

2ch ハイサイドスイッチ IC

2.4A 過電流検出 ハイサイドスイッチ IC

BD2068FJ-M BD2069FJ-M

概要

USB ポート用デュアルハイサイドスイッチはユニバーサルシリアルバス(USB)の電源ラインに使用される電流制限機能付きのハイサイドスイッチです。スイッチ部には低オン抵抗のNチャネル MOS FET を2回路内蔵しています。また、過電流検出、過温度検出、低電圧ロックアウト、ソフトスタート機能を内蔵しています。

特長

- AEC-Q100 対応(Note 1)
- 低オン抵抗(Typ 80mΩ)の N-ch MOSFET を2回路 内蔵
- 制御入力論理

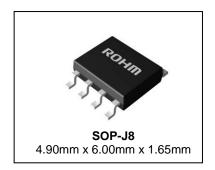
Active-High: BD2068FJ-MActive-Low: BD2069FJ-M

- ソフトスタート機能
- 過電流検出回路、電流制限回路
- 過温度検出回路
- 低電圧ロックアウト回路
- オープンドレイン外部通知端子
- スイッチオフ時の逆流を防止
- フラグ出力遅延 (Note1: Grade3)

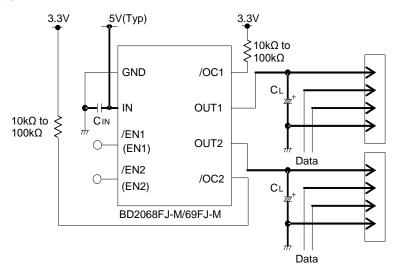
用途

カーアクセサリ

重要特性


■ 動作電源電圧範囲 2.7V~5.5V
■ オン抵抗 80mΩ(Typ)
■ 連続出力負荷電流 1.0A
■ 過電流検出値 1.5A (Min), 3.0A (Max)
■ 静止消費電流 0.01µA (Typ)
■ 出力立ち上り時間 0.8ms(Typ)

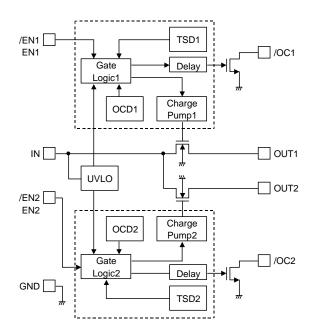
パッケージ


動作温度範囲

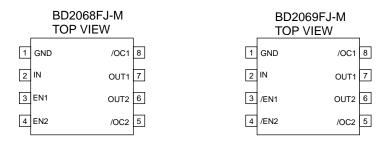
W(Typ) D(Typ) H (Max)

-40°C~+85°C

基本アプリケーション回路



ラインアップ


	過電流検出値			18	ッケージ	発注可能形名	
Min	Тур	Max	制御入力論理	/ /		光注可能形石	
1.5A	2.4A	3.0A	High	SOP-J8	Reel of 2500	BD2068FJ-MGE2	
1.5A	2.4A	3.0A	Low	SOP-J8	Reel of 2500	BD2069FJ-MGE2	

〇製品構造:シリコンモノリシック集積回路 〇耐放射線設計はしておりません

ブロック図

端子配置図

端子説明

端子番号	端子名	1/0	端子機能
1	GND -		グランド端子。
2	IN	-	電源入力端子。 スイッチへの入力端子と内部回路の電源入力端子です。
3, 4	EN1, /EN1, EN2, /EN2	I	スイッチイネーブル入力端子。 EN1, EN2: High レベルの入力でスイッチをオンします。(BD2068FJ-M) /EN1, /EN2: Low レベルの入力でスイッチをオンします。(BD2069FJ-M) High レベル入力 > 2.0V、 Low レベル入力 < 0.8V。
5, 8	/OC1, /OC2	0	過電流通知出力端子。 過電流、過温度検出時に Low になります。 オープンドレイン出力端子です。
6, 7	6, 7 OUT1, OUT2 O		スイッチ出力端子。

絶対最大定格(Ta=25°C)

項目	記号	定格	単位
電源電圧	Vin	-0.3 ~ +6.0	V
EN, /EN 入力端子電圧	V _{EN} , V _{/EN}	-0.3~+6.0	V
/OC 端子電圧	V/oc	-0.3~+6.0	V
/OC 端子電流	I/oc	5	mA
OUT 端子電圧	V _{OUT}	-0.3~+6.0	V
保存温度範囲	Tstg	-55~+150	°C
許容損失	Pd	0.67 ^(Note 1)	W

(Note 1) 70mm x 70mm x 1.6mm ガラスエポキシ基板実装時 Ta > 25 °C では 1°C につき 5.4mW で軽減。

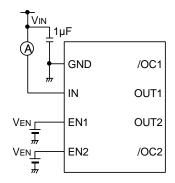
注意:印加電圧及び動作温度範囲などの絶対最大定格を超えた場合は、劣化または破壊に至る可能性があります。また、ショートモードもしくはオープンモードなど、破壊状態を想定できません。絶対最大定格を超えるような特殊モードが想定される場合、ヒューズなど物理的な安全対策を施して頂けるようご検討お願いします。

推奨動作条件

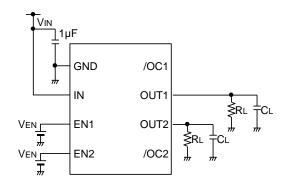
項目	記号		定格		単位
項 目 	配石	最小	標準	最大	平位
動作電圧範囲	VIN	2.7	-	5.5	V
動作温度範囲	Topr	-40	-	+85	°C

電気的特性

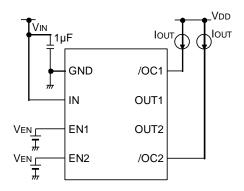
BD2068FJ-M (特に指定のない限り、V_{IN} = 5.0V, Ta = 25°C)

