FEUL62Q2045-02



## ML62Q2033/2035/2043/2045 User's Manual

## Notice

#### **Precaution on using ROHM Products**

1) When using ROHM Products, refer to the latest product information and ensure that usage conditions (absolute maximum ratings<sup>\*1</sup>, recommended operating conditions, etc.) are within the ranges specified. ROHM disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of ROHM Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of ROHM Products, please take safety at your own risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures.

\*1: Absolute maximum ratings: a limit value that must not be exceeded even momentarily.

- 2) The Products specified in this document are not designed to be radiation tolerant.
- 3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits for mass production. ROHM disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related information.
- 4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third party with respect to ROHM Products or the information contained in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and application examples, etc.). Therefore, ROHM shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) ROHM intends our Products to be used in a way indicated in this document. Please be sure to contact a ROHM sales office if you consider the use of our Products in different way from original use indicated in this document. For use of our Products in medical systems, please be sure to contact a ROHM representative and must obtain written agreement. Do not use our Products in applications which may directly cause injuries to human life, and which require extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc. ROHM disclaims any and all liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us without our prior written consent.
- 6) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 7) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 8) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or ROHM's Products.
- 9) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

(Note) "ROHM" as used in this document means ROHM Co., Ltd.

### **Other Precaution**

- 1) All information contained in this document is subject to change for the purpose of improvement, etc. without any prior notice. Before purchasing or using ROHM Products, please confirm the latest information with a ROHM sales office.
- 2) ROHM has used reasonable care to ensure the accuracy of the information contained in this document, however, ROHM shall have no responsibility for any damages, expenses or losses arising from inaccuracy or errors of such information.

LTSZ08023 • 01 • 003

## Notes for product usage

Notes on this page are applicable to the all ROHM microcontroller products. For individual notes on each RHOM microcontroller product, refer to [Note] in the chapters of each user's manual.

The individual notes of each user's manual take priority over those contents in this page if they are different.

| 1. | HANDLING OF UNUSED INPUT PINS<br>Fix the unused input pins to the power pin or GND to prevent to cause the device performing wrong operation or<br>increasing the current consumption due to noise, etc. If the handlings for the unused pins are described in the chapters,<br>follow the instruction.                                                                                                                                                                                                                                                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | STATE AT POWER ON<br>At the power on, the data in the internal registers and output of the ports are undefined until the power supply voltage<br>reaches to the recommended operating condition and "L" level is input to the reset pin.<br>On ROHM microcontroller products that have the power on reset function, the data in the internal registers and output<br>of the ports are undefined until the power on reset is generated.<br>Be careful to design the application system does not work incorrectly due to the undefined data of internal registers and<br>output of the ports. |
| 3. | ACCESS TO UNUSED MEMORY<br>If reading from unused address area or writing to unused address area of the memory, the operations are not guaranteed.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4. | CHARACTERISTICS DIFFERENCE BETWEEN THE PRODUCT<br>Electrical characteristics, noise tolerance, noise radiation amount, and the other characteristics are different from each<br>microcontroller product.<br>When replacing from other product to ROHM microcontroller products, please evaluate enough the apparatus/system<br>which implemented ROHM microcontroller products.                                                                                                                                                                                                             |
| 5. | USE ENVIRONMENT<br>When using ROHM microcontroller products in a high humidity environment and an environment where dew<br>condensation, take moisture-proof measures.                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Classification | Notation               | Description                                                                                                                       |
|----------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Numeric value  | XXh, XXH, 0xXX         | Indicates a hexadecimal number.                                                                                                   |
| Unit           | word, W                | 1 word = 16 bits                                                                                                                  |
|                | byte, B                | 1 byte = 8 bits                                                                                                                   |
|                | nibble, N              | 1 nibble = 4 bits                                                                                                                 |
|                | mega-, M               | 10 <sup>6</sup>                                                                                                                   |
|                | kilo-, K               | 2 <sup>10</sup> = 1024                                                                                                            |
|                | kilo-, k               | 10 <sup>3</sup> = 1000                                                                                                            |
|                | milli-, m              | 10 <sup>-3</sup>                                                                                                                  |
|                | micro-, μ              | 10 <sup>-6</sup>                                                                                                                  |
|                | nano-, n               | 10 <sup>-9</sup>                                                                                                                  |
|                | second, s (lower case) | second                                                                                                                            |
| Terminology    | "H" level              | Indicates high level voltage VIH and VOH as specified by the electrical characteristics in the data-sheet.                        |
|                | "L" level              | Indicates low level voltage $V_{\text{IL}}$ and $V_{\text{OL}}$ as specified by the electrical characteristics in the data-sheet. |
|                | SFR                    | Special function register. It is control register for system or peripherals.                                                      |

## Notation

• Register description

"R/W" indicates that Read/Write attribute. "R" indicates that data can be read and "W" indicates that data can be written. "R/W" indicates that data can be read or written.

MSB: The highest bit of 16-bit register LSB: The lowest bit of 16-bit register

Registers that have a word symbol allow the word-access. If writing or reading the registers not using the word symbol, specify the even number addresses.

|                  | <br>   |                  |           | Invalic   | l bit: Th | nis bit re | eturns "  | 0" for re | eading | and writ | ing to t | his bit i | s ignore | ed. |   |            |
|------------------|--------|------------------|-----------|-----------|-----------|------------|-----------|-----------|--------|----------|----------|-----------|----------|-----|---|------------|
|                  |        | Word symbol name |           |           |           |            |           |           |        |          |          |           |          |     |   |            |
|                  | Ì      | Byte symbol name |           |           |           |            |           |           |        |          |          |           |          |     |   |            |
|                  |        | Bit syml         | ool nam   | ne        |           |            |           | <br> <br> |        |          |          |           |          |     |   |            |
|                  | 15     | 14               | 13        | 12        | 11        | 10         | 9         | 8         | 7      | 6        | 5        | 4         | 3        | 2   | 1 | 0          |
| Word             |        | 1                |           |           |           |            | -         | FHCK      |        |          |          |           |          |     |   |            |
| Byte             | i<br>I | FHCKMODH         |           |           |           |            |           | FHCKMODL  |        |          |          |           |          |     |   |            |
| Bit              |        | OUTC<br>2        | OUTC<br>1 | OUTC<br>0 | _         | SYSC<br>2  | SYSC<br>1 | SYSC<br>0 | _      | _        | _        | Ι         | -        | Ι   | Ι | HOS<br>CM0 |
| R/W              | R      | R/W              | R/W       | R/W       | R         | R/W        | R/W       | R/W       | R      | R        | R        | R         | R        | R   | R | R/W        |
| Initial<br>value | 0      | 1                | 0         | 0         | 0         | 1          | 0         | 0         | 0      | 0        | 0        | 0         | 0        | 0   | 0 | 0          |
|                  |        |                  |           |           |           |            |           |           |        |          |          |           |          |     |   |            |
|                  | L      | J                |           |           | !         | L          | /         |           | <br>   | !        |          | !         | J        |     | Ł |            |

Initial value after the system reset

#### ML62Q2033/35/43/45 User's Manual Contents

## Table of Contents

| Chapter 1 Overview                              |     |
|-------------------------------------------------|-----|
| 1. Overview                                     | 1-1 |
| 1.1 Features                                    |     |
| 1.1.1 How To Read The Part Number               |     |
| 1.1.2 Main Function List                        |     |
| 1.2 Block Diagram                               |     |
| 1.2.1 Block Diagram of ML62Q2033/2035/2043/2045 |     |
| 1 3 Pin                                         | 1-8 |
| 1.3.1 Pin Layout                                |     |
| 1.3.1.1 ML62Q2035/2033 : 20 pin TSSOP           |     |
| 1.3.1.2 ML62Q2045/2043 : 24 pin WQFN            |     |
| 1.3.2 Pin List                                  |     |
| 1.3.3 Pin Description                           |     |
| 1.3.4 Termination of Unused Pins                |     |

#### Chapter 2 CPU and Memory Space

| 2. CPU and Memory Space                                                | 2-1  |
|------------------------------------------------------------------------|------|
| 2.1 General Description                                                | 2-1  |
| 2.2 CPU nX-U16/100                                                     |      |
| 2.2.1 Wait Mode and No-wait Mode                                       |      |
| 2.2.2 Notes When Executing SB/RB Instruction                           |      |
| 2.2.3 Notes on the Description of Read-modify-write                    |      |
| 2.3 Coprocessor                                                        |      |
| 2.3.1 Multiplier/Divider                                               |      |
| 2.3.2 List of Coprocessor General-purpose Registers                    |      |
| 2.3.2.1 A, B, C, D Registers (CR0 to CR7)                              |      |
| 2.3.2.2 Operation Mode Register (CR8), Operation Status Register (CR9) |      |
| 2.3.2.3 Coprocessor ID Register (CR15)                                 |      |
| 2.3.3 How to Use Multiplier/Divider                                    |      |
| 2.4 Memory Space                                                       |      |
| 2.5 Program Memory Space                                               |      |
| 2.6 Data Memory Space                                                  |      |
| 2.7 Description of Registers                                           |      |
| 2.7.1 List of Registers                                                |      |
| 2.7.2 Data Segment Register (DSR)                                      |      |
| 2.7.3 Flash Remap Address Register (REMAPADD)                          |      |
| 2.7.4 Reserved register 1                                              |      |
| 2.7.5 Reserved register 2                                              |      |
| 2.8 Remapping Function                                                 |      |
| 2.8.1 Description of Remapping Function                                |      |
| 2.8.2 Software Remap                                                   |      |
| 2.8.3 Code Option Remap                                                | 2-22 |

### **Chapter 3 Reset Function**

| 3. Reset Function                                    | 3-1 |
|------------------------------------------------------|-----|
| 3.1 General Description                              |     |
| 3.1.1 Features                                       |     |
| 3.1.2 Configuration                                  |     |
| 3.1.3 List of Pins                                   |     |
| 3.2 Description of Registers                         |     |
| 3.2.1 List of Registers                              |     |
| 3.2.2 Reset Status Register (RSTAT)                  |     |
| 3.2.3 Safety Function Reset Status Register (SRSTAT) | 3-5 |
| 3.3 Description of Operation                         |     |
| 3.3.1 Operation of Reset Function                    |     |
| 3.3.2 System Reset Mode                              | 3-7 |
| 3.3.3 Reset Input Pin Reset                          | 3-7 |
| FEUL62Q2045 Contents-1                               |     |

#### ML62Q2033/35/43/45 User's Manual Contents

| 3.3.4 Power-on Reset                                                                                                      |     |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| Chapter 4 Power Management                                                                                                |     |
| 4. Power Management                                                                                                       | 4-1 |
| 4.1 General Description                                                                                                   |     |
| 4.1.1 Features                                                                                                            |     |
| 4.1.2 Configuration                                                                                                       |     |
| 4.1.3 List of Pins                                                                                                        |     |
| 4.2 Description of Registers                                                                                              |     |
| 4.2.1 List of Registers                                                                                                   |     |
| 4.2.2 Stop Code Acceptor (STPACP)                                                                                         |     |
| 4.2.3 Standby Control Register (SBYCON)                                                                                   |     |
| 4.2.4 Standby Prohibition Flag Register (SBYEFLG)                                                                         |     |
| 4.2.5 Software Reset Acceptor (SOFTRACP)                                                                                  |     |
| 4.2.6 Software Reset Control Register (SOFTRCON)                                                                          |     |
| 4.2.7 Block Clock Control Register 0 (BCKCON0)                                                                            |     |
| 4.2.8 Block Clock Control Register 1 (BCKCON1)                                                                            |     |
| 4.2.9 Block Clock Control Register 2 (BCKCON2)                                                                            |     |
| 4.2.10 Block Clock Control Register 3 (BCKCON2)                                                                           |     |
| 4.2.10 Block Coltrol Register 9 (BERCON9)                                                                                 |     |
|                                                                                                                           |     |
| 4.2.12 Block Reset Control Register 1 (BRECON1)                                                                           |     |
| <ul><li>4.2.13 Block Reset Control Register 2 (BRECON2)</li><li>4.2.14 Block Reset Control Register 3 (BRECON3)</li></ul> |     |
|                                                                                                                           |     |
| 4.3 Description of Operation                                                                                              |     |
| 4.3.1 Program Run Mode                                                                                                    |     |
| 4.3.2 Standby Mode                                                                                                        |     |
| 4.3.2.1 HALT Mode                                                                                                         |     |
| 4.3.2.2 STOP Mode                                                                                                         |     |
| 4.3.2.3 Note of entering to the standby mode                                                                              |     |
| 4.3.2.4 Note on Return Operation from Standby Mode                                                                        |     |
| 4.3.2.5 Operation of Each Function in Standby Mode                                                                        |     |
| 4.3.2.6 Wake-up Time from Standby Mode                                                                                    |     |
| 4.3.3 Block Control Function                                                                                              |     |
| 4.3.4 Internal Power Supply Voltage                                                                                       |     |
| Chapter 5 Interrupts                                                                                                      |     |
| 5. Interrupt                                                                                                              |     |
| 5.1 General Description                                                                                                   |     |
| 5.1.1 Features.                                                                                                           |     |
| 5.2 Description of Registers                                                                                              |     |
| 5.2.1 List of Registers                                                                                                   |     |
| 5.2.2 Interrupt Enable Register 01 (IE01)                                                                                 |     |
| 5.2.3 Interrupt Enable Register 23 (IE23)                                                                                 |     |
| 5.2.4 Interrupt Enable Register 45 (IE45)                                                                                 |     |
| 5.2.5 Interrupt Enable Register 67 (IE67)                                                                                 |     |
| 5.2.6 Interrupt Request Register 01 (IRQ01)                                                                               |     |
| 5.2.7 Interrupt Request Register 23 (IRQ23)                                                                               |     |
| 5.2.8 Interrupt Request Register 45 (IRQ45)                                                                               |     |
| 5.2.9 Interrupt Request Register 67 (IRQ67)                                                                               |     |
| 5.2.10 Interrupt Level Control Enable Register (ILEN)                                                                     |     |
| 5.2.10 Interrupt Level Control Enable Register (ILEN)                                                                     |     |
| 5.2.12 Masking Interrupt Level Register (MCIL)                                                                            |     |
|                                                                                                                           |     |
| 5.2.13 Interrupt Level Control Register 0 (ILC0)                                                                          |     |
| 5.2.14 Interrupt Level Control Register 1 (ILC1)                                                                          |     |
| 5.2.15 Interrupt Level Control Register 2 (ILC2)                                                                          |     |
| 5.2.16 Interrupt Level Control Register 3 (ILC3)                                                                          |     |
| 5.2.17 Interrupt Level Control Register 4 (ILC4)                                                                          |     |

