

静電スイッチコントローラ IC シリーズ

静電スイッチコントローラ IC

BU21182FS

概要

BU21182FS はスイッチ操作用途の静電スイッチコントローラです。容量変化の検出結果をもとに、スイッチのON/OFF/長押しを判別します。

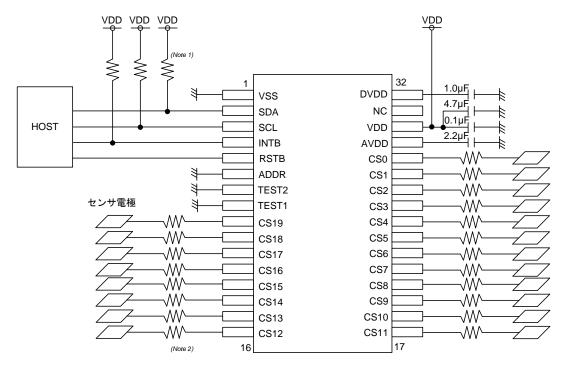
特長

- 20 センサ端子
- スイッチ ON/OFF/長押しを検出可能
- スイッチの検出結果を割り込み端子で通知
- ノイズキャリブレーション設定機能
- ドリフトキャリブレーション設定機能
- スイッチ検出時間設定機能
- 2線シリアルバスインタフェース
- 単一電源動作

用途

- プリンタ、複合機などの OA 機器
- 薄型テレビ、HDD レコーダなどの AV 機器
- エアコン、冷蔵庫、炊飯器などの家電機器
- 複数のスイッチを要する電子機器

重要特性


■ 電源電圧範囲: 3.0V ~ 5.5V
 ■ 動作温度範囲: -25°C ~ +85°C
 ■ 動作電流: 3.5mA(Typ)

パッケージ SSOP-A32 W(Typ) x D(Typ) x H(Max) 13.60mm x 7.80mm x 2.01mm

SSOP-A32

基本アプリケーション回路

(Note 1) SDA、SCL、INTB のプルアップ抵抗は、VDD に接続すること。 2 線シリアルバスインタフェースの電気的特性を満たすように定数を決定すること。 (Note 2)ノイズ保護用の抵抗です。評価に応じて定数を決定すること。

Figure 1. 基本アプリケーション回路図

目 次

概要	1
特長	1
用途	1
重要特性	1
パッケージ	1
基本アプリケーション回路	1
目 次	2
端子配置図	3
端子説明	3
入出力等価回路図	4
ブロック図	5
各ブロック動作説明	5
絶対最大定格	6
熱抵抗	6
推奨動作条件	7
電気的特性	7
インタフェース仕様	8
2 線シリアルバスインタフェース電気的特性	8
2 線シリアルバスプロトコル	9
電源起動・リセットタイミング	10
レジスタマップ	11
レジスタ説明	17
ステータスレジスタ説明	17
コンフィグレーションレジスタ説明	23
コマンドレジスタ説明	33
使用上の注意	36
発注形名情報	38
標印図	38
外形寸法図と包装・フォーミング仕様	39
1. T. R. C.	40

端子配置図

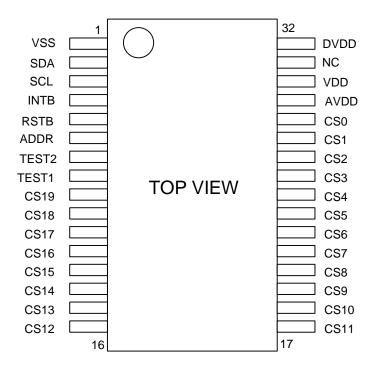


Figure 2. 端子配置図

端子説明

丁武ツ						
端子番号	端子名	属性	機能	電源区分	初期状態 (RSTB=L)	入出力端子 等価回路図
1	VSS	-	GND 端子	-	-	-
2	SDA	IN/OUT	ホスト I/F:SDA 入出力端子	VDD	HIZ	Figure 3
3	SCL	IN/OUT	ホスト I/F:SCL 入出力端子	VDD	HIZ	Figure 3
4	INTB	OUT	割り込み端子 Lアクティブ	VDD	HIZ	Figure 3
5	RSTB	IN	リセット端子 L:リセット H:リセット解除	VDD	L	Figure 4
6	ADDR	IN	ホスト I/F 7bit スレーブアドレス選択端子 L:スレーブアドレス 0x5C H:スレーブアドレス 0x5D	VDD	HIZ	Figure 4
7	TEST2	IN	テスト端子 GND へ接続してください	VDD	HIZ	Figure 4
8	TEST1	IN	テスト端子 GND へ接続してください	VDD	HIZ	Figure 4
9	CS19	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
10	CS18	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
11	CS17	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
12	CS16	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
13	CS15	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
14	CS14	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
15	CS13	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
16	CS12	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5

端子説明 — 続き

端子番号	記号	属性	機能	電源区分	初期状態 (RSTB=L)	入出力端子 等価回路図
17	CS11	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
18	CS10	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
19	CS9	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
20	CS8	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
21	CS7	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
22	CS6	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
23	CS5	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
24	CS4	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
25	CS3	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
26	CS2	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
27	CS1	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
28	CS0	IN/OUT	センサ端子 ^(Note 3)	AVDD	HIZ	Figure 5
29	AVDD	OUT	センサ電源用 内蔵 LDO 端子	-	0V	-
30	VDD	-	電源端子	-	-	-
31	NC	-	IC 内にプルダウン抵抗内蔵 使用時は、OPEN で使用してください	-	-	-
32	DVDD	OUT	デジタル電源用 内蔵 LDO 端子	-	1.5V	-

(Note 3)未使用時、センサ端子をオープンにしてください。

入出力等価回路図

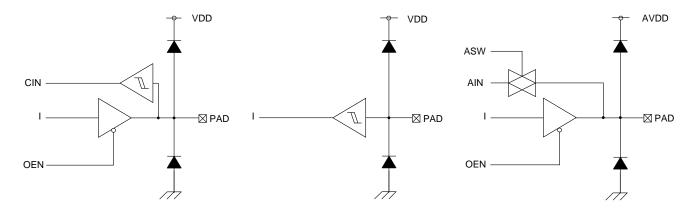


Figure 3. 入出力等価回路図

Figure 4. 入出力等価回路図

Figure 5. 入出力等価回路図

ブロック図

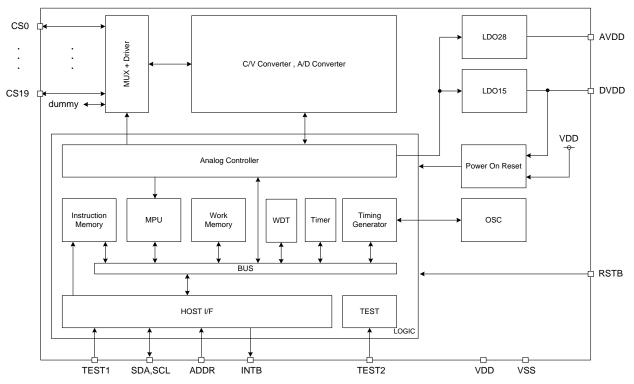


Figure 6. ブロック図

各ブロック動作説明

- ・MUX、Driver、C/V Converter、A/D Converter 時系列に1センサずつ、容量-電圧変換を行い、容量値から変換された電圧値をデジタル検出値に変換します。
- ・LDO28
 MUX、Driver、C/V Converter、及び A/D Converter 用の 2.8V 出力 LDO です。本仕様書中、AVDD と記載されています。
- ・LDO15 OSC、及び Logic 用の 1.5V 出力 LDO です。本仕様書中、DVDD と記載されています。
- ・OSC 内蔵のリングオシレータ発振回路です。システムクロックを供給します。
- ・MPU 検出値をもとに、スイッチの ON/OFF/長押し判別、オフセット補正を実行します。スイッチ状態に更新があったことを INTB 端子にてホストに通知します。
- Instruction Memory MPU のプログラム ROM です。
- ・Work Memory MPU のワーク RAM です。
- ・HOST I/F 2 線シリアルバスインタフェースです。 I^2C のプロトコルに対応しています。
- Analog ControllerC/V Converter、A/D Converter の制御シーケンサです。
- Watch Dog Timer Reset です。システムリセットとして扱われます。MPU からのクリアがかからなくなった場合、システムリセットが発行されます。
- Timing Generator、TimerOSC から供給されるクロックをもとに、MPU ペリフェラル向けクロックを生成します。

絶対最大定格(Ta = 25°C)

項目	記号	定格	単位
入力電源電圧	V_{DD}	-0.3 ~ +7.0	V
入力端子電圧	V_{IN}	-0.3 ~ V _{DD} +0.3	V
最高接合部温度	Tjmax	125	°C
保存温度範囲	Tstg	-55 ~ +125	°C

注意 1: 印加電圧及び動作温度範囲などの絶対最大定格を超えた場合は、劣化または破壊に至る可能性があります。また、ショートモードもしくはオープンモードなど、破壊状態を想定できません。絶対最大定格を超えるような特殊モードが想定される場合、ヒューズなど物理的な安全対策を施していただけ るようご検討お願いします。

注意2:最高接合部温度を超えるようなご使用をされますと、チップ温度上昇により、IC 本来の性質を悪化させることにつながります。最高接合部温度を超え る場合は基板サイズを大きくする、放熱用銅箔面積を大きくする、放熱板を使用するなど、最高接合部温度を超えないよう熱抵抗にご配慮ください。

熱抵抗^(Note 4)

項目		熱抵抗	単位	
		1 層基板 ^(Note6) 4 層基板 ^{(Note 7}] 単位
SSOP-A32				
ジャンクション—周囲温度間熱抵抗	θ_{JA}	82.9	45.2	°C/W
ジャンクション―パッケージ上面中心間熱特性パラメータ(Note 5)	Ψ_{JT}	6	6	°C/W

(Note 4)JESD51-2A(Still-Air) に準拠。

(*Note 5*)ジャンクションからパッケージ(モールド部分)上面中心までの熱特性パラメータ。 (*Note 6*)JESD51-3 に準拠した基板を使用。

(i i i i o y i i i i i i i i i i i i i i								
測定基板	基板材	基板寸法						
1層	FR-4	114.3mm x 76.2mm x 1.57mmt						
1層目(表面)銅箔								
銅箔パターン	銅箔厚							
実装ランドパターン +電極引出し用配線	70µm							

(Note 7)JESD51-7 に準拠した基板を使用。

測定基板	基板材	基板寸法		
4層	FR-4	114.3mm x 76.2mm x 1.6mmt		

1層目(表面)銅箔		2層目、3層目(内層)銅箔		4層目(裏面)銅箔	
銅箔パターン	銅箔厚	銅箔パターン	銅箔厚	銅箔パターン	銅箔厚
実装ランドパターン +電極引出し用配線	70µm	74.2mm口(正方形)	35µm	74.2mm口(正方形)	70µm

推奨動作条件

項目	記号	最小	標準	最大	単位
電源電圧	V_{DD}	3.0	5.0	5.5	V
動作温度	Topr	-25	+25	+85	°C

電気的特性 (特に指定のない限り V_{DD}=5.0V Ta=25°C)

元 ロ Talcular (141cH及のない)	規格値				光 1十	<i>∕</i> 2	
項目	記号	最小	標準	最大	単位	条 件 	
入力H電圧	V _{IH}	V _{DD} x 0.7	-	V _{DD} + 0.3	V	-	
入力L電圧	V _{IL}	V _{SS} - 0.3	-	V _{DD} x 0.3	V	-	
出力H電圧	V _{OHCS}	V _{AVDD} x 0.7	-	V _{AVDD}	V	I _{OH} = -1mA (CS 端子)	
	Volcs	Vss	-	V _{AVDD} x 0.3	V	I _{OL} = +1mA (CS 端子)	
出力L電圧	V _{OL1}	V _{SS}	-	V _{SS} + 0.4	V	I _{OL} = +3mA (SDA/SCL/INTB 端子)	
	V _{OL2}	Vss	-	V _{SS} + 0.6	V	I _{OL} = +6mA (SDA/SCL/INTB 端子)	
OSC 発振周波数	fosc	45	50	55	MHz	-	
DVDD 電圧	V_{DVDD}	1.35	1.50	1.65	V	-	
AVDD 電圧	V _{AVDD}	2.67	2.80	2.93	V	AVDD 電圧=2.8V 設定時	
静止消費電流	I _{STBY}	-	70	200	μΑ	RSTB=L 時	
動作消費電流	I _{ACT}	1.9	3.5	5.0	mA	RSTB=H かつ検出動作時 CS 端子:無負荷時	

インタフェース仕様

2 線シリアルバス I²C バスプロトコルに対応 スレーブモードのみ 7bit スレーブアドレス=0x5C(ADDR=L 時) / 0x5D(ADDR=H 時) シーケンシャルリード対応 MPU への割り込み発行時、クロックストレッチ実行

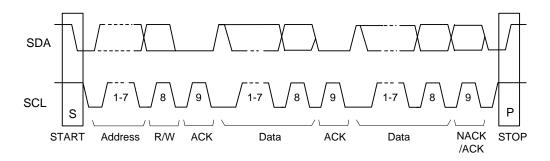


Figure 7. 2線シリアルバスデータフォーマット

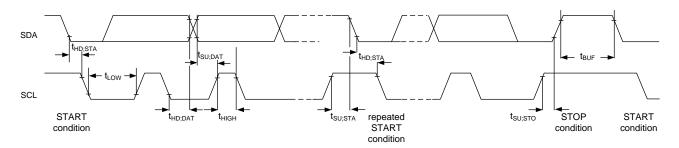


Figure 8. 2線シリアルバスタイミングチャート

2線シリアルバスインタフェース電気的特性 (特に指定のない限り VDD=5.0V Ta=25°C)

項目	記号		規格値		単位	条件
項目	記与	最小	標準	最大	甲世	宋 竹
SCL クロック周波数	f _{SCL}	0	1	400	kHz	-
ホールド時間(反復)『START』条件	t _{HD;STA}	0.6	ı	1	μs	-
SCL の"L"レベル時間	t_{LOW}	1.3	-	-	μs	-
SCL の"H"レベル時間	t _{HIGH}	0.6	-	-	μs	-
データホールド時間	t _{HD;DAT}	0	-	-	μs	-
データセットアップ時間	t _{SU;DAT}	0.1	ı	ı	μs	-
反復『START』条件の セットアップ時間	t _{SU;STA}	0.6	1	1	μs	-
『STOP』条件の セットアップ時間	t _{su;sto}	0.6	-	-	μs	-
『STOP』条件と『START』条件と の間のバスフリー時間	t _{BUF}	1.3	-	-	μs	-

2線シリアルバスプロトコル

書き込みプロトコル

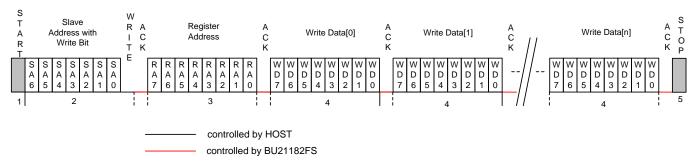


Figure 9. 2線シリアルバス書き込みプロトコル

- 1:スタートコンディション(START)を送信して開始します。
- 2:7bit スレーブアドレス+ライトビットを書き込みます。ACK が返送されます。ACK 返送後、MPU による処理を実行します。処理の間、IC は SCL をクロックストレッチ(Low 出力)します。
- 3:書き込み開始対象となるレジスタのアドレスを書き込みます。ACKが返送されます。ACK返送後、MPUによる処理を実行します。処理の間、ICはSCLをクロックストレッチ(Low出力)します。
- 4: データを書き込みます。ACK が返送されます。ACK 返送後、MPU による処理を実行します。処理の間、IC は SCL を クロックストレッチ(Low 出力)します。シーケンシャルライトに対応しています。レジスタアドレスはインクリメント され、0xFF の次は 0x00 になります。
- 5:ストップコンディション(STOP)を送信して終了します。

