

Hall Effect Latch

BD54132G-LBZ

概要

本製品は産業機器市場へ向けたランクの製品です。これらのアプリケーションとしてご使用される場合に最適な商品です。

BD54132G-LBZ は、幅広い動作電圧範囲・動作温度範囲 を持つ Latch タイプのホール IC です。

チョッピング方式を行っているため、安定した高精度な 磁界検出が可能です。

この IC は、逆接続保護と OUT 過電流保護を搭載しています。

重要特性

■ 電源電圧範囲: 2.5 V ~ 38 V ■ 動作磁束密度: 2.7 mT (Typ) ■ 復帰磁束密度: -2.7 mT (Typ) ■ 磁界入力周波数: 20 kHz (Max)

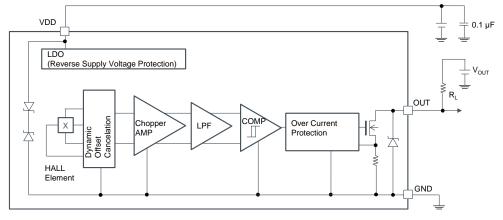
消費電流: 1.3 mA (Typ) 出力形式: Nch オープンドレイン出力

■ 動作温度範囲: -40 °C ~ +150 °C

特長

- Latch タイプ
- Nch オープンドレイン出力
- OUT 過電流保護回路内蔵
- VDD 逆接続保護回路内蔵

用途

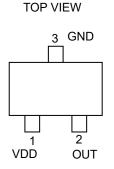

■ 産業機器、回転検出、位置検出

パッケージ SSOP3A

W (Typ) x D (Typ) x H (Max) 2.92 mm x 2.4 mm x 1.12 mm

基本アプリケーション回路・ブロック図

バイパスコンデンサの値は セットの電源ノイズなどの 状況によって調整してください。


 $R_L = 1 k\Omega (V_{OUT} = 12 V)$

端子説明

端子番号	端子名	機能
1	VDD	電源供給 ^(Note 1)
2	OUT	出力端子
3	GND	Ground

(Note 1) VDD-GND の端子近傍にパスコンを実装してください。

端子配置図

目次

概要	1
特長	1
重要特性	1
パッケージ	1
用途	1
基本アプリケーション回路・ブロック図	1
端子説明	
端子配置図	1
磁気的特性	
電気的特性	
= 2 (1) 1 1 1 1 1 1 1 1 1	
Figure 1. Operate Point, Release Point vs Ambient Temperature	
Figure 2. Operate Point, Release Point vs Supply Voltage	
Figure 3. Output Low Voltage vs Ambient Temperature	
Figure 4. Output Low Voltage vs Supply Voltage	
Figure 5. Supply Current vs Ambient Temperature	
Figure 6. Supply Current vs Supply Voltage	6
Figure 7. Output Current Limitation vs Ambient Temperature	6
動作説明	7
電源投入時の動作について	8
磁石の選定について	8
ホール素子位置	8
出力等価回路	8
使用上の注意	c
発注形名情報	11
標印図	11
外形寸法図と包装・フォーミング仕様	12
改訂履歴	13

絶対最大定格 (Ta = 25 °C)

項目	記号	定格	単位
電源電圧	V_{DD}	-36 ~ +42	V
出力電圧	Vouт	-0.3 ~ +42	V
連続出力電流	Іоит	25	mA
保存温度範囲	Tstg	-55 ~ +150	°C
最高接合部温度	Tjmax	150	°C

注意1:印加電圧及び動作温度範囲などの絶対最大定格を超えた場合は、劣化または破壊に至る可能性があります。また、ショートモードもしくはオープンモ ードなど、破壊状態を想定できません。絶対最大定格を超えるような特殊モードが想定される場合、ヒューズなど物理的な安全対策を施していただけ るようご検討お願いします。

注意 2: 最高接合部温度を超えるようなご使用をされますと、チップ温度上昇により、IC 本来の性質を悪化させることにつながります。最高接合部温度を超え る場合は基板サイズを大きくする、放熱用銅箔面積を大きくする、放熱板を使用するなど、最高接合部温度を超えないよう熱抵抗にご配慮ください。