 5.2.18 Interrupt Level Control Register 5 (ILC5)
 5-21

 5.2.19 Interrupt Level Control Register 6 (ILC6)
 5-22

#### ML62Q2033/35/43/45 User's Manual Contents

| 5.2.20 Interrupt Level Control Register 7 (ILC7)                             |  |
|------------------------------------------------------------------------------|--|
| 5.3 Description of Operation                                                 |  |
| 5.3.1 Maskable Interrupt Processing                                          |  |
| 5.3.2 Non-Maskable Interrupt Processing                                      |  |
| 5.3.3 Software Interrupt Processing                                          |  |
| 5.3.4 Notes on Interrupt Routine (with Interrupt Level Control Disabled)     |  |
| 5.3.5 Flow Charts When Interrupt Level Control Is Enabled                    |  |
| 5.3.6 How To Write Interrupt Processing When Interrupt Level Control Enabled |  |
| 5.3.6.1 Description of Interrupt Function to Disable Multiple Interrupts     |  |
| 5.3.6.2 Description of Interrupt Function to Enable Multiple Interrupts      |  |
| 5.3.7 Interrupt Disable State                                                |  |
| 5.3.8 Writing to IRQ01/IRQ23/IRQ45/IRQ67                                     |  |
| 5.3.9 16-bit timer 0 Interrupt                                               |  |
|                                                                              |  |

#### **Chapter 6 Clock generation Circuit**

| 6. Clock Generation Circuit                                   | 6-1  |
|---------------------------------------------------------------|------|
| 6.1 General Description                                       | 6-1  |
| 6.1.1 Features                                                | 6-1  |
| 6.1.2 Configuration<br>6.1.3 List of Pins                     |      |
| 6.1.3 List of Pins                                            | 6-3  |
| 6.2 Description of Registers                                  | 6-4  |
| 6.2 Description of Registers                                  | 6-4  |
| 6.2.2 High-Speed Clock Mode Register (FHCKMOD)                | 6-5  |
| 6.2.3 Clock Control Register (FCONW)                          | 6-6  |
| 6.2.4 High-Speed Clock Wake-up Time Setting Register (FHWUPT) | 6-7  |
| 6.3 Description of Operation                                  | 6-8  |
| 6.3.1 Low-Speed Clock                                         | 6-8  |
| 6.3.1.1 Low-Speed RC Oscillation Circuit                      | 6-8  |
| 6.3.2 High-speed Clock                                        | 6-9  |
| 6.3.2.1 PLL Oscillation Circuit                               | 6-9  |
| 6.3.2.2 High-speed Clock Control                              | 6-10 |
| 6.3.3 WDT Clock (WDTCLK)                                      | 6-11 |
| 6.3.4 System Clock                                            |      |
|                                                               |      |

#### Chapter 7 (Skip number)

### Chapter 8 16-Bit Timer

| 8. 16-Bit Timer                                    | 8-1 |
|----------------------------------------------------|-----|
| 8.1 General Description                            |     |
| 8.1.1 Features                                     |     |
| 8.1.2 Configuration                                |     |
| 8.2 Description of Registers                       |     |
| 8.2.1 List of Registers                            | 8-3 |
| 8.2.2 16-Bit Timer n Data Register (TMHnD :n=0)    |     |
| 8.2.3 16-Bit Timer n Counter Register (TMHnC :n=0) |     |
| 8.2.4 16-Bit Timer n Mode Register (TMHnMOD :n=0)  |     |
| 8.2.5 16-Bit Timer Start Register (TMHSTR)         |     |
| 8.2.6 16-Bit Timer Stop Register (TMHSTP)          |     |
| 8.2.7 16-Bit Timer Status Register (TMHSTAT)       |     |
| 8.3 Description of Operation                       |     |
| 8.3.1 Operation Mode                               |     |
| 8.3.1.1 Repeat Mode                                |     |
| 8.3.1.2 One-shot Mode                              |     |
| 8.3.2 Start/Stop Timing                            |     |
| 8.3.3 TMHnD Register Update Timing                 |     |
| 8.3.4 Setting Example                              |     |

#### **Chapter 9 Operational timer**

FEUL62Q2045

#### ML62Q2033/35/43/45 User's Manual Contents

| 9. Operational timer                                                                     |      |
|------------------------------------------------------------------------------------------|------|
| 9.1 General Description                                                                  |      |
| 9.1.1 Features                                                                           |      |
| 9.1.2 Configuration                                                                      |      |
| 9.1.3 Pin list                                                                           |      |
| 9.2 Register description                                                                 |      |
| 9.2.1 List of register                                                                   |      |
| 9.2.2 OTMn cycle register OTnP: n=0 to 5)                                                |      |
| 9.2.3 OTMn0 Rise Point register (OTn0R:n=0 to 5)                                         |      |
| 9.2.4 OTMn0 Fall Point register (OTn0F: n=0 to 5)                                        |      |
| 9.2.5 OTMn1 Rise Point register (OTn1R:n=0, 1, 4, 5)                                     |      |
| 9.2.6 OTMn1 Fall Point register (OTn1F:n=0, 1, 4, 5)                                     |      |
| 9.2.7 OTMn counter register (OTnC: n=0 to 5)                                             | 9-15 |
| 9.2.8 OTMn status register (OTnSTAT: n=0 to 5)                                           |      |
| 9.2.9 OTMn mode register (OTnMOD: n=0 to 5)                                              |      |
| 9.2.10 OTMn Output logic control register (OTnOCON: n=0 to 5)                            |      |
| 9.2.11 OTMn cycle stop timing register (OTnSCLR: n=0 to 5)                               |      |
| 9.2.12 OTMn clock register (OTnCLK: n=0 to 5)                                            |      |
| 9.2.13 OTMn Counter control trigger register 0 register (OTnCTRG0:n=0 to 5)              |      |
| 9.2.14 OTMn Counter control trigger 1 register (OTnCTRG1:n=0 to 5)                       |      |
| 9.2.15 OTMn Forced stop control trigger 0 register (OTnFTRG0: n=0 to 5)                  |      |
| 9.2.16 OTMn Forced stop control trigger 1 register (OTnFTRG1: n=0 to 5)                  |      |
| 9.2.17 OTMn interrupt enable register (OTnINTE:n=0 to 5)                                 |      |
| 9.2.18 OTMn interrupt status register (OTnINTE: n=0 to 5)                                |      |
| 9.2.19 OTMn interrupt clear register L/H (OTNINTCL, OTNINTCH : n=0 to 5)                 |      |
|                                                                                          |      |
| 9.2.20 OTM common update register (OTCUD)                                                |      |
| 9.2.21 OTM Common control register (OTCCON)<br>9.2.22 OTM Common start register (OTCSTR) |      |
| 9.2.23 OTM Common stor register (OTCSTR)                                                 |      |
| 9.2.23 OTM Common stop register (OTCSTP)                                                 |      |
| 9.2.25 OTM Common break control register (OTCBRK)                                        |      |
| 9.2.26 OTM common OTMn0 output control register (OTC00CON)                               |      |
| 9.2.27 OTM common OTMn1 output control register (OTC10CON)                               |      |
| 9.2.28 OTM Common cycle interlocking control register (OTCPC)                            |      |
| 9.3 Description of operation                                                             |      |
| 9.3.1 Common sequence (Initial settings common to all modes)                             |      |
| 9.3.2 Counter operation (Common to all modes)                                            |      |
| 9.3.2.1 Count start/stop by software                                                     |      |
| 9.3.2.2 Start/Stop by Trigger event                                                      |      |
| 9.3.3 CAPTURE mode operation                                                             |      |
| 9.3.3.1 Example of CAPTURE mode operation                                                | 9-49 |
| 9.3.4 PWM mode operation                                                                 |      |
| 9.3.4.1 PWM mode output waveform                                                         |      |
| 9.3.5 PWM duty setting                                                                   |      |
| 9.3.5.1 Output waveform control when $Duty = 100\%$ , 0%                                 |      |
| 9.3.6 Control of External clock input / Event trigger / Forced stop trigger              |      |
| 9.3.6.1 Start/Stop operation by event trigger                                            |      |
| 9.3.6.3 Forced stop operation (Counter count stop, waveform output stop)                 |      |
| 9.3.6.4 Forced stop operation (Counter count continues, waveform output stop)            |      |
| 9.3.7 Changing Cycle and Duty during Operation                                           |      |
| 9.3.8 Cycle stop function                                                                |      |
| 9.3.9 Interrupt                                                                          |      |
| 9.3.10 Clock Mutual Monitoring Function                                                  |      |

### Chapter 10 Watchdog Timer

#### ML62Q2033/35/43/45 User's Manual Contents

| 10. Watchdog Timer                                                          |  |
|-----------------------------------------------------------------------------|--|
| 10.1 General Description                                                    |  |
| 10. Watchdog Timer         10.1 General Description         10.1.1 Features |  |
| 10.1.2 Configuration                                                        |  |
| 10.2 Description of Registers                                               |  |
| 10.2.1 List of Registers                                                    |  |
| 10.2.2 Watchdog timer control register (WDTCON)                             |  |
| 10.2.3 Watchdog Timer Mode Register (WDTMOD)                                |  |
| 10.2.4 Watchdog Timer Counter Register (WDTMC)                              |  |
| 10.2.5 Watchdog Timer Status Register (WDTSTA)                              |  |
| 10.3 Description of Operation                                               |  |
| 10.3.1 How to Clear WDT Counter                                             |  |
| 10.3.2 Window Function Disabled Mode                                        |  |
| 10.3.3 Window Function Enabled Mode                                         |  |
|                                                                             |  |

### Chapter 11 (Skip number)

### Chapter 12 (Skip number)

### Chapter 13 I<sup>2</sup>C Bus

| 13. I <sup>2</sup> C Bus                                            | 13-1 |
|---------------------------------------------------------------------|------|
| 13.1 General Description                                            |      |
| 13.1.1 Features                                                     |      |
| 13.1.2 Configuration                                                |      |
| 13.1.3 List of Pins                                                 |      |
| 13.2 Description of Registers                                       |      |
| 13.2.1 List of Registers                                            |      |
| 13.2.2 I <sup>2</sup> C Bus Unit 0 Mode Register (I2U0MSS)          |      |
| 13.3 Description of Registers for Master function                   |      |
| 13.3.1 I <sup>2</sup> C Bus Unit 0 Receive Register (I2U0RD)        |      |
| 13.3.2 I <sup>2</sup> C Bus Unit 0 Slave Address Register (I2U0SA)  |      |
| 13.3.3 I <sup>2</sup> C Bus Unit 0 Transmit Data Register (I2U0TD)  |      |
| 13.3.4 I <sup>2</sup> C Bus Unit 0 Control Register (I2U0CON)       |      |
| 13.3.5 I <sup>2</sup> C Bus Unit 0 Mode Register (I2U0MOD)          |      |
| 13.3.6 I <sup>2</sup> C Bus Unit 0 Status Register (I2U0STR)        |      |
| 13.3.7 I <sup>2</sup> C Bus Unit 0 Status Clear Register (I2U0SCLR) |      |
| 13.4 Description of Registers for Slave function                    |      |
| 13.4.1 I <sup>2</sup> C Bus Unit 0 Receive Register (I2U0RD)        |      |
| 13.4.2 I <sup>2</sup> C Bus Unit 0 Slave Address Register (I2U0SA)  |      |
| 13.4.3 I <sup>2</sup> C Bus Unit 0 Transmit Data Register (I2U0TD)  |      |
| 13.4.4 I <sup>2</sup> C Bus Unit 0 Control Register (I2U0CON)       |      |
| 13.4.5 I <sup>2</sup> C Bus Unit 0 Mode Register (I2U0MOD)          |      |
| 13.4.6 I <sup>2</sup> C Bus Unit 0 Status Register (I2U0STR)        |      |
| 13.4.7 I <sup>2</sup> C Bus Unit 0 Status Clear Register (I2U0SCLR) |      |
| 13.5 Description of Operation for Master function                   |      |
| 13.5.1 Control Procedures                                           |      |
| 13.5.1.1 Initial Setting of Communication Operation                 |      |
| 13.5.1.2 Start Condition                                            |      |
| 13.5.1.3 Restart Condition                                          |      |
| 13.5.1.4 Slave Address Transmission Mode                            |      |
| 13.5.1.5 Control Register Setting Wait State                        |      |
| 13.5.1.6 Data Transmission Mode                                     |      |
| 13.5.1.7 Data Reception Mode                                        |      |
| 13.5.1.8 Stop Condition                                             |      |
| 13.5.2 Communication Operation Timing                               |      |
| 13.5.3 Interrupt                                                    |      |
| 13.5.4 Operation Waveforms                                          |      |
| 13.6 Description of Operation for Slave function                    |      |
| 13.6.1 Procedures                                                   |      |
|                                                                     |      |