読み出しプロトコル

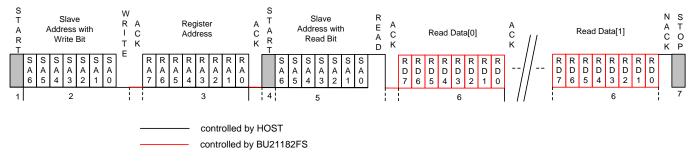


Figure 10. 2線シリアルバス読み出しプロトコル

- 1:スタートコンディション(START)を送信して開始します。
- 2:7bit スレーブアドレス+ライトビットを書き込みます。ACK が返送されます。ACK 返送後、MPU による処理を実行します。処理の間、IC は SCL をクロックストレッチ(Low 出力)します。
- 3:読み出し開始対象のレジスタのアドレスを書き込みます。ACK が返送されます。ACK 返送後、MPU による処理を実行します。処理の間、IC は SCL をクロックストレッチ(Low 出力)します。
- 4: スタートコンディション(START)を送信します。
- 5:7bit スレーブアドレス+リードビットを書き込みます。ACK が返送されます。ACK 返送後、MPU による処理を実行します。処理の間、IC は SCL をクロックストレッチ(Low 出力)します。
- 6: データを読み出します。読み続ける場合は ACK を、読み終える場合は NACK を書き込みます。 IC は ACK/NACK 受信後、MPU による処理を実行します。処理の間、IC は SCL をクロックストレッチ(Low 出力)します。シーケンシャルリードに対応しています。レジスタアドレスはインクリメントされ、0xFF の次は 0x00 になります。
- 7:ストップコンディション(STOP)を送信して終了します。

電源起動・リセットタイミング

電源投入後、内蔵 LDO の DVDD 電圧が起動します。DVDD 起動後に RSTB 端子を "L"から "H"へ変更しリセット解除を行います。リセット解除後、MPU による初期化が実行され、ホストによるアクセスを受け付けます。RSTB 端子を VDD に接続している場合は、内蔵のパワーオンリセット解除タイミングで MPU による初期化が実行されます。また RSTB 端子には、フィルタが内蔵されています。RSTB パルスキャンセル時間以下のパルスはフィルタで除去されます。確実にリセットをかけたい場合は、RSTB パルス検出時間以上の信号を入力してください。

電源起動フローチャート

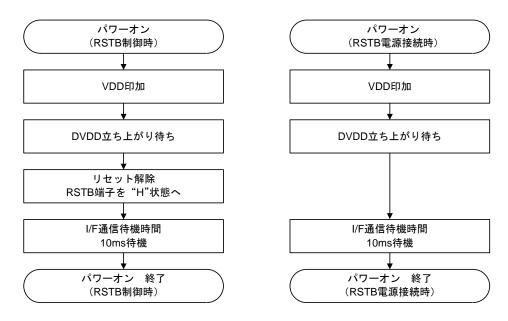


Figure 11. パワーオンフローチャート

電源起動タイミング

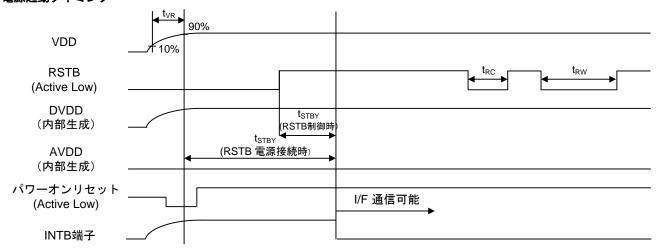


Figure 12. パワーオン波形

電源起動・リセットタイミング特性(特に指定のない限り VDD=5.0V Ta=25°C)

項目	記号	規格値			単位	条件
块 口	配力	最小	標準	最大	丰四	未计
VDD 起動時間	tvr	1	-	10	ms	-
I/F 通信待機時間	t STBY	-	-	10	ms	-
RSTB パルスキャンセル時間	t RC	-	-	3	μs	-
RSTB パルス検出時間	t _{RW}	10	-	-	μs	-

レジスタマップ

特に指定のない限り、OSC 発振周波数=50MHz です。 Reserved 領域へのアクセスは禁止です。 Initial 値は MPU による初期化終了時の値です。

ステータスレジスタ

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x00	R	0x00				DATA_0	CS0[7:0]			
0x01	R	0x00				DATA_0	CS1[7:0]			
0x02	R	0x00				DATA_0	CS2[7:0]			
0x03	R	0x00				DATA_0	CS3[7:0]			
0x04	R	0x00				DATA_0	CS4[7:0]			
0x05	R	0x00				DATA_0	CS5[7:0]			
0x06	R	0x00				DATA_0	CS6[7:0]			
0x07	R	0x00				DATA_0	CS7[7:0]			
0x08	R	0x00				DATA_0	CS8[7:0]			
0x09	R	0x00				DATA_0	CS9[7:0]			
0x0A	R	0x00				DATA_C	S10[7:0]			
0x0B	R	0x00				DATA_C	S11[7:0]			
0x0C	R	0x00				DATA_C	S12[7:0]			
0x0D	R	0x00				DATA_C	S13[7:0]			
0x0E	R	0x00				DATA_C	S14[7:0]			
0x0F	R	0x00				DATA_C	S15[7:0]			
0x10	R	0x00				DATA_C	S16[7:0]			
0x11	R	0x00				DATA_C	S17[7:0]			
0x12	R	0x00				DATA_C	S18[7:0]			
0x13	R	0x00					S19[7:0]			
0x14	-	-				RESE	RVED			
0x15	R	0x00				FDATA	_CS0[15:8]			
0x16	R	0x00				FDATA	_CS0[7:0]			
0x17	R	0x00				FDATA	_CS1[15:8]			
0x18	R	0x00					CS1[7:0]			
0x19	R	0x00					_CS2[15:8]			
0x1A	R	0x00					_CS2[7:0]			
0x1B	R	0x00					_CS3[15:8]			
0x1C	R	0x00				FDATA	_CS3[7:0]			
0x1D	R	0x00				FDATA	_CS4[15:8]			
0x1E	R	0x00				FDATA	_CS4[7:0]			
0x1F	R	0x00				FDATA	_CS5[15:8]			
0x20	R	0x00					_CS5[7:0]			
0x21	R	0x00				FDATA	_CS6[15:8]			
0x22	R	0x00				FDATA	_CS6[7:0]			
0x23	R	0x00				FDATA	_CS7[15:8]			
0x24	R	0x00				FDATA	_CS7[7:0]			
0x25	R	0x00					CS8[15:8]			
0x26	R	0x00				FDATA	_CS8[7:0]			
0x27	R	0x00					CS9[15:8]			
0x28	R	0x00					_CS9[7:0]			
0x29	R	0x00					_CS10[15:8]			
0x2A	R	0x00					_CS10[7:0]			
0x2B	R	0x00					_CS11[15:8]			
	R	0x00				FDATA				

ステータスレジスタ

ステータスし	ノジスタ									
Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x2D	R	0x00				FDATA_	_CS12[15:8]			
0x2E	R	0x00				FDATA_	_CS12[7:0]			
0x2F	R	0x00				FDATA	_CS13[15:8]			
0x30	R	0x00					_CS13[7:0]			
0x31	R	0x00					_CS14[15:8]			
0x32	R	0x00					_CS14[7:0]			
0x33	R	0x00				FDATA_	_CS15[15:8]			
0x34	R	0x00				FDATA_	_CS15[7:0]			
0x35	R	0x00				FDATA_	_CS16[15:8]			
0x36	R	0x00				FDATA_	_CS16[7:0]			
0x37	R	0x00				FDATA_	_CS17[15:8]			
0x38	R	0x00				FDATA_	_CS17[7:0]			
0x39	R	0x00				FDATA_	_CS18[15:8]			
0x3A	R	0x00				FDATA	_CS18[7:0]			
0x3B	R	0x00					CS19[15:8]			
0x3C	R	0x00					_CS19[7:0]			
		0.000								
0x3D-0x3F	-	-	INT			RESER'	INT_	INT		INT
0x40	R	0x01	NOISE	INT_UNK	-	-	FALCAL	FINCAL	-	FININI
0x41	R	0x00	-	-	INT_MULT_ OFF	INT_MULT_ ON	INT_ HLDRPT	INT_HLD	INT_ SW_OFF	INT_ SW_ON
0x42	R	0x00	-	-	-	-	-	-	INT_ AVDDOFF	INT_ AVDDON
0x43	R	0x00	DET_ON	DET_ON	DET_ON	DET_ON	DET_ON	DET_ON	DET_ON	DET_ON
			CS7 DET_ON	CS6 DET_ON	CS5 DET_ON	CS4 DET_ON	CS3 DET_ON	_CS2 DET_ON	_CS1 DET_ON	CS0 DET_ON
0x44	R	0x00	_CS15	_CS14	_CS13	_CS12	CS11 DET_ON	CS10 DET_ON	CS9 DET_ON	CS8 DET_ON
0x45	R	0x00	-	-	-	-	_CS19	_CS18	_CS17	_CS16
0x46	R	0x00	DET_OFF _CS7	DET_OFF _CS6	DET_OFF _CS5	DET_OFF CS4	DET_OFF _CS3	DET_OFF CS2	DET_OFF CS1	DET_OFF CS0
0x47	R	0x00	DET_OFF _CS15	DET_OFF _CS14	DET_OFF _CS13	DET_OFF _CS12	DET_OFF _CS11	DET_OFF _CS10	DET_OFF _CS9	DET_OFF CS8
0x48	R	0x00	_0013	_0014	_0010	_0012	DET_OFF	DET_OFF	DET_OFF	DET_OFF
0x49	R	0x00	DET_HLD	DET_HLD	DET_HLD	DET_HLD	CS19 DET_HLD	CS18 DET_HLD	_CS17 DET_HLD	CS16 DET_HLD
			CS7 DET_HLD	CS6 DET_HLD	CS5 DET_HLD	CS4 DET_HLD	CS3 DET_HLD	CS2 DET_HLD	CS1 DET_HLD	CS0 DET_HLD
0x4A	R	0x00	_CS15	_CS14	_CS13	_CS12	_CS11	_CS10	_CS9	_CS8
0x4B	R	0x00	-	-	-	-	DET_HLD _CS19	DET_HLD _CS18	DET_HLD _CS17	DET_HLD _CS16
0x4C	R	0x00	DET_HLD RPT_CS7	DET_HLD RPT _CS6	DET_HLD RPT _CS5	DET_HLD RPT _CS4	DET_HLD RPT _CS3	DET_HLD RPT _CS2	DET_HLD RPT_CS1	DET_HLD RPT_CS0
0x4D	R	0x00	DET_HLD	DET_HLD	DET_HLD	DET_HLD	DET_HLD	DET_HLD	DET_HLD	DET_HLD
			RPT_CS15	RPT_CS14	RPT_CS13	RPT_CS12	RPT_CS11 DET_HLD	RPT_CS10 DET_HLD	RPT_CS9 DET_HLD	RPT_CS8 DET_HLD
0x4E	R	0x00	- DET_MULT	- DET_MULT	- DET_MULT	- DET_MULT	RPT_CS19 DET MULT	RPT_CS18 DET_MULT	RPT_CS17 DET_MULT	RPT_CS16 DET_MULT
0x4F	R	0x00	_ON_H	_ON_G	_ON_F	_ON_E	_ON_D	_ON_C	_ON_B	_ON_A
0x50	R	0x00	DET_MULT _OFF_H	DET_MULT _OFF_G	DET_MULT _OFF_F	DET_MULT _OFF_E	DET_MULT _OFF_D	DET_MULT _OFF_C	DET_MULT _OFF_B	DET_MULT _OFF_A
0x51	R	0x00	DET_UNK _CS7	DET_UNK _CS6	DET_UNK _CS5	DET_UNK _CS4	DET_UNK _CS3	DET_UNK _CS2	DET_UNK _CS1	DET_UNK _CS0
0x52	R	0x00	DET_UNK	DET_UNK	DET_UNK	DET_UNK	DET_UNK	DET_UNK	DET_UNK	DET_UNK
			_CS15	_CS14	_CS13	_CS12	CS11 DET_UNK	CS10 DET_UNK	_CS9 DET_UNK	CS8 DET_UNK
0x53	R	0x00	- SW_STAT	- SW_STAT	- SW_STAT	- SW_STAT	_CS19 SW_STAT	_CS18 SW_STAT	_CS17 SW_STAT	_CS16 SW_STAT
0x54	R	0x00	_CS7	_CS6	_CS5	CS4	_CS3	_CS2	_CS1	_CS0
0x55	R	0x00	SW_STAT _CS15	SW_STAT _CS14	SW_STAT _CS13	SW_STAT _CS12	SW_STAT _CS11	SW_STAT _CS10	SW_STAT _CS9	SW_STAT _CS8
0x56	R	0x00	-	-	-	-	SW_STAT	SW_STAT	SW_STAT	SW_STAT
0x57	R	0x00	-	-	-	-	_CS19	CS18 RUN_CAL	CS17 RUN_AFE	CS16
0x58	R	0x00				NUM_FAL				
	IX.	-								
0x59-0x5E	-					RESE				
0x5F	R	0x0D				FW_VE	:K[7:0]			

コンフィグレーションレジスタ

コンフィグし	レーションレ	√ジスタ									
Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x60	R/W	0x00	CS3_SCAI	N_SEL[1:0]	CS2_SCAN	N_SEL[1:0]	CS1_SCA	N_SEL[1:0]	CS0_SCA	AN_SEL[1:0]	
0x61	R/W	0x00	CS7_SCA	N_SEL[1:0]	CS6_SCAN	N_SEL[1:0]	CS5_SCA	N_SEL[1:0]	CS4_SCA	AN_SEL[1:0]	
0x62	R/W	0x50	CS11_SCA	N_SEL[1:0]	CS10_SCA	N_SEL[1:0]	CS9_SCA	N_SEL[1:0]	CS8_SCA	AN_SEL[1:0]	
0x63	R/W	0x55	CS15_SCA	N_SEL[1:0]	CS14_SCA	N_SEL[1:0]	CS13_SCA	N_SEL[1:0]	CS12_SC/	AN_SEL[1:0]	
0x64	R/W	0x55	CS19_SCA	N_SEL[1:0]	CS18_SCA	N_SEL[1:0]	CS17_SCA	N_SEL[1:0]	CS16_SC/	AN_SEL[1:0]	
0x65	-	-				RESE	RVED				
0x66	R/W	0x7F		VAL_GA	_CS1[3:0]			VAL_GA	_CS0[3:0]		
0x67	R/W	0x77		VAL_GA	_CS3[3:0]			VAL_GA	_CS2[3:0]		
0x68	R/W	0x77		VAL_GA	_CS5[3:0]			VAL_GA	_CS4[3:0]		
0x69	R/W	0x77		VAL_GA	_CS7[3:0]			VAL_GA	_CS6[3:0]		
0x6A	R/W	0x77		VAL_GA	_CS9[3:0]			VAL_GA	_CS8[3:0]		
0x6B	R/W	0xFF		VAL_GA	_CS11[3:0]			VAL_GA	_CS10[3:0]		
0x6C	R/W	0xFF		VAL_GA	_CS13[3:0]			VAL_GA	_CS12[3:0]		
0x6D	R/W	0xFF		VAL_GA_CS15[3:0]				VAL_GA	_CS14[3:0]		
0x6E	R/W	0xFF		VAL_GA	_CS17[3:0]			VAL_GA	_CS16[3:0]		
0x6F	R/W	0xFF		VAL_GA	_CS19[3:0]			VAL_GA	_CS18[3:0]		
0x70	R/W	0xC8		VAL_TH_ON_CS0[7:0]							
0x71	R/W	0x64		VAL_TH_ON_CS0[7:0] VAL_TH_OFF_CS0[7:0]							
0x72	R/W	0xC8				VAL_TH_O	N_CS1[7:0]				
0x73	R/W	0x64				VAL_TH_OI	FF_CS1[7:0]				
0x74	R/W	0xC8				VAL_TH_O	N_CS2[7:0]				
0x75	R/W	0x64				VAL_TH_OI	FF_CS2[7:0]				
0x76	R/W	0xC8				VAL_TH_O	N_CS3[7:0]		-	-	
0x77	R/W	0x64				VAL_TH_OI	FF_CS3[7:0]				
0x78	R/W	0xC8				VAL_TH_O	N_CS4[7:0]				
0x79	R/W	0x64				VAL_TH_OI	FF_CS4[7:0]				
0x7A	R/W	0xC8				VAL_TH_O	N_CS5[7:0]				
0x7B	R/W	0x64				VAL_TH_OI	FF_CS5[7:0]				
0x7C	R/W	0xC8				VAL_TH_O	N_CS6[7:0]				
0x7D	R/W	0x64				VAL_TH_OI	FF_CS6[7:0]				
0x7E	R/W	0xC8					N_CS7[7:0]				
0x7F	R/W	0x64				VAL TH O	F_CS7[7:0]				
0x80	R/W	0xC8					N_CS8[7:0]				
0x81	R/W	0x64					FF_CS8[7:0]				
0x82	R/W	0xC8					N_CS9[7:0]				
0x83	R/W	0x64					FF_CS9[7:0]				
0x84	R/W	0xC8					N_CS10[7:0]				
0x85	R/W	0x64					F_CS10[7:0]				
0x86	R/W	0xC8					N_CS11[7:0]				
0x87	R/W	0x64									
0x88	R/W	0xC8	VAL_TH_OFF_CS11[7:0] VAL_TH_ON_CS12[7:0]								
0x89	R/W	0x64					F_CS12[7:0]				
0x89 0x8A	R/W	0x64 0xC8					N_CS12[7:0]				
0x8B	R/W	0xC6 0x64					AL_TH_OFF_CS13[7:0]				
0x8C	R/W	0x64 0xC8					AL_TH_ON_CS14[7:0]				
0x8D	R/W	0x64					AL_TH_OFF_CS14[7:0]				
0x8E	R/W	0xC8					N_CS15[7:0]				
0x8F	R/W	0x64				VAL_TH_OF	F_CS15[7:0]				