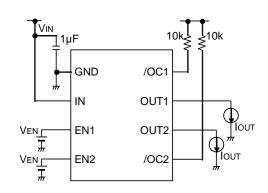

西口	記号	規 格 値			# / _	A IL
項目	配石	最小	標準	最大	単位	条件
動作消費電流	I _{DD}	-	130	180	μΑ	V _{EN} = 5V , OUT=OPEN
静止消費電流	I _{STB}	-	0.01	1	μΑ	V _{EN} = 0V , OUT=OPEN
	V _{ENH}	2.0	-	-	V	High 入力
EN 入力電圧 	VENL	-	-	0.8	V	Low 入力
EN 入力電流	I _{EN}	-1.0	+0.01	+1.0	μΑ	VEN = OV または VEN = 5V
/OC 出力 Low 電圧	V/oc	-	-	0.5	V	I/OC = 1mA
/OC 出力リーク電流	I _L /oc	-	0.01	1	μA	V/oc = 5V
/OC 遅延時間	t/oc	10	15	20	ms	
オン抵抗	Ron	-	80	125	mΩ	I _{ОUТ} = 500mA
スイッチリーク電流	ILSW	-	-	1.0	μΑ	VEN = 0V, VOUT = 0V
逆バイアスリーク電流	I _{LREV}	-	-	1.0	μA	V _{OUT} = 5.5V, V _{IN} = 0V
過電流検出値	Ітн	1.5	2.4	3.0	Α	
ショート時出力電流	Isc	1.1	1.5	2.1	Α	V _{OUT} = 0V C _L = 47μF (RMS)
出力立ち上り時間	t _{ON1}	-	0.8	10	ms	$R_L = 10\Omega$
出力立ち上り遅延時間	t _{ON2}	-	1.1	20	ms	$R_L = 10\Omega$
出力立ち下り時間	toff1	-	5	20	μs	R _L = 10Ω
出力立ち下り遅延時間	toff2	-	10	40	μs	R _L = 10Ω
UVLO スレッショルド	Vтиvн	2.1	2.3	2.5	V	V _{IN} 上昇時
UVLU X D Y D J N F	VTUVL	2.0	2.2	2.4	V	VIN下降時

電気的特性 — 続き


BD2069FJ-M (特に指定のない限り、V_{IN} = 5.0V, Ta = 25°C)

- T	記号	規格値			₩ / ⊥	72 IIL
項目		最小	標準	最大	単位	条件
動作消費電流	I _{DD}	-	130	180	μΑ	V _{/EN} = 0V , OUT=OPEN
静止消費電流	I _{STB}	-	0.01	1	μA	V _{/EN} = 5V , OUT=OPEN
/CN 3 + TO C	V/ENH	2.0	-	-	V	High 入力
/EN 入力電圧 	V/ENL	-	-	0.8	V	Low 入力
/EN 入力電流	I _{/EN}	-1.0	+0.01	+1.0	μA	V _{/EN} = 0V または V _{/EN} = 5V
/OC 出力 Low 電圧	V _{/OC}	-	-	0.5	V	I _{/OC} = 1mA
/OC 出力リーク電流	IL/OC	-	0.01	1	μΑ	V/oc = 5V
/OC 遅延時間	t/oc	10	15	20	ms	
オン抵抗	Ron	-	80	125	mΩ	Iout = 500mA
スイッチリーク電流	ILSW	-	-	1.0	μΑ	V/EN = 5V, Vout = 0V
逆バイアスリーク電流	I _{LREV}	-	-	1.0	μΑ	Vout = 5.5V, V _{IN} = 0V
過電流検出値	Ітн	1.5	2.4	3.0	Α	
ショート時出力電流	Isc	1.1	1.5	2.1	Α	$V_{OUT} = 0V$ $C_L = 47\mu F (RMS)$
出力立ち上り時間	t _{ON1}	-	0.8	10	ms	R _L = 10Ω
出力立ち上り遅延時間	t _{ON2}	-	1.1	20	ms	R _L = 10Ω
出力立ち下り時間	toff1	-	5	20	μs	R _L = 10Ω
出力立ち下り遅延時間	toff2	-	10	40	μs	R _L = 10Ω
111/10 71	Vти∨н	2.1	2.3	2.5	V	V _{IN} 上昇時
UVLO スレッショルド	VTUVL	2.0	2.2	2.4	V	Vin下降時


測定回路


A. 動作電流

B. EN, /EN 入力電圧、出力立ち上り、立ち下り時間 突入電流

C. オン抵抗、過電流検出特性

D. /OC 出力 Low 電圧

Figure 1. 測定回路

タイミングダイヤグラム

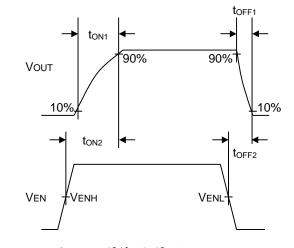


Figure 2. タイミングダイヤグラム(BD2068FJ-M)

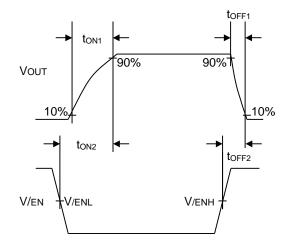


Figure 3. タイミングダイヤグラム(BD2069FJ-M)

特性データ(参考データ)

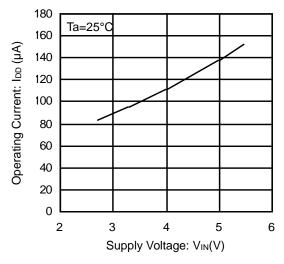


Figure 4. Operating Current vs Supply Voltage (EN, /EN Enable)

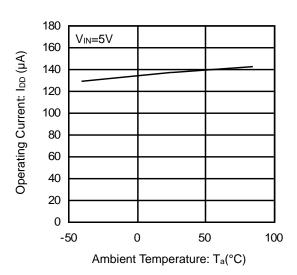


Figure 5. Operating Current vs Ambient Temperature (EN, /EN Enable)

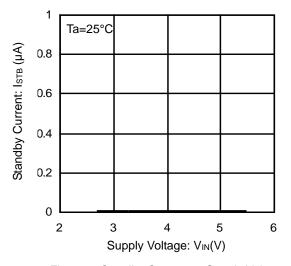


Figure 6. Standby Current vs Supply Voltage (EN, /EN Disable)