#### ML62Q2033/35/43/45 User's Manual Contents

| 13.6.1.1 Initial Setting of Communication Operation13-2913.6.1.2 Start Condition13-29 |
|---------------------------------------------------------------------------------------|
|                                                                                       |
| 13.6.1.3 Slave Address Reception Mode                                                 |
| 13.6.1.4 Communication Wait State                                                     |
| 13.6.1.5 Data Transmission Mode                                                       |
| 13.6.1.6 Data Reception Mode                                                          |
| 13.6.1.7 Stop Condition                                                               |
| 13.6.2 Communication Operation Timing                                                 |
| 13.6.3 Interrupt                                                                      |

#### Chapter 14 UART

| 14. UART                                                                                 | 14-1 |
|------------------------------------------------------------------------------------------|------|
| 14.1 General Description                                                                 | 14-1 |
| 14.1.1 Features                                                                          | 14-1 |
| 14.1.2 Configuration                                                                     | 14-1 |
| 14.1.3 List of Pins                                                                      |      |
| 14.2 Description of Registers                                                            |      |
| 14.2.1 List of Registers                                                                 |      |
| 14.2.2 UARTn Reception Buffer (UAnBUF0)                                                  | 14-4 |
| 14.2.3 UARTn Transmission Buffer (UAnBUF1)                                               |      |
| 14.2.4 UARTn Status Register (UAnSTAT)                                                   |      |
| 14.2.5 UARTn Status Clear Register (UAnSTAC)                                             |      |
| 14.2.6 UARTn Control Register (UAnCON)                                                   | 14-7 |
| 14.2.7 UARTn Mode Register (UAnMOD)                                                      |      |
| 14.2.8 UARTn Interrupt Enable Register (UAnINTE)                                         |      |
| 14.2.9 UARTn Baud Rate Register (UAnBRT)                                                 |      |
| 14.2.10 UARTn Baud Rate Adjustment Register (UAnBRC)                                     |      |
| 14.3 Description of Operation                                                            |      |
| 14.3.1 Frame Format                                                                      |      |
| 14.3.2 Data Direction                                                                    |      |
| 14.3.3 Baud Rate                                                                         |      |
| 14.3.4 Transmission Operation(Common to full-duplex and half-duplex communication modes) |      |
| 14.3.5 Reception Operation (Common to full-duplex and half-duplex communication modes)   |      |
| 14.3.5.1 Detection of Start Bit                                                          |      |
| 14.3.5.2 Sampling Timing                                                                 |      |
| 14.3.5.3 Receiving Margin                                                                |      |
| 14.3.5.4 Reception Filter                                                                |      |
| 14.3.6 Interrupt                                                                         |      |
| 14.3.7 Example of Setting                                                                |      |
|                                                                                          |      |

### Chapter 15 (Skip number)

### Chapter 16 (Skip number)

### Chapter 17 GPIO

| 17. GPIO                                          |       |
|---------------------------------------------------|-------|
| 17.1 General Description                          |       |
| 17.1.1 Features                                   |       |
| 17.1.2 Configuration<br>17.1.3 List of Pins       |       |
| 17.1.3 List of Pins                               |       |
| 17.2 Description of Registers                     |       |
| 17.2.1 List of Registers                          |       |
| 17.2.2 Port n Data Register (PnD:n=0 to 2)        |       |
| 17.2.3 Port 0 Mode Register 01 (P0MOD01)          |       |
| 17.2.4 Port n Mode Register 01 (PnMOD01: n=1, 2)  |       |
| 17.2.5 Port n Mode Register 23 (PnMOD23:n=0 to 2) |       |
| 17.2.6 Port n Mode Register 45 (PnMOD45: n=0, 1)  |       |
| 17.2.7 Port n Mode Register 67 (PnMOD67:n=0, 1)   |       |
| 17.2.8 Port n Pulse Mode Register (PnPMD:n=1, 2)  | 17-17 |
|                                                   |       |

#### ML62Q2033/35/43/45 User's Manual Contents

| 17.2.9 Port n Pulse Selection Register (PnPSL:n=1, 2)        |  |
|--------------------------------------------------------------|--|
| 17.3 Description of Operation                                |  |
| 17.3.1 Input                                                 |  |
| 17.3.2 Output                                                |  |
| 17.3.3 Primary Functions Other than Input/Output Function    |  |
| 17.3.4 Shared Function                                       |  |
| 17.3.5 Carrier Frequency Output                              |  |
| 17.3.5.1 Carrier Frequency Output Operation                  |  |
| 17.3.5.2 Carrier Frequency Output Function Setting Procedure |  |
| 17.3.6 Port Output Level Test                                |  |
| 17.3.7 Port Setting Example                                  |  |
| 17.3.8 Notes for using P00/TEST0 pin                         |  |
|                                                              |  |

#### **Chapter 18 External Interrupt Function**

| 18. External Interrupt Function                               |  |
|---------------------------------------------------------------|--|
| 18.1 General Description                                      |  |
| 18.1.1 Features                                               |  |
| 18.1.2 Configuration                                          |  |
| 18.1.3 List of Pins                                           |  |
| 18.2 Description of Registers                                 |  |
| 18.2.1 List of Registers                                      |  |
| 18.2.2 External Interrupt Control Register 0 (EICON0)         |  |
| 18.2.3 External Interrupt Mode Register 0 (EIMOD0)            |  |
| 18.2.4 External Interrupt Port Selection Register 0 (EIPSEL0) |  |
| 18.3 Description of Operation                                 |  |
| 18.3.1 Interrupt Request Timing                               |  |
| 18.3.2 External Trigger Signal                                |  |
| 18.3.3 External Interrupt Setting Flow                        |  |
|                                                               |  |

#### Chapter 19 (Skip number)

#### **Chapter 20 Analog Comparator**

| 20. Analog Comparator                                   |  |
|---------------------------------------------------------|--|
| <b>20. Analog Comparator</b>                            |  |
| 20.1.1 Features                                         |  |
| 20.1.2 Configuration                                    |  |
| 20.1.3 List of Pins                                     |  |
| 20.2 Description of Registers                           |  |
| 20.2.1 List of Registers                                |  |
| 20.2.2 Comparator Control Register (CMPCON)             |  |
| 20.2.3 Comparator n Mode Register (CMPnMOD: n=0,1,2)    |  |
| 20.2.4 Comparator Status Register(CMPSTA)               |  |
| 20.3 Description of Operation                           |  |
| 20.3.1 Analog Comparator Operation                      |  |
| 20.3.2 Interrupt Request                                |  |
| 20.3.3 Operation when sharing AINn pin and pin          |  |
| 20.3.4 To output the analog comparator result from GPIO |  |
|                                                         |  |

#### Chapter 21 D/A Converter

| 21. D/A Converter                                      |  |
|--------------------------------------------------------|--|
| 21.1 General Description                               |  |
| 21.1.1 Features                                        |  |
| 21.1.2 Configuration                                   |  |
| 21.1.3 List of Pins                                    |  |
| 21.2 Description of Registers                          |  |
| 21.2.1 List of Registers                               |  |
| 21.2.2 D/A Converter Control Register (DACCON)         |  |
| 21.2.3 D/A Converter 0 Code Register (DACCODE) (n=0,1) |  |
| 21.2.4 D/A Converter Mode Register (DACMODE)           |  |
|                                                        |  |

#### ML62Q2033/35/43/45 User's Manual Contents

|                                                                                    | 21 (  |
|------------------------------------------------------------------------------------|-------|
| 21.3 Description of Operation                                                      |       |
| 21.3.1 D/A Converter Operation                                                     |       |
|                                                                                    |       |
| Chapter 22 LOW Level Detector                                                      | 22.1  |
| 22. Low Level Detector                                                             |       |
| 22.1 General Description                                                           |       |
| 22.1.1 Features                                                                    |       |
| 22.1.2 Configuration                                                               |       |
| 22.2 Description of Registers                                                      |       |
| 22.2.1 List of Registers                                                           |       |
| 22.2.2 Low Level Detector control register (LLD0CON)                               |       |
| 22.2.3 Low Level Detector mode register (LLD0MOD)                                  |       |
| 22.2.4 Low Level Detector sampling register (LLD0SMP)                              |       |
| 22.3 Description of Operation                                                      |       |
| 22.3.1 Operation setting procedure                                                 |       |
| 22.3.1.1 Reset Output                                                              |       |
|                                                                                    |       |
| Chapter 23 Successive Approximation Type A/D Converter                             |       |
| 23. Successive Approximation Type A/D Converter                                    |       |
| 23.1 General Description                                                           |       |
| 23.1.1 Features                                                                    |       |
| 23.1.2 Configuration                                                               |       |
| 23.1.3 List of Pins                                                                |       |
| 23.2 Description of Registers                                                      |       |
| 23.2.1 List of Registers                                                           |       |
| 23.2.2 SA-ADC Mode Register (SADMOD)                                               |       |
| 23.2.3 SA-ADC Control Register (SADCON)                                            |       |
| 23.2.4 SA-ADC Conversion Interval Register (SADSTM)                                |       |
| 23.2.5 Reference Voltage Control Register (VREFCON)                                |       |
| 23.2.6 SA-ADC Interrupt Mode Register (SADIMOD)                                    |       |
| 23.2.7 SA-ADC Trigger Register (SADTRG)                                            |       |
| 23.2.8 SA-ADC Enable Register 0 (SADEN0)                                           |       |
| 23.2.9 SA-ADC Enable Register 1 (SADEN1)                                           |       |
| 23.2.10 SA-ADC Result Register (SADR)                                              | 23-14 |
| 23.2.10 SA-ADC Result Register (SADR)                                              |       |
| 23.2.12 SA-ADC Test Mode Register II (SADTMOD)                                     |       |
| 23.3 Description of Operation                                                      |       |
| 23.3.1 Operation of Successive Approximation Type A/D Converter                    |       |
|                                                                                    |       |
| 23.3.2 How to test the Successive Approximation Type A/D Converter                 |       |
| 23.5 PGA in Successive Approximation A/D Converter/Temperature Conversion Function |       |
|                                                                                    |       |
| 23.4.1 Sampling Time Setting                                                       |       |
| 23.4.2 Noise Suppression                                                           |       |
| Chanter 24 DCA                                                                     |       |
| Chapter 24 PGA                                                                     | 24.1  |
| 24. PGA.                                                                           |       |
| 24.1 General description                                                           |       |
| 24.1.1 Features.                                                                   |       |
| 24.1.2 Configuration                                                               |       |
| 24.1.3 Pin list                                                                    |       |
| 24.2 Register description                                                          |       |
| 24.2.1 List of register                                                            |       |
| 24.2.2 PGA Control Register (PGACON)                                               |       |
| 24.2.3 PGA Mode register (PGAMOD)                                                  |       |
| 24.3 Features                                                                      |       |
| 24.3.1 PGA Operation                                                               |       |

### Chapter 25 (Skip number)

#### ML62Q2033/35/43/45 User's Manual Contents

#### Chapter 26 Flash Memory 26 Flash Memory

| 26. Flash Memory                                                        |  |
|-------------------------------------------------------------------------|--|
| 26.1 General Description                                                |  |
| 26.1.1 List of Pins                                                     |  |
| 26.2 Register Description                                               |  |
| 26.2.1 List of Registers                                                |  |
| 26.2.2 Flash Address Register (FLASHA)                                  |  |
| 26.2.3 Flash Segment Register (FLASHSEG)                                |  |
| 26.2.4 Flash Data Register 0 (FLASHD0)                                  |  |
| 26.2.5 Flash Control Register (FLASHCON)                                |  |
| 26.2.6 Flash Acceptor (FLASHACP)                                        |  |
| 26.2.7 Flash Self Register (FLASHSLF)                                   |  |
| 26.2.8 Flash Status Register (FLASHSTA)                                 |  |
| 26.3 Self-programming                                                   |  |
| 26.3.1 Notes on Debugging Self-programming Code                         |  |
| 26.3.2 Programming Program Memory Space                                 |  |
| 26.3.3 Programming Data Flash Area                                      |  |
| 26.3.4 Notes on use of self-programming                                 |  |
| 26.4 In-System Programming Function                                     |  |
| 26.4.1 Programming Procedure                                            |  |
| 26.4.2 Communication Method                                             |  |
| 26.4.3 Control Command                                                  |  |
| 26.4.4 How to Entry ISP Mode                                            |  |
| 26.4.5 Handling the Flash Memory                                        |  |
| 26.4.5.1 Initial Setting                                                |  |
| 26.4.5.2 Erasing Data in Specified Flash Memory Area                    |  |
| 26.4.5.3 Programming to Specified Flash Memory Area                     |  |
| 26.4.5.4 Verifying data in Specified Flash Memory Area                  |  |
| 26.4.6 Advanced Control of Flash Memory Erasing/Programming             |  |
| 26.4.6.1 Timing to transmit command of Advanced Control                 |  |
| 26.4.6.2 Timeout during advanced control                                |  |
| 26.4.6.3 Erasing Data in Specified Flash Memory Area (Advanced control) |  |
| 26.4.6.4 Programming to Specified Flash Memory Area (Advanced control)  |  |

#### Chapter 27 (Skip number)

| Chapter 28 On-Chip Debug Function                                             |  |
|-------------------------------------------------------------------------------|--|
| 28. On-Chip Debug Function                                                    |  |
| 28.1 General Description                                                      |  |
| 28.1.1 Features                                                               |  |
| 28.1.2 Configuration                                                          |  |
| 28.1.2.1 Using Power Supply of Target System (V <sub>DD</sub> =4.5V to 5.5V)  |  |
| 28.1.3 List of Pins                                                           |  |
| 28.2 How to Use On-chip Debug Function                                        |  |
| 28.3 Precautions.                                                             |  |
| 28.4 Operation of Peripheral Circuits during breaks in the on-chip debug mode |  |
| 28.5 Reset in the On-Chip Debug Tool                                          |  |

