

TFT 電源シリーズ

5V 入力多チャンネル システム電源 IC

BD9862MUV No.10035JAT16

●概要

BD9862MUV は、モバイル TFT 液晶用の 3ch システム電源です。VBAT=1.8V より動作可能であり、CH2、CH3 は独自の PWM/PFM 自動切替制御チャージポンプを採用し、全負荷領域で高効率を実現します。

●特長

- 1) 入力電圧範囲 1.8V~4.5V(2 倍チャージポンプを使用しない場合は 5.5V 入力可能)
- 2) 出力 FET 内蔵昇圧スイッチングレギュレータ(CH1)
- 3) PWM 固定端子付き PWM/PFM 自動切換方式チャージポンプ回路内蔵(CH2,3)
- 4) スイッチングレギュレータ発振周波数 1.0MHz(typ.)
- 5) チャージポンプ発振周波数 500kHz(typ.)
- 6) 過負荷時の出力遮断回路(タイマーラッチ式)内蔵
- 7) VQFN024V4040 パッケージ

●用途

中小型 TFT 液晶ディスプレイ等

●絶対最大定格(Ta=25°C)

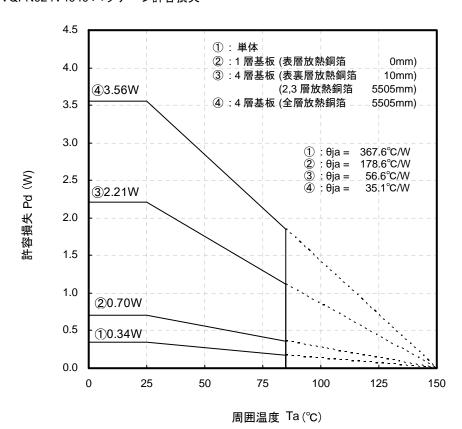
項目	記号	定格	単位	
最大印加電源電圧	VBAT	-0.3 ~ 7	V	
	LX	-0.3 ~ 18		
最大印加電圧	FB1, INV1, INV2, UVLOSET, C2N, VIN2A, CN, CP, CPOUT, REGOUT, PWM, RT, VREF, NON3	-0.3 ~ 7	V	
	VIN3, C3P, Vo2, C2P, VIN2B	-0.3 ~ 15.5		
許容損失	Pd	0.34 ^(*1) 0.70 ^(*2)	W	
動作温度範囲	Topr	-40 ~ +85	°C	
保存温度範囲	F温度範囲 Tstg		°C	
ジャンクション温度	Tjmax	+150	°C	

^(*1)IC 単体時。Ta=25℃以上で使用する場合は、2.7mW/℃で軽減。

●動作範囲(Ta=25°C)

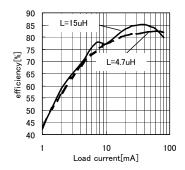
項目	記号		規格値		単位	条件
79. 1		最 小	標準	最 大	+12	
電源電圧	VBAT	1.8	-	4.5 ^(※1)	V	
CH1 出力電圧	Vo1	-		15	V	
CH2 出力電圧	Vo2	-	•	15	V	
CH3 出力電圧	Vo3	-15		-	V	
起動,加算チャージポンプ フライングコンデンサ容量	Cflys,Cflya	0.1	0.22	-	μF	
反転チャージポンプ フライングコンデンサ容量	Cflyi	0.022	0.047	-	μF	
起動チャージポンプ 出力コンデンサ容量	CCPOUT	1.0	2.0	-	μF	CCPOUT≧Cfly*10
スイッチングレギュレータ 発振周波数	fOSC1	700	1.0	1.4	MHz	R_{RT} =82k Ω ~ 180k Ω
チャージポンプ発振周波数	fOSC2	350	500	700	kHz	R_{RT} =82 $k\Omega$ ~ 180 $k\Omega$
CH1 PowerNMOS ドレイン電流	lidn1	-	-	1.0	Α	

^(※1)起動用 2 倍チャージポンプ使用時。使用しない場合は 5.5V


^(*2)PCB(74.2mm×74.2mm×1.6mmt ガラスエボキシ)基板実装時。Ta=25℃以上で使用する場合は、5.6mW/℃で軽減。

●電気的特性(特に指定のない限り、Ta=25°C,VBAT = 2.5V)