コンフィグレーションレジスタ

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x90	R/W	0xC8				VAL_TH_O	N_CS16[7:0]			
0x91	R/W	0x64				VAL_TH_OF	F_CS16[7:0]			
0x92	R/W	0xC8				VAL_TH_O	N_CS17[7:0]			
0x93	R/W	0x64				VAL_TH_OF	F_CS17[7:0]			
0x94	R/W	0xC8				VAL_TH_O	N_CS18[7:0]			
0x95	R/W	0x64				VAL_TH_OF	F_CS18[7:0]			
0x96	R/W	0xC8				VAL_TH_O	N_CS19[7:0]			
0x97	R/W	0x64				VAL_TH_OF	F_CS19[7:0]			
0x98	R/W	0x30		VAL_AD	J_DAT[3:0]		-	-	-	-
0x99	R/W	0x50	-		TIM_AFE[2:0]		·	-	-	-
0x9A	R/W	0x03	-	-	-	-	i		FIL_CFG[2:0]	
0x9B	R/W	0x80	MLT_SW _EN	-	-	CAL_SFT _EN	LOWER _CAL_EN	UNK_CAL _EN	ADJ_OFS _ENB	SCAN _SEL
0x9C	R/W	0x03	-	-	-	-		OS.	T[3:0]	
0x9D	R/W	0x09	ADJ_ALL _EN	-	-		AI	DJ_DET_NUM[4:0]	
0x9E	R/W	0x89	NOISE _SFT_EN	-	-		NO	ISE_DET_NUM	I[4:0]	
0x9F	R/W	0x3C	_511_LIN			TIME_PE	RCAL[7:0]			
0xA0-0xA1	R/W	0x00				RESE	RVED			
0xA2	R/W	0x00				TIME_UNKN	IOWN_A[7:0]			
0xA3	R/W	0x00				TIME_UNKN	IOWN_B[7:0]			
0xA4	R/W	0x00				TIME_HL	_D_A[7:0]			
0xA5	R/W	0x00				TIME_HLD	_RPT_A[7:0]			
0xA6	R/W	0x00				TIME_HL	_D_B[7:0]			
0xA7	R/W	0x00				TIME_HLD	_RPT_B[7:0]			
0xA8	R/W	0x00				TIME_HL	_D_C[7:0]			
0xA9	R/W	0x00				TIME_HLD_	_RPT_C[7:0]			
0xAA	R/W	0x00				TIME_HL	_D_D[7:0]			
0xAB	R/W	0x00				TIME_HLD_	_RPT_D[7:0]			
0xAC	R/W	0x00				TIME_HL	_D_E[7:0]			
0xAD	R/W	0x00				TIME_HLD	_RPT_E[7:0]			
0xAE	R/W	0x00					_D_F[7:0]			
0xAF	R/W	0x00				TIME_HLD	_RPT_F[7:0]			
0xB0	R/W	0x00					_D_G[7:0]			
0xB1	R/W	0x00				TIME_HLD_	_RPT_G[7:0]			
0xB2	R/W	0x00	UNK_CS1		HLD_CS1[2:0]		UNK_CS0		HLD_CS0[2:0]	
0xB3	R/W	0x00	UNK_CS3		HLD_CS3[2:0]		UNK_CS2		HLD_CS2[2:0]	
0xB4	R/W	0x00	UNK_CS5		HLD_CS5[2:0]		UNK_CS4		HLD_CS4[2:0]	
0xB5	R/W	0x00	UNK_CS7		HLD_CS7[2:0]		UNK_CS6		HLD_CS6[2:0]	
0xB6	R/W	0x00	UNK_CS9		HLD_CS9[2:0]		UNK_CS8		HLD_CS8[2:0]	
0xB7	R/W	0x00	UNK_CS11		HLD_CS11[2:0]		UNK_CS10		HLD_CS10[2:0]	
0xB8	R/W	0x00	UNK_CS13		HLD_CS13[2:0]		UNK_CS12		HLD_CS12[2:0]	
0xB9	R/W	0x00	UNK_CS15		HLD_CS15[2:0]		UNK_CS14		HLD_CS14[2:0]	
0xBA	R/W	0x00	UNK_CS17		HLD_CS17[2:0]		UNK_CS16		HLD_CS16[2:0]	
0xBB	R/W	0x00	UNK_CS19		HLD_CS19[2:0]		UNK_CS18		HLD_CS18[2:0]	

コンフィグレーションレジスタ

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xBC	R/W	0x00				TIME_0	DET[7:0]			
0xBD	R/W	0x00	MULT_A	MULT_A	MULT_A	MULT_A	MULT_A	MULT_A	MULT_A	MULT_A
			CS7 MULT_A	CS6 MULT_A	CS5 MULT_A	CS4 MULT A	CS3 MULT A	CS2 MULT A	CS1 MULT A	CS0 MULT_A
0xBE	R/W	0x00	_CS15	_CS14	_CS13	_CS12	_CS11	_CS10	_CS9	_CS8
0xBF	R/W	0x00	-	-	-	-	MULT_A _CS19	MULT_A _CS18	MULT_A _CS17	MULT_A _CS16
0xC0	R/W	0x00	MULT_B _CS7	MULT_B _CS6	MULT_B CS5	MULT_B CS4	MULT_B _CS3	MULT_B _CS2	MULT_B CS1	MULT_E _CS0
0xC1	R/W	0x00	MULT_B _CS15	MULT_B _CS14	MULT_B _CS13	MULT_B _CS12	MULT_B _CS11	MULT_B _CS10	MULT_B _CS9	MULT_B _CS8
0xC2	R/W	0x00	_0010	_0014	_0010	_0012	MULT_B	MULT_B	MULT_B	MULT_E
0xC3	R/W	0x00	MULT_C	MULT_C	MULT_C	MULT_C	_CS19 MULT_C	_CS18 MULT_C	CS17 MULT_C	CS16 MULT_C
			_CS7 MULT_C	CS6 MULT_C	CS5 MULT_C	CS4 MULT_C	CS3 MULT_C	CS2 MULT_C	CS1 MULT_C	CS0 MULT_C
0xC4	R/W	0x00	_CS15	_CS14	_CS13	_CS12	_CS11 MULT_C	_CS10 MULT_C	_CS9 MULT C	CS8 MULT_C
0xC5	R/W	0x00	-	-	-	-	_CS19	_CS18	_CS17	_CS16
0xC6	R/W	0x00	MULT_D _CS7	MULT_D _CS6	MULT_D _CS5	MULT_D _CS4	MULT_D _CS3	MULT_D _CS2	MULT_D _CS1	MULT_E _CS0
0xC7	R/W	0x00	MULT_D _CS15	MULT_D _CS14	MULT_D _CS13	MULT_D _CS12	MULT_D _CS11	MULT_D _CS10	MULT_D _CS9	MULT_D _CS8
0xC8	R/W	0x00	-	-	-	-	MULT_D _CS19	MULT_D _CS18	MULT_D _CS17	MULT_C _CS16
0xC9	R/W	0x00	MULT_E	MULT_E	MULT_E	MULT_E	MULT_E	MULT_E	MULT_E	MULT_E
			CS7 MULT_E	CS6 MULT_E	CS5 MULT_E	CS4 MULT_E	CS3 MULT_E	CS2 MULT_E	CS1 MULT_E	CS0 MULT_E
0xCA	R/W	0x00	_CS15	_CS14	_CS13	_CS12	_CS11 MULT_E	_CS10 MULT_E	_CS9 MULT_E	CS8 MULT_E
0xCB	R/W	0x00	-	-	-	-	_CS19	_CS18	_CS17	_CS16
0xCC	R/W	0x00	MULT_F _CS7	MULT_F _CS6	MULT_F _CS5	MULT_F _CS4	MULT_F _CS3	MULT_F _CS2	MULT_F _CS1	MULT_F _CS0
0xCD	R/W	0x00	MULT_F _CS15	MULT_F _CS14	MULT_F _CS13	MULT_F _CS12	MULT_F _CS11	MULT_F _CS10	MULT_F _CS9	MULT_F _CS8
0xCE	R/W	0x00	-	-	-	-	MULT_F	MULT_F	MULT_F	MULT_F
0xCF	R/W	0x00	MULT_G	MULT_G	MULT_G	MULT_G	CS19 MULT_G	CS18 MULT_G	CS17 MULT_G	CS16 MULT_G
			_CS7 MULT_G	CS6 MULT_G	CS5 MULT G	CS4 MULT G	CS3 MULT_G	CS2 MULT_G	CS1 MULT G	CS0 MULT_G
0xD0	R/W	0x00	_CS15	_CS14	_CS13	_CS12	_CS11 MULT_G	_CS10 MULT_G	CS9 MULT_G	CS8 MULT_G
0xD1	R/W	0x00	-	-	-	-	_CS19	_CS18	_CS17	_CS16
0xD2	R/W	0x00	MULT_H _CS7	MULT_H _CS6	MULT_H _CS5	MULT_H _CS4	MULT_H _CS3	MULT_H _CS2	MULT_H _CS1	MULT_F _CS0
0xD3	R/W	0x00	MULT_H _CS15	MULT_H _CS14	MULT_H _CS13	MULT_H _CS12	MULT_H _CS11	MULT_H _CS10	MULT_H _CS9	MULT_F _CS8
0xD4	R/W	0x00	_0313	_0314	_0313	_0312	MULT_H	MULT_H	MULT_H	MULT_H
			MSK_INT				CS19 MSK_INT	CS18 MSK_INT	_CS17	_CS16
0xD5	R/W	0x00	_NOISE	-	-	-	_FALCAL	_FINCAL	MSK INT	MSK_INT
0xD6	R/W	0x00	-	-	-	-	-	-	AVDDOFF	AVDDON
0xD7	R/W	0x00	MSK_DET _ON_CS7	MSK_DET _ON_CS6	MSK_DET _ON_CS5	MSK_DET _ON_CS4	MSK_DET _ON_CS3	MSK_DET _ON_CS2	MSK_DET _ON_CS1	MSK_DE _ON_CS
0xD8	R/W	0x00	MSK_DET _ON_CS15	MSK_DET _ON_CS14	MSK_DET _ON_CS13	MSK_DET _ON_CS12	MSK_DET _ON_CS11	MSK_DET _ON_CS10	MSK_DET _ON_CS9	MSK_DE _ON_CS
0xD9	R/W	0x00	-	-			MSK_DET _ON_CS19	MSK_DET _ON_CS18	MSK_DET ON CS17	MSK_DE _ON_CS1
0xDA	R/W	0x00	MSK_DET _OFF_CS7	MSK_DET _OFF_CS6	MSK_DET _OFF_CS5	MSK_DET _OFF_CS4	MSK_DET _OFF_CS3	MSK_DET _OFF_CS2	MSK_DET _OFF_CS1	MSK_DE _OFF_CS
0xDB	R/W	0x00	MSK_DET	MSK_DET	MSK_DET	MSK_DET	MSK_DET	MSK_DET	MSK_DET	MSK_DE
0xDC	R/W	0x00	_OFF_CS15	_OFF_CS14	_OFF_CS13	_OFF_CS12	_OFF_CS11 MSK_DET	_OFF_CS10 MSK_DET	_OFF_CS9 MSK_DET	_OFF_CS MSK_DE
			MSK_UNK	MSK_UNK	MSK_UNK	MSK_UNK	_OFF_CS19 MSK_UNK	_OFF_CS18 MSK_UNK	_OFF_CS17 MSK_UNK	_OFF_CS MSK_UN
0xDD	R/W	0x00	_CS7 MSK_UNK	_CS6 MSK_UNK	_CS5 MSK_UNK	_CS4 MSK_UNK	_CS3 MSK_UNK	_CS2 MSK_UNK	_CS1 MSK_UNK	_CS0 MSK_UN
0xDE	R/W	0x00	_CS15	CS14	_CS13	_CS12	_CS11	_CS10	_CS9	_CS8
0xDF	R/W	0x00	-	-	-	-	MSK_UNK _CS19	MSK_UNK _CS18	MSK_UNK _CS17	MSK_UN _CS16

コマンドレジスタ

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xE0	R/W	0x00	CLR_INT _NOISE	-	-	-	CLR_INT _FALCAL	CLR_INT _FINCAL	-	CLR_INT _FININI
0xE1	R/W	0x00	-	-	-	-	-	-	CLR_INT_ AVDDOFF	CLR_INT_ AVDDON
0xE2	R/W	0x00	CLR_DET _ON_CS7	CLR_DET _ON_CS6	CLR_DET _ON_CS5	CLR_DET _ON_CS4	CLR_DET _ON_CS3	CLR_DET _ON_CS2	CLR_DET _ON_CS1	CLR_DET _ON_CS0
0xE3	R/W	0x00	CLR_DET _ON_CS15	CLR_DET _ON_CS14	CLR_DET _ON_CS13	CLR_DET _ON_CS12	CLR_DET _ON_CS11	CLR_DET _ON_CS10	CLR_DET _ON_CS9	CLR_DET _ON_CS8
0xE4	R/W	0x00	-	-	-	-	CLR_DET _ON_CS19	CLR_DET _ON_CS18	CLR_DET _ON_CS17	CLR_DET _ON_CS16
0xE5	R/W	0x00	CLR_DET _OFF_CS7	CLR_DET _OFF_CS6	CLR_DET _OFF_CS5	CLR_DET _OFF_CS4	CLR_DET _OFF_CS3	CLR_DET _OFF_CS2	CLR_DET _OFF_CS1	CLR_DET _OFF_CS0
0xE6	R/W	0x00	CLR_DET _OFF_CS15	CLR_DET _OFF_CS14	CLR_DET _OFF_CS13	CLR_DET _OFF_CS12	CLR_DET _OFF_CS11	CLR_DET _OFF_CS10	CLR_DET _OFF_CS9	CLR_DET _OFF_CS8
0xE7	R/W	0x00	-	-	-	-	CLR_DET _OFF_CS19	CLR_DET _OFF_CS18	CLR_DET _OFF_CS17	CLR_DET _OFF_CS16
0xE8	R/W	0x00	CLR_HLD CS7	CLR_HLD _CS6	CLR_HLD _CS5	CLR_HLD CS4	CLR_HLD _CS3	CLR_HLD _CS2	CLR_HLD CS1	CLR_HLD _CS0
0xE9	R/W	0x00	CLR_HLD CS15	CLR_HLD CS14	CLR_HLD _CS13	CLR_HLD _CS12	CLR_HLD _CS11	CLR_HLD CS10	CLR_HLD _CS9	CLR_HLD _CS8
0xEA	R/W	0x00	-	-	-	-	CLR_HLD _CS19	CLR_HLD _CS18	CLR_HLD CS17	CLR_HLD _CS16
0xEB	R/W	0x00	CLR_HLD RPT CS7	CLR_HLD RPT_CS6	CLR_HLD RPT CS5	CLR_HLD RPT CS4	CLR_HLD RPT_CS3	CLR_HLD RPT_CS2	CLR_HLD RPT_CS1	CLR_HLD RPT_CS0
0xEC	R/W	0x00	CLR_HLD RPT CS15	CLR_HLD RPT_CS14	CLR_HLD RPT_CS13	CLR_HLD RPT CS12	CLR_HLD RPT_CS11	CLR_HLD RPT_CS10	CLR_HLD RPT CS9	CLR_HLD RPT_CS8
0xED	R/W	0x00	- -	- KF1_C314	- -	- KF1_C312	CLR_HLD RPT_CS19	CLR_HLD RPT CS18	CLR_HLD RPT CS17	CLR_HLD RPT_CS16
0xEE	R/W	0x00	CLR_MULT _ON_H	CLR_MULT _ON_G	CLR_MULT ON F	CLR_MULT _ON_E	CLR_MULT _ON_D	CLR_MULT _ON_C	CLR_MULT ON B	CLR_MULT _ON_A
0xEF	R/W	0x00	CLR_MULT _OFF_H	CLR_MULT _OFF_G	CLR_MULT OFF F	CLR_MULT _OFF_E	CLR_MULT _OFF_D	CLR_MULT OFF C	CLR_MULT OFF B	CLR_MULT _OFF_A
0xF0	R/W	0x00	CLR_UNK CS7	CLR_UNK _CS6	CLR_UNK CS5	CLR_UNK CS4	CLR_UNK CS3	CLR_UNK CS2	CLR_UNK CS1	CLR_UNK _CS0
0xF1	R/W	0x00	CLR_UNK CS15	CLR_UNK CS14	CLR_UNK CS13	CLR_UNK CS12	CLR_UNK CS11	CLR_UNK CS10	CLR_UNK CS9	CLR_UNK CS8
0xF2	R/W	0x00					CLR_UNK CS19	CLR_UNK	CLR_UNK	CLR_UNK
0xF3	R/W	0x00				SRS'	 T[7:0]	_CS18	_CS17	_CS16
0xF4	R/W	0x00				SRST	[15:8]			
0xF5-0xFD	-	-				RESE	RVED			
0xFE	R/W	0x00	-	-	SEL_A\	/DD[1:0]	-	-	-	AVDD_ON
0xFF	R/W	0x00	-	-	-	-	-	STR_CFG	STR_CAL	STR_AFE