熱抵抗(Note 2)

項目		熱抵抗	単位	
		1 層基板 ^(Note 4)	4 層基板 ^(Note 5)	丰四
SSOP3A				
ジャンクション—周囲温度間熱抵抗	θ_{JA}	465.9	265.1	°C/W
ジャンクション—パッケージ上面中心間熱特性パラメータ(Note 3)	Ψ_{JT}	48	52	°C/W

(Note 2) JESD51-2A(Still-Air)に準拠。

(Note 3) ジャンクションからパッケージ (モールド部分) 上面中心までの熱特性パラメータ。

(Note 4) JESD51-3 に準拠した基板を使用。 (Note 5) JESD51-7 に準拠した基板を使用。

<u>(Note 5)</u> JESD51-7 に準拠した基板を使用。							
測定基板	基板材	基板寸法					
1層	FR-4	114.3 mm x 76.2 mm x 1.57 mmt					
1層目(表面)銅箔	i						
銅箔パターン	銅箔厚						
実装ランドパターン +電極引出し用配線	70 µm						
測定基板	基板材	基板寸法					
4 層	FR-4	114.3 mm x 76.2 mm x 1.6 mmt					

1 層目(表面)銅箔		2層目、3層目(内層)銅箔		4層目(裏面)銅箔	
銅箔パターン	銅箔厚	銅箔パターン	銅箔厚	銅箔パターン	銅箔厚
実装ランドパターン +電極引出し用配線	70 µm	74.2 mm口(正方形)	35 µm	74.2 mm□(正方形)	70 µm

推奨動作条件

項目	記号	最小	標準	最大	単位
電源電圧	V_{DD}	2.5	12	38	V
動作温度	Topr	-40	+25	+150	°C

磁気的特性 (特に指定のない限り VDD = 12.0 V Ta = 25°C)

# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
項目	記号	最小	標準	最大	単位	条件
動作磁束密度	Вор	1.0	2.7	4.4	mT	-
復帰磁束密度	B _{RP}	-4.4	-2.7	-1.0	mT	-
ヒステリシス	Внуѕ	-	5.4	-	mT	-

(Note) 磁束密度極性はデバイスの上面に磁石のS極が近づく場合を正極とする。

電気的特性 (特に指定のない限り V_{DD} = 12.0 V Ta = 25°C)

スには11年11 (1年12日AEのなり AB) - 12:0 V 14 - 20 O)							
項目	記号	最小	標準	最大	単位	条件	
起動時間	tpon	-	-	25	μs	-	
出カリーク電流	I _{LEAK}	-	-	10	μA	-	
出力 Low 電圧	V _{OL}	-	-	0.5	V	I _{OUT} = +20 mA	
出力制限電流	ILIMIT	30	55	120	mA	-	
出力立上り時間	tr	-	-	2	μs	V _{OUT} = 12 V	
出力立下り時間	tf	-	-	2	μs	$R_L = 1 \text{ k}\Omega \text{ C}_L = 20 \text{ pF}$	
消費電流	I _{DD}	-	1.3	1.8	mA	-	