i気的特性(特に指定のない限り、Ia=. 項 目				224 / 1	A		
		最小	標準	最大	単位	条件	
出力電圧		3.7	4.2	4.7	V	Iout=0 ~ 10mA	
	Vst	-	-	1.8	V		
【ソフトスタート部】							
間	Tss1	0.5	1.0	2.0	ms	R_{RT} =120 $k\Omega$	
間	Tss2	3.5	5.0	6.5	ms	$R_{RT}=120k\Omega$	
計間	Tss3	3.5	5.0	6.5	ms	R _{RT} =120kΩ	
【発振回路】							
一タ周波数	fosc1	0.9	1.0	1.1	MHz	$R_{RT}=120k\Omega$	
,	fosc2	450	500	550	kHz	R _{RT} =120kΩ	
	VREGOUT	3.4	3.5	3.6	V	lout=0 ~ 10mA,VBAT=2.0V ~ 4.5V	
			•	•	•		
	Dmax1	85	90	95	%		
	Dmax2	40	45	50	%		
	Dmax3	40	45	50	%		
			•	•	•		
電圧	VINV1	0.985	1.0	1.015	V		
電圧	VINV2	0.985	1.0	1.015	V		
で電圧	VNON3	0.985	1.0	1.015	V	VREF を基準とした絶対値	
7セット電圧	Voffset	-50	0	50	mV		
レギュレータ)]		1		II.	,	
	RonN1	0.2	0.45	0.7	Ω	REGOUT=3.5V	
−ク電流	IreakN1	-	-	10	μΑ	UVLOSET=0V	
ンプ】							
	R2	-	53	90	Ω	lo=0 ~ 10mA,VIN2A=3.5V, VIN2B=10V,INV2=GND	
PMOS	RonP3	-	20	40	0	VIN3=10V	
NMOS	RonN3	-	10	20	32	V II V 3— 10 V	
抵抗	RPWM	0.5	1	2	ΜΩ		
動作	VPWMH	1.2	-	VBAT	V	PWM 固定モード	
非動作	VPWML	0	-	0.3	V	PWM/PFM 自動切替モード	
【短絡保護回路】							
タイマーラッチ時間			131	150	ms	R_{RT} =120k Ω	
[UVLO]							
解除電圧スレッショルド		0.97	1.0	1.03	V		
ヒステリシス		50	75	100	mV		
			I		I		
	IVBAT	0.4	0.8	1.6	mA	VBAT=5V, UVLOSET=INV1=INV2=5V NON3=-0.2V	
	精間 時間 一面電でセンギーのカークラートのOS MM 動動作 MM 動動作	記号 Vcpout Vst Fill Tss1 Fill Tss2 Fill Tss3 一夕周波数 fosc1 fosc2 VREGOUT Dmax1 Dmax2 Dmax3 電圧 VINV1 電圧 VINV2 ジ電圧 VNON3 フセット電圧 Voffset レギュレータ)】 RonN1 一ク電流 IreakN1 ンプ】 R2 PMOS RonP3 NMOS RonN3 抵抗 RPWM 動作 VPWML ボ動作 VPWML Itlatch	記号 最小	現格値表別 根格値表別 標準	規格値 最小 標準 最大 Vcpout 3.7 4.2 4.7 Vst - - 1.8 Fill Tss1 0.5 1.0 2.0 Fill Tss2 3.5 5.0 6.5 Fill Tss3 3.5 5.0 6.5 Fill Tss3 3.5 5.0 6.5 Fill Tss3 3.5 5.0 6.5 VREGOUT 3.4 3.5 3.6 VREGOUT 3.4 3.5 3.6 VREGOUT 3.4 3.5 3.6 Dmax1 85 90 95 Dmax2 40 45 50 Dmax3 40 45 50 Dmax3 40 45 50 Dmax4 0.985 1.0 1.015 Fill Tss2 0.985 1.0 1.015 Fill Tss2 0.45 0.7 Fill Tss2 0.45 0.45 Fill Tss2 0.45 Fill Tss2 0.45 Fill Tss2 0.45 Fill Tss2 0.	現格値 最小 標準 最大 単位 日本 日本 日本 日本 日本 日本 日本 日	


[◎]耐放射線設計はしておりません

●VQFN024V4040 パッケージ許容損失

Technical Note

●参考データ(特に指定のない限り Ta=25°C、VCC=2.5V,R_{RT}=120kΩ)

BD9862MUV

Fig.1 CH1 負荷電流対効率 (Vo1=10V)

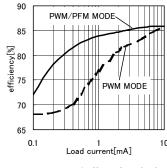


Fig.2 CH2 負荷電流対効率 (VIN2A=3.5V,VIN2B=10V,Vo2=12V)

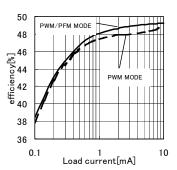


Fig.3 CH3 負荷電流対効率 (VIN3=10V,Vo3=-5V)

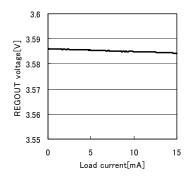


Fig.4 REGOUT 出力 ロードレギュレーション

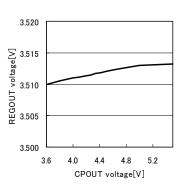


Fig.5 REGOUT 出力 ラインレギュレーション

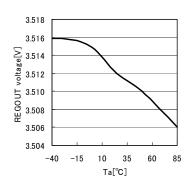


Fig.6 REGOUT 出力 電圧温度特性

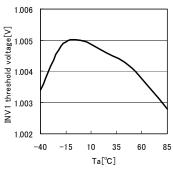


Fig.7 INV1 スレッショルド 電圧温度特性

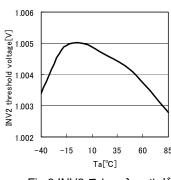


Fig.8 INV2 スレッショルド 電圧温度特性

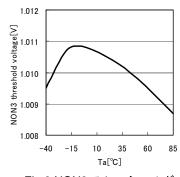


Fig.9 NON3 スレッショルド 電圧温度特性

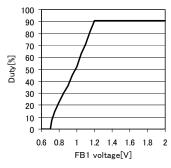


Fig.10 CH1 FB1 電圧-On Duty 特性

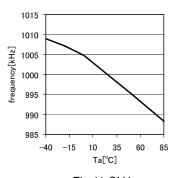


Fig.11 CH1 スイッチング周波数温度特性

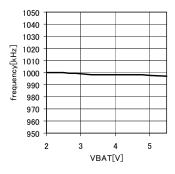


Fig.12 CH1 スイッチング周波数対 VBAT 電圧特性

●参考データ(特に指定のない限り Ta=25°C,VCC=2.5V)