#### **Chapter 29 Safety Function**

| 29. Safety Function                                 |  |
|-----------------------------------------------------|--|
| 29.1 General Description                            |  |
| 29.1.1 Features                                     |  |
| 29.2 Description of Registers                       |  |
| 29.2.1 List of Registers                            |  |
| 29.2.2 RAM Guard Setting Register (RAMGD)           |  |
| 29.2.3 SFR Guard Setting Register 0 (SFRGD0)        |  |
| 29.2.4 SFR Guard Setting Register 1 (SFRGD1)        |  |
| 29.2.5 RAM Parity Setting Register (RASFMOD)        |  |
| 29.2.6 Communication Test Setting Register (COMFT0) |  |
|                                                     |  |

#### ML62Q2033/35/43/45 User's Manual Contents

| 29.2.7 MCU Status Interrupt Enable Register (MCINTEL)               |  |
|---------------------------------------------------------------------|--|
| 29.2.8 MCU Status Interrupt Register (MCISTATL)                     |  |
| 29.2.9 MCU Status Interrupt Clear Register L/H (MCINTCLL, MCINTCLH) |  |
| 29.3 Description of Operation                                       |  |
| 29.3.1 Communication Function Self-Test                             |  |
| 29.3.2 Unused ROM Area Access Reset Function                        |  |
| 29.3.3 Clock Mutual Monitoring Function                             |  |
| 29.3.4 WDT Counter Read                                             |  |
| 29.3.5 Port Output Level Test                                       |  |
| 29.3.6 Successive Approximation Type A/D Converter Test             |  |

### Chapter 30 Code Option

| 30. Code Option                 |  |
|---------------------------------|--|
| 30.1 General Description        |  |
| 30.1.1 Function List            |  |
| 30.2 Description of Code Option |  |
| 30.2.1 Reading from SFRs        |  |
| 30.2.2 Code Option 0 (CODEOP0)  |  |
| 30.2.3 Code Option 1 (CODEOP1)  |  |
| 30.2.4 Code Option 2 (CODEOP2)  |  |
| 30.3 Code Option Data Setting   |  |
| 30.4 Branch Trace Function      |  |

### **Chapter 31 Auxiliary Function**

| 31. Auxiliary Function                      |  |
|---------------------------------------------|--|
| 31.1 General Description                    |  |
| 31.2 Description of Registers               |  |
| 31.2.1 List of Registers                    |  |
| 31.2.2 Product ID Register 0,1 (PID0, PID1) |  |
| 31.3 Description of Operation               |  |
| 31.3.1 How to Confirm Unique ID             |  |
|                                             |  |

### Appendix

| Appendix A Register List               | A-1 |
|----------------------------------------|-----|
| Appendix B Package Dimensions          |     |
| Appendix C Instruction Execution Cycle |     |
| Appendix D Application Circuit Example |     |
| Appendix E List of Notes               |     |
| Appendix D Dist of Protes              |     |

### **Revision History**

| te vision instory |               |
|-------------------|---------------|
| Revision History  | . <b>R-</b> 1 |

# **Chapter 1 Overview**

### 1. Overview

ML62Q2033/2035/2043/2045 are high performance CMOS 16-bit microcontrollers equipped with an 16-bit CPU nX-U16/100 and integrated with program memory (Flash memory), data memory (RAM), data Flash (Erase unit:128byte, Write unit:1byte) and rich peripheral functions such as the multiplier/divider, Clock generator, Operational timer (PWM, capture), Timer, General Purpose Ports, UART, I2C bus interface unit(Master, Slave), Successive approximation type 12bit A/D converter, 8bit D/A converter, PGA (Programable Gain Amp) and so on.

The CPU nX-U16/100 is capable of efficient instruction execution in 1-instruction 1-clock mode by pipeline architecture parallel processing.

The built-in on-chip debug function enables debugging and programming the software. Also, ISP (In-System Programming) function supports the Flash programming in production line.

#### Applications

Consumer and Industrial equipment (e.g., Household appliances, Housing equipment, Office equipment, Measurement instrumentation, etc.)

Note:

This product cannot be applicable for automotive use, automatic train control systems, and railway safety systems. Please contact ROHM sales office in advance if contemplating the integration of this product into applications that requires high reliability, such as transportation equipment for ships and railways, communication equipment for trunk lines, traffic signal equipment, power transmission systems, core systems for financial terminals and various safety control devices.

#### • Product list

Table1-1 shows the combination of ML62Q2033/2035/2043/2045 memory variations and package type.

| Program | Data memory | Data   | 20pin     | 24pin     |  |  |  |  |  |  |  |
|---------|-------------|--------|-----------|-----------|--|--|--|--|--|--|--|
| memory  | (RAM)       | Flash  | TSSOP20   | WQFN24    |  |  |  |  |  |  |  |
| 32Kbyte | 2Kbyte      | 4Kbyto | ML62Q2035 | ML62Q2045 |  |  |  |  |  |  |  |
| 16Kbyte | 2Kbyte      | 4Kbyte | ML62Q2033 | ML62Q2043 |  |  |  |  |  |  |  |

Table 1-1 Product List

### 1.1 Features

- CPU
  - 16-bit RISC CPU : nX-U16/100 (A35 core)
  - Instruction system : 16-bit length instructions
  - Instruction set : Transfer, arithmetic operations, comparison, logic operations,
    - multiplication/division, bit manipulations, bit logic operations, jump, conditional jump, call return stack, manipulations, arithmetic shift, and so on
  - Built-in On-chip debug function (connect to the ROHM on-chip debug emulator)
  - Minimum instruction execution time: 1 count of system clock Approximately 30.5µs/62.5ns (at 32.768kHz/16MHz system clock)
- Coprocessor for multiplication and division
  - Signed or Unsigned is selectable

| Signed of Chargeled is selectable                    |                       |                        |  |  |  |  |  |  |  |  |
|------------------------------------------------------|-----------------------|------------------------|--|--|--|--|--|--|--|--|
| Parameter                                            | Expression            | Operation time [cycle] |  |  |  |  |  |  |  |  |
| Multiplication                                       | 16bit × 16bit         | 4                      |  |  |  |  |  |  |  |  |
| Division                                             | 32bit ÷ 16bit         | 8                      |  |  |  |  |  |  |  |  |
| DIVISION                                             | 32bit ÷ 32bit         | 16                     |  |  |  |  |  |  |  |  |
| Multiply-accumulate (non-saturating, non-saturating) | 16bit × 16bit + 32bit | 4                      |  |  |  |  |  |  |  |  |

- Operating voltage and temperature
  - Operating voltage  $: V_{DD} = 4.5 \text{ to } 5.5 \text{V}$
  - Operating temperature: -40°C to +105°C
- Flash memory

| Parameter                    | Program memory area | Data Flash memory area |  |  |
|------------------------------|---------------------|------------------------|--|--|
| Erase/Write count            | 100cycles           | 10,000cycles           |  |  |
| Write unit                   | 16bit (2byte)       | 8bit (1byte)           |  |  |
| Erase unit                   | 16Kbyte/1Kbyte      | all area/128byte       |  |  |
| Erase/Write temperature (Ta) | 0°C to +40°C        | -40°C to +85°C         |  |  |

- Background Operation (CPU can work while erasing and rewriting to the Data Flash memory area.)
  - The built-in on-chip debug function and ISP (In-System Programming) function enable Flash programming This product uses Super Flash® technology licensed from Silicon Storage Technology, Inc.
    - Super Flash® is a registered trademark of Silicon Storage Technology, Inc.
- Data RAM area
  - Rewrite unit: 8bit/16bit (1byte/2byte)

High-speed system clock (HSCLK)

- Parity check function is available (interrupt or reset is generatable at Parity error)
- Clock generation circuit
  - Low-speed clock (LSCLK0)
  - Internal low-speed RC oscillation (RC32K) : Approx. 32.768kHz - High-speed source clock (HSOCLK)
    - : Available for PWM generation circuit clock
  - PLL oscillation

: 64MHz : 16MHz, generated by dividing HSOCLK

- Reset
  - System Resets by reset input pin, Power-On Reset, Low Level Detector (LLD) reset, Watchdog timer (WDT) overflow, WDT invalid clear, RAM parity error reset, and Program Counter error reset (instruction access to unused ROM area)
  - Software reset by BRK instruction (reset CPU only) \_
  - Reset the peripherals individually/collectively by software
- Power management
  - Two stand-by mode.
    - STOP mode (All clocks are stopped)
    - HALT mode (clocks for System are stopped)
  - Individual clock input control to the peripheral blocks by software
  - Clock gear: High-speed system clock frequency is changeable dynamically
  - (1/1, 1/2, 1/4, 1/8, 1/16, 1/32 of HSCLK)

• Interrupt controller

- I/O port

- Non-maskable interrupt source : 1 (Internal sources: WDT)
- Maskable interrupt sources : 22 (included the external interrupt 4 sources)
- Four step interrupt levels
- External interrupt ports (EXI)

: 4 (selectable from Max.8 pins) with sampling filter

- and edge (rise, fall, both) selection.

- General-purpose ports (GPIO)
- : Max. 20 (Including pins for shared functions)
- Carrier frequency output function (for IR communication)
- Watchdog timer (WDT): 1 channel
  - Overflow period : 8selectable (7.8, 15.6, 31.3, 62.5, 125, 500, 2000, 8000ms)
  - Selectable window function (enable or disable): configurable clear enable period (50% or 75% of overflow period) with invalid clear. When disable, interrupts the first overflow and resets the second overflow. When enable, reset occurs for the first overflow.
  - Selectable WDT operation : select Enable or Disable by code option
  - Selectable operation during HALT mode (Continue counting/Stop counting)
  - WDT counter operation monitoring function (Readable WDT counter)
- Operational timer: 6 channels
  - Various modes (Continuous, One shot, capture, and PWM mode)
  - Event trigger (external terminal, 16bit timer, operational timer, comparator) input is available
  - Selectable counter clock from various sources (LSCLK0, HSCLK (16MHz), HSOCLK (64MHz), divided by 1 to 8 of external pin input)
  - Logic AND output with several channel output (Operational timer output, comparator output, and external pin input) is available
- 16-bit General timers: 1 channel
  - Selectable counter clock from various sources (LSCLK, HSCLK (16MHz), and external clock divided by 1 to 8)
- UART (Half-duplex/Full-duplex communication mode): 2 channels
  - Selectable from 5 to 8bit length, parity or no parity, odd parity or even parity, 1 stop bit or 2 stop bits, Positive logic or Negative logic, LSB first or MSB first
    - Sampling filter for receiving data and start bit
    - Built-in baud rate generator (HSCLK@16MHz: 300bps to 2Mbps, LSCLK: up to 2400bps)
- I<sup>2</sup>C bus: 1 channel
  - Select from Master mode or Slave mode: 1channel. Master mode only: 1channel
  - Standard mode (100kbps), fast mode (400kbps) and 1Mbps mode (1Mbps)
  - 7bit address format
  - Master mode: Handshake (Clock synchronization), 10bit Master address format is supported
  - Slave mode: Clock stretch function,
- Successive approximation type 12bit A/D converter (SA-ADC): input 5 channels
  - Conversion time: Min. 1.375µs / ch (When the conversion clock frequency is 16MHz)
  - Reference voltages (V<sub>ADCREF</sub>) are selectable from VDD pin input voltage or Internal reference voltage (V<sub>ADCREF</sub>, Approx. 2.5V)
  - Dedicated result register for each channel
  - Interrupt by Continuous conversion and Trigger start
- Programable-Gain-Amp (PGA): 1 channel
  - Amplification factor : 4/ 8/16/ 32
  - Voltage input pin is selectable (AIN0/ AIN1/ AIN2/ AIN3)
- Analog comparator (CMP): 3 channels
  - Selectable interrupt from the comparator output (rising edge or falling edge) and sampling
  - Selectable reference voltage (V<sub>CMPREFn n=0 to 2</sub>) from external pin input, internal reference voltage (0.8V) (V<sub>CMPREFI</sub>), and D/A converter

- D/A converter (DAC): 2 channels
  - Resolution : 8 bit
  - Output impedance :10kΩ (Typ.)
  - R-2R ladder type
  - Reference voltages (V<sub>DACREF</sub>) are selectable from VDD pin input voltage or Internal reference voltage (0.8V) (V<sub>DACREF</sub>)
  - \_
- Low Level Detector (LLD): 1 channel
  - Reset generating
  - Sampling filter
  - Low power operation
- Safety Function
  - RAM/SFR guard
  - RAM parity error detection
  - ROM unused area access reset (instruction access)
  - WDT counter monitoring
  - SA-ADC test
  - Communication loop back test (UART, I<sup>2</sup>C bus(master))
  - GPIO test
- Shipping package

| Package              | Body size                     | Pin pitch | Packing form and Product name                |                                              |  |  |  |  |
|----------------------|-------------------------------|-----------|----------------------------------------------|----------------------------------------------|--|--|--|--|
|                      | (including lead)<br>[mm × mm] | [mm]      | Tray                                         | Tape & Reel                                  |  |  |  |  |
| 20 pin plastic TSSOP | 6.5 × 4.4<br>(6.5 × 6.4)      | 0.65      | ML62Q2033-xxxTDZWARZ<br>ML62Q2035-xxxTDZWARZ | ML62Q2033-xxxTDZWATZ<br>ML62Q2035-xxxTDZWATZ |  |  |  |  |
| 24 pin plastic WQFN  | 4.0 × 4.0<br>( - )            | 0.50      | ML62Q2043-xxxGDZW5AY<br>ML62Q2045-xxxGDZW5AY | ML62Q2043-xxxGDZW5BY<br>ML62Q2045-xxxGDZW5BY |  |  |  |  |

xxx: ROM code number, (NNN: ROM code is blank)