特性データ

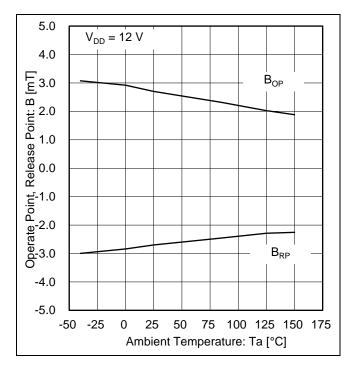


Figure 1. Operate Point, Release Point vs Ambient Temperature

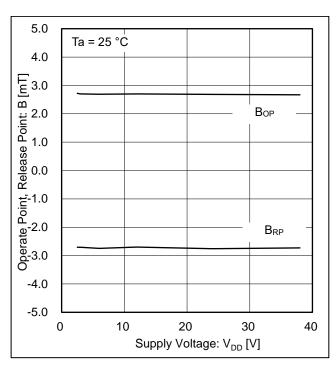


Figure 2. Operate Point, Release Point vs Supply Voltage

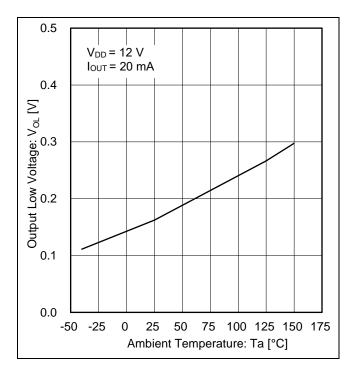


Figure 3. Output Low Voltage vs Ambient Temperature

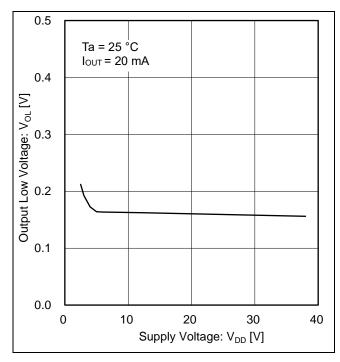


Figure 4. Output Low Voltage vs Supply Voltage

特性データ ― 続き

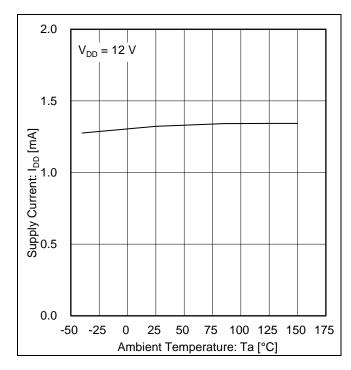


Figure 5. Supply Current vs Ambient Temperature

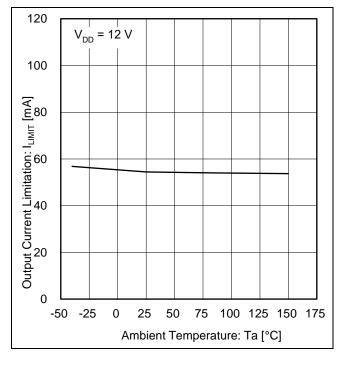


Figure 7. Output Current Limitation vs Ambient Temperature

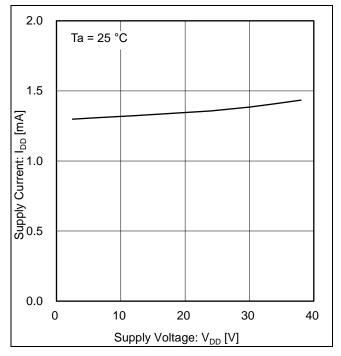


Figure 6. Supply Current vs Supply Voltage

動作説明

(オフセットキャンセル)

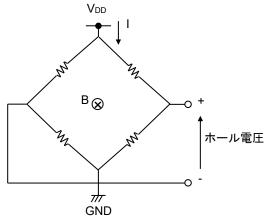


Figure 8. ホール素子等価回路

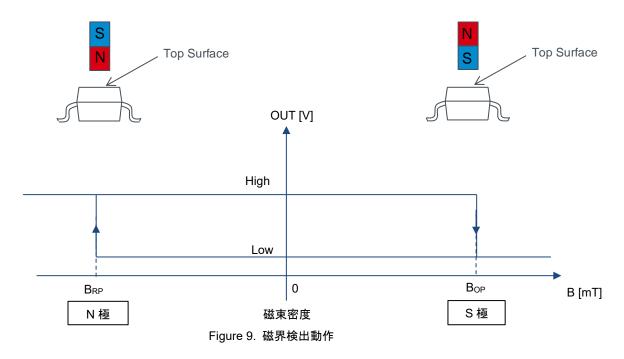

ホール素子は等価的にホイートストンブリッジ回路 (抵抗ブリッジ)で表せます。このブリッジ抵抗の不均衡やパッケージの応力、実装時の応力による抵抗値の変化によってオフセット電圧が発生します。このオフセット電圧をダイナミックオフセットキャンセル回路でキャンセルしています。