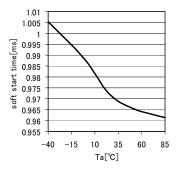


Fig.13 CH1 ソフトスタート 温度特性

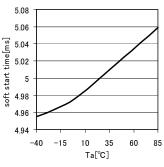


Fig.14 CH2,CH3 ソフトスタート温度特性

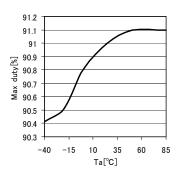


Fig.15 CH1 MaxDuty 温度特性

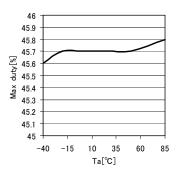


Fig.16 CH2,CH3 Maxduty 温度特性

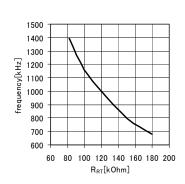


Fig.17 RT 抵抗対 CH1 スイッチング周波数特性

●ブロック図

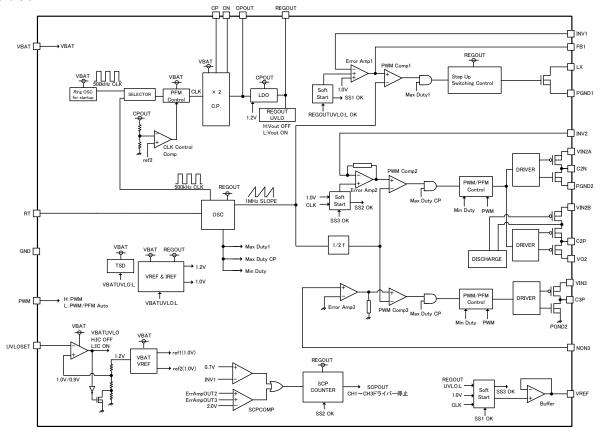


Fig.18 ブロック図

●端子配置図

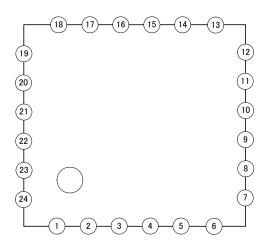


Fig.19 端子配置図

●端子番号・端子名・機能

帅丁 倒	番号・端子名・機能								
端子 番号	端子名	機能	端子 番号	端子名	機能				
1	FB1	CH1 用エラーアンプ出力端子	13	PGND1	CH1 用内蔵 FET 接地端子				
2	INV2	CH2 用エラーアンプ反転入力端子	14	CN	起動チャージポンプ フライングコンデンサ L 側入力端子				
3	UVLOSET	UVLO 基準電圧端子	15	СР	起動チャージポンプ フライングコンデンサ H 側入力端子				
4	VIN3	反転チャージポンプ入力端子	16	VBAT	電源入力端子				
5	C3P	反転チャージポンプ フライングコンデンサ H 側入力端子	17	CPOUT	起動チャージポンプ出力端子				
6	PGND2	CH2,3 用内蔵 FET 接地端子	18	REGOUT	レギュレータ出力端子				
7	C2N	加算昇圧チャージポンプ フライングコンデンサ L 側入力端子	19	PWM	チャージポンプブロック PWM/PFM 切換端子				
8	VIN2A	加算昇圧チャージポンプ入力端子	20	GND	接地端子				
9	VO2	加算昇圧チャージポンプ出力端子	21	RT	周波数タイミング設定用抵抗接続端子				
10	C2P	加算昇圧チャージポンプ フライングコンデンサ H 側入力端子	22	VREF	基準電圧出力端子				
11	VIN2B	加算昇圧チャージポンプ入力端子	23	NON3	CH3 用エラーアンプ非反転入力端子				
12	LX	インダクタ接続端子	24	INV1	CH1 用エラーアンプ反転入力端子				

●システム説明

BD9862MUV は、TFT 液晶用に最適化された 3ch システム電源です。以下に各チャンネルの特徴を説明します。

OCH1

高耐圧出力 FET 内蔵型電圧モードスイッチングレギュレータです。最大スイッチング周波数 1.4MHz の高速動作が可能であり、Max Duty90%(typ.)で高い昇圧比に対応しています。

OCH2

PWM/PFM 自動切替制御の電圧可変型加算チャージポンプです。PFM モード時にはスイッチングを間欠動作することにより、スイッチングロスを軽減して軽負荷においても高効率を実現します。また、高耐圧・高速 FET ドライバーを内蔵し最大スイッチング周波数 700kHz で動作可能です。さらに On Duty 予測機能を備え、PFM 動作時においても出力電圧リップルが低く抑えられています。

出力ディスチャージ用抵抗(1k Ω typ.)と FET、位相補償回路を内蔵している為、コンデンサ2個と抵抗2個で動作します。

OCH3

PWM/PFM 自動切替制御の電圧可変型反転チャージポンプコントローラです。制御方式は CH2 同等です。

●各ブロック動作説明

・エラーアンプブロック

出力電圧を INV 端子(CH3 は NON3 端子)で検出し、基準電圧との誤差を増幅し、FB 端子より出力します。 精度は ±1%(CH2,CH3 は 1.5%)です。

- ・PWM(Pulse Width Modulation)コンパレータブロック エラーアンプにて検出された誤差を入力し、のこぎり波と比較することで PWM 信号を出力します。
- ・PWM/PFM コントロールブロック

PWM 端子の入力により、CH2,CH3 を PWM 固定モードと PFM(Pulse Frequency Modulation)/PWM 自動切替モードを切り替えます。PFM モード時には、PWM 信号の最低 On Duty を 7%(typ.)とする制御を行い、軽負荷時のスイッチング回数を減らすことで軽負荷時の効率をアップします。

・LDO ブロック

内部回路動作用電源です。また、VIN2Bの入力として使用できます。出力電圧は3.5V(typ.)、最大負荷10mAです。また、UVLOを内蔵しており解除電圧2.5V(typ)、保護電圧2.4V(typ)です。

・スタートアップチャージポンプブロック

REGOUT≦2.5V(typ.)の場合、約 500kHz で動作するリングオシレータが起動し、2 倍チャージポンプを動作させます。 このチャージポンプは出力電圧 4.2V(typ.)となるようにクロックパルスを制御しています。

また、REGOUT>2.5V(typ.)になるとのこぎり波を生成するメイン OSC よりクロック供給します。

入力電圧が常に 4.5V 以上の場合、スタートアップ回路をバイパスすることも可能です。(アプリケーション例参照)

