense
NTC1_W	W phase power module NTC
NTC2 _W	W phase power module NTC

September 2025

Table 3. J1 Pin assignment

Pin No.	Pin Name	I/O	details	
1	N.C.	-	-	
2	GND IN	 	GND	
3	N.C.	+-	-	
4	GND IN	_	GND	
5	N.C.	_	-	
6	GND IN	-	GND	
7	N.C.	_	-	
8	N.C.	_	-	
9	N.C.	-	-	
10	N.C.	-	-	
11	TEMP_U	0	U phase Power Module contains build-in NTC, and GD Board provides	
			temperature monitor function	
12	GND_IN	-	GND	
13	TEMP_V	0	V phase Power Module contains build-in NTC, and GD Board provides	
	0115 111		temperature monitor function	
14	GND_IN	-	GND	
15	TEMP_W	0	W phase Power Module contains build-in NTC, and GD Board provides	
16	CND IN	1	temperature monitor function	
16 17	GND_IN N.C.	-	GND	
18	N.C.	+-	-	
19	N.C.	 -	-	
20	N.C.	+-		
21	RDY H	0	Abnormal signal pin(High side).	
			Normal: "H", When Fault(UVLO or OSFB): "L"	
22	GND IN	-	GND	
23	RDY L	0	Abnormal signal pin(Low side).	
	_		Normal: "H", When Fault(UVLO or OSFB): "L"	
24	GND_IN	-	GND	
25	FLT_H	0	Fault signal pin(High side).	
			Normal: "Hi-Z", When fault: "L"	
26	GND_IN	-	GND	
27	FLT_L	0	Fault signal pin(Low side).	
	CNID IN		Normal: "Hi-Z", When fault: "L"	
28	GND_IN	-	GND	
29 30	N.C.	-	-	
31	ENA	1	Enabling signal pin.	
31	LIVA	'	When ENA is "H" level, output is enabled.	
			When ENA is "L" level, output is disabled	
32	GND_IN	_	GND	
33	IN_WH	ı	Input signal for W High side power module	
			"H" Level : output(Gate Driver Voltage) is high	
			"L" Level : output(Gate Driver Voltage) is low	
34	GND_IN	-	GND	
35	IN_WL	I	Input signal for W Low side power module	
	1		"H" Level : output(Gate Driver Voltage) is high	
			"L" Level : output(Gate Driver Voltage) is low	
36	GND_IN	-	GND	
37	IN_VH	I	Input signal for V High side power module	
			"H" Level : output(Gate Driver Voltage) is high	
			"L" Level : output(Gate Driver Voltage) is low	
38	GND_IN	-	GND	
39	IN_VL	I	Input signal for V Low side power module	
			"H" Level : output(Gate Driver Voltage) is high	
			"L" Level : output(Gate Driver Voltage) is low	
40	GND_IN	-	GND	
41	IN_UH	I	Input signal for U High side power module	
			"H" Level : output(Gate Driver Voltage) is high	
			"L" Level : output(Gate Driver Voltage) is low	
42	GND_IN	-	GND	

43	IN_UL	I	Input signal for U Low side power module "H" Level : output(Gate Driver Voltage) is high "L" Level : output(Gate Driver Voltage) is low
44	GND_IN	-	GND
45	+B	1	Power Supply Voltage
46	+B	1	Power Supply Voltage
47	+B	1	Power Supply Voltage
48	+B	ı	Power Supply Voltage
49	+B	I	Power Supply Voltage
50	+B	1	Power Supply Voltage

1.2. Test pin and MMCX connector

This GD Board has 16 test pins and 3 MMCXs to monitor signals on the board. Table 4 shows the list of test pins. Please refer to figure 5 to identify the location of the pins and MMCX connector.