Figure 8 のようにホール素子を接続した場合、ホール素子をつらぬく方向に磁界を加えるとブリッジ中点に電圧が発生します。これをホール電圧といいます。

ダイナミックオフセットキャンセルは電流の流れる方向を 90°切換えるように、この図中の配線を切換えることでホール素子のオフセット電圧をキャンセルします。 そして磁気信号のみをサンプルホールド回路で保持し取り出しています。

(磁束方向の定義)

磁束密度極性はデバイスの上面に磁石のS極が近づく場合を正極とする。

OUT は、S極磁界にてLowとなり、N極磁界にてHighとなります。

電源投入時の動作について

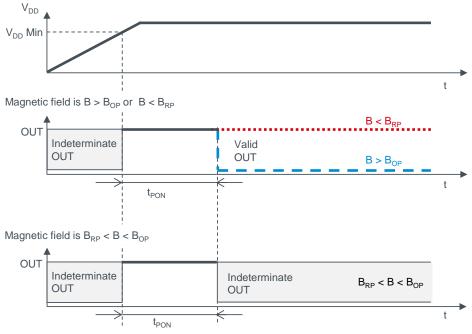


Figure 10. 電源投入時の動作

VDD 投入後、t_{PON} 経過すると OUT が有効になります。 電源立ち上がりシーケンス中、OUT は High (Hi-Z)になります。

tPON を経過した時、磁界が B > BOP または B < BRP の場合に OUT が確定し、

磁界が BRP < B < Bop の場合には OUT は不定で High (Hi-Z)か Low のどちらかになります。

磁石の選定について

永久磁石の代表としてフェライト磁石とネオジウム磁石がありますが、ネオジウム磁石は体積当たりの磁力が強く小型化が可能です。ネオジウム磁石は大きさ(体積)が大きいほど磁束密度が強く、検出距離が遠いほど弱くなります。ホール IC の動作磁束密度に合わせて磁石の大きさと検出距離を選定してください。磁石の検出距離を長くするためには、磁石の厚みを厚くするかまたは断面積を大きくとってください。

ホール素子位置

(参考データ)

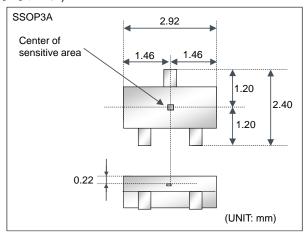


Figure 11. ホール素子位置

出力等価回路

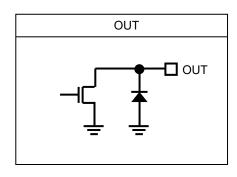


Figure 12. 出力等価回路

使用上の注意

1. 電源の逆接続について

LSI を逆接続による破壊から防ぐため、電源端子に逆接続保護回路を内蔵していますが、絶対最大定格を超える使用はLSI が破壊する恐れがあるため、絶対に避けてください。

2. 電源ラインについて

基板パターンの設計においては、電源ラインの配線は、低インピーダンスになるようにしてください。グラウンドラインについても、同様のパターン設計を考慮してください。また、LSIのすべての電源端子について電源ーグラウンド端子間にコンデンサを挿入するとともに、電解コンデンサ使用の際は、低温で容量低下が起こることなど使用するコンデンサの諸特性に問題ないことを十分ご確認のうえ、定数を決定してください。

3. グラウンド電位について

逆接続保護を行っている端子を除き、グラウンド端子の電位はいかなる動作状態においても、最低電位になるようにしてください。また実際に過渡現象を含め、グラウンド端子、逆接続保護を行っている端子以外がグラウンド以下の電圧にならないようにしてください。

4. グラウンド配線パターンについて

小信号グラウンドと大電流グラウンドがある場合、大電流グラウンドパターンと小信号グラウンドパターンは分離し、パターン配線の抵抗分と大電流による電圧変化が小信号グラウンドの電圧を変化させないように、セットの基準点で 1 点アースすることを推奨します。外付け部品のグラウンドの配線パターンも変動しないよう注意してください。グラウンドラインの配線は、低インピーダンスになるようにしてください。