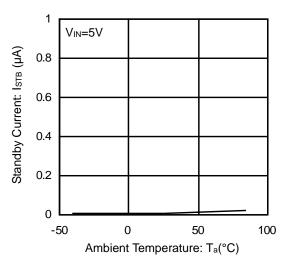


Figure 7. Standby Current vs Ambient Temperature (EN, /EN Disable)

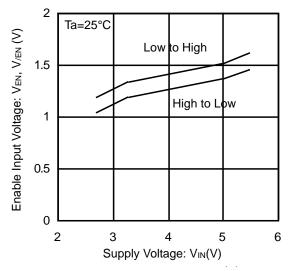


Figure 8. EN, /EN Input Voltage vs Supply Voltage (EN1, EN2, /EN1, /EN2)

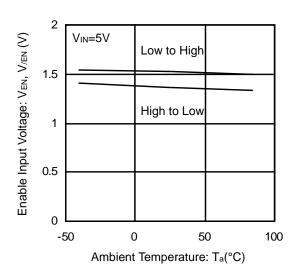


Figure 9. EN, /EN Input Voltage vs Ambient Temperature (EN1, EN2, /EN1, /EN2)

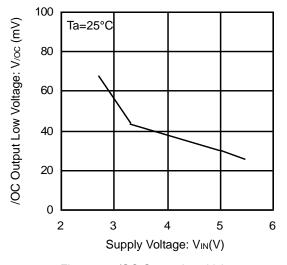


Figure 10. /OC Output Low Voltage vs Supply Voltage

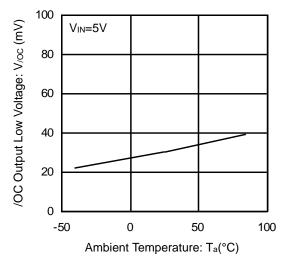


Figure 11. /OC Output Low Voltage vs Ambient Temperature

Figure 12. ON-Resistance vs Supply Voltage

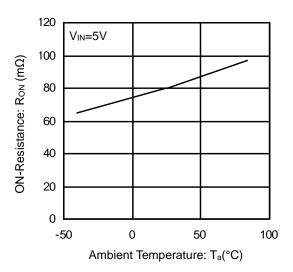


Figure 13. ON-Resistance vs Ambient Temperature

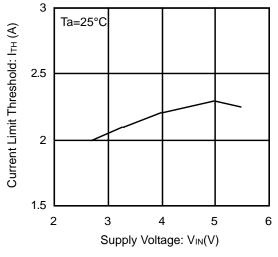


Figure 14. Current Limit Threshold vs Supply Voltage

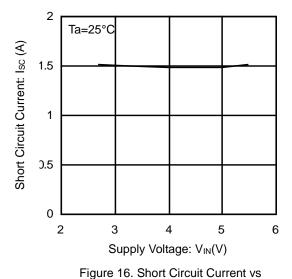



Figure 15. Current Limit Threshold vs Ambient Temperature

Supply Voltage

Sport Circuit Current: Sport Circuit Course Course

2

VIN=5V

Figure 17. Short Circuit Current vs Ambient Temperature

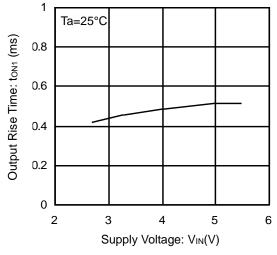


Figure 18. Output Rise Time vs Supply Voltage

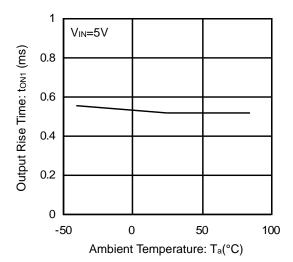
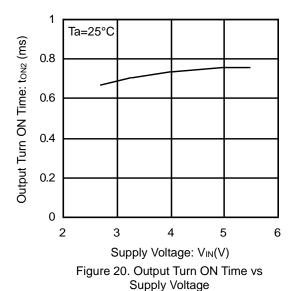



Figure 19. Output Rise Time vs Ambient Temperature

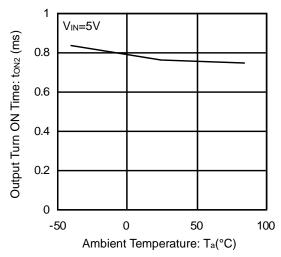
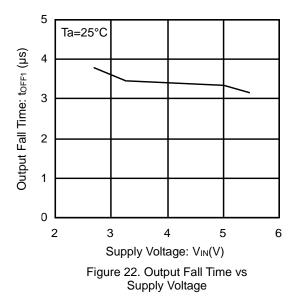
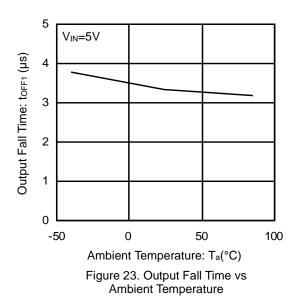




Figure 21. Output Turn ON Time vs Ambient Temperature

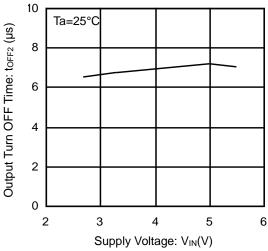


Figure 24. Output Turn OFF Time vs Supply Voltage

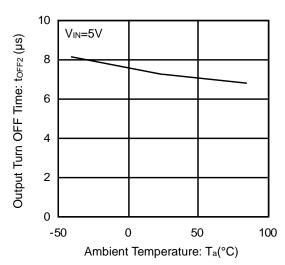
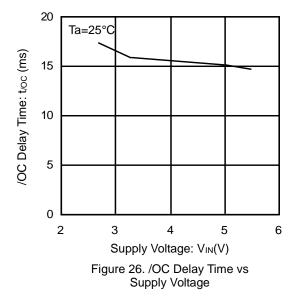