Table 4. test pin list

Category	Side	Designator	Description	
Input voltage and signal	Primary	TP1	ENA	
		TP2	VSUP	
		TP3	+5V	
		TP4, TP5	GND	
UH	Primary	TP102	UH IN PWM	
	Secondary	TP100	UH VCC2	
		TP103	UH Gate	
		TP104	UH VEE2	
		J2	UH Vgs MMCX	
VH	Primary	TP107	VH IN_PWM	
	Secondary	TP105	VH VCC2	
		TP108	VH Gate	
		TP109	VH VEE2	
		J3	VH Vgs MMCX	
WH	Primary	TP112	WH IN_PWM	
	Secondary	TP110	WH VCC2	
		TP113	WH Gate	
		TP114	WH VEE2	
		J4	WH Vas MMCX	

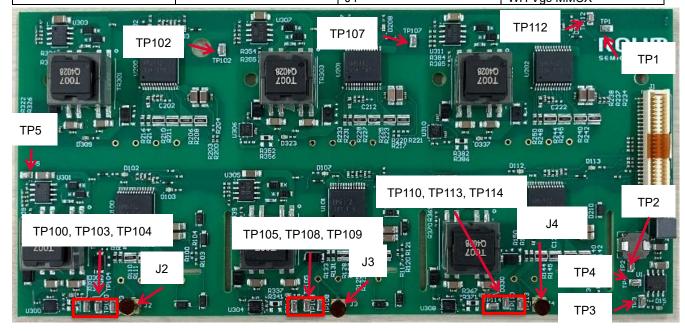


Figure 5. test Pin position

How to use

The following steps describe how to use GD Board. If the user did not follow these steps, the power module and GD Board could be broken possibly.

2.1. Power ON/OFF Sequence

Please be advised to follow the power on/off sequence described below. Otherwise, power module is likely to be damaged due to voltage overshoot

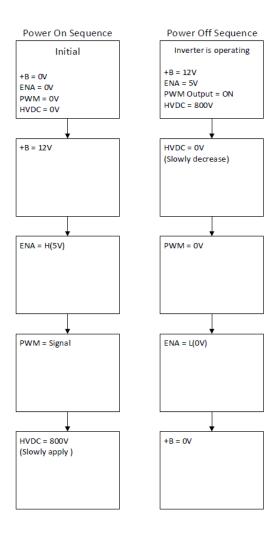


Figure 7. Power on and off sequence

© 2025 ROHM Co., Ltd. No. 68QS001E Rev.001 5/8 September 2025

2.2. LED

This GD Board has 19 LEDs as status indicators. Table 5 describes the functions of each LEDs and figure 8 shows the locations of the LEDs.

Table 5. LED list

Category	Side	Designator	Description		
Auxiliary	Primary	D15	ON: +5V is normal		
power			OFF: +5V is abnormal		
UH Primary		D102	ON: RDY error is triggered		
			OFF: Normal		
		D103	ON: FLT error is triggered		
			OFF: Normal		
	Secondary	D302	ON: +18V is normal		
			OFF: +18V is abnormal		
UL	Primary	D202	ON: RDY error is triggered		
			OFF: Normal		
		D203	ON: FLT error is triggered		
			OFF: Normal		
	Secondary	D309	ON: +18V is normal		
			OFF: +18V is abnormal		
VH	Primary	D107	ON: RDY error is triggered		
			OFF: Normal		
		D108	ON: FLT error is triggered		
			OFF: Normal		
	Secondary	D316	ON: +18V is normal		
			OFF: +18V is abnormal		
VL	Primary	D207	ON: RDY error is triggered		
			OFF: Normal		
		D208	ON: FLT error is triggered		
			OFF: Normal		
	Secondary	D323	ON: +18V is normal		
			OFF: +18V is abnormal		
WH	Primary	D112	ON: RDY error is triggered		
			OFF: Normal		
		D113	ON: FLT error is triggered		
			OFF: Normal		
	Secondary	D330	ON: +18V is normal		
			OFF: +18V is abnormal		
WL	Primary	D212	ON: RDY error is triggered		
			OFF: Normal		
		D213	ON: FLT error is triggered		
			OFF: Normal		
	Secondary	D337	ON: +18V is normal		
			OFF: +18V is abnormal		

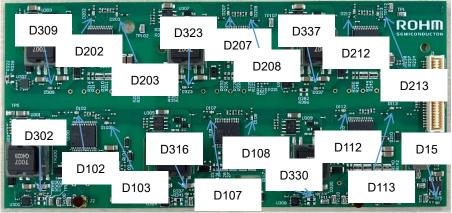


Figure 8. LED position

2.3. Gate Resistor

The switching speed can be adjusted by gate resistors. Gate resistors are already mounted, though the user can change the gate resistor by soldering. However, it is not guaranteed that the GD Board can drive the power module safely. Figure 8 shows the gate resistor on schematic circuit. Table 6 and 7 shows the list of gate resistors and the value. Figure 10 shows the position of the gate resistor.