5. 推奨動作条件について

推奨動作条件で規定される範囲で IC の機能・動作を保証します。また、特性値は電気的特性で規定される各項目の 条件下においてのみ保証されます。

6. ラッシュカレントについて

IC 内部論理回路は、電源投入時に論理不定状態で、瞬間的にラッシュカレントが流れる場合がありますので、電源カップリング容量や電源、グラウンドパターン配線の幅、引き回しに注意してください。

7. セット基板での検査について

セット基板での検査時に、インピーダンスの低い端子にコンデンサを接続する場合は、IC にストレスがかかる恐れがあるので、1 工程ごとに必ず放電を行ってください。静電気対策として、組立工程にはアースを施し、運搬や保存の際には十分ご注意ください。また、検査工程での治具への接続をする際には必ず電源を OFF にしてから接続し、電源を OFF にしてから取り外してください。

使用上の注意 ― 続き

8. 端子間ショートと誤装着について

プリント基板に取り付ける際、IC の向きや位置ずれに十分注意してください。誤って取り付けた場合、IC が破壊する恐れがあります。また、出力と電源及びグラウンド間、出力間に異物が入るなどしてショートした場合についても破壊の恐れがあります。

9. 未使用の入力端子の処理について

CMOS トランジスタの入力は非常にインピーダンスが高く、入力端子をオープンにすることで論理不定の状態になります。これにより内部の論理ゲートの p チャネル、n チャネルトランジスタが導通状態となり、不要な電源電流が流れます。また 論理不定により、想定外の動作をすることがあります。よって、未使用の端子は特に仕様書上でうたわれていない限り、適切な電源、もしくはグラウンドに接続するようにしてください。

10. 各入力端子について

本 IC はモノリシック IC であり、各素子間に素子分離のための P+アイソレーションと、P 基板を有しています。 この P 層と各素子の N 層とで P-N 接合が形成され、各種の寄生素子が構成されます。

例えば、下図のように、抵抗とトランジスタが端子と接続されている場合、

〇抵抗では、GND > (端子 A)の時、トランジスタ (NPN)では GND > (端子 B)の時、P-N 接合が寄生ダイオードとして動作します。

Oまた、トランジスタ (NPN)では、GND > (端子 B)の時、前述の寄生ダイオードと近接する他の素子の N 層によって寄生の NPN トランジスタが動作します。

IC の構造上、寄生素子は電位関係によって必然的にできます。寄生素子が動作することにより、回路動作の干渉を引き起こし、誤動作、ひいては破壊の原因ともなり得ます。したがって、入出力端子に GND (P 基板)より低い電圧を印加するなど、寄生素子が動作するような使い方をしないよう十分に注意してください。