レジスタ説明

ステータスレジスタ説明

【0x00-0x13: センサデータ】 DATA_CS Name: Address: 0x00-0x13

Description: 各センサの検出値です。レジスタ "<u>スイッチ ON</u> 閾値設定 / <u>スイッチ OFF 閾値設定</u>" と比較され、レジスタ "<u>スイッチ ON 検出</u>"、レジスタ "<u>スイッチ OFF 検出</u>"に反映されます。キャリブレーション実行後は、基

準値を設定し直すため、検出値は 0 になります。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x00	R	0x00				DATA_0	CS0[7:0]			
0x01	R	0x00				DATA_0	CS1[7:0]			
0x02	R	0x00				DATA_0	CS2[7:0]			
0x03	R	0x00				DATA_0	CS3[7:0]			
0x04	R	0x00				DATA_0	CS4[7:0]			
0x05	R	0x00				DATA_0	CS5[7:0]			
0x06	R	0x00		DATA_CS6[7:0] DATA_CS7[7:0]						
0x07	R	0x00		DATA_CS7[7:0]						
0x08	R	0x00				DATA_0	CS8[7:0]			
0x09	R	0x00				DATA_0	CS9[7:0]			
0x0A	R	0x00				DATA_C	S10[7:0]			
0x0B	R	0x00				DATA_C	S11[7:0]			
0x0C	R	0x00				DATA_C	S12[7:0]			
0x0D	R	0x00				DATA_C	S13[7:0]			
0x0E	R	0x00				DATA_C	S14[7:0]			
0x0F	R	0x00				DATA_C	S15[7:0]			
0x10	R	0x00				DATA_C	S16[7:0]			
0x11	R	0x00		DATA_CS17[7:0]						
0x12	R	0x00		DATA_CS18[7:0]						
0x13	R	0x00				DATA_C	S19[7:0]			

【0x15-0x3C: フィルタセンサデータ】 Name: FILTER_DATA_CS

Address: 0x15-0x3C

Description: 各センサの RAW 出力値です。キャリブレーション実行後、0~5000 の範囲で出力されます。この値からの

変化量にフィルタをかけ、レジスタ"センサデータ"に値を格納しています。キャリブレーション実行後 2186 \sim 2814 の範囲に収まらないような場合、キャリブレーション失敗とし、レジスタ "割り込み要因"の

INT_FALCAL に 1 が設定され、再キャリブレーションが実行されます。

レジスタ "<u>フィルタセンサデータ</u>" とレジスタ "<u>センサデータ</u>" との関係は、下記式のようになります。関連するレジスタ設定は、レジスタ "<u>感度設定</u>" とレジスタ "<u>デジタルゲイン設定</u>"になります。

レジスタ " \underline{v} = [(レジスタ " \underline{v} = \underline{v} = [(レジスタ " \underline{v} = \underline{v}

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x15	R	0x00				FDATA	_CS0[15:8]			
0x16	R	0x00				FDATA	_CS0[7:0]			
0x17	R	0x00				FDATA	_CS1[15:8]			
0x18	R	0x00				FDATA	_CS1[7:0]			
0x19	R	0x00				FDATA	_CS2[15:8]			
0x1A	R	0x00				FDATA	_CS2[7:0]			
0x1B	R	0x00				FDATA	_CS3[15:8]			
0x1C	R	0x00				FDATA	_CS3[7:0]			
0x1D	R	0x00				FDATA	_CS4[15:8]			
0x1E	R	0x00				FDATA	_CS4[7:0]			
0x1F	R	0x00				FDATA	_CS5[15:8]			
0x20	R	0x00				FDATA	_CS5[7:0]			
0x21	R	0x00				FDATA	_CS6[15:8]			
0x22	R	0x00				FDATA	_CS6[7:0]			
0x23	R	0x00				FDATA	_CS7[15:8]			
0x24	R	0x00				FDATA	_CS7[7:0]			
0x25	R	0x00				FDATA	_CS8[15:8]			
0x26	R	0x00				FDATA	_CS8[7:0]			
0x27	R	0x00				FDATA	_CS9[15:8]			
0x28	R	0x00				FDATA	_CS9[7:0]			
0x29	R	0x00				FDATA	_CS10[15:8]			
0x2A	R	0x00				FDATA	_CS10[7:0]			
0x2B	R	0x00				FDATA	_CS11[15:8]			
0x2C	R	0x00				FDATA	_CS11[7:0]			
0x2D	R	0x00				FDATA	_CS12[15:8]			
0x2E	R	0x00				FDATA	_CS12[7:0]			
0x2F	R	0x00				FDATA	_CS13[15:8]			
0x30	R	0x00				FDATA	_CS13[7:0]			
0x31	R	0x00				FDATA	_CS14[15:8]			
0x32	R	0x00				FDATA	_CS14[7:0]			
0x33	R	0x00				FDATA	_CS15[15:8]			
0x34	R	0x00				FDATA	_CS15[7:0]			
0x35	R	0x00				FDATA	_CS16[15:8]			
0x36	R	0x00				FDATA	_CS16[7:0]			
0x37	R	0x00				FDATA	_CS17[15:8]			
0x38	R	0x00				FDATA	_CS17[7:0]			
0x39	R	0x00				FDATA	_CS18[15:8]			
0x3A	R	0x00				FDATA	_CS18[7:0]			
0x3B	R	0x00				FDATA	_CS19[15:8]			
0x3C	R	0x00				FDATA	_CS19[7:0]			

【0x40-0x42:割り込み要因】

Name: INTERRUPT Address: 0x40-0x42

Description: 割り込み要因を提示します。レジスタアドレス 0x40~0x42 の論理和が 1 のとき INTB から"L" が出力され、

0 のとき INTB は HIZ になります。また、レジスタ "<u>動作モード設定</u>"の MLT_SW_EN に 0 が設定されている場合、レジスタアドレス 0x41 の論理和が 1 の間、次のスイッチ操作の検出は実行されません。すべてク

リアされ論理和が0になってからスイッチ操作の検出は実行されます。

0:割り込み未検出

1:割り込み検出

INT_FININI :初期化完了割り込み

MPU の初期化が完了すると 1 が設定されます。レジスタ "割り込み要因クリアコマンド" の $CLR_INT_FININI に 0$ を設定するとクリアされます。

INT_FINCAL:ソフトキャリブレーション完了割り込み

ソフトキャリブレーションが完了すると 1 が設定されます。レジスタ "割り込み要因クリアコマンド"の CLR_INT_FINCAL に 0 を設定するとクリアされます。

INT_FALCAL :キャリブレーション失敗割り込み

キャリブレーションが失敗すると 1 が設定されます。レジスタ "割り込み要因クリアコマンド"の CLR_INT_FALCAL に 0 を設定するとクリアされます。

INT_UNK :スイッチ異常長押し検出割り込み

想定外のスイッチ長押し状態を検出すると 1 が設定されます。レジスタ "<u>スイッチ異常長押し検出</u>"の論理和が 1 になったときに、1 が設定されます。クリアするためには論理和が 0 になるようにレジスタ "<u>ス</u><u>イッチ異常長押し検出クリア</u>"でクリアする必要があります。

INT_NOISE :ノイズ検出割り込み

ノイズ検知とみなされるスイッチ状態を検出すると 1 が設定されます。レジスタ "<u>割り込み要因クリアコ</u>マンド"の CLR_INT_NOISE に 0 を設定するとクリアされます。

INT_SW_ON :スイッチ ON 検出割り込み

レジスタ "X (X (X (X (X) の論理和が 1 になったときに、1 が設定されます。クリアするためには論理和が 0 になるようにレジスタ "X (X (X) の 検出クリアコマンド"でクリアする必要があります。

INT_SW_OFF :スイッチ OFF 検出割り込み

レジスタ " $\underline{ATッチ OFF}$ 検出"の論理和が1になったときに1が設定されます。クリアするためには論理和が0になるようにレジスタ " $\underline{ATッチ OFF}$ 検出クリアコマンド"でクリアする必要があります。

INT HLD :スイッチ長押し検出割り込み

レジスタ "<u>スイッチ長押し検出</u>"の論理和が 1 になったときに 1 が設定されます。クリアするためには論理和が 0 になるようにレジスタ "<u>スイッチ長押し検出クリアコマンド</u>"でクリアする必要があります。

INT HLDRPT :スイッチ長押しリピート検出割り込み

レジスタ "<u>スイッチ長押しリピート検出</u>"の論理和が 1 になったときに 1 が設定されます。クリアするためには論理和が 0 になるようにレジスタ "<u>スイッチ長押しリピート検出クリアコマンド</u>"でクリアする必要があります。

INT_MULT_ON:スイッチ多重押しON検出割り込み

レジスタ "X (X (X (X) が設定されます。クリアするためには論理和が X (X) になるようにレジスタ "X (X) が設定されます。クリアする必要があります。

INT_MULT_OFF:スイッチ多重押し OFF 検出割り込み

レジスタ " $\underline{A + A + A + A + B}$ 型押し OFF 検出"の論理和が 1 になったときに 1 が設定されます。 クリアするためには論理和が 0 になるようにレジスタ " $\underline{A + A + B + B + B}$ でクリアする必要があります。

INT_AVDDON : AVDD ON 検出割り込み

AVDD 電圧が出力される場合に 1 が設定されます。レジスタ "<u>割り込み要因クリアコマンド</u>"の CLR_INT_AVDDON に 0 を設定するとクリアされます。AVDD の故障を診断する機能ではありません。

INT_AVDDOFF: AVDD OFF 検出割り込み

AVDD 電圧が出力されない場合に 1 が設定されます。レジスタ "割り込み要因クリアコマンド"の CLR_INT_AVDDOFF に 0 を設定するとクリアされます。AVDD の故障を診断する機能ではありません。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x40	R	0x01	INT_ NOISE	INT_UNK	-	-	INT_ FALCAL	INT_ FINCAL	-	INT_ FININI
0x41	R	0x00	=	-	INT_MULT _OFF	INT_MULT _ON	INT_ HLDRPT	INT_HLD	INT_ SW_OFF	INT_ SW_ON
0x42	R	0x00	-	-	-	-	-	-	INT_ AVDDOFF	INT_ AVDDON

【0x43-0x45:スイッチ ON 検出】

Name: DET_ON Address: 0x43-0x45

Description: スイッチ状態がOFF からONに変化したことを示します。このレジスタの論理和がレジスタ"割り込み要因"

の INT_SW_ON になります。クリアレジスタは、"スイッチ ON 検出クリアコマンド"になります。

0:スイッチ ON 未検出

1:スイッチ ON 検出

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x43	R	0x00	DET_ON _CS7	DET_ON _CS6	DET_ON _CS5	DET_ON _CS4	DET_ON _CS3	DET_ON _CS2	DET_ON _CS1	DET_ON _CS0
0x44	R	0x00	DET_ON _CS15	DET_ON _CS14	DET_ON _CS13	DET_ON _CS12	DET_ON _CS11	DET_ON _CS10	DET_ON _CS9	DET_ON _CS8
0x45	R	0x00	-	-	-	-	DET_ON _CS19	DET_ON _CS18	DET_ON _CS17	DET_ON _CS16

【0x46-0x48: スイッチ OFF 検出】

Name: DET_OFF Address: 0x46-0x48

Description: スイッチ状態が ON から OFF に変化したことを示します。このレジスタの論理和がレジスタ"割り込み要因"

の INT_SW_OFF になります。クリアレジスタは、"スイッチ OFF 検出クリアコマンド"になります。

0:スイッチ OFF 未検出

1:スイッチ OFF 検出

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x46	R	0x00	DET_OFF _CS7	DET_OFF _CS6	DET_OFF _CS5	DET_OFF _CS4	DET_OFF _CS3	DET_OFF _CS2	DET_OFF _CS1	DET_OFF _CS0
0x47	R	0x00	DET_OFF _CS15	DET_OFF _CS14	DET_OFF _CS13	DET_OFF _CS12	DET_OFF _CS11	DET_OFF _CS10	DET_OFF _CS9	DET_OFF _CS8
0x48	R	0x00	-	-	-	-	DET_OFF _CS19	DET_OFF _CS18	DET_OFF _CS17	DET_OFF _CS16

【0x49-0x4B:スイッチ長押し検出】

Name: DET_HLD Address: 0x49-0x4B

Description: スイッチの長押し状態が一定時間続いたことを示します。このレジスタの論理和がレジスタ "割り込み要因"

の INT_HLD になります。クリアレジスタは、"<u>スイッチ長押し検出クリアコマンド</u>"になります。長押しの 検出時間は、レジスタ"<u>長押し検出時間 / 長押しリピート検出時間設定</u>"の TIME_HLD_A~G にて、最大 7 種類設定することができ、7 種類の設定をどのセンサに割り当てるかについては、レジスタ"長押し/異常長

押し設定割り当て"にて設定することができます。

0:スイッチ長押し未検出

1:スイッチ長押し検出

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x49	R	0x00	DET_HLD _CS7	DET_HLD _CS6	DET_HLD _CS5	DET_HLD _CS4	DET_HLD _CS3	DET_HLD _CS2	DET_HLD _CS1	DET_HLD _CS0
0x4A	R	0x00	DET_HLD _CS15	DET_HLD _CS14	DET_HLD _CS13	DET_HLD _CS12	DET_HLD _CS11	DET_HLD _CS10	DET_HLD _CS9	DET_HLD _CS8
0x4B	R	0x00	-	-	-	-	DET_HLD _CS19	DET_HLD _CS18	DET_HLD _CS17	DET_HLD _CS16

【0x4C-0x4E:スイッチ長押しリピート検出】

Name: DET_HLDRPT Address: 0x4C-0x4E

Description: スイッチの長押しを検出した後、さらに長押しが続いていることを示します。このレジスタの論理和がレジ

スタ"<u>割り込み要因</u>"の INT_HLDRPT になります。クリアレジスタは、"<u>スイッチ長押しリピート検出クリアコマンド</u>"になります。長押しのリピート検出時間は、レジスタ"長押し検出時間 / 長押しリピート検出<u>時間設定</u>"の TIME_HLD_RPT_A~G にて最大 7 種類設定することができ、7 種類の設定をどのセンサに割り当てるかについては、レジスタ"長押し/異常長押し設定割り当て"にて設定することができます。

0:スイッチ長押しリピート未検出 1:スイッチ長押しリピート検出

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x4C	R	0x00	DET_HLD RPT_CS7	DET_HLD RPT_CS6	DET_HLD RPT_CS5	DET_HLD RPT_CS4	DET_HLD RPT_CS3	DET_HLD RPT_CS2	DET_HLD RPT_CS1	DET_HLD RPT_CS0
0x4D	R	0x00	DET_HLD RPT_CS15	DET_HLD RPT_CS14	DET_HLD RPT_CS13	DET_HLD RPT_CS12	DET_HLD RPT_CS11	DET_HLD RPT_CS10	DET_HLD RPT_CS9	DET_HLD RPT_CS8
0x4E	R	0x00	-	-	-	-	DET_HLD RPT_CS19	DET_HLD RPT_CS18	DET_HLD RPT_CS17	DET_HLD RPT_CS16