・OSC ブロック

のこぎり波を発生し、PWM コンパレータに入力します。RT 抵抗により発振周波数を変更することが可能です。 R_{RT}=120kΩで CH1 は 1MHz(typ.)で動作します。2 倍チャージポンプ、CH2、CH3 は CH1 周波数の 1/2 で動作します。

・VREF ブロック

IC 内部の基準となる定電圧を発生します。

・UVLO ブロック

UVLOSET 端子にて VBAT 電圧をセンスすることで UVLO を行います。UVLO 電圧は外付け抵抗にて設定できます。

・ソフトスタートブロック

起動時にエラーアンプ基準電圧をスイープ起動することにより、突入電流や出力電圧のオーバーシュートを軽減します。 また、ソフトスタート時のみ CH2 は VIN2B-C2P 間抵抗値 150 Ω typ、CH3 は VIN3-C3P 間抵抗値 60 Ω typ とし、入力電流制限を行います。

・タイマーラッチ式ショート保護(SCP)ブロック

INV1 端子と CH2·CH3 のエラーアンプ出力をモニタし、ショート状態などが一定時間以上続くと CH1 ~ CH3 のドライバーを OFF します。タイマーラッチ時間は CH1 スイッチングの内部パルスによりカウントされます。 ショート状態にてカウントが開始し、131,072 カウントでドライバーOFF となります。

例)R_{RT}=120kΩの場合 131072×(1/1[MHz])=131.072ms

・サーマルシャットダウン(TSD)ブロック

IC の異常発熱を検知し、全 ch のスイッチング動作を停止させ、IC の熱的暴走を防止します。検知温度は 175 $^{\circ}$ C(typ)、ヒステリシスは 10 $^{\circ}$ C(typ)です。

●タイミングチャート 1)起動時

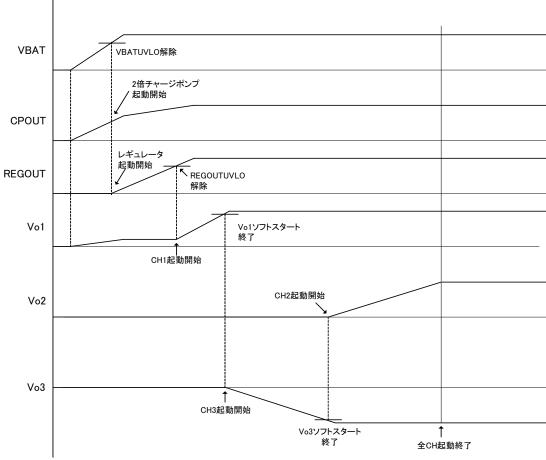


Fig.20

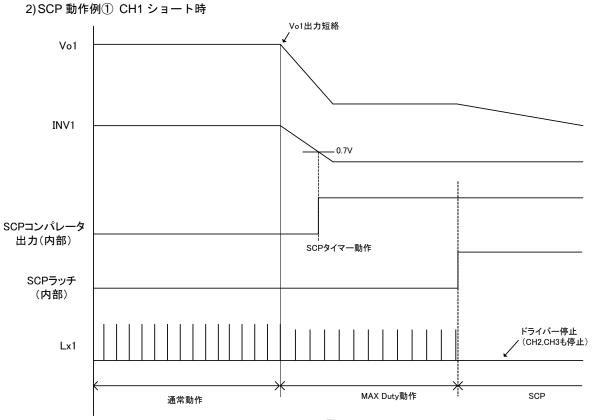
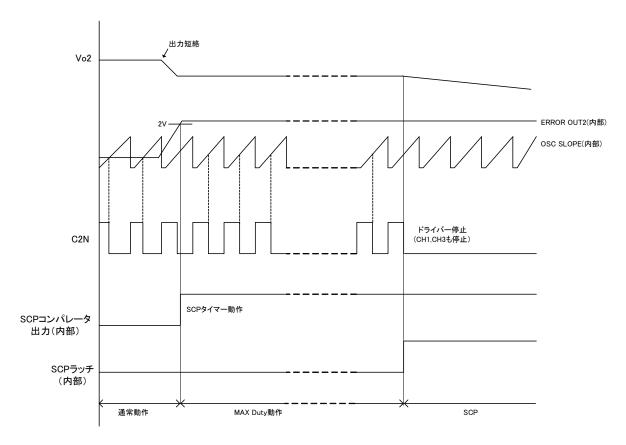



Fig.21

3) SCP 動作例② CH2 ショート時

※CH3 ショート時も同様の動作となります。

Fig.22

●アプリケーション部品選定方法

1) 出力電圧設定

出力電圧 VOUT は外付け抵抗の抵抗分割により設定されます。

CH1,CH2: VOUT=1+R2/R1
CH3: VOUT=-((R4/R3)+Voffset)

R1:帰還抵抗(GND 側)、R2:帰還抵抗(VOUT 側)、R3:帰還抵抗(VREF 側)、R4:帰還抵抗(VOUT 側)

2)出力インダクタの設定

インダクタに流れる最大電流 ILpeak は平均電流 IL とリップル電流 ∠IL の最大値の和で求まります。

$$I_{Lpeak} = \overline{I_{L}}_{max} + \Delta I_{L}$$

△ILは、ILの30%程度に設定するのが一般的です。

平均電流 にとリップル電流 ∠には、以下の式で求まります。

DC バイアスなどの諸特性を確認のうえ、使用して下さい。

$$\overline{I_{L}}_{max} = \frac{V_{out}}{V_{inmin}} I_{outmax} \qquad \qquad \Delta I_{L} = \frac{V_{inmin} \times (V_{out} - V_{in})}{2 \times f_{osc} \times L \times V_{out}}$$