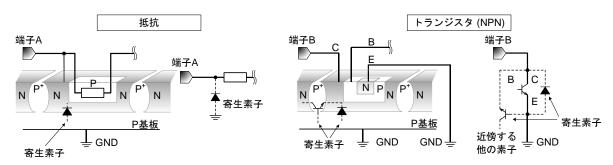
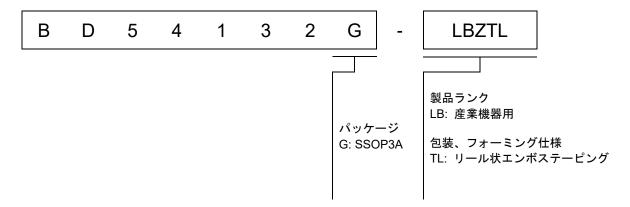
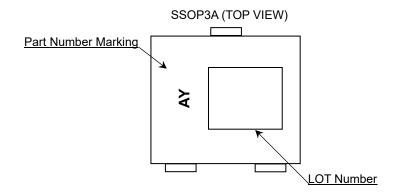
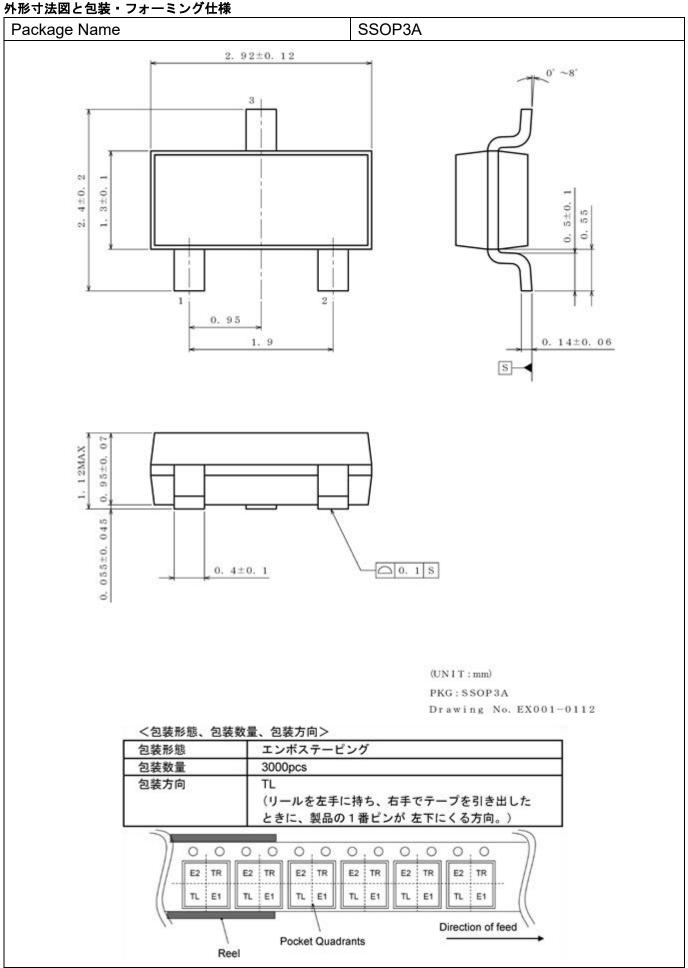


Figure 13. IC 構造例


11. セラミック・コンデンサの特性変動について

外付けコンデンサに、セラミック・コンデンサを使用する場合、直流バイアスによる公称容量の低下、及び温度などによる容量の変化を考慮のうえ、定数を決定してください。


12. 過電流保護回路について


出力には電流能力に応じた過電流保護回路が内部に内蔵されているため、負荷ショート時には IC 破壊を防止しますが、この保護回路は突発的な事故による破壊防止に有効なもので、連続的な保護回路動作、過渡時でのご使用に対応するものではありません。

発注形名情報

標印図

改訂履歴

71811000		
日付	版	変更内容
2023.03.31	001	新規作成

ご注意

ローム製品取扱い上の注意事項

1. 極めて高度な信頼性が要求され、その故障や誤動作が人の生命、身体への危険もしくは損害、又はその他の重大な損害 の発生に関わるような機器又は装置 (医療機器(Note 1)、航空宇宙機器、原子力制御装置等)(以下「特定用途」という) への本製品のご使用を検討される際は事前にローム営業窓口までご相談くださいますようお願い致します。ロームの文 書による事前の承諾を得ることなく、特定用途に本製品を使用したことによりお客様又は第三者に生じた損害等に関し、ロームは一切その責任を負いません。