【0x4F: スイッチ多重押し ON 検出】

Name: DET_MULT_ON

Address: 0x4F

Description: 多重押しを設定したスイッチが一定時間内に同時に押されたことを示します。このレジスタの論理和がレジ

スタ "<u>割り込み要因</u>"の INT_MULT_ON になります。クリアレジスタは、"<u>スイッチ多重押し ON 検出クリアコマンド"になります。一定時間の設定は、レジスタ "スイッチ検出時間設定"にて設定することができます。多重押しの組み合わせは、レジスタ "多重押しセンサ設定"にて最大 8 種類の組み合わせを設定する</u>

ことができます。

0:スイッチ多重押しON 未検出

1:スイッチ多重押し ON 検出

Ī	Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	0x4F	R	0x00	DET_MULT _ON_H	DET_MULT _ON_G	DET_MULT _ON_F	DET_MULT _ON_E	DET_MULT _ON_D	DET_MULT _ON_C	DET_MULT _ON_B	DET_MULT _ON_A

【0x50: スイッチ多重押し OFF 検出】

Name: DET_MULT_OFF

Address: 0x50

Description: 多重押しに設定されたセンサが多重押し検出 ON の状態からすべて OFF したことを示します。このレジスタ

の論理和がレジスタ"割り込み要因"の INT_MULT_OFF になります。クリアレジスタは、"スイッチ多重押

しOFF 検出クリアコマンド"になります。

0:スイッチ多重押し OFF 未検出

1:スイッチ多重押し OFF 検出

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x50	R	0x00	DET_MULT _OFF_H	DET_MULT _OFF_G	DET_MULT _OFF_F	DET_MULT _OFF_E	DET_MULT _OFF_D	DET_MULT _OFF_C	DET_MULT _OFF_B	DET_MULT _OFF_A

【0x51-0x53:スイッチ異常長押し検出】

Name: DET_UNKNOWN

Address: 0x51-0x53

Description: 想定外の長押し状態が一定時間続いたことを示します。このレジスタの論理和がレジスタ"割り込み要因"

の INT_UNK になります。クリアレジスタは、"<u>スイッチ異常長押し検出クリアコマンド</u>"になります。一定

時間の設定は、レジスタ "異常長押し検出時間設定"にて設定することができます。

0:異常長押し未検出

1:異常長押し検出

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x51	R	0x00	DET_UNK _CS7	DET_UNK _CS6	DET_UNK _CS5	DET_UNK _CS4	DET_UNK _CS3	DET_UNK _CS2	DET_UNK _CS1	DET_UNK _CS0
0x52	R	0x00	DET_UNK _CS15	DET_UNK _CS14	DET_UNK _CS13	DET_UNK _CS12	DET_UNK _CS11	DET_UNK _CS10	DET_UNK _CS9	DET_UNK _CS8
0x53	R	0x00	-	-	-	-	DET_UNK CS19	DET_UNK CS18	DET_UNK CS17	DET_UNK CS16

【0x54-0x56:スイッチ ON / OFF 状態】

Name: SW_STATE Address: 0x54-0x56

Description: 各スイッチの ON/OFF 状態を示します。ON/OFF 状態はレジスタ "チャタリングキャンセル設定"が反映さ

れた結果を出力します。

0:OFF 状態 1:ON 状態

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x54	R	0x00	SW_STAT _CS7	SW_STAT _CS6	SW_STAT _CS5	SW_STAT _CS4	SW_STAT _CS3	SW_STAT _CS2	SW_STAT _CS1	SW_STAT _CS0
0x55	R	0x00	SW_STAT _CS15	SW_STAT _CS14	SW_STAT _CS13	SW_STAT _CS12	SW_STAT _CS11	SW_STAT _CS10	SW_STAT _CS9	SW_STAT _CS8
0x56	R	0x00	-	-	-	-	SW_STAT _CS19	SW_STAT _CS18	SW_STAT _CS17	SW_STAT _CS16

【0x57:動作状態】

Name: RUN_STATE

Address: 0x57

Description: IC の動作状態を示します。

RUN_AFE: センサの検出中状態を示します。

0:検出停止中 1:検出動作中

RUN_CAL: センサのキャリブレーション状態を示します。

0:非キャリブレーション動作中 1:キャリブレーション動作中

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x57	R	0x00	-	-	-	-	-	RUN_CAL	RUN_AFE	

【0x58:キャリブレーションエラー回数】

Name: NUM_FALCAL

Address: 0x58

Description: キャリブレーションが失敗するごとに、レジスタ値がインクリメントします。255 までインクリメントされ

た後、キャリブレーションに失敗すると、0から再インクリメントします。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x58	R	0x00				NUI	M_FALCAL[7:0]		

【0x5F:ファームウエアバージョン】

Name: FW_VER Address: 0x5F

Description: 使用しているファームウエアのバージョン情報を格納しているレジスタです。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x5F	R	0x0D				FW.	_VER[7:0]			

コンフィグレーションレジスタ説明

【0x60-0x64:センサイネーブル設定】

Name: SW_EN_CFG Address: 0x60-0x64

Description: センサ端子 CS の機能設定用のレジスタです。

CS*_SCAN_SEL[1:0]=0x0: センサ端子 CS*を検出端子として使用

CS*_SCAN_SEL[1:0]=0x1: センサ端子 CS*を L 出力 CS*_SCAN_SEL[1:0]=0x2: センサ端子 CS*を H 出力 CS*_SCAN_SEL[1:0]=0x3: センサ端子 CS*を HIZ 状態

*:0~19 のセンサ端子 No.を意味します。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x60	R/W	0x00	CS3_SCA	N_SEL[1:0]	CS2_SCA	N_SEL[1:0]	CS1_SCA	N_SEL[1:0]	CS0_SCA	N_SEL[1:0]
0x61	R/W	0x00	CS7_SCAN_SEL[1:0]		CS6_SCA	N_SEL[1:0]	CS5_SCA	N_SEL[1:0]	CS4_SCA	N_SEL[1:0]
0x62	R/W	0x50	CS11_SCA	N_SEL[1:0]	CS10_SCA	N_SEL[1:0]	CS9_SCA	N_SEL[1:0]	CS8_SCA	N_SEL[1:0]
0x63	R/W	0x55	CS15_SCAN_SEL[1:0]		CS14_SCAN_SEL[1:0]		CS13_SCAN_SEL[1:0]		CS12_SCA	N_SEL[1:0]
0x64	R/W	0x55	CS19_SCA	N_SEL[1:0]	CS18_SCA	N_SEL[1:0]	CS17_SCA	N_SEL[1:0]	CS16_SCA	N_SEL[1:0]

【0x66-0x6F:感度設定】

Name: VAL_GA_CFG Address: 0x66-0x6F

Description: スイッチの感度調整設定です。15 段階の調整範囲を有しており、設定値が小さいほど、感度は高くなります。

設定可能範囲外の設定がなされたスイッチは無効になり、検出を実行しません。

設定可能範囲 : 0x1(高感度) $\leq VAL_GA_CS^* \leq 0xF$ (低感度) 設定推奨範囲 : 0x3(高感度) $\leq VAL_GA_CS^* \leq 0xF$ (低感度)

*:0~19 のセンサ端子 No.を意味します。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
0x66	R/W	0x7F		VAL_GA	_CS1[3:0]			VAL_GA	_CS0[3:0]				
0x67	R/W	0x77		VAL_GA	_CS3[3:0]			VAL_GA	_CS2[3:0]				
0x68	R/W	0x77		VAL_GA_CS5[3:0]				VAL_GA	_CS4[3:0]				
0x69	R/W	0x77		VAL_GA_CS7[3:0]				VAL_GA	_CS6[3:0]				
0x6A	R/W	0x77		VAL_GA_CS9[3:0]				VAL_GA_CS8[3:0]					
0x6B	R/W	0xFF		VAL_GA	_CS11[3:0]		VAL_GA_CS10[3:0]						
0x6C	R/W	0xFF		VAL_GA	_CS13[3:0]			VAL_GA	_CS12[3:0]				
0x6D	R/W	0xFF		VAL_GA_CS15[3:0]				VAL_GA	_CS14[3:0]				
0x6E	R/W	0xFF	VAL_GA_CS17[3:0]			VAL_GA_CS16[3:0]							
0x6F	R/W	0xFF	VAL_GA_CS19[3:0]			VAL_GA_CS18[3:0]							

【0x70-0x97:スイッチ ON 閾値設定 / スイッチ OFF 閾値設定】

Name: VAL_TH_ON_CFG / VAL_TH_OFF_CFG

Address: 0x70-0x97

Description: スイッチの ON / OFF 判定閾値設定用のレジスタです。レジスタ "センサデータ" と比較され、OFF してい

たスイッチの " \underline{v} * \underline{v} *

されたセンサは無効になり、検出を実行しません。

設定可能範囲 : 0x03 < VAL_TH_OFF_CS* < VAL_TH_ON_CS* < 0xFF

設定推奨範囲 : $0x40 \le VAL_TH_ON_CS^* \le 0xE0$

 $0x20 \le VAL_TH_OFF_CS^*$

*:0~19 のセンサ端子 No.を意味します。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x70	R/W	0xC8				VAL_TH_C	N_CS0[7:0]			
0x71	R/W	0x64				VAL_TH_C	FF_CS0[7:0]			
0x72	R/W	0xC8				VAL_TH_C	N_CS1[7:0]			
0x73	R/W	0x64				VAL_TH_C	FF_CS1[7:0]			
0x74	R/W	0xC8				VAL_TH_C	N_CS2[7:0]			
0x75	R/W	0x64				VAL_TH_C	FF_CS2[7:0]			
0x76	R/W	0xC8				VAL_TH_C	N_CS3[7:0]			
0x77	R/W	0x64				VAL_TH_C	FF_CS3[7:0]			
0x78	R/W	0xC8				VAL_TH_C	N_CS4[7:0]			
0x79	R/W	0x64				VAL_TH_C	FF_CS4[7:0]			
0x7A	R/W	0xC8				VAL_TH_C	N_CS5[7:0]			
0x7B	R/W	0x64				VAL_TH_C	FF_CS5[7:0]			
0x7C	R/W	0xC8				VAL_TH_C	N_CS6[7:0]			
0x7D	R/W	0x64				VAL_TH_C	FF_CS6[7:0]			
0x7E	R/W	0xC8				VAL_TH_C	N_CS7[7:0]			
0x7F	R/W	0x64				VAL_TH_C	FF_CS7[7:0]			
0x80	R/W	0xC8				VAL_TH_C	N_CS8[7:0]			
0x81	R/W	0x64				VAL_TH_C	FF_CS8[7:0]			
0x82	R/W	0xC8				VAL_TH_C	N_CS9[7:0]			
0x83	R/W	0x64				VAL_TH_C	FF_CS9[7:0]			
0x84	R/W	0xC8				VAL_TH_C	N_CS10[7:0]			
0x85	R/W	0x64				VAL_TH_C	FF_CS10[7:0]			
0x86	R/W	0xC8				VAL_TH_C	N_CS11[7:0]			
0x87	R/W	0x64				VAL_TH_C	FF_CS11[7:0]			
0x88	R/W	0xC8				VAL_TH_C	N_CS12[7:0]			
0x89	R/W	0x64				VAL_TH_C	FF_CS12[7:0]			
0x8A	R/W	0xC8				VAL_TH_C	N_CS13[7:0]			
0x8B	R/W	0x64				VAL_TH_C	FF_CS13[7:0]			
0x8C	R/W	0xC8				VAL_TH_C	N_CS14[7:0]			
0x8D	R/W	0x64				VAL_TH_C	FF_CS14[7:0]			
0x8E	R/W	0xC8				VAL_TH_C	N_CS15[7:0]			
0x8F	R/W	0x64				VAL_TH_C	FF_CS15[7:0]			
0x90	R/W	0xC8				VAL_TH_C	N_CS16[7:0]			
0x91	R/W	0x64				VAL_TH_C	FF_CS16[7:0]			
0x92	R/W	0xC8				VAL_TH_C	N_CS17[7:0]			
0x93	R/W	0x64				VAL_TH_C	FF_CS17[7:0]			
0x94	R/W	0xC8				VAL_TH_C	N_CS18[7:0]			
0x95	R/W	0x64				VAL_TH_C	FF_CS18[7:0]			
0x96	R/W	0xC8				VAL_TH_C	N_CS19[7:0]			
0x97	R/W	0x64				VAL_TH_C	FF_CS19[7:0]			

【0x98:デジタルゲイン設定】

Name: GA_DIGI_CFG

Address: 0x98

Description: センサデータの低感度調整用レジスタです。センサの感度をレジスタ "感度設定"で設定可能な範囲以下に

したい場合に使用するレジスタです。

レジスタ " \underline{v} 2500)ー(315÷レジスタ " \underline{v} 8度設定")] ÷(レジスタ "デジタルゲイン設定"+1)

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x98	R/W	0x30	VAL_ADJ_DAT[3:0]				-	-	-	-

【0x99: センサ検出設定】

Name: SENS_CFG Address: 0x99

Description: 検出周波数設定用のレジスタです。

TIM_AFE[2:0]:センサ検出周波数設定

検出周波数を設定することができます。1 スイッチの検出には、TIM_AFE[2:0]で設定した周波数にて複数回積分した結果を使用しています。そのため1スイッチあたりの検出時間は、以下のようになります。

TIM_AFE[2:0]=0x0 : 検出周波数=1563kHz 1スイッチあたりの検出時間=0.2054 ms TIM_AFE[2:0]=0x1 : 検出周波数=1024kHz 1スイッチあたりの検出時間=0.3082 ms TIM_AFE[2:0]=0x2 : 検出周波数=781kHz 1スイッチあたりの検出時間=0.4109 ms : 検出周波数=391kHz TIM_AFE[2:0]=0x3 1スイッチあたりの検出時間=0.8218 ms TIM_AFE[2:0]=0x4 : 検出周波数=298kHz 1スイッチあたりの検出時間=1.0786 ms TIM AFE[2:0]=0x5 : 検出周波数=195kHz 1スイッチあたりの検出時間=1.6435 ms TIM_AFE[2:0]=0x6 : 検出周波数=156kHz 1スイッチあたりの検出時間=2.0544 ms TIM AFE[2:0]=0x7 : 検出周波数=130kHz 1スイッチあたりの検出時間=2.4653 ms

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x99	R/W	0x50	i		TIM_AFE[2:0]		-	-	-	-

【0x9A:フィルタ設定】

Name: FIL_CFG Address: 0x9A

Description: レジスタ "センサデータ" に対するフィルタ設定用のレジスタです。スイッチの ON/OFF 判定に使用する "セ

<u>ンサデータ</u>"に対してメディアンフィルタを使用することができます。メディアンフィルタに使用する検出 周波数は、レジスタ"<u>センサ検出設定</u>"の TIM_AFE を基準(0%)とし、その基準となる周波数から変調した 周波数を組み合わせて使用します。

FIL_CFG[2:0]=0x0 : 検出周波数 1 種類(基準周波数±0%を使用)

メディアンフィルタタップ=1 (フィルタ設定無効)

FIL_CFG[2:0]=0x1 : 検出周波数 3 種類(基準周波数+6%, ±0%, -6%を使用)

メディアンフィルタタップ=3

FIL_CFG[2:0]=0x2 : 検出周波数 5 種類(基準周波数+6%, +3%, ±0%, -3%, -6%を使用)

メディアンフィルタタップ=5

FIL_CFG[2:0]=0x3 : 検出周波数 7 種類(基準周波数+6%, +4%, +2%, ±0%, -2%, -4%, -6%を使用)

メディアンフィルタタップ=7

FIL_CFG[2:0]=0x4 : 検出周波数 7 種類(基準周波数+6%, +4%, +2%, ±0%, -2%, -4%, -6%を使用)

メディアンフィルタタップ=9

FIL_CFG[2:0]=0x5 : 検出周波数 7 種類(基準周波数+6%, +4%, +2%, ±0%, -2%, -4%, -6%を使用)

メディアンフィルタタップ=11

FIL_CFG[2:0]=0x6 : 検出周波数 7 種類(基準周波数+6%, +4%, +2%, ±0%, -2%, -4%, -6%を使用)

メディアンフィルタタップ=13

FIL_CFG[2:0]=0x7 : 検出周波数 7 種類(基準周波数+6%, +4%, +2%, ±0%, -2%, -4%, -6%を使用)

メディアンフィルタタップ=15

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x9A	R/W	0x03	-	-	-	-	-		FIL_CFG[2:0]	