L:インダクタンス値 fosc:スイッチング周波数 Vinmax:最大入力電圧 Vinmin:最小

入力電圧 Vout:設定出力電圧

I_{Lpeak} はインダクタの電流定格値を超えないように設定してください。I_{Lpeak} を超えてしまうと極端な効率の低下や、インダクタ破壊の原因となります。また、インダクタンスがバラつきをもつことがありますので、十分にマージンを持って設定をしてください。

3) 出力コンデンサの設定

出力電圧リップルは出力コンデンサ容量値と ESR 値とに大きく影響します。また、PFM モードはスイッチングを 意図的に間欠させているため、PWM モードに比べて出力電圧リップルが大きくなります。ご使用条件に合わせて適正な コンデンサを用いてください。また、REGOUT 端子には必ず 1µF のセラミックコンデンサを接続してください。 BD9862MUV は、積層セラミックコンデンサを使用することを想定しております。1608 サイズなどの小型積層セラミック コンデンサはバイアスされる電圧により、公称容量値と比較して実容量が低下する場合があります。ご使用の際は

4) フライングコンデンサの設定

スタートアップチャージポンプのフライングコンデンサ容量は、CPOUT 出力コンデンサ容量の 1/10 以下に設定してください。1/10 以上の容量にすると耐圧オーバーにより破壊するおそれがあります。

5) 入力コンデンサの設定

入力用バイパスコンデンサは VBAT 端子に必要です。入出力電圧、負荷、配線パターンなどによって必要となる容量は異なりますので十分ご確認ください。

6) 位相補償用 CR の設定

位相補償用 CR については出力部に使用するコンデンサ特性、インダクタ特性、入出力電圧、負荷電流等により異なります。推奨回路図の位相補償 CR 定数は使用条件に基づいて設定され、記載されている諸条件以外での使用は発振などの不安定要因となります。条件変更される場合は弊社担当へご連絡ください。

7)出力部ショットキーダイオードの設定

出力部ショットキーダイオードは許容電流が I_{Lpeak} 以上のものを使用してください。また、逆方向耐圧については出力電圧以上が必要です。一般的に順方向電圧 V_F が低いほど効率が良くなる傾向にあります。

8)UVLO 電圧の設定

VULO 解除電圧 VUVLO は、

VUVLO=1+R2/R1(R1=GND 側抵抗 R2=VBAT 側抵抗)

にて設定することが可能です。VUVLO は、1.8V ~ 4.5V の間で設定してください。VBAT の立ち上がりに対して IC の起動にディレイを設けたい場合は、UVLOSET 端子にコンデンサを接続し、時定数を設定してください。

9)発振周波数の設定

発振周波数は、RT 端子に接続する抵抗で調節することが可能です。

CH1 発振周波数 fosc1 は、

fosc1=1/(8 × 10^{-12} × R_{RT}+4 × 10^{-8})

にて周波数が決定します。上記の式で算出される周波数は理論値ですので、

実際の周波数については前述の参考データ"RT抵抗対 CH1 スイッチング周波数特性"を参照してください。

●動作上の注意点

· PWM 端子について

Low 時には7%On Duty 以下のパルスをスキップする PFM モードになります。PFM モード時においても一定の負荷以上になると自動的に PWM モードへ移行します。また、負荷が軽くなると PFM モードへと移行します。スイッチング周波数が変調することによるノイズの影響がある場合は PWM 端子を High にして強制 PWM モードとして使用してください。

- ・SCP 機能について SCP で回路停止した場合、UVLOSET 電圧を L、または VBATT を OFF にすることで保護解除となります。
- ・CH2 加算チャージポンプについて Vo2 は、VIN2A 電圧と VIN2B 電圧を足し合わせた電圧がかかるため、VIN2A+VIN2B が 15V 以下になるように設定してください。

●推奨回路例

1) 入力電圧 1.8V ~ 4.5V アプリケーション例

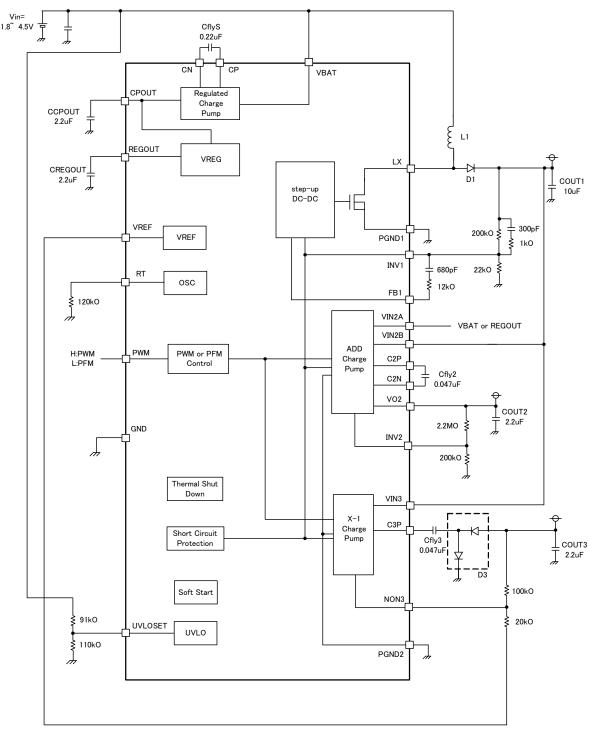


Fig.23

• 推奨部品

: NR4010T4R7M(TAIYO YUDEN) **CCPOUT** : GRM188B30J225KE18(MURATA) L1 D1 : RB161VA-20(ROHM) CREGOUT : GRM155B30J105KE18(MURATA) : DAN217U(ROHM) COUT2, COUT3 : GRM188B31C225KE14D(MURATA) D3 COUT1: GRM31CB31C106KA88(MURATA) Cflys : GRM155B10J224KE01(MURATA) : GRM219B30J106KE18(MURATA) CIN Cfly2, Cfly3 : GRM155B11C473KA01(MURATA)