Figure 25. Output Turn OFF Time vs Ambient Temperature

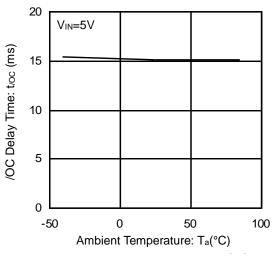


Figure 27. /OC Delay Time vs Ambient Temperature

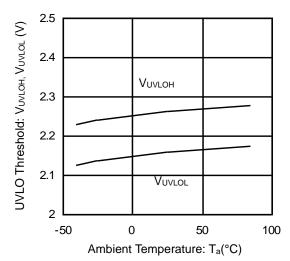


Figure 28. UVLO Threshold Voltage vs Ambient Temperature

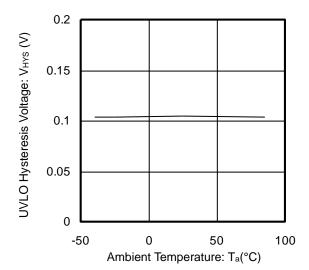


Figure 29. UVLO Hysteresis Voltage vs Ambient Temperature

波形データ

BD2069FJ-M

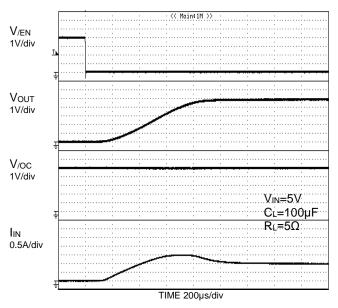


Figure 30. 出力立ち上がり特性

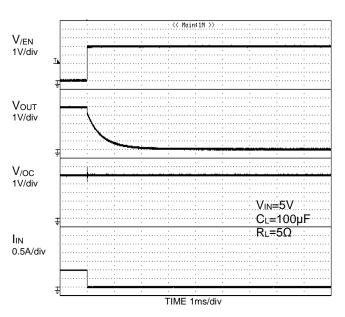


Figure 31. 出力立ち下がり特性

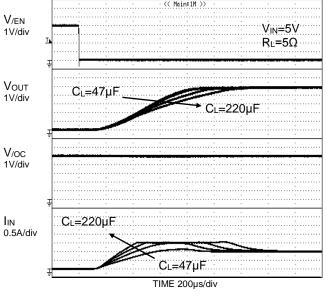


Figure 32. 突入電流特性 C_L=47μF, 100μF, 147μF, 220μF

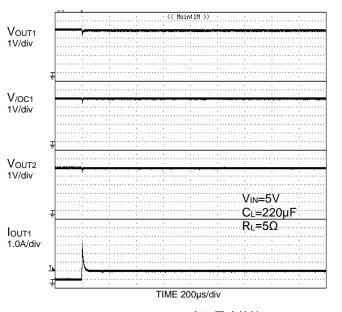


Figure 33. 突入電流特性

波形データ ― 続き

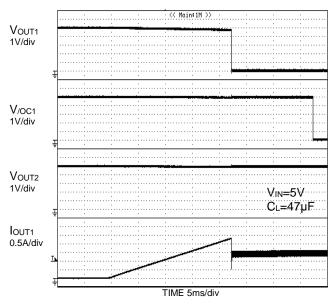


Figure 34. 過電流検出特性 ランプ出力

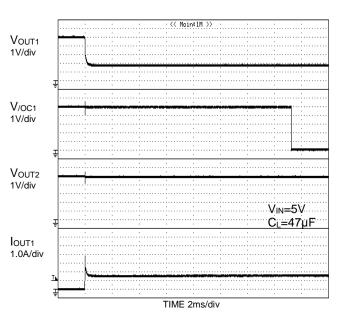


Figure 35. 過電流検出特性 Enable 時に 1Ω ショート

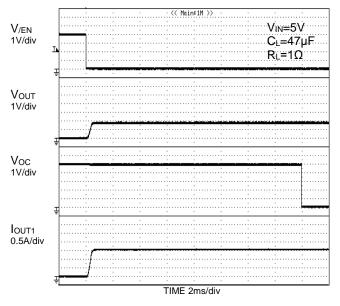


Figure 36. 過電流検出特性 出力 1Ω 負荷状態で Enable

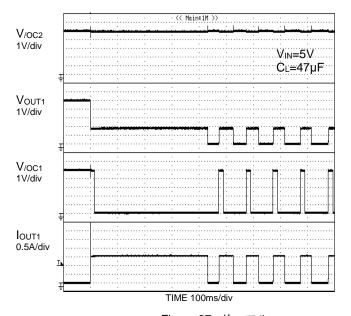
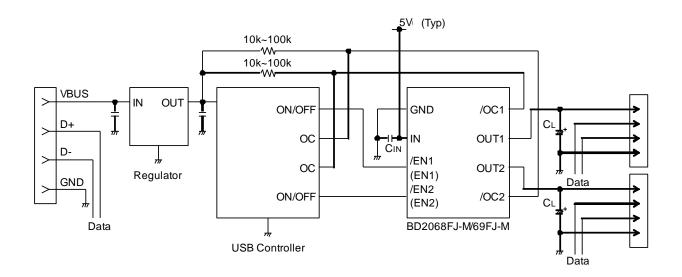



Figure 37. サーマル シャットダウン動作

応用回路例

アプリケーション情報

出力ショートなどで過大な電流が流れた場合、IC への電源ラインのインダクタンスによりノイズが発生し IC の動作に悪影響を及ぼす可能性があります。これを防ぐために IC の IN 端子と GND 端子の近くにバイパスコンデンサ C_{IN} を接続してください。 $1\mu F$ 以上を推奨します。

/OC 端子は $10k\Omega \sim 100k\Omega$ の抵抗でプルアップしてください。

CLはアプリケーションを満足するような値を設定してください。

このシステム接続図はアプリケーションとして動作を保証するものではありません。

外付け回路定数等を変更してご使用になる時は、静特性のみならず過渡特性も含めて外付部品及び IC のバラツキ等を考慮して十分なマージンを見て決定してください。

動作説明

1. スイッチ動作

IN 端子、OUT 端子はそれぞれスイッチ用 MOSFET のドレイン、ソースに接続されています。また、IN 端子は内部制御 回路への電源入力としても使用されます。