(Note 1) 特定用途となる医療機器分類

Ī	日本	USA	EU	中国
Ī	CLASSⅢ	CLASSⅢ	CLASSIIb	Ⅲ類
	CLASSIV	CLASSIII	CLASSⅢ	山 規

- 2. 半導体製品は一定の確率で誤動作や故障が生じる場合があります。万が一、誤動作や故障が生じた場合であっても、本製品の不具合により、人の生命、身体、財産への危険又は損害が生じないように、お客様の責任において次の例に示すようなフェールセーフ設計など安全対策をお願い致します。
 - ①保護回路及び保護装置を設けてシステムとしての安全性を確保する。
 - ②冗長回路等を設けて単一故障では危険が生じないようにシステムとしての安全を確保する。
- 3. 本製品は、下記に例示するような特殊環境での使用を配慮した設計はなされておりません。したがいまして、下記のような特殊環境での本製品のご使用に関し、ロームは一切その責任を負いません。本製品を下記のような特殊環境でご使用される際は、お客様におかれまして十分に性能、信頼性等をご確認ください。
 - ①水・油・薬液・有機溶剤等の液体中でのご使用
 - ②直射日光・屋外暴露、塵埃中でのご使用
 - ③潮風、Cl₂、H₂S、NH₃、SO₂、NO₂ 等の腐食性ガスの多い場所でのご使用
 - ④静電気や電磁波の強い環境でのご使用
 - ⑤発熱部品に近接した取付け及び当製品に近接してビニール配線等、可燃物を配置する場合
 - ⑥本製品を樹脂等で封止、コーティングしてのご使用
 - ⑦はんだ付けの後に洗浄を行わない場合(無洗浄タイプのフラックスを使用される場合は除く。ただし、残渣については十分に確認をお願いします。)又は、はんだ付け後のフラックス洗浄に水又は水溶性洗浄剤をご使用の場合 ⑧結露するような場所でのご使用
- 4. 本製品は耐放射線設計はなされておりません。
- 5. 本製品単体品の評価では予測できない症状・事態を確認するためにも、本製品のご使用にあたってはお客様製品に実装された状態での評価及び確認をお願い致します。
- 6. パルス等の過渡的な負荷(短時間での大きな負荷)が加わる場合は、お客様製品に本製品を実装した状態で必ず その評価及び確認の実施をお願い致します。また、定常時での負荷条件において定格電力以上の負荷を印加されますと、 本製品の性能又は信頼性が損なわれるおそれがあるため必ず定格電力以下でご使用ください。
- 7. 電力損失は周囲温度に合わせてディレーティングしてください。また、密閉された環境下でご使用の場合は、必ず温度 測定を行い、最高接合部温度を超えていない範囲であることをご確認ください。
- 8. 使用温度は納入仕様書に記載の温度範囲内であることをご確認ください。
- 9. 本資料の記載内容を逸脱して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いません。

実装及び基板設計上の注意事項

- 1. ハロゲン系(塩素系、臭素系等)の活性度の高いフラックスを使用する場合、フラックスの残渣により本製品の性能 又は信頼性への影響が考えられますので、事前にお客様にてご確認ください。
- 2. はんだ付けは、表面実装製品の場合リフロー方式、挿入実装製品の場合フロー方式を原則とさせて頂きます。なお、表面実装製品をフロー方式での使用をご検討の際は別途ロームまでお問い合わせください。 その他、詳細な実装条件及び手はんだによる実装、基板設計上の注意事項につきましては別途、ロームの実装仕様書をご確認ください。

Notice-PAA-J Rev.004

応用回路、外付け回路等に関する注意事項

- 1. 本製品の外付け回路定数を変更してご使用になる際は静特性のみならず、過渡特性も含め外付け部品及び本製品のバラッキ等を考慮して十分なマージンをみて決定してください。
- 2. 本資料に記載された応用回路例やその定数などの情報は、本製品の標準的な動作や使い方を説明するためのもので、 実際に使用する機器での動作を保証するものではありません。したがいまして、お客様の機器の設計において、回路や その定数及びこれらに関連する情報を使用する場合には、外部諸条件を考慮し、お客様の判断と責任において行って ください。これらの使用に起因しお客様又は第三者に生じた損害に関し、ロームは一切その責任を負いません。

静電気に対する注意事項

本製品は静電気に対して敏感な製品であり、静電放電等により破壊することがあります。取り扱い時や工程での実装時、保管時において静電気対策を実施のうえ、絶対最大定格以上の過電圧等が印加されないようにご使用ください。特に乾燥環境下では静電気が発生しやすくなるため、十分な静電対策を実施ください。(人体及び設備のアース、帯電物からの隔離、イオナイザの設置、摩擦防止、温湿度管理、はんだごてのこて先のアース等)