●推奨回路例

2) 入力電圧 4.5V ~ 5.5V アプリケーション例

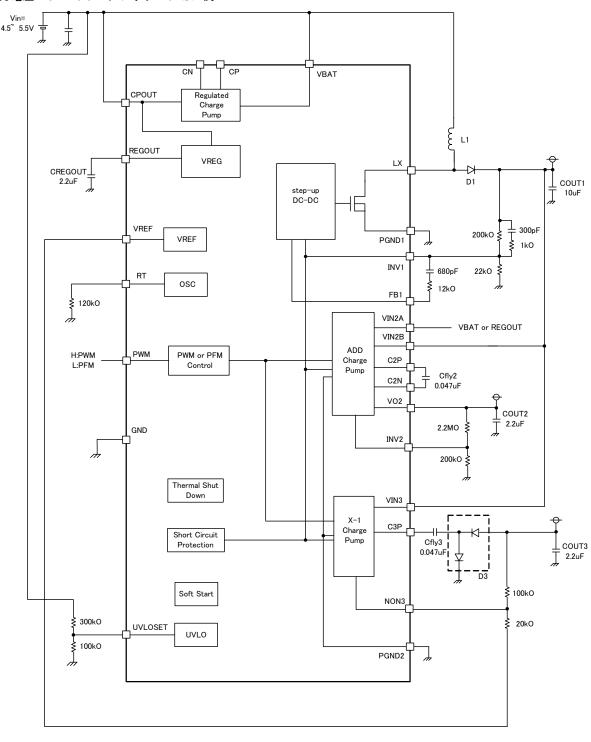


Fig.24

• 推奨部品

: NR4010T4R7M(TAIYO YUDEN) CCPOUT : GRM188B30J225KE18(MURATA) L1 D1 : RB161VA-20(ROHM) CREGOUT : GRM155B30J105KE18(MURATA) : DAN217U(ROHM) COUT2, COUT3 : GRM188B31C225KE14D(MURATA) D3 COUT1: GRM31CB31C106KA88(MURATA) Cflys : GRM155B10J224KE01(MURATA) : GRM219B30J106KE18(MURATA) : GRM155B11C473KA01(MURATA) CIN Cfly2, Cfly3

●入出力等価回路図

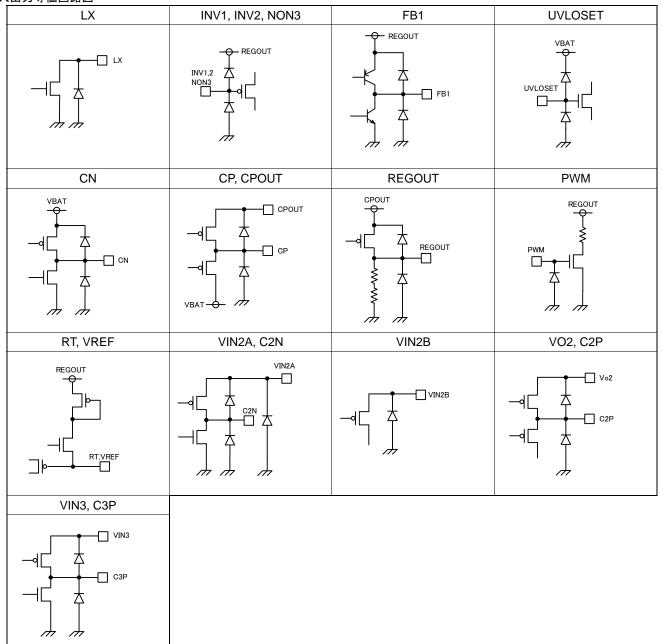


Fig.25 入出力等価回路図

●基板レイアウト時の注意点

- ① RT, INV1, FB1, INV2, NON3, VREF に接続される抵抗やコンデンサは、LX1 配線やフライングコンデンサ配線など、スイッチングノイズが大きい配線の影響を受けないよう端子に近接配置してください。
- ② インダクタ、ショットキーダイオード、フライングコンデンサは IC に近接配置してください。
- ③ パッケージの裏面は基板で最も面積のとれる GND 電位にして実装してください。より放熱性が向上します。

●使用上の注意

1)絶対最大定格について

本製品におきましては品質管理には十分注意を払っておりますが、印加電圧及び動作温度範囲などの絶対最大定格を超えた場合は劣化または破壊に至る可能性があります。またショートモードもしくはオープンモード等破壊状態を想定できません。絶対最大定格を超えるような特殊モードが想定される場合、ヒューズ等物理的な安全対策を施して頂けるようご検討お願いします。

2) GND 電位について

GND ピンの電位はいかなる動作状態においても、最低電位になるようにして下さい。 また実際に過渡現象を含め、GND 以下の電位にならないようにして下さい。

3)熱設計について

実際の使用状態での許容損失(Pd)を考え、十分マージンを持った熱設計を行って下さい。

4) ピン間ショートと誤装着について

プリント基板にとりつける際、IC の向きや位置ずれに十分注意して下さい。誤って取り付けた場合、IC が破壊する恐れがあります。また、出力間や出力と電源 GND 間に異物が入るなどしてショートした場合についても破壊の恐れがあります。

5) 強電磁界中の動作について

強電磁界中でのご使用では、誤動作をする可能性がありますのでご注意下さい。

6) 共通インピーダンスについて

電源及び GND の配線は、共通のインピーダンスを下げる、リップルを出来るだけ小さくする等(配線を出来るだけ太く短くする、L.C によりリップルを落とす)、十分な配慮を行って下さい。

7) 温度保護回路(TSD 回路)