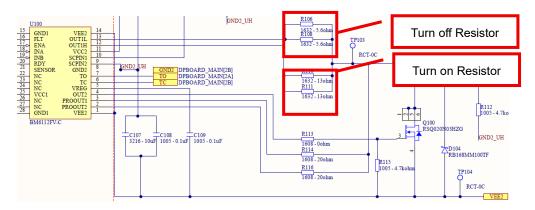


Figure 9. gate resistor on schematics

Table 6. gate resistor designator

	UH	UL	VH	VL	WH	WL
Turn on R	R110, R111	R210, R211	R127, R128	R227, R228	R144, R145	R244, R245
Turn off R	R106, R108	R206, R208	R123, R125	R223, R225	R140, R142	R240, R242

Table 7. default gate resistor value

	Default gate resistor			
	Turn on	Turn off		
Package	LTR18(0612)	LTR18(0612)		
Value(Ω)	13	5.6		

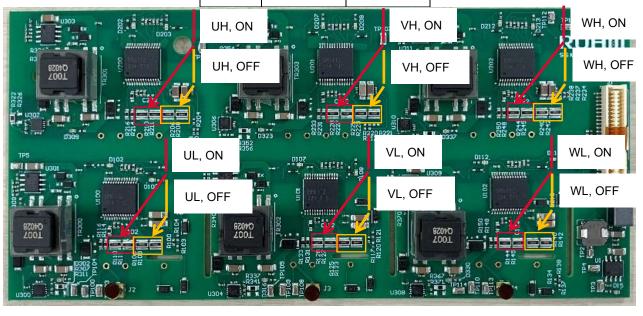


Figure 10. gate resistor position

3. Revision History

Revision	Date	Description of change
1	September 2025	Initial version

© 2025 ROHM Co., Ltd. 8/8

Notice

- The information contained in this document is intended to introduce ROHM Group (hereafter referred to asROHM) products. When using ROHM products, please verify the latest specifications or datasheets before use.
- 2) ROHM products are designed and manufactured for use in general electronic equipment and applications (such as Audio Visual equipment, Office Automation equipment, telecommunication equipment, home appliances, amusement devices, etc.) or specified in the datasheets. Therefore, please contact the ROHM sales representative before using ROHM products in equipment or devices requiring extremely high reliability and whose failure or malfunction may cause danger or injury to human life or body or other serious damage (such as medical equipment, transportation, traffic, aircraft, spacecraft, nuclear power controllers, fuel control, automotive equipment including car accessories, etc. hereafter referred to as Specific Applications). Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses, or losses incurred by you or third parties arising from the use of ROHM Products for Specific Applications.
- 3) Electronic components, including semiconductors, can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against physical injury, and damage to any property, which a failure or malfunction of products may cause.
- 4) The information contained in this document, including application circuit examples and their constants, is intended to explain the standard operation and usage of ROHM products, and is not intended to guarantee, either explicitly or implicitly, the operation of the product in the actual equipment it will be used. As a result, you are solely responsible for it, and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses, or losses incurred by you or third parties arising from the use of such information.
- 5) When exporting ROHM products or technologies described in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, such as the Foreign Exchange and Foreign Trade Act and the US Export Administration Regulations, and follow the necessary procedures in accordance with these provisions.
- 6) The technical information and data described in this document, including typical application circuits, are examples only and are not intended to guarantee to be free from infringement of third parties intellectual property or other rights. ROHM does not grant any license, express or implied, to implement, use, or exploit any intellectual property or other rights owned or controlled by ROHM or any third parties with respect to the information contained herein.
- 7) No part of this document may be reprinted or reproduced in any form by any means without the prior written consent of ROHM.
- 8) All information contained in this document is current as of the date of publication and subject to change without notice. Before purchasing or using ROHM products, please confirm the latest information with the ROHM sales representative.
- 9) ROHM does not warrant that the information contained herein is error-free. ROHM shall not be in any way responsible or liable for any damages, expenses, or losses incurred by you or third parties resulting from errors contained in this document.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

https://www.rohm.com/contactus