### 1.1.1 How To Read The Part Number

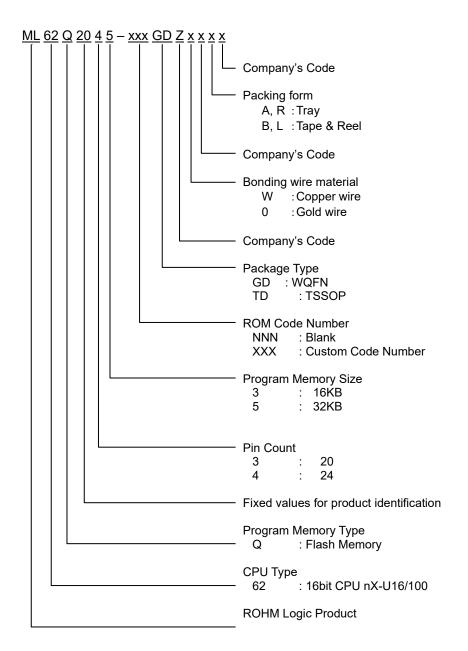
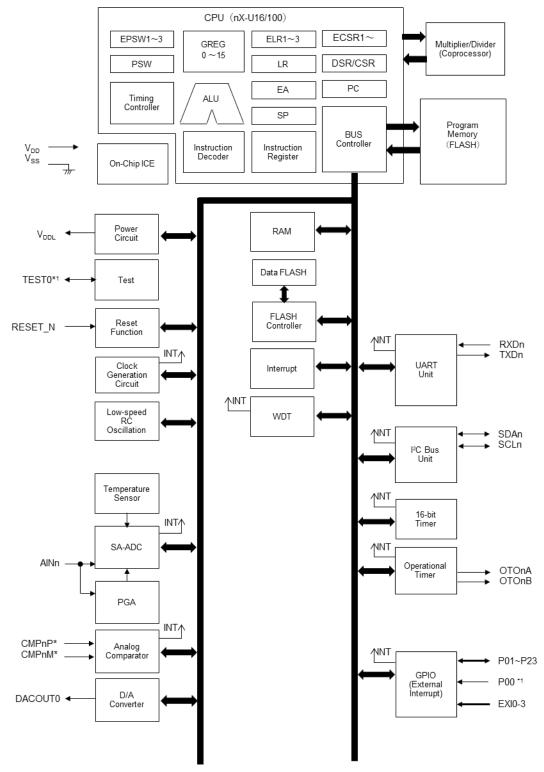



Figure 1-1 Part Number


## 1.1.2 Main Function List

| Table 1-2 Main Function List |           |           |                 |                                       |                                                  |                        |                           |                               |                                    |                  |                              |                                |                     |           |                                    |                                          |                        |                    |          |  |
|------------------------------|-----------|-----------|-----------------|---------------------------------------|--------------------------------------------------|------------------------|---------------------------|-------------------------------|------------------------------------|------------------|------------------------------|--------------------------------|---------------------|-----------|------------------------------------|------------------------------------------|------------------------|--------------------|----------|--|
|                              | Pin       |           |                 |                                       |                                                  | Interrupt              |                           |                               | Timer                              |                  |                              | Communication                  |                     | Analog    |                                    |                                          |                        |                    |          |  |
| Part number                  | Total pin | Power pin | Reset Input pin | General purpose I/O pin <sup>∗1</sup> | General purpose I/O pin (LED drive is supported) | External interrupt pin | External interrupt source | Non maskable interrupt source | Internal maskable interrupt source | 16bit Timer [ch] | 16bit operational Timer [ch] | 16bit operational Timer [Port] | Watchdog Timer [ch] | UART [ch] | l²C bus unit (Master / Slave) [ch] | 12bit Successive type A/D converter [ch] | Analog Comparator [ch] | D/A converter [dh] | PGA [ch] |  |
| ML62Q2033                    | 20        |           |                 |                                       | 15                                               |                        |                           |                               |                                    |                  |                              | 10                             |                     |           |                                    |                                          |                        |                    |          |  |
| ML62Q2035                    |           | 3         | 1               | 1                                     |                                                  | 8                      | 4                         | 1                             | 18                                 | 1                | 6                            |                                | 1                   | 2         | 1                                  | 5                                        | 3                      | 2                  | 1        |  |
| ML62Q2043                    | 24        | 24        |                 |                                       |                                                  | 19                     |                           |                               |                                    |                  |                              |                                | 13                  |           |                                    |                                          |                        |                    |          |  |
| ML62Q2045                    |           |           |                 |                                       |                                                  |                        |                           |                               |                                    |                  |                              |                                |                     |           |                                    |                                          |                        |                    |          |  |

\*1: Shared with pins debug input.

### 1.2 Block Diagram

### 1.2.1 Block Diagram of ML62Q2033/2035/2043/2045



\*1 : Not available as the input port when connecting to the on-chip debug emulator.

Figure 1-2 Block Diagram

### 1.3 Pin

1.3.1 Pin Layout

1.3.1.1 ML62Q2035/2033 : 20 pin TSSOP

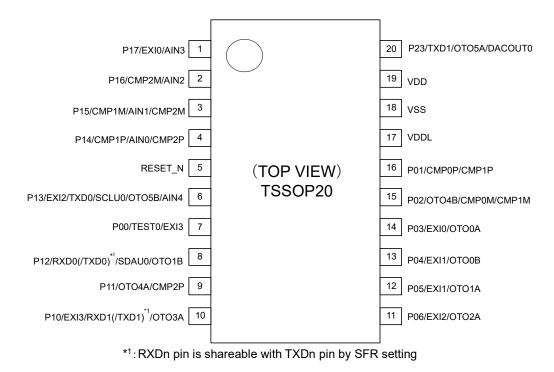
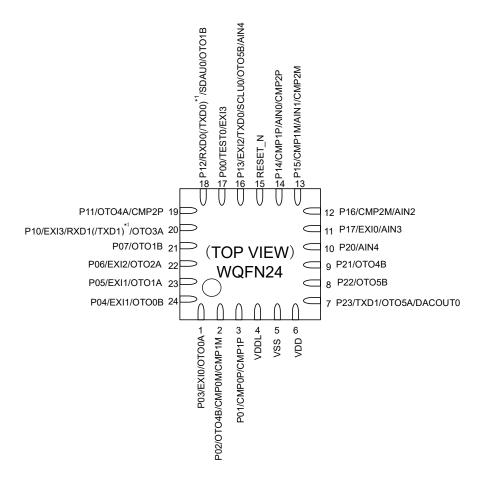




Figure 1-3-1 20 pin TSSOP

### 1.3.1.2 ML62Q2045/2043 : 24 pin WQFN



DIE PAD = NC \*1: RXDn pin is shareable with TXDn pin by SFR setting

Figure 1-3-2 24 pin WQFN

### 1.3.2 Pin List

Table 1-3 shows the pin list of This LSI.

| Table 1-3 Pin List |                                                             |           |                 |                                             |                  |                 |                 |                 |                 |                 |  |
|--------------------|-------------------------------------------------------------|-----------|-----------------|---------------------------------------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| Pin                | No.                                                         |           | 1 <sup>st</sup> | 2 <sup>nd</sup>                             | 3 <sup>rd</sup>  | 4 <sup>th</sup> | 5 <sup>th</sup> | 6 <sup>th</sup> | 7 <sup>th</sup> | 8 <sup>th</sup> |  |
|                    |                                                             |           | function        | function                                    | function         | function        | function        | function        | function        | function        |  |
| ML62Q203x          | ML62Q204x                                                   | Pin name  | GPI/<br>EXI     | UART*                                       | l <sup>2</sup> C | ОТМ             | CMP/DAC         | ADC             | CMP             | CMP/ADC         |  |
| 19                 | 6                                                           | VDD       | -               | -                                           | -                | -               | -               | -               | -               | -               |  |
| 18                 | 5                                                           | VSS       | -               | -                                           | -                | -               | -               | -               | -               | -               |  |
| 17                 | 4                                                           | VDDL      | -               | -                                           | -                | -               | -               | -               | -               | -               |  |
| 16                 | 3                                                           | P01       | -               | -                                           | -                | -               | CMP0P           | -               | CMP0P/<br>CMP1P | CMP0P           |  |
| 15                 | 2                                                           | P02       | -               | -                                           | -                | OTO4B           | CMP0M           | -               | CMP0M/<br>CMP1M | CMP0M           |  |
| 14                 | 1                                                           | P03       | EXI0            | -                                           | -                | OTO0A           | -               | -               | -               | -               |  |
| 13                 | 24                                                          | P04       | EXI1            | -                                           | -                | OTO0B           | -               | -               | -               | -               |  |
| 12                 | 23                                                          | P05       | EXI1            | -                                           | -                | OTO1A           | -               | -               | -               | -               |  |
| 11                 | 22                                                          | P06       | EXI2            | -                                           | -                | OTO2A           | -               | -               | -               | -               |  |
| -                  | 21                                                          | P07       | -               | -                                           | -                | OTO1B           | -               | -               | -               | -               |  |
| 10                 | 20                                                          | P10       | EXI3            | RXD1* <sup>1</sup><br>(/TXD1)* <sup>2</sup> | -                | ΟΤΟ3Α           | -               | -               | -               | -               |  |
| 9                  | 19                                                          | P11       | -               | -                                           | -                | OTO4A           | CMP2P           | -               | CMP2P           | CMP2P           |  |
| 8                  | 18                                                          | P12       | -               | RXD0*1<br>(/TXD0)*2                         | SDAU0            | OTO1B           | -               | -               | -               | -               |  |
| 7                  | 17                                                          | P00/TEST0 | EXI3            | -                                           | -                | -               | -               | -               | -               | -               |  |
| 6                  | 16                                                          | P13       | EXI2            | TXD0*1                                      | SCLU0            | OTO5B           | -               | AIN4            | -               | -               |  |
| 5                  | 15                                                          | RESET_N   | -               | -                                           | -                | -               | -               | -               | -               | -               |  |
| 4                  | 14                                                          | P14       | -               | -                                           | -                | -               | CMP1P           | AIN0            | CMP1P/<br>CMP2P | AIN0<br>/CMP1P  |  |
| 3                  | 13                                                          | P15       | -               | -                                           | -                | -               | CMP1M           | AIN1            | CMP1M/<br>CMP2M | AIN1<br>/CMP1M  |  |
| 2                  | 12                                                          | P16       | -               | -                                           | -                | -               | CMP2M           | AIN2            | CMP2M           | AIN2<br>/CMP2M  |  |
| 1                  | 11                                                          | P17       | EXI0            | -                                           | -                | -               | -               | AIN3            | -               | -               |  |
| -                  | 10                                                          | P20       | -               | -                                           | -                | -               | -               | AIN4            | -               | -               |  |
| -                  | 9                                                           | P21       | -               | -                                           | -                | OTO4B           | -               | -               | -               | -               |  |
| -                  | 8                                                           | P22       | -               | -                                           | -                | OTO5B           | -               | -               | -               | -               |  |
| 20                 | 7                                                           | P23       | -               | TXD1* <sup>1</sup>                          | -                | OTO5A           | DACOUTO         | -               | -               | -               |  |
| -                  | DIE                                                         | NC        | -               | -                                           | -                | -               | -               | -               | -               | -               |  |
| 1 Th               | The LIARTnin use with a combination of the same suffix nins |           |                 |                                             |                  |                 |                 |                 |                 |                 |  |

\*1: The UARTpin use with a combination of the same suffix pins

 $^{\star 2}\colon$  RXDn pin is shareable with TXDn pin by SFR setting

### 1.3.3 Pin Description

Table 1-4 shows the pin list categorized by the function. "I/O" Field in the below table define the pin type ("-" : power supply pin, "I" : Input pin, "O" : Out put pin, "I/O" bi-directional pin)