【0x9B:動作モード設定】

Name: MODE_CFG

Address: 0x9B

Description: 搭載されている機能の有効/無効を選択します。

SCAN_SEL: 検出センサ非センシング時状態設定

容量検出機能を有効にしたセンサ端子 CS の非センシング時における端子状態を選択します。

0:L 出力状態 1:HIZ 状態

ADJ_OFS_ENB:オフセット補正機能設定

レジスタ "フィルタセンサデータ"に対するオフセット補正機能の有効/無効を選択します。

0: 補正機能有効 1: 補正機能無効

UNK_CAL_EN: 異常長押し検出キャリブレーション機能設定

異常長押しが検出されたとき、自動でキャリブレーションを実行する機能の有効/無効を選択します。 キャリブレーションされるセンサは、異常長押しが検出されたセンサのみです。

0: キャリブレーション機能無効 1:キャリブレーション機能有効

LOWER_CAL_EN:基準値未満時キャリブレーション機能設定

レジスタ "<u>フィルタセンサデータ</u>"が基準値に対して減少している状態になったとき、キャリブレーションを実行する機能の有効/無効を選択します。オフセット補正機能が有効な場合、基準値未満時キャリブレーション機能は無効になります。

0: キャリブレーション機能無効 1: キャリブレーション機能有効

CAL_SFT_EN:キャリブレーション失敗時検出周波数変調機能設定

キャリブレーション失敗時に、検出周波数を変調してキャリブレーションを実行する機能の有効/無効を 選択します。

0: 検出周波数変調機能無効 1:検出周波数変調機能有効

MLT SW EN:複数スイッチ操作設定

複数スイッチ操作の有効/無効を設定します。

レジスタ "<u>スイッチ検出時間設定</u>" とレジスタ "<u>多重押しセンサ設定</u>"が無効になり、複数スイッチの操作が可能になります。

0: 複数スイッチ操作無効

1:複数スイッチ操作有効

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x9B	R/W	0x80	MLT_SW EN	-	-	CAL_SFT EN	LOWER CAL EN	UNK_CAL EN	ADJ_OFS ENB	SCAN_SEL

【0x9C:チャタリングキャンセル設定】

Name: OST_CFG Address: 0x9C

Description: スイッチ状態変化時のチャタリングをキャンセルする回数設定用のレジスタです。OST[3:0]+1 回連続して同

じ ON/OFF 結果になった場合に初めてレジスタ " \underline{AAy} ON 検出"、レジスタ " \underline{AAy} OFF 検出"に反

映されます。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x9C	R/W	0x03	-	-	-	-		OST	Γ[3:0]	

【0x9D:ドリフトキャリブレーション設定】

Name: DRIFT_CAL_CFG

Address: 0x9D

Description: ドリフト検出時に実行されるキャリブレーション設定用のレジスタです。

ADJ_DET_NUM[4:0]:ドリフトキャリブレーション条件設定

レジスタ "センサデータ" がレジスタ "<u>スイッチ ON 閾値設定</u>"の 1/4 もしくはレジスタ "<u>スイッチ OFF</u> <u>閾値設定</u>"より大きくなった場合、ドリフトと判定されます。ドリフトしたスイッチ数が ADJ_DET_NUM[4:0]より多くなった場合に、キャリブレーションを実行します。

ADJ ALL EN:ドリフトキャリブレーション対象設定

ADJ_ALL_EN に 0 を設定すると、スイッチの ON しているスイッチを除いてキャリブレーションを実行します。 1 を設定すると、スイッチの ON/OFF 状態に関わらず、すべてのスイッチのキャリブレーションを実行します。

0: スイッチの ON しているスイッチを除いてキャリブレーションを実行

1: スイッチの ON/OFF 状態に関わらず、すべてのスイッチのキャリブレーションを実行

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x9D	R/W	0x09	ADJ_ALL EN	-	-		AD	J_DET_NUM[4:0]	

【0x9E: ノイズキャリブレーション設定】

Name: NOISE_CAL_CFG

Address: 0x9E

Description: ノイズ検出時に実行されるキャリブレーション設定用のレジスタです。

NOISE_DET_NUM[4:0]:ノイズキャリブレーション条件設定

多重押しをしない限り、複数のスイッチが同時に ON することはないため、複数のスイッチが同時に ON 検出 した 場合に、ノイズによる影響を受けたと判定します。スイッチの 同時 ON 検出数が NOISE_DET_NUM[4:0]より多くなった場合に、すべてのスイッチに対してキャリブレーションを実行します。

NOISE_SFT_EN:ノイズシフト設定

NOISE_SFT_EN に 1 を設定すると、検出周波数をシフトしてキャリブレーション実行します。0 を設定すると、検出周波数をシフトせずに、キャリブレーションのみを実行します。

0: キャリブレーションのみを実行

1: 検出周波数をシフトしてキャリブレーションを実行

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x9E	R/W	0x89	NOISE SFT EN	-	-		NOI	SE_DET_NUM	1[4:0]	

【0x9F:定期キャリブレーション設定】

Name: TIME_PERCAL_CFG

Address: 0x9F

Description: 定期的に実行されるキャリブレーション設定用のレジスタです。設定値を 0 に設定すると、定期キャリブレ

ーションは実行されません。レジスタ"<u>センサデータ</u>"がレジスタ"<u>スイッチ ON 閾値設定</u>"より大きいス

イッチを除いてキャリブレーションを実行します。

定期キャリブレーション実行間隔 = TIME_PERCAL[7:0] x 約5s

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x9F	R/W	0x3C				TIME_PE	RCAL[7:0]			

【0xA2-0xA3: 異常長押し検出時間設定】

Name: TIME_UNKNOWN_CFG

Address: 0xA2-0xA3

Description: スイッチが想定外に一定時間押され続けている状態を検出すると異常状態と判断し、ホストへ通知します。

異常長押し検出時間の設定用レジスタです。検出すると、レジスタ "スイッチ異常長押し検出"に 1 が設定

されます。異常状態が回避されるまで、検出時間ごとに繰り返し検出を続けます。

異常長押し検出時間 = TIME_UNKNOWN_*[7:0] x 約 1s

TIME_UNKNOWN_*[7:0] = 0 のとき、異常長押し検出無効

*: A~B の 2 種類の設定を意味します。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xA2	R/W	0x00	TIME_UNKNOWN_A[7:0]							
0xA3	R/W	0x00	TIME_UNKNOWN_B[7:0]							

【0xA4-0xB1:長押し検出時間 / 長押しリピート検出時間設定】

Name: TIME_HLD_CFG Address: 0xA4-0xB1

Description: 一定時間スイッチが押されていることを長押しといい、長押しを検出した後、続けて一定時間スイッチが押

されていることを長押しリピートといいます。長押し検出時間と長押しリピート検出時間の設定用レジスタです。それぞれ検出すると、レジスタ "<u>スイッチ長押し検出</u>" とレジスタ "<u>スイッチ長押しリピート検出</u>"

に1が設定されます。

長押し検出時間 = TIME_HLD_*[7:0] x 約 0.1s TIME_HLD_*[7:0] = 0 のとき、長押し検出無効

長押しリピート検出時間 = TIME_HLD_RPT_*[7:0] x 約 0.1s TIME_HLD_RPT_*[7:0] = 0 のとき、長押しリピート検出無効

*: A~G の 7 種類の設定を意味します。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0xA4	R/W	0x00				TIME_HI	_D_A[7:0]				
0xA5	R/W	0x00				TIME_HLD_	_RPT_A[7:0]				
0xA6	R/W	0x00				TIME_HI	_D_B[7:0]				
0xA7	R/W	0x00				TIME_HLD_	_RPT_B[7:0]				
0xA8	R/W	0x00				TIME_HI	_D_C[7:0]				
0xA9	R/W	0x00				TIME_HLD_	_RPT_C[7:0]				
0xAA	R/W	0x00		TIME_HLD_D[7:0]							
0xAB	R/W	0x00		TIME_HLD_RPT_D[7:0]							
0xAC	R/W	0x00				TIME_HL	_D_E[7:0]				
0xAD	R/W	0x00				TIME_HLD_	_RPT_E[7:0]				
0xAE	R/W	0x00				TIME_HI	_D_F[7:0]				
0xAF	R/W	0x00	TIME_HLD_RPT_F[7:0]								
0xB0	R/W	0x00				TIME_HL	_D_G[7:0]				
0xB1	R/W	0x00	TIME_HLD_RPT_G[7:0]								

【0xB2-0xBB: 長押し/異常長押し設定割り当て】

Name: SENS_HLD_CFG Address: 0xB2-0xBB

Description: レジスタ "長押し検出時間 / 長押しリピート検出時間設定"及びレジスタ "異常長押し検出時間設定"をセ

ンサごとに個別に割り当てることができます。

HLD_CS*[2:0] = 0x0: 長押し検出、長押しリピート検出無効。

= 0x1: 長押し検出時間 A、長押しリピート検出時間 A をセンサ*に割り当てる。 = 0x2: 長押し検出時間 B、長押しリピート検出時間 B をセンサ*に割り当てる。 = 0x3: 長押し検出時間 C、長押しリピート検出時間 C をセンサ*に割り当てる。 = 0x4: 長押し検出時間 D、長押しリピート検出時間 D をセンサ*に割り当てる。 = 0x5: 長押し検出時間 E、長押しリピート検出時間 E をセンサ*に割り当てる。 = 0x6: 長押し検出時間 F、長押しリピート検出時間 F をセンサ*に割り当てる。 = 0x7: 長押し検出時間 G、長押しリピート検出時間 G をセンサ*に割り当てる。

UNK_CS* = 0x0: 異常長押し検出時間 A をセンサ*に割り当てる。

= 0x1: 異常長押し検出時間 B をセンサ*に割り当てる。

*:0~19 のセンサ端子 No.を意味します。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xB2	R/W	0x00	UNK_CS1		HLD_CS1[2:0]	UNK_CS0		HLD_CS0[2:0)]
0xB3	R/W	0x00	UNK_CS3		HLD_CS3[2:0]	UNK_CS2		HLD_CS2[2:0)]
0xB4	R/W	0x00	UNK_CS5		HLD_CS5[2:0]	UNK_CS4		HLD_CS4[2:0)]
0xB5	R/W	0x00	UNK_CS7	HLD_CS7[2:0]			UNK_CS6		HLD_CS6[2:0)]
0xB6	R/W	0x00	UNK_CS9	HLD_CS9[2:0]			UNK_CS8		HLD_CS8[2:0)]
0xB7	R/W	0x00	UNK_CS11	HLD_CS11[2:0]			UNK_CS10		HLD_CS10[2:	0]
0xB8	R/W	0x00	UNK_CS13		HLD_CS12[2:0)]	UNK_CS12	HLD_CS12[2:0]		
0xB9	R/W	0x00	UNK_CS15	HLD_CS15[2:0]			UNK_CS14		HLD_CS14[2:	0]
0xBA	R/W	0x00	UNK_CS17	HLD_CS17[2:0]		UNK_CS16	HLD_CS16[2:0]		0]	
0xBB	R/W	0x00	UNK_CS19	HLD_CS19[2:0])]	UNK_CS18	HLD_CS18[2:0]		

【0xBC:スイッチ検出時間設定】

Name: TIME_DET_CFG

Address: 0xBC

Description: スイッチの検出時間を設定するためのレジスタです。1 点目のスイッチが触られた後、フィルタの遅延時間

+スイッチ検出時間の後、初めてスイッチが ON したと判定されます。1 点目のスイッチ ON 検出後、2 点目 以降のスイッチは ON 判定されません。ただし上記時間内に多重押しセンサが押された場合は、多重押し操

作が行われたと判定し、多重押し検出を実行します。

スイッチ検出時間 = TIME_DET[7:0] x 約 10ms

	Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ī	0xBC	R/W	0x00				TIME_0	DET[7:0]			

【0xBD-0xD4: 多重押しセンサ設定】 Name: SENS_MULT_CFG

Address: 0xBD-0xD4

Description: 多重押しを検出するセンサの組み合わせを決定するためのレジスタです。多重押し検出用の組み合わせとして A~Hの8種類設定することができます。多重押しを検出すると、レジスタ"スイッチ多重押しON検出"

に1が設定されます。多重押しセンサA~Hに、同一の設定がされた場合、その設定は無効になります。

MULT_A_CS*=0:多重押しセンサAとしてセンサ*を割り当てないMULT_A_CS*=1:多重押しセンサAとしてセンサ*を割り当てるMULT_B_CS*=0:多重押しセンサBとしてセンサ*を割り当てないMULT_B_CS*=1:多重押しセンサBとしてセンサ*を割り当てるMULT_C_CS*=0:多重押しセンサCとしてセンサ*を割り当てないMULT_C_CS*=1:多重押しセンサCとしてセンサ*を割り当てるMULT_D_CS*=1:多重押しセンサDとしてセンサ*を割り当てないMULT_D_CS*=1:多重押しセンサDとしてセンサ*を割り当てるMULT_B_CS*=0:多重押しセンサBとしてセンサ*を割り当てるMULT_E_CS*=0:多重押しセンサEとしてセンサ*を割り当てない

MULT_E_CS*=0: 多重押しセンサ E としてセンサ*を割り当てない MULT_E_CS*=1: 多重押しセンサ E としてセンサ*を割り当てる

MULT_F_CS*=0:多重押しセンサ F としてセンサ*を割り当てない MULT_F_CS*=1:多重押しセンサ F としてセンサ*を割り当てる

MULT_G_CS*=0: 多重押しセンサ G としてセンサ*を割り当てない MULT_G_CS*=1: 多重押しセンサ G としてセンサ*を割り当てる

 $MULT_H_CS^*=0:$ 多重押しセンサ H としてセンサ*を割り当てない $MULT_H_CS^*=1:$ 多重押しセンサ H としてセンサ*を割り当てる

*:0~19 のセンサ端子 No.を意味します。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xBD	R/W	0x00	MULT_A _CS7	MULT_A _CS6	MULT_A _CS5	MULT_A _CS4	MULT_A _CS3	MULT_A _CS2	MULT_A _CS1	MULT_A _CS0
0xBE	R/W	0x00	MULT_A _CS15	MULT_A _CS14	MULT_A _CS13	MULT_A _CS12	MULT_A _CS11	MULT_A _CS10	MULT_A _CS9	MULT_A _CS8
0xBF	R/W	0x00	-	-	-	-	MULT_A _CS19	MULT_A _CS18	MULT_A _CS17	MULT_A _CS16
0xC0	R/W	0x00	MULT_B _CS7	MULT_B _CS6	MULT_B _CS5	MULT_B _CS4	MULT_B _CS3	MULT_B _CS2	MULT_B _CS1	MULT_B _CS0
0xC1	R/W	0x00	MULT_B _CS15	MULT_B _CS14	MULT_B _CS13	MULT_B _CS12	MULT_B _CS11	MULT_B _CS10	MULT_B _CS9	MULT_B _CS8
0xC2	R/W	0x00	-	-	-	-	MULT_B _CS19	MULT_B _CS18	MULT_B _CS17	MULT_B _CS16
0xC3	R/W	0x00	MULT_C _CS7	MULT_C _CS6	MULT_C _CS5	MULT_C _CS4	MULT_C _CS3	MULT_C _CS2	MULT_C _CS1	MULT_C _CS0
0xC4	R/W	0x00	MULT_C _CS15	MULT_C _CS14	MULT_C _CS13	MULT_C _CS12	MULT_C _CS11	MULT_C _CS10	MULT_C _CS9	MULT_C _CS8
0xC5	R/W	0x00	-	-	-	-	MULT_C _CS19	MULT_C _CS18	MULT_C _CS17	MULT_C _CS16
0xC6	R/W	0x00	MULT_D _CS7	MULT_D _CS6	MULT_D _CS5	MULT_D _CS4	MULT_D _CS3	MULT_D _CS2	MULT_D _CS1	MULT_D _CS0
0xC7	R/W	0x00	MULT_D _CS15	MULT_D _CS14	MULT_D _CS13	MULT_D _CS12	MULT_D _CS11	MULT_D _CS10	MULT_D _CS9	MULT_D _CS8
0xC8	R/W	0x00	-	-	-	-	MULT_D _CS19	MULT_D _CS18	MULT_D _CS17	MULT_D _CS16
0xC9	R/W	0x00	MULT_E _CS7	MULT_E _CS6	MULT_E _CS5	MULT_E _CS4	MULT_E _CS3	MULT_E _CS2	MULT_E _CS1	MULT_E _CS0
0xCA	R/W	0x00	MULT_E _CS15	MULT_E _CS14	MULT_E _CS13	MULT_E _CS12	MULT_E _CS11	MULT_E _CS10	MULT_E _CS9	MULT_E _CS8
0xCB	R/W	0x00	-	-	-	-	MULT_E _CS19	MULT_E _CS18	MULT_E _CS17	MULT_E _CS16
0xCC	R/W	0x00	MULT_F _CS7	MULT_F _CS6	MULT_F _CS5	MULT_F _CS4	MULT_F _CS3	MULT_F _CS2	MULT_F _CS1	MULT_F _CS0
0xCD	R/W	0x00	MULT_F _CS15	MULT_F _CS14	MULT_F _CS13	MULT_F _CS12	MULT_F _CS11	MULT_F _CS10	MULT_F _CS9	MULT_F _CS8
0xCE	R/W	0x00	-	-	-	-	MULT_F _CS19	MULT_F _CS18	MULT_F _CS17	MULT_F _CS16
0xCF	R/W	0x00	MULT_G _CS7	MULT_G _CS6	MULT_G _CS5	MULT_G _CS4	MULT_G _CS3	MULT_G _CS2	MULT_G _CS1	MULT_G _CS0
0xD0	R/W	0x00	MULT_G _CS15	MULT_G _CS14	MULT_G _CS13	MULT_G _CS12	MULT_G _CS11	MULT_G _CS10	MULT_G _CS9	MULT_G _CS8
0xD1	R/W	0x00	-	-	-	-	MULT_G _CS19	MULT_G _CS18	MULT_G _CS17	MULT_G _CS16
0xD2	R/W	0x00	MULT_H _CS7	MULT_H _CS6	MULT_H _CS5	MULT_H _CS4	MULT_H _CS3	MULT_H _CS2	MULT_H _CS1	MULT_H _CS0
0xD3	R/W	0x00	MULT_H _CS15	MULT_H _CS14	MULT_H _CS13	MULT_H _CS12	MULT_H _CS11	MULT_H _CS10	MULT_H _CS9	MULT_H _CS8
0xD4	R/W	0x00	-	-	-	-	MULT_H _CS19	MULT_H _CS18	MULT_H _CS17	MULT_H _CS16