本 IC は温度保護回路(TSD 回路)を内蔵しています。温度保護回路(TSD 回路)はあくまでも熱的暴走から IC を遮断することを目的とした回路であり、IC の保護及び保証を目的としておりません。よって、この回路を動作させて以降の連続使用及び動作を前提とした使用はしないで下さい。

8)IC 端子入力について

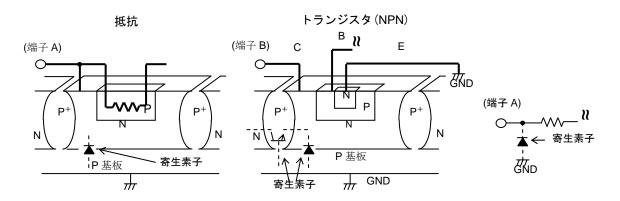
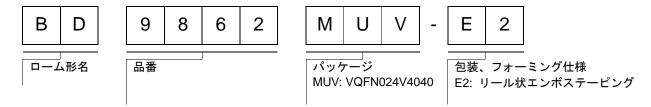
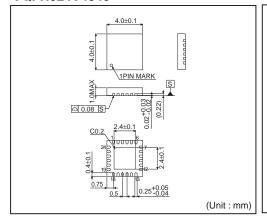
本 IC はモノリシック IC であり、各素子間に素子分離の為の P^{+} アイソレーションと、P 基板を有しています。この P 層と各素子の N 層とで P-N 接続が形成され、各種の寄生素子が構成されます。

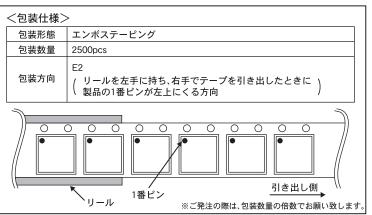
例えば Fig.26 のように抵抗とトランジスタが端子と接続されている場合、

- 〇 抵抗では、GND>(端子 A)の時、トランジスタ(NPN)では GND>(端子 B)の時、P—N 接合が寄生ダイオードとして動作します。
- また、トランジスタ(NPN)では、GND>(端子 B)の時、

前述の寄生ダイオードと近接する他の素子のN層によって寄生のNPNトランジスタが動作します。

IC の構造上、寄生素子は電位関係によって必然的にできます。寄生素子が動作することにより、回路動作の干渉を引き起こし、誤動作、ひいては破壊の原因ともなり得ます。したがって、入力端子に GND(P 基板)より低い電圧を印加するなど、寄生素子が動作するような使い方をしないよう十分に注意してください。


Fig.26 モノリシック IC の簡易構造例

●発注形名セレクション

VQFN024V4040

ご注意

ローム製品取扱い上の注意事項

1. 本製品は一般的な電子機器(AV機器、OA機器、通信機器、家電製品、アミューズメント機器等)への使用を意図して設計・製造されております。従いまして、極めて高度な信頼性が要求され、その故障や誤動作が人の生命、身体への危険若しくは損害、又はその他の重大な損害の発生に関わるような機器又は装置(医療機器(Note 1)、輸送機器、交通機器、航空宇宙機器、原子力制御装置、燃料制御、カーアクセサリを含む車載機器、各種安全装置等)(以下「特定用途」という)への本製品のご使用を検討される際は事前にローム営業窓口までご相談くださいますようお願い致します。ロームの文書による事前の承諾を得ることなく、特定用途に本製品を使用したことによりお客様又は第三者に生じた損害等に関し、ロームは一切その責任を負いません。

(Note 1) 特定用途となる医療機器分類

日本	USA	EU	中国
CLASSⅢ	CLASSⅢ	CLASS II b	Ⅲ類
CLASSIV	CLASSIII	CLASSⅢ	山 類

- 2. 半導体製品は一定の確率で誤動作や故障が生じる場合があります。万が一、かかる誤動作や故障が生じた場合であっても、本製品の不具合により、人の生命、身体、財産への危険又は損害が生じないように、お客様の責任において次の例に示すようなフェールセーフ設計など安全対策をお願い致します。
 - ①保護回路及び保護装置を設けてシステムとしての安全性を確保する。
 - ②冗長回路等を設けて単一故障では危険が生じないようにシステムとしての安全を確保する。
- 3. 本製品は、一般的な電子機器に標準的な用途で使用されることを意図して設計・製造されており、下記に例示するような特殊環境での使用を配慮した設計はなされておりません。従いまして、下記のような特殊環境での本製品のご使用に関し、ロームは一切その責任を負いません。本製品を下記のような特殊環境でご使用される際は、お客様におかれまして十分に性能、信頼性等をご確認ください。
 - ①水・油・薬液・有機溶剤等の液体中でのご使用
 - ②直射日光・屋外暴露、塵埃中でのご使用
 - ③潮風、Cl₂、H₂S、NH₃、SO₂、NO₂等の腐食性ガスの多い場所でのご使用
 - ④静電気や電磁波の強い環境でのご使用
 - ⑤発熱部品に近接した取付け及び当製品に近接してビニール配線等、可燃物を配置する場合。
 - ⑥本製品を樹脂等で封止、コーティングしてのご使用。
 - ⑦はんだ付けの後に洗浄を行わない場合(無洗浄タイプのフラックスを使用された場合も、残渣の洗浄は確実に 行うことをお薦め致します)、又ははんだ付け後のフラックス洗浄に水又は水溶性洗浄剤をご使用の場合。
 - ⑧本製品が結露するような場所でのご使用。
- 4. 本製品は耐放射線設計はなされておりません。
- 5. 本製品単体品の評価では予測できない症状・事態を確認するためにも、本製品のご使用にあたってはお客様製品に実装された状態での評価及び確認をお願い致します。
- 6. パルス等の過渡的な負荷 (短時間での大きな負荷) が加わる場合は、お客様製品に本製品を実装した状態で必ず その評価及び確認の実施をお願い致します。また、定常時での負荷条件において定格電力以上の負荷を印加されますと、 本製品の性能又は信頼性が損なわれるおそれがあるため必ず定格電力以下でご使用ください。
- 7. 許容損失(Pd)は周囲温度(Ta)に合わせてディレーティングしてください。また、密閉された環境下でご使用の場合は、 必ず温度測定を行い、ディレーティングカーブ範囲内であることをご確認ください。
- 8. 使用温度は納入仕様書に記載の温度範囲内であることをご確認ください。
- 9. 本資料の記載内容を逸脱して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いません。