| Table 1-4 Pin Description   |                        |               |     |                                                                                                                                                                                         |  |  |  |  |
|-----------------------------|------------------------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Function                    | Functional pin<br>name | LSI pin name  | I/O | Description                                                                                                                                                                             |  |  |  |  |
|                             | -                      | VSS           | -   | Negative power supply pin (-)<br>Define this terminal potential as V <sub>SS</sub> .                                                                                                    |  |  |  |  |
| Power                       | -                      | VDD           | -   | Positive power supply pin (+).<br>Connect a capacitor $C_V$ (more than 1µF) between this pin and VSS. Define this terminal potential as $V_{DD}$                                        |  |  |  |  |
|                             | -                      | VDDL          | -   | Power supply for internal logic (internal regulator's output). Connect a capacitor $C_L$ (1µF) between this pin and VSS.                                                                |  |  |  |  |
| Debug<br>ISP                | TEST0                  | P00/<br>TEST0 | I/O | Input/output for testing<br>This pin which is shared with P00 is used as on-chip debug<br>interface and ISP function and is initialized as pull-up input<br>mode by the system reset.   |  |  |  |  |
| Reset                       | RESET_N                | RESET_N       | ļ   | Reset input.<br>Appling this pin "L" level shifts MCU to system reset mode.<br>Appling this pin "H" level shifts MCU to program running mode.<br>No pull-up resistor is built-in.       |  |  |  |  |
| General input port<br>(GPI) | P00                    | P00/<br>TEST0 | I/O | General purpose input.<br>- Input with Pull-up (initial value)<br>- Input without Pull-up<br>Not available as general inputs when using the on-chip debug<br>interface or ISP function. |  |  |  |  |
|                             | P01 to P07             | P01 to P07    |     | General purpose input/output<br>- High-impedance (initial value)                                                                                                                        |  |  |  |  |
| General port<br>(GPIO)      | P10 to P17             | P10 to P17    | I/O | - Input with Pull-up<br>- Input without Pull-up<br>- CMOS output                                                                                                                        |  |  |  |  |
|                             | P20 to P23             | P20 to P23    |     | - N channel (N-ch) open drain output<br>- P channel (P-ch) open drain output                                                                                                            |  |  |  |  |
| Career frequency<br>output  | -                      | P13 P23       | 0   | Career frequency output                                                                                                                                                                 |  |  |  |  |
|                             | EXI0                   | P03 P17       |     | External Maskable Interrupt 0 input                                                                                                                                                     |  |  |  |  |
| External Interrupt          | EXI1                   | P04 P05       | 1   | External Maskable Interrupt 1 input                                                                                                                                                     |  |  |  |  |
| (1 <sup>st</sup> function)  | EXI2                   | P06 P13       |     | External Maskable Interrupt 2 input                                                                                                                                                     |  |  |  |  |
|                             | EXI3                   | P00 P10       |     | External Maskable Interrupt 3 input                                                                                                                                                     |  |  |  |  |
|                             | OTO0A                  | P03           |     | Operational Timer 0 A output                                                                                                                                                            |  |  |  |  |
|                             | OTO0B                  | P04           |     | Operational Timer 0 B output                                                                                                                                                            |  |  |  |  |
|                             | OTO1A                  | P05           |     | Operational Timer 1 A output                                                                                                                                                            |  |  |  |  |
|                             | OTO1B                  | P07 P12       |     | Operational Timer 1 B output                                                                                                                                                            |  |  |  |  |
| Operational Timer           | OTO2A                  | P06           | 0   | Operational Timer 2 A output                                                                                                                                                            |  |  |  |  |
| (4 <sup>th</sup> function)  | ОТОЗА                  | P10           | 0   | Operational Timer 3 A output                                                                                                                                                            |  |  |  |  |
|                             | OTO4A                  | P11           |     | Operational Timer 4 A output                                                                                                                                                            |  |  |  |  |
|                             | OTO4B                  | P02 P21       |     | Operational Timer 4 B output                                                                                                                                                            |  |  |  |  |
|                             | OTO5A                  | P23           |     | Operational Timer 5 A output                                                                                                                                                            |  |  |  |  |
|                             | OTO5B                  | P13 P22       |     | Operational Timer 5 B output                                                                                                                                                            |  |  |  |  |
| I <sup>2</sup> C Bus        | SCLU0                  | P13           | I/O | I <sup>2</sup> C Unit0 Clock input/output                                                                                                                                               |  |  |  |  |
| (3 <sup>rd</sup> function)  | SDAU0                  | P12           | 1/0 | I <sup>2</sup> C Unit0 Data input/output                                                                                                                                                |  |  |  |  |

ML62Q2033/2035/2043/2045 User's Manual Chapter 1 Overview

| Function                                                                                      | Functional pin<br>name | LSI pin name                  | I/O | Description                            |  |  |  |  |
|-----------------------------------------------------------------------------------------------|------------------------|-------------------------------|-----|----------------------------------------|--|--|--|--|
|                                                                                               | RXD0                   | P12                           | Ι   | UART0 received data input              |  |  |  |  |
| UART                                                                                          | TXD0                   | P13                           | 0   | UART0 transmission data output         |  |  |  |  |
| (2 <sup>nd</sup> function)                                                                    | RXD1                   | P10                           | Ι   | UART1 received data input              |  |  |  |  |
|                                                                                               | TXD1                   | P23                           | 0   | UART1 transmission data output         |  |  |  |  |
| Successive<br>approximation<br>type A/D converter<br>(SA-ADC)<br>(6/8 <sup>th</sup> function) | AIN0 to AIN4           | P14 P15 P16<br>P17<br>P13 P20 | Ι   | SA-ADC channel 0 to 4 analog input     |  |  |  |  |
| D/A converter<br>(5 <sup>th</sup> function)                                                   | DACOUT0                | P23                           | 0   | D/A converter 0 output (select by SFR) |  |  |  |  |
|                                                                                               | CMP0P                  | P01                           |     | Analog comparator 0 Noninverting input |  |  |  |  |
|                                                                                               | CMP0M                  | P02                           |     | Analog comparator 0 Inverting input    |  |  |  |  |
| Analog                                                                                        | CMP1P                  | P01 P14                       |     | Analog comparator 1 Noninverting input |  |  |  |  |
| comparator<br>(5/7/8 <sup>th</sup> function)                                                  | CMP1M                  | P02 P15                       | I   | Analog comparator 1 Inverting input    |  |  |  |  |
|                                                                                               | CMP2P                  | P11 P14                       |     | Analog comparator 2 Noninverting input |  |  |  |  |
|                                                                                               | CMP2M                  | P15 P16                       |     | Analog comparator 2 Inverting input    |  |  |  |  |

### 1.3.4 Termination of Unused Pins

Table 1-5 shows the processing of unused pins.

Table 1-5 Termination of unused pins

| Pin        | pin termination                                                                       |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|
| RESET_N    | Connect to VDD                                                                        |  |  |  |  |  |  |
| P00/TEST0  | Open with the initial condition of pulled-up input mode                               |  |  |  |  |  |  |
| P01 to P07 |                                                                                       |  |  |  |  |  |  |
| P10 to P17 | Open the pins with the initial condition of Hi-impedance (input/output invalid) mode. |  |  |  |  |  |  |
| P20 to P23 |                                                                                       |  |  |  |  |  |  |

[Note]

Terminate unused input pins according to the Table 1-5 in order to avoid unexpected through-current in the pins.

# **Chapter 2 CPU and Memory Space**

## 2. CPU and Memory Space

### 2.1 General Description

This LSI has 16-bit CPU nX-U16/100 (A35 core), the multiplier/divider in the coprocessor, flash memory in the program memory space, and RAM and data flash in the data memory space.

In addition, it has the built-in remap function that remaps a 4 Kbyte area in the program memory space.

Table 2-1 to 2-3 show the memory size of the program memory space and the data memory space as well as the CPU memory model. For details of memory model, see "nX-U16/100 Core Instruction Manual".

#### Table 2-1 Program Memory Space and Data Memory Space

| Product name           | Program memory space | Data memory space | Data flash size  | Momory model |  |
|------------------------|----------------------|-------------------|------------------|--------------|--|
| Flouuct name           | ROM size             | RAM size          | Data liasti size | Memory model |  |
| ML62Q2033<br>ML62Q2043 | 16 Kbyte             | 2 Khuta           | 4 Khuto          | SMALL        |  |
| ML62Q2035<br>ML62Q2045 | 32 Kbyte             | 2 Kbyte           | 4 Kbyte          | SWALL        |  |

### 2.2 CPU nX-U16/100

nX-U16/100 has following features. See "nX-U16/100 Core Instruction Manual" for details.

- Various instruction sets
  - Instructions for data transfers, arithmetic, comparison, logic operations, multiplication/division, bit manipulation, bitwise logic operations, branches, conditional branches, call/return stack manipulation, and arithmetic shifts
  - Variety of addressing modes
  - Register addressing
  - Register indirect addressing
  - Stack pointer addressing
  - Control register addressing
  - EA register indirect addressing
  - General-purpose register indirect addressing
  - Direct addressing
  - Register indirect bit addressing
  - Direct bit addressing
- Memory space
- Program memory space
- Data memory space
- Interrupts
  - Dedicated emulator interrupt
  - Non-maskable interrupt
  - Maskable interrupt
  - Software interrupt

#### 2.2.1 Wait Mode and No-wait Mode

nX-U16/100 has two CPU operation modes. This LSI only supports no-wait mode.

| Table 2-2 Maximum Operating Frequency |                                                                                                  |              |  |  |  |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|
| PLL reference                         | requence                                                                                         |              |  |  |  |  |  |  |
| frequency                             | of peripheral circuit                                                                            | No-wait mode |  |  |  |  |  |  |
| 64MHz                                 | 16MHz <sup>*1</sup><br><sup>*1</sup> : Only the operational timer can<br>operate at up to 64 MHz | 16MHz        |  |  |  |  |  |  |

#### **T** ... . . . . ~

Wait mode (This LSI is not supported)

In this mode, instruction codes read from the program memory are stored into the built-in buffer. The CPU can work at high speed to read the instructions from the buffer. In contiguous address instruction processing, the instructions can be executed without a wait time for storing them in the buffer. In branch instruction processing, the number of execution cycles increases due to a wait time for storing the instructions in the buffer.

No-wait mode This mode allows the CPU to directly execute instruction codes read from the program memory without involving the buffer. This mode minimizes the number of instruction execution cycles.

See Appendix C "Instruction execution cycle" for the number of instruction execution cycles in wait and no-wait modes.

### 2.2.2 Notes When Executing SB/RB Instruction

The bit access SB/RB instruction reads in bytes from a register containing the target bits, generates the byte data while rewriting only the values of the target bits, then writes it in bytes.

If an SB/RB instruction is executed to a register where multiple bits are placed, bits not targeted for the SB/RB instruction are rewritten with the values read at that time.

Note that the SB/RB instruction may rewrite the state of bits not targeted for the SB/RB instruction if it is executed to a register where values of some bits change depending on the hardware state.

### 2.2.3 Notes on the Description of Read-modify-write

When reading values from SFR and changing only some of the values and writing them back (read-modify-write), C compiler may convert it to a bit-access instruction. (Even if the change is two bits, it may be converted to two bit-access instructions.) Therefore, there are cases where you think you are writing at the same time, but you are not, and cases where you think you are doing word-access, but it is converted to bit-access.

If you do not want to be converted to a bit-access instruction, you can avoid it by the following description.

Example of a description that is converted to a bit-access instruction:

| SFR &= 0xFFFE; | Converted to RB SFR.0;                |
|----------------|---------------------------------------|
| SFR  = 0x0081; | Converted to SB SFR.7 ;<br>SB SFR.0 ; |

Example of a description that is not converted to a bit-access instruction:

volatile unsigned short vald; vald = SFR; SFR = vald & 0xFFFE; vald = SFR; SFR = vald | 0x0081 ;

The conversion to bit-access instructions can be avoided by assigning the variable once to a volatile-qualified variable.

### 2.3 Coprocessor

This LSI has the built-in multiplier/divider in the coprocessor.

The multiplier/divider is operated using coprocessor data transfer instructions of the CPU. For coprocessor data transfer instructions, see "nX-U16/100 Core Instruction Manual".

#### 2.3.1 Multiplier/Divider

The multiplier/divider has following arithmetic functions:

- Multiplication : 16 bit × 16 bit (operation time 4 cycles)
- Division : 32 bit ÷ 16 bit (operation time 8 cycles)
  - Division  $: 32 \text{ bit} \div 32 \text{ bit}$  (operation time 16 cycles)
- Multiply-accumulate (non-saturating) : 16 bit × 16 bit + 32 bit (operation time 4 cycles)
- Multiply-accumulate (saturating) : 16 bit × 16 bit + 32 bit (operation time 4 cycles)
- Signed or unsigned operation setting
- In a saturating multiply-accumulate operation, the result is fixed to 0x7FFF\_FFFF for a positive number and 0x8000\_0000 for a negative number when it is out of the expressible range.

See user's manual for the multiplication/division library using the multiplier/divider.

### 2.3.2 List of Coprocessor General-purpose Registers

The coprocessor general-purpose registers are byte type and readable or writable as word type registers (CERn), double word type registers (CXRn), or quad word type registers (CQRn) combining the consecutive registers.

|         |                                         | List of coproce | Symbol |                | Initial      |     |                  |  |
|---------|-----------------------------------------|-----------------|--------|----------------|--------------|-----|------------------|--|
| Address | Coprocessor<br>general-purpose register | Byte            | Word   | Double<br>word | Quad<br>word | R/W | Initial<br>value |  |
| -       | A register L                            | CR0             | CER0   |                |              | R/W | 0x00             |  |
| -       | A register H                            | CR1             | CERU   | CXR0           |              | R/W | 0x00             |  |
| -       | B register L                            | CR2             | CER2   | CARU           |              | R/W | 0x00             |  |
| -       | B register H                            | CR3             | GERZ   |                | CQR0         | R/W | 0x00             |  |
| -       | C register L                            | CR4             | CER4   |                |              | R/W | 0x00             |  |
| -       | C register H                            | CR5             | CER4   | CXR4           |              | R/W | 0x00             |  |
| -       | D register L                            | CR6             | CER6   |                |              | R/W | 0x00             |  |
| -       | D register H                            | CR7             | CERO   |                |              | R/W | 0x00             |  |
| -       | Operation mode register                 | CR8             | CER8   |                |              | R/W | 0x00             |  |
| -       | Operation status register               | CR9             | CERO   | CXR8           |              | R/W | 0x00             |  |
| -       | -                                       | CR10            | CER10  | UNRO           |              | R/W | 0x00             |  |
| -       | -                                       | CR11            | CERIU  |                | 0000         | R/W | 0x00             |  |
| -       | -                                       | CR12            | CER12  |                | CQR8         | R/W | 0x00             |  |
| -       | -                                       | CR13            | UER 12 | CVB12          |              | R/W | 0x00             |  |
| -       | -                                       | CR14            | CER14  | CXR12          |              | R/W | 0x00             |  |
| -       | Coprocessor ID register                 | CR15            | GER 14 |                |              | R   | 0x81             |  |

Table 2-3 List of coprocessor general-purpose registers

CR0 to CR7 are registers to store the setting of the input values of operations and operation results.

CR8 is a register to set each operation mode (signed, unsigned) and to enable/disable the operation.

CR9 is a register to store the status of each operation result.

CR15 is a register to indicate coprocessor ID.

CR10 to CR14 have no function. Reading them returns "0x00". These registers are not writable.

### 2.3.2.1 A, B, C, D Registers (CR0 to CR7)

These registers store the input values of operations and operation results.