EN, /EN 制御入力よりスイッチをオンにすると IN 端子と OUT 端子の間が $80m\Omega(Typ)$ のスイッチで接続されます。オン状態ではスイッチは双方向性を示します。したがって IN 端子より OUT 端子の電位が高い場合、OUT 端子から IN 端子へ電流が流れます。

スイッチ用 MOSFET のドレインとソース間の寄生ダイオードがキャンセルされているため、スイッチがオフ状態ではOUT 端子から IN 端子への電流の逆流を防ぐことができます。

2. サーマルシャットダウン (TSD)

サーマルシャットダウン回路はチップ内部のジャンクション温度が規定の値を超えるとスイッチのオフとエラーフラグ (/OC)の出力を行います。サーマルシャットダウン回路は2段階のサーマルシャットダウンスレッショルドを持っています。過電流発生時には通常より低いジャンクション温度でサーマルシャットダウン動作を行うため、過電流状態にあるスイッチのみスイッチのオフとエラーフラグ(/OC)の出力を行います。

サーマルシャットダウン動作にヒステリシスを持っています。したがってジャンクション温度が低下するとスイッチ出力、エラーフラグ(/OC)の出力は復帰します。この動作はジャンクション温度上昇の原因が取り除かれるか、スイッチの出力をオフするまで繰り返します。

サーマルシャットダウン回路は OUT1、OUT2 いずれかのスイッチがオン時(EN, /EN 信号がアクティブの時)に動作します。

3. 過電流検出 (OCD)

スイッチ出力端子のショートなどで過大な電流がスイッチに流れた場合、過電流検出回路が働きスイッチ出力電流をショート時出力電流(Isc)に制限して過電流通知(/OC)の出力を行います。過電流検出回路はスイッチがオン時(EN, /EN 信号がアクティブの時)に動作します。過電流時の応答は次の3つに分けられます。

- (1) 出力がショート状態でスイッチをオンした場合 出力がショートまたはそれに近い状態でスイッチをオンした場合スイッチはすぐに電流制限状態になります。
- (2) 出力電流が徐々に増える場合 出力電流が徐々に増える場合は出力電流が過電流検出値を超えるまで電流制限は動作しません。検出値を超えると電 流制限を行います。
- (3) スイッチがオンした状態で出力がショートした場合 スイッチがオンした状態で出力がショートまたは大きな容量が接続された場合は、過電流制限回路が反応するまでの 間、大きな電流が流れます。電流検出、制限回路が動作すると電流制限を行います。

4. 低電圧ロックアウト(UVLO)

UVLO は V_{IN} の電圧が 2.3V(Typ)になるまでスイッチのオフを保ちます。また、スイッチオンの状態から V_{IN} が 2.2V(Typ) に低下するとスイッチのオフを行います。UVLO は 100mV(Typ)のヒステリシスを持っています。 低電圧ロックアウト回路は OUT1、OUT2 いずれかのスイッチがオン時(EN, /EN 信号がアクティブの時)に動作します。

5. 過電流通知出力

過電流通知出力(/OC)は N-MOS のオープンドレイン出力となっています。過電流検出、サーマルシャットダウンを検出した時に Low レベルを出力します。

過電流検出時の過電流通知出力(/OC)には、15ms(Typ)の遅延を持たせています。この遅延によりスイッチオン時、ホット プラグ時の突入電流など瞬時の電流検出を外部に通知することを防ぎます。また、未使用時には端子をオープンまたはグ ラウンドへ接続してください。

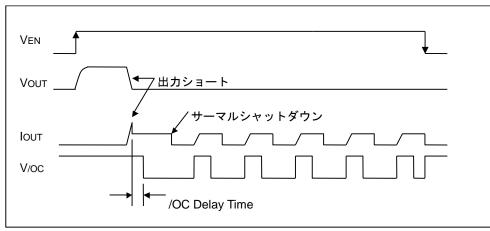


Figure 38. 過電流検出、サーマルシャットダウンタイミング (BD2068FJ-M)

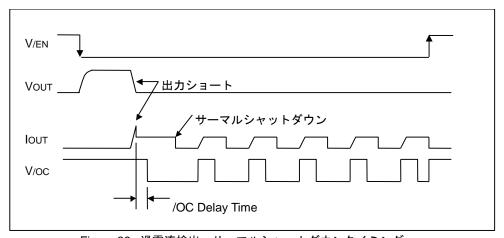
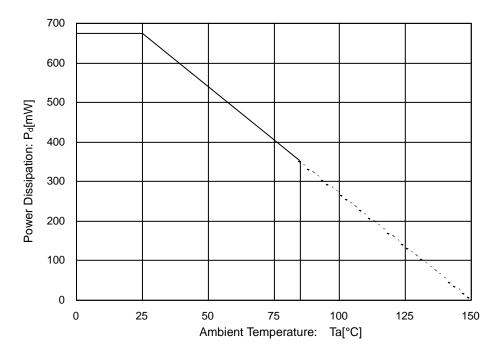



Figure 39. 過電流検出、サーマルシャットダウンタイミング (BD2069FJ-M)

熱損失について

(SOP-J8)

70mm x 70mm x 1.6mm ガラスエポキシ基板実装時

Figure 40. パッケージ熱損失について(Pd-Ta Curve)

入出力等価回路図

ĺ	当寺神田田田四 端子名	端子番号	等価回路
	EN1(/EN1) EN2(/EN2)	3, 4	/EN1(EN1) /EN2(EN2)
	/OC1 /OC2	5, 8	/OC1 /OC2
	OUT1 OUT2	6, 7	OUT1 OUT2 #

使用上の注意

1. 電源の逆接続について

電源コネクタの逆接続により LSI が破壊する恐れがあります。逆接続破壊保護用として外部に電源と LSI の電源端子間にダイオードを入れるなどの対策を施してください。

2. 電源ラインについて

基板パターンの設計においては、電源ラインの配線は、低インピーダンスになるようにしてください。グラウンドラインについても、同様のパターン設計を考慮してください。また、LSIのすべての電源端子について電源ーグラウンド端子間にコンデンサを挿入するとともに、電解コンデンサ使用の際は、低温で容量ぬけが起こることなど使用するコンデンサの諸特性に問題ないことを十分ご確認のうえ、定数を決定してください。