保管・運搬上の注意事項

- 1. 本製品を下記の環境又は条件で保管されますと性能劣化やはんだ付け性等の性能に影響を与えるおそれがあります のでこのような環境及び条件での保管は避けてください。
 - ① 潮風、Cl₂、H₂S、NH₃、SO₂、NO₂等の腐食性ガスの多い場所での保管
 - ② 推奨温度、湿度以外での保管
 - ③ 直射日光や結露する場所での保管
 - ④ 強い静電気が発生している場所での保管
- 2. ロームの推奨保管条件下におきましても、推奨保管期限を経過した製品は、はんだ付け性に影響を与える可能性があります。推奨保管期限を経過した製品は、はんだ付け性を確認したうえでご使用頂くことを推奨します。
- 3. 本製品の運搬、保管の際は梱包箱を正しい向き(梱包箱に表示されている天面方向)で取り扱いください。天面方向が 遵守されずに梱包箱を落下させた場合、製品端子に過度なストレスが印加され、端子曲がり等の不具合が発生する 危険があります。
- 4. 防湿梱包を開封した後は、規定時間内にご使用ください。規定時間を経過した場合はベーク処置を行ったうえでご使用ください。

製品ラベルに関する注意事項

本製品に貼付されている製品ラベルに2次元バーコードが印字されていますが、2次元バーコードはロームの社内管理のみを目的としたものです。

製品廃棄上の注意事項

本製品を廃棄する際は、専門の産業廃棄物処理業者にて、適切な処置をしてください。

外国為替及び外国貿易法に関する注意事項

本製品は、外国為替及び外国貿易法に定めるリスト規制貨物等に該当するおそれがありますので、輸出する場合には、ロームへお問い合わせください。

知的財産権に関する注意事項

- 1. 本資料に記載された本製品に関する応用回路例、情報及び諸データは、あくまでも一例を示すものであり、これらに関する第三者の知的財産権及びその他の権利について権利侵害がないことを保証するものではありません。
- 2. ロームは、本製品とその他の外部素子、外部回路あるいは外部装置等(ソフトウェア含む)との組み合わせに起因して 生じた紛争に関して、何ら義務を負うものではありません。
- 3. ロームは、本製品又は本資料に記載された情報について、ロームもしくは第三者が所有又は管理している知的財産権 そ の他の権利の実施又は利用を、明示的にも黙示的にも、お客様に許諾するものではありません。 ただし、本製品を通 常の用法にて使用される限りにおいて、ロームが所有又は管理する知的財産権を利用されることを妨げません。

その他の注意事項

- 1. 本資料の全部又は一部をロームの文書による事前の承諾を得ることなく転載又は複製することを固くお断り致します。
- 2. 本製品をロームの文書による事前の承諾を得ることなく、分解、改造、改変、複製等しないでください。
- 3. 本製品又は本資料に記載された技術情報を、大量破壊兵器の開発等の目的、軍事利用、あるいはその他軍事用途目的で使用しないでください。
- 4. 本資料に記載されている社名及び製品名等の固有名詞は、ローム、ローム関係会社もしくは第三者の商標又は登録商標です。

Notice-PAA-J Rev.004

一般的な注意事項

- 1. 本製品をご使用になる前に、本資料をよく読み、その内容を十分に理解されるようお願い致します。本資料に記載される注意事項に反して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いませんのでご注意願います。
- 2. 本資料に記載の内容は、本資料発行時点のものであり、予告なく変更することがあります。本製品のご購入及びご使用に際しては、事前にローム営業窓口で最新の情報をご確認ください。
- 3. ロームは本資料に記載されている情報は誤りがないことを保証するものではありません。万が一、本資料に記載された情報の誤りによりお客様又は第三者に損害が生じた場合においても、ロームは一切その責任を負いません。

Notice – WE Rev.001