【0xD5-0xD6: 割り込み要因マスク設定】

Name: MSK_INTERRUPT_CFG

Address: 0xD5-0xD6

Description: レジスタ "<u>割り込み要因</u>" をマスクします。マスクされた割り込みはレジスタ "<u>割り込み要因</u>" に反映され

なくなります。

0:割り込みがマスクされません 1:割り込みがマスクされます

MSK_INT_FINCAL :ソフトキャリブレーション完了割り込みマスク設定

ソフトキャリブレーションが完了すると 1 が設定されるレジスタ "割り込み要因"の

INT_FINCAL をマスクします。

MSK_INT_FALCAL :キャリブレーション失敗割り込みマスク設定

キャリブレーション失敗時に 1 が設定されるレジスタ "<u>割り込み要因</u>"の INT_FALCAL をマス

クします。

MSK_INT_NOISE :ノイズ検出割り込みマスク設定

ノイズ検知とみなされるスイッチ状態を検出すると 1 が設定されるレジスタ "割り込み要因"

の INT_NOISE をマスクします。

MSK_INT_AVDDON : AVDD ON 検出割り込みマスク設定

AVDD 電圧が出力されると 1 が設定されるレジスタ "割り込み要因"の INT_AVDDON をマスク

します。

MSK_INT_AVDDOFF : AVDD OFF 検出割り込みマスク設定

AVDD 電圧が出力されないと 1 が設定されるレジスタ "割り込み要因"の INT_AVDDOFF をマ

スクします。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xD5	R/W	0x00	MSK_INT _NOISE	-	-	-	MSK_INT FALCAL	MSK_INT FINCAL	-	-
0xD6	R/W	0x00	ı	-	-	-	-	-	MSK_INT AVDDOFF	MSK_INT AVDDON

【0xD7-0xD9: スイッチ ON 検出マスク設定】

Name: MSK_DET_ON_CFG

Address: 0xD7-0xD9

Description: レジスタ "スイッチ ON 検出" の割り込みをマスクします。マスクされた割り込みはレジスタ "スイッチ ON

検出"に反映されなくなります。

0:割り込みがマスクされません 1:割り込みがマスクされます

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xD7	R/W	0x00	MSK_DET ON CS7	MSK_DET ON CS6	MSK_DET ON CS5	MSK_DET ON CS4	MSK_DET ON CS3	MSK_DET ON CS2	MSK_DET ON CS1	MSK_DET ON CS0
0xD8	R/W	0x00	MSK_DET _ON_CS15	MSK_DET _ON_CS14	MSK_DET _ON_CS13	MSK_DET _ON_CS12	MSK_DET _ON_CS11	MSK_DET _ON_CS10	MSK_DET _ON_CS9	MSK_DET _ON_CS8
0xD9	R/W	0x00	-	-	-	-	MSK_DET ON CS19	MSK_DET ON CS18	MSK_DET ON CS17	MSK_DET ON CS16

【0xDA-0xDC:スイッチ OFF 検出マスク設定】

Name: MSK_DET_OFF_CFG

Address: 0xDA-0xDC

Description: レジスタ "スイッチ OFF 検出"の割り込みをマスクします。マスクされた割り込みはレジスタ "スイッチ

OFF 検出"に反映されなくなります。

0:割り込みがマスクされません 1:割り込みがマスクされます

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xDA	R/W	0x00	MSK_DET _OFF_CS7	MSK_DET _OFF_CS6	MSK_DET _OFF_CS5	MSK_DET _OFF_CS4	MSK_DET _OFF_CS3	MSK_DET _OFF_CS2	MSK_DET _OFF_CS1	MSK_DET _OFF_CS0
0xDB	R/W	0x00	MSK_DET _OFF_CS15	MSK_DET _OFF_CS14	MSK_DET _OFF_CS13	MSK_DET _OFF_CS12	MSK_DET _OFF_CS11	MSK_DET _OFF_CS10	MSK_DET _OFF_CS9	MSK_DET _OFF_CS8
0xDC	R/W	0x00	=	=	-	-	MSK_DET _OFF_CS19	MSK_DET _OFF_CS18	MSK_DET _OFF_CS17	MSK_DET _OFF_CS16

【0xDD-0xDF:スイッチ異常長押し検出マスク設定】

MSK_DET_UNKNOWN_CFG 0xDD-0xDF Name:

Address:

Description: レジスタ "スイッチ異常長押し検出"の割り込みをマスクします。マスクされた割り込みはレジスタ "スイ

ッチ異常長押し検出"に反映されなくなります。

0:割り込みがマスクされません 1:割り込みがマスクされます

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xDD	R/W	0x00	MSK_UNK _CS7	MSK_UNK _CS6	MSK_UNK _CS5	MSK_UNK _CS4	MSK_UNK _CS3	MSK_UNK _CS2	MSK_UNK _CS1	MSK_UNK _CS0
0xDE	R/W	0x00	MSK_UNK _CS15	MSK_UNK _CS14	MSK_UNK _CS13	MSK_UNK _CS12	MSK_UNK _CS11	MSK_UNK _CS10	MSK_UNK _CS9	MSK_UNK _CS8
0xDF	R/W	0x00	-	-	-	-	MSK_UNK _CS19	MSK_UNK _CS18	MSK_UNK _CS17	MSK_UNK _CS16

コマンドレジスタ説明

【0xE0-0xE1:割り込み要因クリアコマンド】

Name: CLR_INTERRUPT_CMD

Address: 0xE0-0xE1

Description: レジスタ "割り込み要因"のクリアコマンドレジスタです。

0:割り込みがクリアされます 1:割り込みがクリアされません

CLR_INT_FININI :初期化完了割り込みクリア

MPU による初期化が完了すると 1 が設定されるレジスタ "<u>割り込み要因</u>"の INT_FININI をク

リアします。

CLR_INT_FINCAL :ソフトキャリブレーション完了割り込みクリア

ソフトキャリブレーションが完了すると 1 が設定されるレジスタ "<u>割り込み要因</u>"の

INT_FINCAL をクリアします。

CLR_INT_FALCAL :キャリブレーション失敗割り込みクリア

キャリブレーション失敗すると 1 が設定されるレジスタ "割り込み要因"の INT_FALCAL をク

リアします。

CLR_INT_NOISE :ノイズ検出割り込みクリア

ノイズ検知とみなされるスイッチ状態を検出すると 1 が設定されるレジスタ"割り込み要因"

の INT_NOISE をクリアします。

CLR_INT_AVDDON : AVDD ON 検出割り込みクリア

AVDD 電圧が出力されると 1 が設定されるレジスタ "割り込み要因"の INT_AVDDON をクリア

します。

CLR_INT_AVDDOFF : AVDD OFF 検出割り込みクリア

AVDD 電圧が出力されないと 1 が設定されるレジスタ "割り込み要因"の INT_AVDDOFF をク

リアします。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xE0	R/W	0x00	CLR_INT _NOISE	-	-	-	CLR_INT _FALCAL	CLR_INT _FINCAL	-	CLR_INT _FININI
0xE1	R/W	0x00	-	-	-	-	-	-	CLR_INT_ AVDDOFF	CLR_INT_ AVDDON

【0xE2-0xE4: スイッチ ON 検出クリアコマンド】

Name: CLR_DET_ON_CMD

Address: 0xE2-0xE4

Description: レジスタ "<u>スイッチ ON 検出</u>"の割り込みクリアコマンドレジスタです。

0:割り込みがクリアされます 1:割り込みがクリアされません

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xE2	R/W	0x00	CLR_DET _ON_CS7	CLR_DET _ON_CS6	CLR_DET _ON_CS5	CLR_DET _ON_CS4	CLR_DET _ON_CS3	CLR_DET _ON_CS2	CLR_DET _ON_CS1	CLR_DET _ON_CS0
0xE3	R/W	0x00	CLR_DET _ON_CS15	CLR_DET _ON_CS14	CLR_DET _ON_CS13	CLR_DET _ON_CS12	CLR_DET _ON_CS11	CLR_DET _ON_CS10	CLR_DET _ON_CS9	CLR_DET _ON_CS8
0xE4	R/W	0x00	1	1	-	-	CLR_DET _ON_CS19	CLR_DET _ON_CS18	CLR_DET _ON_CS17	CLR_DET _ON_CS16

【0xE5-0xE7:スイッチ OFF 検出クリアコマンド】

Name: CLR_DET_OFF_CMD

Address: 0xE5-0xE7

Description: レジスタ " $\underline{\text{A}}$ $\underline{\text$

0:割り込みがクリアされます 1:割り込みがクリアされません

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xE5	R/W	0x00	CLR_DET _OFF_CS7	CLR_DET _OFF_CS6	CLR_DET _OFF_CS5	CLR_DET _OFF_CS4	CLR_DET _OFF_CS3	CLR_DET _OFF_CS2	CLR_DET _OFF_CS1	CLR_DET _OFF_CS0
0xE6	R/W	0x00	CLR_DET _OFF_CS15	CLR_DET _OFF_CS14	CLR_DET _OFF_CS13	CLR_DET _OFF_CS12	CLR_DET _OFF_CS11	CLR_DET _OFF_CS10	CLR_DET _OFF_CS9	CLR_DET _OFF_CS8
0xE7	R/W	0x00	-	-	-	-	CLR_DET OFF CS19	CLR_DET OFF CS18	CLR_DET OFF CS17	CLR_DET OFF CS16

【0xE8-0xEA:スイッチ長押し検出クリアコマンド】

Name: CLR_DET_HLD_CMD

Address: 0xE8-0xEA

Description: レジスタ "ス<u>イッチ長押し検出</u>"の割り込みクリアコマンドレジスタです。

0:割り込みがクリアされます 1:割り込みがクリアされません

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xE8	R/W	0x00	CLR_HLD _CS7	CLR_HLD _CS6	CLR_HLD _CS5	CLR_HLD _CS4	CLR_HLD _CS3	CLR_HLD _CS2	CLR_HLD _CS1	CLR_HLD _CS0
0xE9	R/W	0x00	CLR_HLD _CS15	CLR_HLD _CS14	CLR_HLD _CS13	CLR_HLD _CS12	CLR_HLD _CS11	CLR_HLD _CS10	CLR_HLD _CS9	CLR_HLD _CS8
0xEA	R/W	0x00	-	-	-	-	CLR_HLD _CS19	CLR_HLD _CS18	CLR_HLD _CS17	CLR_HLD _CS16

【0xEB-0xED:スイッチ長押しリピート検出クリアコマンド】

Name: CLR_DET_HLDRPT

Address: 0xEB-0xED

Description: レジスタ "スイッチ長押しリピート検出"の割り込みクリアコマンドレジスタです。

0:割り込みがクリアされます 1:割り込みがクリアされません

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xEB	R/W	0x00	CLR_HLD RPT_CS7	CLR_HLD RPT_CS6	CLR_HLD RPT_CS5	CLR_HLD RPT_CS4	CLR_HLD RPT_CS3	CLR_HLD RPT_CS2	CLR_HLD RPT_CS1	CLR_HLD RPT_CS0
0xEC	R/W	0x00	CLR_HLD RPT_CS15	CLR_HLD RPT_CS14	CLR_HLD RPT_CS13	CLR_HLD RPT_CS12	CLR_HLD RPT_CS11	CLR_HLD RPT_CS10	CLR_HLD RPT_CS9	CLR_HLD RPT_CS8
0xED	R/W	0x00	-	-	-	-	CLR_HLD RPT_CS19	CLR_HLD RPT_CS18	CLR_HLD RPT_CS17	CLR_HLD RPT_CS16

【0xEE:スイッチ多重押しON検出クリアコマンド】

Name: CLR_DET_MULT_ON

Address: 0xEE

Description: レジスタ "スイッチ多重押し ON 検出"の割り込みクリアコマンドレジスタです。

0:割り込みがクリアされます 1:割り込みがクリアされません

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xEE	R/W	0x00	CLR_MULT ON H	CLR_MULT ON G	CLR_MULT ON F	CLR_MULT ON E	CLR_MULT ON D	CLR_MULT ON C	CLR_MULT ON B	CLR_MULT ON A

【0xEF:スイッチ多重押し OFF 検出クリアコマンド】

Name: CLR_ DET_MULT_OFF

Address: 0xEF

Description: レジスタ "スイッチ多重押し OFF 検出"の割り込みクリアコマンドレジスタです。

0:割り込みがクリアされます 1:割り込みがクリアされません

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xEE	R/W	0x00	CLR_MULT OFF H	CLR_MULT	CLR_MULT OFF F	CLR_MULT	CLR_MULT	CLR_MULT OFF C	CLR_MULT OFF B	CLR_MULT

【0xF0-0xF2:スイッチ異常長押し検出クリアコマンド】

Name: CLR_DET_UNKNOWN

Address: 0xF0-0xF2

Description: レジスタ "<u>スイッチ異常長押し検出</u>"の割り込みクリアコマンドレジスタです。

0:割り込みがクリアされます 1:割り込みがクリアされません

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xF0	R/W	0x00	CLR_UNK _CS7	CLR_UNK _CS6	CLR_UNK _CS5	CLR_UNK _CS4	CLR_UNK _CS3	CLR_UNK _CS2	CLR_UNK _CS1	CLR_UNK _CS0
0xF1	R/W	0x00	CLR_UNK _CS15	CLR_UNK _CS14	CLR_UNK _CS13	CLR_UNK _CS12	CLR_UNK _CS11	CLR_UNK _CS10	CLR_UNK _CS9	CLR_UNK _CS8
0xF2	R/W	0x00	-	-	-	-	CLR_UNK CS19	CLR_UNK CS18	CLR_UNK CS17	CLR_UNK CS16

【0xF3-0xF4: ソフトウエアリセットコマンド】

Name: SWRST CMD Address: 0xF3-0xF4

Description: IC のソフトウエアリセット用のコマンドレジスタです。アドレス 0xF3 に 0x55、アドレス 0xF4 に 0xAA の

両方が書き込まれた状態が成立すると IC が初期化され、すべてのレジスタがクリアされます。

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xF3	R/W	0x00		SRST[7:0]						
0xF4	R/W	0x00	SRST[15:8]							

【0xFE: AVDD 制御コマンド】

Name: AVDD_CMD Address: 0xFE

Description: AVDD LDO を制御用のコマンドレジスタです。

AVDD_ON :AVDD LDO 制御設定

> 0:AVDD 停止 1:AVDD 起動

SEL_AVDD[1:0]:AVDD LDO 出力電圧設定

SEL_AVDD[1:0] = 0x0: AVDD 電圧=2.8V

= 0x1: AVDD 電圧=2.7V = 0x2: AVDD 電圧=2.6V = 0x3: AVDD 電圧=2.5V

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xFE	R/W	0x00	-	-	SEL_A\	/DD[1:0]	-	•	-	AVDD_ON