3. グラウンド電位について

グラウンド端子の電位はいかなる動作状態においても、最低電位になるようにしてください。また実際に過渡現象を含め、グラウンド端子以外のすべての端子がグラウンド以下の電圧にならないようにしてください。

4. グラウンド配線パターンについて

小信号グラウンドと大電流グラウンドがある場合、大電流グラウンドパターンと小信号グラウンドパターンは分離し、パターン配線の抵抗分と大電流による電圧変化が小信号グラウンドの電圧を変化させないように、セットの基準点で 1 点アースすることを推奨します。外付け部品のグラウンドの配線パターンも変動しないよう注意してください。グラウンドラインの配線は、低インピーダンスになるようにしてください。

5. 熱設計について

万一、許容損失を超えるようなご使用をされますと、チップ温度上昇により、IC 本来の性質を悪化させることにつながります。本仕様書の絶対最大定格に記載しています許容損失を超える場合は基板サイズを大きくする、放熱用銅箔面積を大きくする、放熱板を使用するなどの対策をして、許容損失を超えないようにしてください。

6. 推奨動作条件について

この範囲であればほぼ期待通りの特性を得ることができる範囲です。電気特性については各項目の条件下において保証されるものです。

7. ラッシュカレントについて

IC 内部論理回路は、電源投入時に論理不定状態で、瞬間的にラッシュカレントが流れる場合がありますので、電源カップリング容量や電源、グラウンドパターン配線の幅、引き回しに注意してください。

8. 強電磁界中の動作について

強電磁界中でのご使用では、まれに誤動作する可能性がありますのでご注意ください。

9. セット基板での検査について

セット基板での検査時に、インピーダンスの低いピンにコンデンサを接続する場合は、IC にストレスがかかる恐れがあるので、1 工程ごとに必ず放電を行ってください。静電気対策として、組立工程にはアースを施し、運搬や保存の際には十分ご注意ください。また、検査工程での治具への接続をする際には必ず電源を OFF にしてから接続し、電源を OFF にしてから取り外してください。

10. 端子間ショートと誤装着について

プリント基板に取り付ける際、IC の向きや位置ずれに十分注意してください。誤って取り付けた場合、IC が破壊する恐れがあります。また、出力と電源及びグラウンド間、出力間に異物が入るなどしてショートした場合についても破壊の恐れがあります。

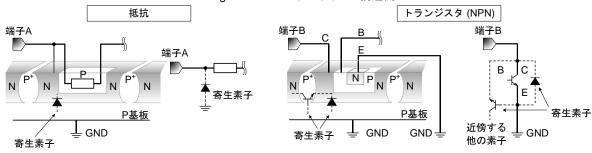
11. 未使用の入力端子の処理について

CMOS トランジスタの入力は非常にインピーダンスが高く、入力端子をオープンにすることで論理不定の状態になります。これにより内部の論理ゲートの p チャネル、n チャネルトランジスタが導通状態となり、不要な電源電流が流れます。また 論理不定により、想定外の動作をすることがあります。よって、未使用の端子は特に仕様書上でうたわれていない限り、適切な電源、もしくはグラウンドに接続するようにしてください。

使用上の注意 ― 続き

12. 各入力端子について

本 IC はモノリシック IC であり、各素子間に素子分離のための P+アイソレーションと、P 基板を有しています。 この P 層と各素子の N 層とで P-N 接合が形成され、各種の寄生素子が構成されます。


例えば、下図のように、抵抗とトランジスタが端子と接続されている場合、

〇抵抗では、GND>(端子 A)の時、トランジスタ(NPN)では GND > (端子 B)の時、P-N 接合が寄生ダイオードとして動作します。

Oまた、トランジスタ(NPN)では、GND > (端子 B)の時、前述の寄生ダイオードと近接する他の素子の N 層によって寄生の NPN トランジスタが動作します。

IC の構造上、寄生素子は電位関係によって必然的にできます。寄生素子が動作することにより、回路動作の干渉を引き起こし、誤動作、ひいては破壊の原因ともなり得ます。したがって、入出力端子に GND(P 基板)より低い電圧を印加するなど、寄生素子が動作するような使い方をしないよう十分に注意してください。アプリケーションにおいて電源端子と各端子電圧が逆になった場合、内部回路または素子を損傷する可能性があります。例えば、外付けコンデンサに電荷がチャージされた状態で、電源端子が GND にショートされた場合などです。また、電源端子直列に逆流防止のダイオードもしくは各端子と電源端子間にバイパスのダイオードを挿入することを推奨します。

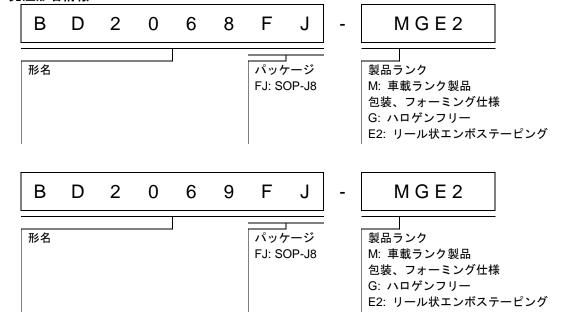
Figure 41. モノリシック IC 構造例

13. セラミック・コンデンサの特性変動について

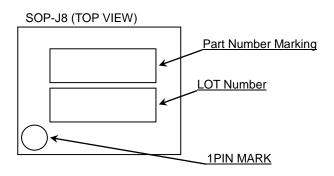
外付けコンデンサに、セラミック・コンデンサを使用する場合、直流バイアスによる公称容量の低下、及び温度などによる容量の変化を考慮の上定数を決定してください。