These are byte type registers and can be accessed as a word type register (CERn), double word type register (CXRn), or quad word type register (CQRn) combining the consecutive registers. The bit symbols are unavailable to use in the software.

|                  | ess:<br>ess size<br>al value | e: 8/  | /W<br>(16 bit<br>x0000 |        |        |        |       |         |       |       |       |       |       |       |       |       |
|------------------|------------------------------|--------|------------------------|--------|--------|--------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  | 15                           | 14     | 13                     | 12     | 11     | 10     | 9     | 8       | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
| Word             |                              |        |                        |        |        |        |       | CE      | R0    |       |       |       |       |       |       |       |
| Byte             |                              | -      |                        | CI     | ٦1     |        |       |         |       |       |       | CI    | R0    |       |       |       |
| Bit              | areg15                       | areg14 | areg13                 | areg12 | areg11 | areg10 | areg9 | areg8   | areg7 | areg6 | areg5 | areg4 | areg3 | areg2 | areg1 | areg0 |
| R/W              | R/W                          | R/W    | R/W                    | R/W    | R/W    | R/W    | R/W   | R/W     | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0                            | 0      | 0                      | 0      | 0      | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|                  | 15                           | 14     | 13                     | 12     | 11     | 10     | 9     | 8       | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
| Word             |                              |        |                        |        |        |        |       | CE      | R2    |       |       |       |       |       |       |       |
| Byte             |                              |        |                        | CI     | २३     |        |       |         |       |       |       | CI    | R2    |       |       |       |
| Bit              | breg15                       | breg14 | breg13                 | breg12 | breg11 | breg10 | breg9 | breg8   | breg7 | breg6 | breg5 | breg4 | breg3 | breg2 | breg1 | breg0 |
| R/W              | R/W                          | R/W    | R/W                    | R/W    | R/W    | R/W    | R/W   | R/W     | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0                            | 0      | 0                      | 0      | 0      | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|                  | 15                           | 14     | 13                     | 12     | 11     | 10     | 9     | 8       | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
| Word             |                              |        |                        |        |        |        |       | CE      | R4    |       |       |       |       |       |       |       |
| Byte             |                              |        |                        | CI     | २5     |        |       |         |       |       |       | CI    | R4    |       |       |       |
| Bit              | creg15                       | creg14 | creg13                 | creg12 | creg11 | creg10 | creg9 | creg8   | creg7 | creg6 | creg5 | creg4 | creg3 | creg2 | creg1 | creg0 |
| R/W              | R/W                          | R/W    | R/W                    | R/W    | R/W    | R/W    | R/W   | R/W     | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0                            | 0      | 0                      | 0      | 0      | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|                  | 15                           | 14     | 13                     | 12     | 11     | 10     | 9     | 8       | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
| Word             | 15                           | 14     | 13                     | 12     | 11     | 10     | 9     | °<br>CE |       | 0     | 5     | 4     | 3     | 2     | 1     | 0     |
| Byte             |                              |        |                        | CI     | 27     |        |       | UE      |       |       |       | C     | R6    |       |       |       |
| Bit              | dreg15                       | dreg14 | dreg13                 |        | dreg11 | dreg10 | dreg9 | dreg8   | dreg7 | dreg6 | dreg5 | dreg4 | dreg3 | dreg2 | dreg1 | dreg0 |
| R/W              | R/W                          | R/W    | R/W                    | R/W    | R/W    | R/W    | R/W   | R/W     | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0                            | 0      | 0                      | 0      | 0      | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Table 2-4 shows assignment of an input and results.

As soon as the data is written in register CR7, operation is started.

In a saturating multiply-accumulate operation, the result is fixed to 0x7FFF\_FFFF for a positive number and 0x8000 0000 for a negative number when it is out of the expressible range.

In a signed operation, each of the most significant bits of input and output is a sign.

#### ML62Q2033/2035/2043/2045 User's Manual Chapter 2 CPU and Memory Space

| Quad word symb                              | CQR0   |                  |            |                   |           |                            |      |     |     |  |
|---------------------------------------------|--------|------------------|------------|-------------------|-----------|----------------------------|------|-----|-----|--|
| Double word sym                             | CXR4   |                  |            |                   | CXR0      |                            |      |     |     |  |
| Word symbol                                 | CE     | R6               | CE         | R4                | CE        | R2                         | CER0 |     |     |  |
| Byte symbol                                 |        | CR7              | CR6        | CR5               | CR4       | CR3                        | CR2  | CR1 | CR0 |  |
| Multiplication                              | Input  | Multiplica       | and [15:0] | Multiplie         | er [15:0] |                            |      | -   |     |  |
| 16 bit x 16 bit                             | Result |                  | -          | -                 |           | Product [31:0]             |      |     |     |  |
| Division                                    | Input  | Divisor [15:0]   |            | -                 |           | Dividend [31:0]            |      |     |     |  |
| 32 bit ÷ 16 bit                             | Result |                  | -          | Remaind           | er [15:0] | Quotient [31:0]            |      |     |     |  |
| Division                                    | Input  |                  | Diviso     | r [31:0]          |           | Dividend [31:0]            |      |     |     |  |
| 32 bit ÷ 32 bit                             | Result | Remainder [31:0] |            |                   |           | Quotient [31:0]            |      |     |     |  |
| Multiply-accumulate                         | Input  | Multiplica       | and [15:0] | Multiplie         | er [15:0] | Addend [31:0]              |      |     |     |  |
| (non-saturating)<br>16 bit x 16bit + 32 bit | Result |                  | -          | -                 |           | Multiply-accumulate [31:0] |      |     |     |  |
| Multiply-accumulate                         | Input  | Multiplica       | and [15:0] | Multiplier [15:0] |           | Addend [31:0]              |      |     |     |  |
| (saturating)<br>16 bit x 16bit + 32 bit     | Result |                  | -          | -                 |           | Multiply-accumulate [31:0] |      |     |     |  |

#### Table 2-4 assignment of an input and results

"-" indicates that the previous value is retained.

### 2.3.2.2 Operation Mode Register (CR8), Operation Status Register (CR9)

The operation mode register (CR8) is a coprocessor general-purpose register to set the operation mode and enables/disables the operation.

The operation status register (CR9) is a register to store the status of each operation result.

CR8 and CR9 are byte type registers and they can be accessed as a word type register (CERn), double word type register (CXRn), or quad word type register (CQRn) combining the consecutive registers.

The bit symbols are unavailable to use in the software.

|                  | ess:<br>ess size<br>al value | e: 8/ | /W<br>16 bit<br><0000 |     |     |    |   |     |      |   |   |      |    |        |        |        |
|------------------|------------------------------|-------|-----------------------|-----|-----|----|---|-----|------|---|---|------|----|--------|--------|--------|
|                  | 15                           | 14    | 13                    | 12  | 11  | 10 | 9 | 8   | 7    | 6 | 5 | 4    | 3  | 2      | 1      | 0      |
| Word             |                              |       |                       |     |     |    |   | CE  | R8   |   |   |      |    |        |        |        |
| Byte             |                              |       |                       | CI  | R9  |    |   |     |      |   |   | CF   | 78 |        |        |        |
| Bit              | С                            | Z     | s                     | ov  | q   | -  | - | use | clen | - | - | sign | -  | clmod2 | clmod1 | clmod0 |
| R/W              | R/W                          | R/W   | R/W                   | R/W | R/W | R  | R | R/W | R/W  | R | R | R/W  | R  | R/W    | R/W    | R/W    |
| Initial<br>value | 0                            | 0     | 0                     | 0   | 0   | 0  | 0 | 0   | 0    | 0 | 0 | 0    | 0  | 0      | 0      | 0      |

| Bit No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|---------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 15      | С                   | This becomes "1" if the operation result is carried or the divisor is 0 in the division mode. The value is updated in each operation. In addition, a value can be written.                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| 14      | Z                   | This becomes "1" if the operation result is "0". The value is updated in each operation. In addition, a value can be written.                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| 13      | S                   | This becomes "1" if the operation result is a negative number. For a multiply-accumulate (saturating/non-saturating) operation, this indicates the state of the most significant bit in the operation result. The value is updated in each operation. In addition, a value can be written.                                                            |  |  |  |  |  |  |  |  |
| 12      | ov                  | This becomes "1" if the operation result exceeds the range expressible by two's complement.<br>The value is updated every time the operation is executed.<br>In addition, a value can be written.                                                                                                                                                     |  |  |  |  |  |  |  |  |
| 11      | q                   | This becomes "1" for the saturated result of a saturating multiply-accumulate operation. The value is held in the next operation. To initialize it to "0", it is necessary to write "0".                                                                                                                                                              |  |  |  |  |  |  |  |  |
| 8       | use                 | <ul><li>A bit to indicate that the operation is in progress.</li><li>0: Operation under suspension (initial value)</li><li>1: Operating</li></ul>                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| 7       | clen                | <ul> <li>A bit to enable/disable the operation. If the clen bit is cleared to "0" during an operation, the next operation is disabled after completion of the current one.</li> <li>0: Operation disabled (initial value)</li> <li>1: Operation enabled</li> </ul>                                                                                    |  |  |  |  |  |  |  |  |
| 4       | sign                | A bit to set the sign operation.<br>0: Unsigned operation (initial value)<br>1: Signed operation                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| 2 to 0  | clmod2 to<br>clmod0 | Bits to select the operation mode.000:Multiplication 16 bit × 16 bit (initial value)001:Division 32 bit ÷ 16 bit010:Multiply-accumulate (non-saturating) 16 bit × 16 bit + 32 bit011:Multiply-accumulate (saturating) 16 bit × 16 bit + 32 bit100:No operation function101:Division 32 bit ÷ 32 bit110:No operation function111:No operation function |  |  |  |  |  |  |  |  |

Table 2-5 shows values to be set to CR8 register for execution of each operation mode.

Table 2-6 shows flags changing during each operation.

#### ML62Q2033/2035/2043/2045 User's Manual Chapter 2 CPU and Memory Space

| Value set to CR8                                                 | Signed | Unsigned |
|------------------------------------------------------------------|--------|----------|
| Multiplication 16 bit ×16 bit (initial value)                    | 0x90   | 0x80     |
| Division 32 bit ÷ 16 bit                                         | 0x91   | 0x81     |
| Division 32 bit ÷ 32 bit                                         | 0x95   | 0x85     |
| Multiply-accumulate (non-saturating)<br>16 bit × 16 bit + 32 bit | 0x92   | 0x82     |
| Multiply-accumulate (saturating)<br>16 bit × 16 bit + 32 bit     | 0x93   | 0x83     |

Table 2-5 Configured CR8

#### Table 2-6 Flag of CR9 Operation mode sign ٥v С z s q 1 (signed) \_ \_ \_ • • Multiplication 16 bit × 16 bit 0 (unsigned) -• ---1 (signed) • • • • -Division 32 bit ÷ 16 bit 0 (unsigned) ٠ ٠ ---1 (signed) • • • • -Division 32 bit ÷ 32 bit 0 (unsigned) \_ • • \_ \_ Multiply-accumulate 1 (signed) • • • ٠ -(non-saturating) 0 (unsigned) • • • • -16 bit ×16 bit + 32 bit Multiply-accumulate 1 (signed) ٠ • • ٠ ٠ (saturating) 0 (unsigned) • • • • • 16 bit × 16 bit + 32 bit

•: Varies depending on the result. -: Retains the previous value.

### 2.3.2.3 Coprocessor ID Register (CR15)

CR15 is a read-only register to indicate coprocessor ID.

The value in CR15 register is fixed to "0x81".

It is a byte type register and it can be accessed as a word type register (CERn), double word type register (CXRn), or quad word type register (CQRn) combining the consecutive registers. The bit symbols are unavailable to use in the software.

| Access:        | R        |
|----------------|----------|
| Access size:   | 8/16 bit |
| Initial value: | 0x8100   |
|                |          |

|                  | 15     | 14     | 13     | 12     | 11     | 10     | 9      | 8      | 7   | 6 | 5 | 4  | 3  | 2 | 1 | 0 |
|------------------|--------|--------|--------|--------|--------|--------|--------|--------|-----|---|---|----|----|---|---|---|
| Word             |        |        |        |        |        |        |        | CEF    | R14 |   |   |    |    |   |   |   |
| Byte             |        |        |        | CF     | R15    |        |        |        |     |   |   | CF | 14 |   |   |   |
| Bit              | copid7 | copid6 | copid5 | copid4 | copid3 | copid2 | copid1 | copid0 | -   | - | - | -  | -  | - | - | - |
| R/W              | R      | R      | R      | R      | R      | R      | R      | R      | R   | R | R | R  | R  | R | R | R |
| Initial<br>value | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 0   | 0 | 0 | 0  | 0  | 0 | 0 | 0 |

#### 2.3.3 How to Use Multiplier/Divider

Set the calculation mode in the calculation mode register (CR8) and write the input value to CR0~CR7. When you write to CR7, the operation starts. After the calculation time has elapsed, the result is read from CR0~CR7. See Table 2-7 for the calculation mode settings and calculation time.

Table 2-7 Calculation mode and calculation time

|                                         |          | 10010 - /                                      |                        |               |                            |                |                 |          |          |        |                   |  |
|-----------------------------------------|----------|------------------------------------------------|------------------------|---------------|----------------------------|----------------|-----------------|----------|----------|--------|-------------------|--|
| Operation mode                          | CR8[2:0] |                                                | CR7                    | CR7 CR6       |                            | CR4            | CR3             | CR2      | CR1      | CR0    | operation<br>time |  |
| Multiplication                          | 000b     | Input                                          | Multipl<br>[15:        |               |                            | iplier<br>5:0] |                 | -        |          |        | 4 cycles          |  |
| 16bit×16bit                             |          | Result                                         | -                      |               |                            | -              | Product [31:0]  |          |          |        | ,                 |  |
| Division                                |          | Input                                          | Divisor [15:0] -       |               | Dividend [31:0]            |                |                 |          |          |        |                   |  |
| 32bit÷16bit                             | 001b     | Result                                         | Remainder<br>[15:0]    |               | Quotient [31:0]            |                |                 |          | 8 cycles |        |                   |  |
| Division                                | 101b     | Input                                          |                        | Divisor [     |                            |                |                 | Dividen  | d [31:0] |        | 16 cycles         |  |
| 32bit÷32bit                             |          | Result                                         | Re                     | emaind        | er [31:0                   | ]              | Quotient [31:0] |          |          |        |                   |  |
| Multiply-accumulate<br>(non-saturating) | 010b     | Input Multiplicand Multiplier<br>[15:0] [15:0] |                        | Addend [31:0] |                            |                |                 | 4 cycles |          |        |                   |  |
| 16bit×16bit+32bit                       |          | Result                                         | t                      |               | Multiply-accumulate [31:0] |                |                 | [31:0]   | ,        |        |                   |  |
| Multiply-accumulate<br>(saturating)     | indi     |                                                | Multiplicand<br>[15:0] |               | Multiplier<br>[15:0]       |                | Addend [31:0]   |          | 4 cycles |        |                   |  |
| 16bit×16bit;32bit                       |          | Result                                         | -                      |               |                            | -              | Multip          | ly-accu  | mulate   | [31:0] | -                 |  |

"-" indicates that the previous value is retained.