【0xFF:検出コマンド】

Name: SENS_CMD Address: 0xFF

Description: 検出動作設定用のコマンドレジスタです。

STR_AFE :検出開始コマンド

> 0:検出停止 1:検出開始

:ソフトキャリブレーションコマンド STR_CAL

0:キャリブレーション未実行 1:キャリブレーション実行

STR_CFG :設定値反映コマンド

コンフィグレーションレジスタの設定値を反映させるためのコマンドです。設定変更時に STR_CFG を 1

に設定したうえ、STR_CAL,STR_AFE を 1 に設定して検出を開始してください。

ĺ	Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	0xFF	R/W	0x00	=	-	-	=	-	STR_CFG	STR_CAL	STR_AFE

使用上の注意

1.電源の逆接続について

電源コネクタの逆接続により LSI が破壊する恐れがあります。逆接続破壊保護用として外部に電源と LSI の電源端子 間にダイオードを入れるなどの対策を施してください。

2.電源ラインについて

基板パターンの設計においては、電源ラインの配線は、低インピーダンスになるようにしてください。グラウンドラインについても、同様のパターン設計を考慮してください。また、LSIのすべての電源端子について電源ーグラウンド端子間にコンデンサを挿入するとともに、電解コンデンサ使用の際は、低温で容量低下が起こることなど使用するコンデンサの諸特性に問題ないことを十分ご確認のうえ、定数を決定してください。

3.グラウンド電位について

グラウンド端子の電位はいかなる動作状態においても、最低電位になるようにしてください。また実際に過渡現象を 含め、グラウンド端子以外のすべての端子がグラウンド以下の電圧にならないようにしてください。

4.グラウンド配線パターンについて

小信号グラウンドと大電流グラウンドがある場合、大電流グラウンドパターンと小信号グラウンドパターンは分離し、パターン配線の抵抗分と大電流による電圧変化が小信号グラウンドの電圧を変化させないように、セットの基準点で 1 点アースすることを推奨します。外付け部品のグラウンドの配線パターンも変動しないよう注意してください。グラウンドラインの配線は、低インピーダンスになるようにしてください。

5.推奨動作条件について

推奨動作条件で規定される範囲で IC の機能・動作を保証します。また、特性値は電気的特性で規定される各項目の 条件下においてのみ保証されます。

6.ラッシュカレントについて

IC 内部論理回路は、電源投入時に論理不定状態で、瞬間的にラッシュカレントが流れる場合がありますので、電源カップリング容量や電源、グラウンドパターン配線の幅、引き回しに注意してください。

7.セット基板での検査について

セット基板での検査時に、インピーダンスの低いピンにコンデンサを接続する場合は、IC にストレスがかかる恐れがあるので、1 工程ごとに必ず放電を行ってください。静電気対策として、組立工程にはアースを施し、運搬や保存の際には十分ご注意ください。また、検査工程での治具への接続をする際には必ず電源を OFF にしてから接続し、電源を OFF にしてから取り外してください。

8.端子間ショートと誤装着について

プリント基板に取り付ける際、IC の向きや位置ずれに十分注意してください。誤って取り付けた場合、IC が破壊する恐れがあります。また、出力と電源及びグラウンド間、出力間に異物が入るなどしてショートした場合についても破壊の恐れがあります。

9.未使用の入力端子の処理について

CMOS トランジスタの入力は非常にインピーダンスが高く、入力端子をオープンにすることで論理不定の状態になります。これにより内部の論理ゲートの p チャネル、n チャネルトランジスタが導通状態となり、不要な電源電流が流れます。また 論理不定により、想定外の動作をすることがあります。よって、未使用の端子は特に仕様書上でうたわれていない限り、適切な電源、もしくはグラウンドに接続するようにしてください。

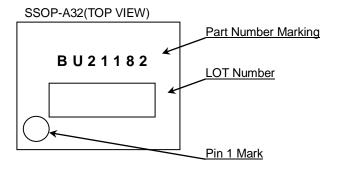
使用上の注意 ― 続き

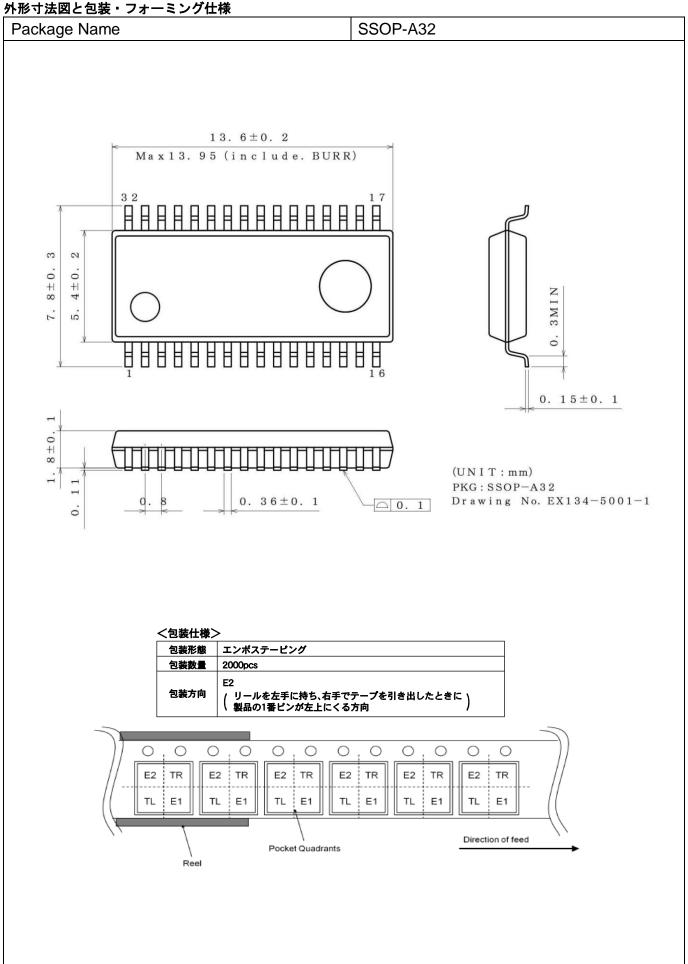
10.各入力端子について

LSI の構造上、寄生素子は電位関係によって必然的に形成されます。寄生素子が動作することにより、回路動作の干渉を引き起こし、誤動作、ひいては破壊の原因となり得ます。したがって、入力端子にグラウンドより低い電圧を印加するなど、寄生素子が動作するような使い方をしないよう十分注意してください。また、LSI に電源電圧を印加していないとき、入力端子に電圧を印加しないでください。さらに、電源電圧を印加している場合にも、各入力端子は電源電圧以下の電圧もしくは電気的特性の保証値内としてください。

11.セラミック・コンデンサの特性変動について

外付けコンデンサに、セラミック・コンデンサを使用する場合、直流バイアスによる公称容量の低下、及び温度などによる容量の変化を考慮のうえ定数を決定してください。


12.過電流保護回路について


出力には電流能力に応じた過電流保護回路が内部に内蔵されているため、負荷ショート時には IC 破壊を防止しますが、この保護回路は突発的な事故による破壊防止に有効なもので、連続的な保護回路動作、過渡時でのご使用に対応するものではありません。

発注形名情報

標印図

改訂履歴

Date	Revision	Changes
2019.02.05	001	新規作成

ご注意

ローム製品取扱い上の注意事項

1. 本製品は一般的な電子機器(AV機器、OA機器、通信機器、家電製品、アミューズメント機器等)への使用を意図して設計・製造されております。したがいまして、極めて高度な信頼性が要求され、その故障や誤動作が人の生命、身体への危険もしくは損害、又はその他の重大な損害の発生に関わるような機器又は装置(医療機器(Note 1)、輸送機器、交通機器、航空宇宙機器、原子力制御装置、燃料制御、カーアクセサリを含む車載機器、各種安全装置等)(以下「特定用途」という)への本製品のご使用を検討される際は事前にローム営業窓口までご相談くださいますようお願い致します。ロームの文書による事前の承諾を得ることなく、特定用途に本製品を使用したことによりお客様又は第三者に生じた損害等に関し、ロームは一切その責任を負いません。

(Note 1) 特定用途となる医療機器分類

	日本	USA	EU	中国	
Ī	CLASSⅢ	CLACCIII	CLASS II b	Ⅲ 米百	
	CLASSIV	CLASSⅢ	CLASSⅢ	Ⅲ類	

- 2. 半導体製品は一定の確率で誤動作や故障が生じる場合があります。万が一、かかる誤動作や故障が生じた場合であっても、本製品の不具合により、人の生命、身体、財産への危険又は損害が生じないように、お客様の責任において次の例に示すようなフェールセーフ設計など安全対策をお願い致します。
 - ①保護回路及び保護装置を設けてシステムとしての安全性を確保する。
 - ②冗長回路等を設けて単一故障では危険が生じないようにシステムとしての安全を確保する。
- 3. 本製品は、一般的な電子機器に標準的な用途で使用されることを意図して設計・製造されており、下記に例示するような特殊環境での使用を配慮した設計はなされておりません。したがいまして、下記のような特殊環境での本製品のご使用に関し、ロームは一切その責任を負いません。本製品を下記のような特殊環境でご使用される際は、お客様におかれまして十分に性能、信頼性等をご確認ください。
 - ①水・油・薬液・有機溶剤等の液体中でのご使用
 - ②直射日光・屋外暴露、塵埃中でのご使用
 - ③潮風、Cl₂、H₂S、NH₃、SO₂、NO₂ 等の腐食性ガスの多い場所でのご使用
 - ④静電気や電磁波の強い環境でのご使用
 - ⑤発熱部品に近接した取付け及び当製品に近接してビニール配線等、可燃物を配置する場合。
 - ⑥本製品を樹脂等で封止、コーティングしてのご使用。
 - ⑦はんだ付けの後に洗浄を行わない場合(無洗浄タイプのフラックスを使用される場合は除く。ただし、残渣については十分に確認をお願いします。)又は、はんだ付け後のフラックス洗浄に水又は水溶性洗浄剤をご使用の場合
 - ⑧本製品が結露するような場所でのご使用。
- 4. 本製品は耐放射線設計はなされておりません。
- 5. 本製品単体品の評価では予測できない症状・事態を確認するためにも、本製品のご使用にあたってはお客様製品に実装された状態での評価及び確認をお願い致します。
- 6. パルス等の過渡的な負荷 (短時間での大きな負荷) が加わる場合は、お客様製品に本製品を実装した状態で必ず その評価及び確認の実施をお願い致します。また、定常時での負荷条件において定格電力以上の負荷を印加されますと、 本製品の性能又は信頼性が損なわれるおそれがあるため必ず定格電力以下でご使用ください。
- 7. 電力損失は周囲温度に合わせてディレーティングしてください。また、密閉された環境下でご使用の場合は、必ず温度 測定を行い、最高接合部温度を超えていない範囲であることをご確認ください。
- 8. 使用温度は納入仕様書に記載の温度範囲内であることをご確認ください。
- 9. 本資料の記載内容を逸脱して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いません。

実装及び基板設計上の注意事項

- 1. ハロゲン系(塩素系、臭素系等)の活性度の高いフラックスを使用する場合、フラックスの残渣により本製品の性能又は信頼性への影響が考えられますので、事前にお客様にてご確認ください。
- 2. はんだ付けは、表面実装製品の場合リフロー方式、挿入実装製品の場合フロー方式を原則とさせて頂きます。なお、表面実装製品をフロー方式での使用をご検討の際は別途ロームまでお問い合わせください。 その他、詳細な実装条件及び手はんだによる実装、基板設計上の注意事項につきましては別途、ロームの実装仕様書をご確認ください。

Notice-PGA-J Rev.004

応用回路、外付け回路等に関する注意事項

- 1. 本製品の外付け回路定数を変更してご使用になる際は静特性のみならず、過渡特性も含め外付け部品及び本製品のバラッキ等を考慮して十分なマージンをみて決定してください。
- 2. 本資料に記載された応用回路例やその定数などの情報は、本製品の標準的な動作や使い方を説明するためのもので、 実際に使用する機器での動作を保証するものではありません。したがいまして、お客様の機器の設計において、回路や その定数及びこれらに関連する情報を使用する場合には、外部諸条件を考慮し、お客様の判断と責任において行って ください。これらの使用に起因しお客様又は第三者に生じた損害に関し、ロームは一切その責任を負いません。

静電気に対する注意事項

本製品は静電気に対して敏感な製品であり、静電放電等により破壊することがあります。取り扱い時や工程での実装時、保管時において静電気対策を実施のうえ、絶対最大定格以上の過電圧等が印加されないようにご使用ください。特に乾燥環境下では静電気が発生しやすくなるため、十分な静電対策を実施ください。(人体及び設備のアース、帯電物からの隔離、イオナイザの設置、摩擦防止、温湿度管理、はんだごてのこて先のアース等)

保管・運搬上の注意事項

- 1. 本製品を下記の環境又は条件で保管されますと性能劣化やはんだ付け性等の性能に影響を与えるおそれがあります のでこのような環境及び条件での保管は避けてください。
 - ①潮風、Cl₂、H₂S、NH₃、SO₂、NO₂等の腐食性ガスの多い場所での保管
 - ②推奨温度、湿度以外での保管
 - ③直射日光や結露する場所での保管
 - ④強い静電気が発生している場所での保管
- 2. ロームの推奨保管条件下におきましても、推奨保管期限を経過した製品は、はんだ付け性に影響を与える可能性があります。推奨保管期限を経過した製品は、はんだ付け性を確認したうえでご使用頂くことを推奨します。
- 3. 本製品の運搬、保管の際は梱包箱を正しい向き(梱包箱に表示されている天面方向)で取り扱いください。天面方向が 遵守されずに梱包箱を落下させた場合、製品端子に過度なストレスが印加され、端子曲がり等の不具合が発生する 危険があります。
- 4. 防湿梱包を開封した後は、規定時間内にご使用ください。規定時間を経過した場合はベーク処置を行ったうえでご使用ください。

製品ラベルに関する注意事項

本製品に貼付されている製品ラベルに2次元バーコードが印字されていますが、2次元バーコードはロームの社内管理のみを目的としたものです。

製品廃棄上の注意事項

本製品を廃棄する際は、専門の産業廃棄物処理業者にて、適切な処置をしてください。

外国為替及び外国貿易法に関する注意事項

本製品は外国為替及び外国貿易法に定める規制貨物等に該当するおそれがありますので輸出する場合には、ロームにお問い合わせください。

知的財産権に関する注意事項

- 1. 本資料に記載された本製品に関する応用回路例、情報及び諸データは、あくまでも一例を示すものであり、これらに関する第三者の知的財産権及びその他の権利について権利侵害がないことを保証するものではありません。
- 2. ロームは、本製品とその他の外部素子、外部回路あるいは外部装置等(ソフトウェア含む)との組み合わせに起因して生じた紛争に関して、何ら義務を負うものではありません。
- 3. ロームは、本製品又は本資料に記載された情報について、ロームもしくは第三者が所有又は管理している知的財産権 そ の他の権利の実施又は利用を、明示的にも黙示的にも、お客様に許諾するものではありません。 ただし、本製品を通 常の用法にて使用される限りにおいて、ロームが所有又は管理する知的財産権を利用されることを妨げません。

その他の注意事項

- 1. 本資料の全部又は一部をロームの文書による事前の承諾を得ることなく転載又は複製することを固くお断り致します。
- 2. 本製品をロームの文書による事前の承諾を得ることなく、分解、改造、改変、複製等しないでください。
- 3. 本製品又は本資料に記載された技術情報を、大量破壊兵器の開発等の目的、軍事利用、あるいはその他軍事用途目的で使用しないでください。
- 4. 本資料に記載されている社名及び製品名等の固有名詞は、ローム、ローム関係会社もしくは第三者の商標又は登録商標です。

Notice-PGA-J Rev.004

一般的な注意事項

- 1. 本製品をご使用になる前に、本資料をよく読み、その内容を十分に理解されるようお願い致します。本資料に記載される注意事項に反して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いませんのでご注意願います。
- 2. 本資料に記載の内容は、本資料発行時点のものであり、予告なく変更することがあります。本製品のご購入及びご使用に際しては、事前にローム営業窓口で最新の情報をご確認ください。
- 3. ロームは本資料に記載されている情報は誤りがないことを保証するものではありません。万が一、本資料に記載された情報の誤りによりお客様又は第三者に損害が生じた場合においても、ロームは一切その責任を負いません。

Notice – WE Rev.001