14. 安全動作領域について

本製品を使用する際には、出力トランジスタが絶対最大定格及び ASO を超えないよう設定してください。

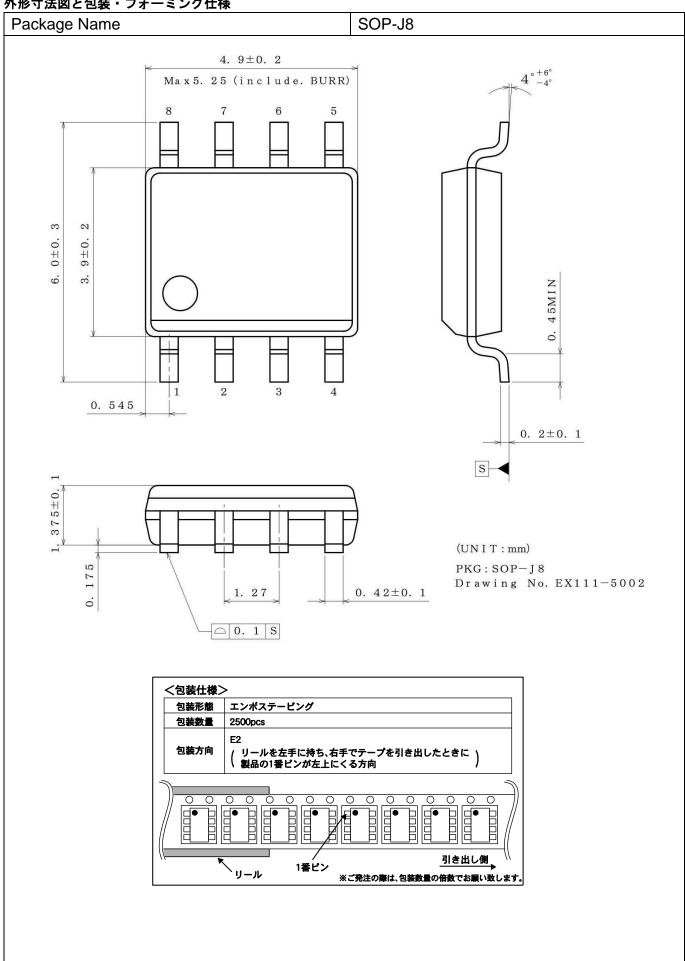

15. 温度保護回路について

IC を熱破壊から防ぐための温度保護回路を内蔵しております。許容損失範囲内でご使用いただきますが、万が一許容損失を超えた状態が継続すると、チップ温度 Tj が上昇し温度保護回路が動作し出力パワー素子が OFF します。その後チップ温度 Tj が低下すると回路は自動で復帰します。なお、温度保護回路は絶対最大定格を超えた状態での動作となりますので、温度保護回路を使用したセット設計などは、絶対に避けてください。


16. 過電流保護回路について

出力には電流能力に応じた過電流保護回路が内部に内蔵されているため、負荷ショート時には IC 破壊を防止しますが、この保護回路は突発的な事故による破壊防止に有効なもので、連続的な保護回路動作、過渡時でのご使用に対応するものではありません。

発注形名情報



標印図

Part Number	Part Number Marking		
BD2068FJ-M	D2068		
BD2069FJ-M	D2069		

外形寸法図と包装・フォーミング仕様

改訂履歴

日付	Revision	改訂内容
2015.04.07	001	新規作成

ご注意

ローム製品取扱い上の注意事項

1. 極めて高度な信頼性が要求され、その故障や誤動作が人の生命、身体への危険若しくは損害、又はその他の重大な損害 の発生に関わるような機器又は装置 (医療機器(Note 1)、航空宇宙機器、原子力制御装置等)(以下「特定用途」という) への本製品のご使用を検討される際は事前にローム営業窓口までご相談くださいますようお願い致します。ロームの文 書による事前の承諾を得ることなく、特定用途に本製品を使用したことによりお客様又は第三者に生じた損害等に関し、ロームは一切その責任を負いません。

(Note 1) 特定用途となる医療機器分類

(Free) IIIC/IIIC = 0 0 = MCMAH / 1990							
日本	USA	EU	中国				
CLASSⅢ	CLASSⅢ	CLASS II b	Ⅲ類				
CLASSIV	CLASSIII	CLASSIII	皿 規				

- 2. 半導体製品は一定の確率で誤動作や故障が生じる場合があります。万が一、かかる誤動作や故障が生じた場合であっても、本製品の不具合により、人の生命、身体、財産への危険又は損害が生じないように、お客様の責任において次の例に示すようなフェールセーフ設計など安全対策をお願い致します。
 - ①保護回路及び保護装置を設けてシステムとしての安全性を確保する。
 - ②冗長回路等を設けて単一故障では危険が生じないようにシステムとしての安全を確保する。
- 3. 本製品は、下記に例示するような特殊環境での使用を配慮した設計はなされておりません。従いまして、下記のような特殊環境での本製品のご使用に関し、ロームは一切その責任を負いません。本製品を下記のような特殊環境でご使用される際は、お客様におかれまして十分に性能、信頼性等をご確認ください。
 - ①水・油・薬液・有機溶剤等の液体中でのご使用
 - ②直射日光・屋外暴露、塵埃中でのご使用
 - ③潮風、Cl₂、H₂S、NH₃、SO₂、NO₂等の腐食性ガスの多い場所でのご使用
 - ④静電気や電磁波の強い環境でのご使用
 - ⑤発熱部品に近接した取付け及び当製品に近接してビニール配線等、可燃物を配置する場合。
 - ⑥本製品を樹脂等で封止、コーティングしてのご使用。
 - ⑦はんだ付けの後に洗浄を行わない場合(無洗浄タイプのフラックスを使用された場合も、残渣の洗浄は確実に 行うことをお薦め致します)、又ははんだ付け後のフラックス洗浄に水又は水溶性洗浄剤をご使用の場合。
 - ⑧結露するような場所でのご使用。
- 4. 本製品は耐放射線設計はなされておりません。
- 5. 本製品単体品の評価では予測できない症状・事態を確認するためにも、本製品のご使用にあたってはお客様製品に実装された状態での評価及び確認をお願い致します。
- 6. パルス等の過渡的な負荷(短時間での大きな負荷)が加わる場合は、お客様製品に本製品を実装した状態で必ず その評価及び確認の実施をお願い致します。また、定常時での負荷条件において定格電力以上の負荷を印加されますと、 本製品の性能又は信頼性が損なわれるおそれがあるため必ず定格電力以下でご使用ください。
- 7. 許容損失(Pd)は周囲温度(Ta)に合わせてディレーティングしてください。また、密閉された環境下でご使用の場合は、 必ず温度測定を行い、ディレーティングカーブ範囲内であることをご確認ください。
- 8. 使用温度は納入仕様書に記載の温度範囲内であることをご確認ください。
- 9. 本資料の記載内容を逸脱して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いません。