実装及び基板設計上の注意事項

- 1. ハロゲン系(塩素系、臭素系等)の活性度の高いフラックスを使用する場合、フラックスの残渣により本製品の性能又は信頼性への影響が考えられますので、事前にお客様にてご確認ください。
- 2. はんだ付けはリフローはんだを原則とさせて頂きます。なお、フロー方法でのご使用につきましては別途ロームまでお問い合わせください。

詳細な実装及び基板設計上の注意事項につきましては別途、ロームの実装仕様書をご確認ください。

応用回路、外付け回路等に関する注意事項

- 1. 本製品の外付け回路定数を変更してご使用になる際は静特性のみならず、過渡特性も含め外付け部品及び本製品のバラッキ等を考慮して十分なマージンをみて決定してください。
- 2. 本資料に記載された応用回路例やその定数などの情報は、本製品の標準的な動作や使い方を説明するためのもので、 実際に使用する機器での動作を保証するものではありません。従いまして、お客様の機器の設計において、回路や その定数及びこれらに関連する情報を使用する場合には、外部諸条件を考慮し、お客様の判断と責任において行って ください。これらの使用に起因しお客様又は第三者に生じた損害に関し、ロームは一切その責任を負いません。

静電気に対する注意事項

本製品は静電気に対して敏感な製品であり、静電放電等により破壊することがあります。取り扱い時や工程での実装時、保管時において静電気対策を実施の上、絶対最大定格以上の過電圧等が印加されないようにご使用ください。特に乾燥環境下では静電気が発生しやすくなるため、十分な静電対策を実施ください。(人体及び設備のアース、帯電物からの隔離、イオナイザの設置、摩擦防止、温湿度管理、はんだごてのこて先のアース等)

保管・運搬上の注意事項

- 1. 本製品を下記の環境又は条件で保管されますと性能劣化やはんだ付け性等の性能に影響を与えるおそれがあります のでこのような環境及び条件での保管は避けてください。
 - ①潮風、Cl₂、H₂S、NH₃、SO₂、NO₂等の腐食性ガスの多い場所での保管
 - ②推奨温度、湿度以外での保管
 - ③直射日光や結露する場所での保管
 - 4)強い静電気が発生している場所での保管
- 2. ロームの推奨保管条件下におきましても、推奨保管期限を経過した製品は、はんだ付け性に影響を与える可能性があります。推奨保管期限を経過した製品は、はんだ付け性を確認した上でご使用頂くことを推奨します。
- 3. 本製品の運搬、保管の際は梱包箱を正しい向き(梱包箱に表示されている天面方向)で取り扱いください。天面方向が 遵守されずに梱包箱を落下させた場合、製品端子に過度なストレスが印加され、端子曲がり等の不具合が発生する 危険があります。
- 4. 防湿梱包を開封した後は、規定時間内にご使用ください。規定時間を経過した場合はベーク処置を行った上でご使用ください。

製品ラベルに関する注意事項

本製品に貼付されている製品ラベルに QR コードが印字されていますが、QR コードはロームの社内管理のみを目的としたものです。

製品廃棄上の注意事項

本製品を廃棄する際は、専門の産業廃棄物処理業者にて、適切な処置をしてください。

外国為替及び外国貿易法に関する注意事項

本製品は外国為替及び外国貿易法に定める規制貨物等に該当するおそれがありますので輸出する場合には、ロームにお問い合わせください。

知的財産権に関する注意事項

- 1. 本資料に記載された本製品に関する応用回路例、情報及び諸データは、あくまでも一例を示すものであり、これらに関する第三者の知的財産権及びその他の権利について権利侵害がないことを保証するものではありません。従いまして、上記第三者の知的財産権侵害の責任、及び本製品の使用により発生するその他の責任に関し、ロームは一切その責任を負いません。
- 2. ロームは、本製品又は本資料に記載された情報について、ローム若しくは第三者が所有又は管理している知的財産権 その他の権利の実施又は利用を、明示的にも黙示的にも、お客様に許諾するものではありません。

その他の注意事項

- 1. 本資料の全部又は一部をロームの文書による事前の承諾を得ることなく転載又は複製することを固くお断り致します。
- 2. 本製品をロームの文書による事前の承諾を得ることなく、分解、改造、改変、複製等しないでください。
- 3. 本製品又は本資料に記載された技術情報を、大量破壊兵器の開発等の目的、軍事利用、あるいはその他軍事用途目的で使用しないでください。
- 4. 本資料に記載されている社名及び製品名等の固有名詞は、ローム、ローム関係会社若しくは第三者の商標又は登録商標です。

Notice - GE Rev.002

一般的な注意事項

- 1. 本製品をご使用になる前に、本資料をよく読み、その内容を十分に理解されるようお願い致します。本資料に記載される注意事項に反して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いませんのでご注意願います。
- 2. 本資料に記載の内容は、本資料発行時点のものであり、予告なく変更することがあります。本製品のご購入及びご使用に際しては、事前にローム営業窓口で最新の情報をご確認ください。
- 3. ロームは本資料に記載されている情報は誤りがないことを保証するものではありません。万が一、本資料に記載された情報の誤りによりお客様又は第三者に損害が生じた場合においても、ロームは一切その責任を負いません。

Notice – WE Rev.001