実装及び基板設計上の注意事項

- 1. ハロゲン系(塩素系、臭素系等)の活性度の高いフラックスを使用する場合、フラックスの残渣により本製品の性能 又は信頼性への影響が考えられますので、事前にお客様にてご確認ください。
- 2. はんだ付けは、表面実装製品の場合リフロー方式、挿入実装製品の場合フロー方式を原則とさせて頂きます。なお、表面実装製品をフロー方式での使用をご検討の際は別途ロームまでお問い合わせください。 その他、詳細な実装条件及び手はんだによる実装、基板設計上の注意事項につきましては別途、ロームの実装仕様書をご確認ください。

Notice-PAA-J Rev.001

応用回路、外付け回路等に関する注意事項

- 1. 本製品の外付け回路定数を変更してご使用になる際は静特性のみならず、過渡特性も含め外付け部品及び本製品のバラッキ等を考慮して十分なマージンをみて決定してください。
- 2. 本資料に記載された応用回路例やその定数などの情報は、本製品の標準的な動作や使い方を説明するためのもので、 実際に使用する機器での動作を保証するものではありません。従いまして、お客様の機器の設計において、回路や その定数及びこれらに関連する情報を使用する場合には、外部諸条件を考慮し、お客様の判断と責任において行って ください。これらの使用に起因しお客様又は第三者に生じた損害に関し、ロームは一切その責任を負いません。

静電気に対する注意事項

本製品は静電気に対して敏感な製品であり、静電放電等により破壊することがあります。取り扱い時や工程での実装時、保管時において静電気対策を実施の上、絶対最大定格以上の過電圧等が印加されないようにご使用ください。特に乾燥環境下では静電気が発生しやすくなるため、十分な静電対策を実施ください。(人体及び設備のアース、帯電物からの隔離、イオナイザの設置、摩擦防止、温湿度管理、はんだごてのこて先のアース等)

保管・運搬上の注意事項

- 1. 本製品を下記の環境又は条件で保管されますと性能劣化やはんだ付け性等の性能に影響を与えるおそれがあります のでこのような環境及び条件での保管は避けてください。
 - ①潮風、CI₂、H₂S、NH₃、SO₂、NO₂等の腐食性ガスの多い場所での保管
 - ②推奨温度、湿度以外での保管
 - ③直射日光や結露する場所での保管
 - 4)強い静電気が発生している場所での保管
- 2. ロームの推奨保管条件下におきましても、推奨保管期限を経過した製品は、はんだ付け性に影響を与える可能性があります。推奨保管期限を経過した製品は、はんだ付け性を確認した上でご使用頂くことを推奨します。
- 3. 本製品の運搬、保管の際は梱包箱を正しい向き(梱包箱に表示されている天面方向)で取り扱いください。天面方向が 遵守されずに梱包箱を落下させた場合、製品端子に過度なストレスが印加され、端子曲がり等の不具合が発生する 危険があります。
- 4. 防湿梱包を開封した後は、規定時間内にご使用ください。規定時間を経過した場合はベーク処置を行った上でご使用ください。

製品ラベルに関する注意事項

本製品に貼付されている製品ラベルに QR コードが印字されていますが、QR コードはロームの社内管理のみを目的としたものです。

製品廃棄上の注意事項

本製品を廃棄する際は、専門の産業廃棄物処理業者にて、適切な処置をしてください。

外国為替及び外国貿易法に関する注意事項

本製品は、外国為替及び外国貿易法に定めるリスト規制貨物等に該当するおそれがありますので、輸出する場合には、 ロームへお問い合わせください。

知的財産権に関する注意事項

- 1. 本資料に記載された本製品に関する応用回路例、情報及び諸データは、あくまでも一例を示すものであり、これらに関する第三者の知的財産権及びその他の権利について権利侵害がないことを保証するものではありません。
- 2. ロームは、本製品とその他の外部素子、外部回路あるいは外部装置等(ソフトウェア含む)との組み合わせに起因して生じた紛争に関して、何ら義務を負うものではありません。
- 3. ロームは、本製品又は本資料に記載された情報について、ローム若しくは第三者が所有又は管理している知的財産権 その他の権利の実施又は利用を、明示的にも黙示的にも、お客様に許諾するものではありません。 但し、本製品を通常の用法にて使用される限りにおいて、ロームが所有又は管理する知的財産権を利用されることを妨げません。

その他の注意事項

- 1. 本資料の全部又は一部をロームの文書による事前の承諾を得ることなく転載又は複製することを固くお断り致します。
- 2. 本製品をロームの文書による事前の承諾を得ることなく、分解、改造、改変、複製等しないでください。
- 3. 本製品又は本資料に記載された技術情報を、大量破壊兵器の開発等の目的、軍事利用、あるいはその他軍事用途目的で使用しないでください。
- 4. 本資料に記載されている社名及び製品名等の固有名詞は、ローム、ローム関係会社若しくは第三者の商標又は登録商標です。

Notice-PAA-J Rev.001

一般的な注意事項

- 1. 本製品をご使用になる前に、本資料をよく読み、その内容を十分に理解されるようお願い致します。本資料に記載される注意事項に反して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いませんのでご注意願います。
- 2. 本資料に記載の内容は、本資料発行時点のものであり、予告なく変更することがあります。本製品のご購入及びご使用に際しては、事前にローム営業窓口で最新の情報をご確認ください。
- 3. ロームは本資料に記載されている情報は誤りがないことを保証するものではありません。万が一、本資料に記載された情報の誤りによりお客様又は第三者に損害が生じた場合においても、ロームは一切その責任を負いません。

Notice – WE Rev.001