The following is an example of how to perform multiplication.

Example, multiplication of 0x1234H × 0x0AA55H

MOV R2 ,#55H ; Setting the Multiplier MOV R3 ,#0AAH ; MOV R0 ,#34H ; Setting the multiplicand MOV R1 ,#12H ; MOV CR4 ,R0 ; Transferring multiplier [7:0] MOV R0 ,#90H ; Setting Multiply mode MOV CR8 ,R0 ; Setting signed multiply mode MOV CR5 ,R1 ; Transferring multiplier [15:8] MOV CR6 ,R2 ; Transferring multiplicand [7:0] MOV CR7 ,R3 ; Transferring multiplicand [15:8], starting of calculation NOP; Calculation in progress. Waiting for the end of the calculation (1 clock) NOP; Calculation in progress. Waiting for the end of the calculation (1 clock) NOP ; Calculation in progress. Waiting for the end of the calculation (1 clock) NOP; Calculation in progress. Waiting for the end of the calculation (1 clock); End of calculation READ: MOV R0 ,CR0 ; Transferring multiplication [7:0] MOV R1 ,CR1 ; Transferring multiplication [15:8] MOV R2 ,CR2 ; Transferring multiplication [23:16] MOV R3 ,CR3 ; Transferring multiplication [31:24]

#### [Note]

• Changing to STOP/HALT mode during calculation is prohibited. When changing to STOP/HALT mode after using the multiplier and divider, wait until the calculation time in Table 2-7 has elapsed.

#### 2.4 Memory Space

The memory space refers to the address range of the memory that can be specified from the CPU. Figure 2-1 shows the general scheme of the memory space. The memory space of the nX-U16/100 is composed of the program memory space and data memory space. The memory space is managed as one segment consists of 64 Kbyte.

The program memory space can be read with a memory access instruction through the ROM window area or the mirror area. To read the data memory space, a memory access instruction is used.

The ROM window is an area provided to read the program memory space segment 0 through a memory access instruction. In reading the program memory space from this area, it is expected to gain the advantage of data compression and improvement in access speed because it is not required to specify DSR of the data memory space. In addition, the mirror area is provided to read program memory space segments 0 to 7 through a memory access instruction. There is no address limitation when reading the program memory space from this area.

| Program r | memory space      |           |                    | Data m    | emory space             |           |                    |
|-----------|-------------------|-----------|--------------------|-----------|-------------------------|-----------|--------------------|
| CSR:PC    | Code<br>segment 0 | DSR:AR    | Data<br>segment 0  | DSR:AR    | Data<br>segment 8       |           |                    |
| 0x0:0000  |                   | 0x00:0000 | ROM window<br>area | 0x08:0000 | Mirror<br>area for code |           |                    |
| 0x0:FFFF  |                   | 0x00:FFFF | RAM/SFR<br>area    | 0x08:FFFF | segment 0               |           |                    |
|           | 8 bit             |           | 8 bit              |           | 8 bit<br>:              |           |                    |
|           |                   |           |                    |           |                         | DSR:AR    | Data<br>segment 31 |
|           |                   |           |                    |           |                         | 0x1F:0000 |                    |
|           |                   |           |                    |           |                         |           | Data flash         |
|           |                   |           |                    |           |                         | 0x1F:FFFF | area               |
|           |                   |           | Conoral Schom      |           | 0                       | L         | 8 bit              |

Figure 2-1 General Scheme of Memory Space



#### 2.5 Program Memory Space

The program memory space is an area to store the program code, vector table, and Code Options.

The program memory space is specified by 20 bits (CSR:PC) consisting of higher 4 bits as code segment register (CSR) and lower 16 bits as program counter (PC).

The vector table area is used as the reset vector, hardware interrupt vector, and software interrupt vector. Unused software interrupt vector area is available as a program code area.

The Code Option area can be used to choose the CPU operation mode, PLL reference frequency, watchdog timer (WDT) operation mode, unused ROM area access reset enabled/disabled, and remapping function enabled/disabled.

The program code, vector table, and Code Option areas can be read from the ROM window area or the mirror area of the data memory space by executing the memory access instruction.

Figures 2-2 show the program memory space configuration of each product.

#### [Note]

- The CSR of this LSI is fixed at "0".
- The Code Option area (48 bytes) is not available for the program code area. For details of Code Option settings, see Chapter 30 "Code Option" and make sure the setting data is correct.
- It is recommended to fill unused areas with data "0xFFFF" (BRK instruction) in the program memory space to ensure failsafe using the generation tool of the ROM code data. See its manual for details on how to use. See "nX-U16/100 Core Instruction Manual" for details of the BRK instruction.
- Do not read or program unused areas to prevent the CPU works incorrectly.

| CSR:PC   | Segment 0               | CSR:PC   | Segment 0               |
|----------|-------------------------|----------|-------------------------|
| 0x0:0000 | Vector table area       | 0x0:0000 | Vector table area       |
|          | or<br>program code area |          | or<br>program code area |
| 0x0:00FF | program codo area       | 0x0:00FF | program couo aroa       |
| 0x0:0100 | Program code area       | 0x0:0100 | Program code area       |
|          | -                       |          | -                       |
| 0x0:3FCF |                         |          |                         |
| 0x0:3FD0 | Code Option area        |          |                         |
| 0x0:3FFF | (48 byte)               |          |                         |
|          | 16bit                   |          |                         |
|          | ML62Q2033/2043          | 0x0:7FCF |                         |
|          | Size 16K byte           | 0x0:7FD0 | Code Option area        |
|          |                         | 0x0:7FFF | (48 byte)               |
|          |                         |          | 16bit                   |
|          |                         |          | ML62Q2035/2045          |
|          |                         |          | Size 32K byte           |

Figure 2-2 Configuration of Program Memory Space 1

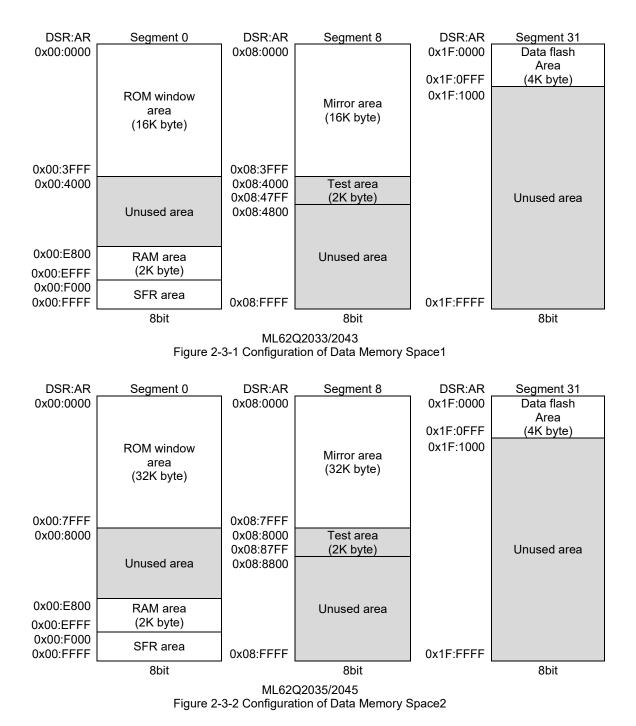
### 2.6 Data Memory Space

The data memory space consists of the segment 0 for ROM window area, RAM area, SFR area, segments 1 to 15 for mirror area, test area, and segment 31 for the data flash area.

The data memory stores 8-bit data and is specified by 21 bits consisting of higher 5 bits as the data segment register (DSR) and lower 16 bits as data address (address register: AR) specified by each instruction.

The segment 0 of program memory space and the segment of data memory space are in different space, but the segment 0 of program memory space is readable through the ROM window area of the data memory space.

The segment 1 to 7 are mirror area of segment 1 to 7 in the program memory space. The segment 8 to 15 are mirror area of segment 0 to 7 in the program memory space.


The 1K byte of test area includes device-specific data,

Figures 2-3 show the configuration of the data memory space of ML62Q2500 series products. Other segments not shown in the figures are unused areas.

The data flash area in segment 31 can only read bytes.

#### [Note]

- The contents of the RAM area are undefined at power-on and system reset. Initialize this area by the software.
- Do not read/write unused areas to prevent the CPU works incorrectly.



#### [Note]

Read the data flash area in bytes.

### 2.7 Description of Registers

### 2.7.1 List of Registers

| Address | Name                         | Symbo    | l name | R/W     | Size | Initial |  |
|---------|------------------------------|----------|--------|---------|------|---------|--|
| Address | Name                         | Byte     | Word   | FX/ V V | Size | value   |  |
| 0xF000  | Data segment register        | DSR      | -      | R/W     | 8    | 0x00    |  |
| 0xF0A0  | Flash remap address register | REMAPADD | -      | R/W     | 8    | *1      |  |
| 0xF0A4  | Reserved                     | -        | -      | R/W     | 8    | 0x00    |  |
| 0xF0A6  | Reserved                     | -        | -      | R/W     | 8    | 0x00    |  |

\*1: The initial value depends on Code Option settings. See Section 30.2.4 "Code Options 2 (CODEOP2)" for details of Code Option settings.

### 2.7.2 Data Segment Register (DSR)

DSR is a SFR to specify a data segment. See "nX-U16/100 Core Instruction Manual" for details of DSR.

|                  |          | R<br>e: 8       | xF000(<br>/W<br>bit<br>x00 | DSR)                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                  |                                                                                                                                                                  |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |                                                             |                                                         |      |      |      |      |
|------------------|----------|-----------------|----------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|------|------|------|------|
|                  | 15       | 14              | 13                         | 12                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                               | 9                                                                                                                                                                | 8                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                           | 5                                                           | 4                                                       | 3    | 2    | 1    | 0    |
| Word             |          |                 |                            |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                  |                                                                                                                                                                  |                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                             |                                                         |      |      |      |      |
| Byte             |          |                 |                            |                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                                                                                                  |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |                                                             | D                                                       | SR   |      |      |      |
| Bit              | -        | -               | -                          | -                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                | -                                                                                                                                                                | -                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                           | -                                                           | DSR4                                                    | DSR3 | DSR2 | DSR1 | DSR0 |
| R/W              | R        | R               | R                          | R                                                                           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R                                                                                                                                                                                                                                | R                                                                                                                                                                | R                                                                               | R                                                                                                                                                                                                                                                                                                                                                                                                                               | R                                                                                                                           | R                                                           | R/W                                                     | R/W  | R/W  | R/W  | R/W  |
| Initial<br>value | 0        | 0               | 0                          | 0                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                | 0                                                                                                                                                                | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                           | 0                                                           | 0                                                       | 0    | 0    | 0    | 0    |
| Bit<br>No.       |          | Bit sym<br>name |                            |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                  |                                                                                                                                                                  |                                                                                 | D                                                                                                                                                                                                                                                                                                                                                                                                                               | escriptio                                                                                                                   | on                                                          |                                                         |      |      |      |      |
| 7 to 5           | -        |                 |                            | Reser                                                                       | ved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |                                                             |                                                         |      |      |      |      |
| 4 to 0           | DS<br>DS | R4 to<br>R0     |                            | 0000<br>000<br>0010<br>0011<br>0011<br>0011<br>0011<br>0100<br>0100<br>0100 | D1:       Mii         10:       Mii         11:       Mii         D0:       Mii         D1:       Mii         D1:       Mii         D1:       Mii         D1:       Mii         D1:       Data         D2:       Data         D3:       Data         D4:       Data         D5:       Data | rror are<br>rror are<br>rror are<br>rror are<br>rror are<br>rror are<br>rror are<br>rror are<br>ta segr<br>ta segr | a of co<br>a of co<br>ment 8<br>ment 10<br>ment 11<br>ment 12<br>ment 13<br>ment 14<br>ment 15 | (mirror<br>) (mirro<br>  (mirro<br>2 (mirro<br>3 (mirro<br>4 (mirro<br>5 (mirro | ment 1<br>ment 2<br>ment 3<br>ment 4<br>ment 5<br>ment 6<br>ment 7<br>area of<br>r area of | code s<br>code s<br>of code<br>of code<br>of code<br>of code<br>of code<br>of code<br>of code<br>of code<br>ad area<br>rea) | egmer<br>segme<br>segme<br>segme<br>segme<br>segme<br>segme | nt 1)<br>ent 2)<br>ent 3)<br>ent 4)<br>ent 5)<br>ent 6) |      |      |      |      |

### 2.7.3 Flash Remap Address Register (REMAPADD)

REMAPADD is a SFR to specify the 4 Kbyte area to be remapped.

|                  |    | R<br>e: 8 | xF0A0<br>/W<br>bit | (REMA | PADD) |    |   |   |   |      |      |      |       |       |       |       |
|------------------|----|-----------|--------------------|-------|-------|----|---|---|---|------|------|------|-------|-------|-------|-------|
|                  | 15 | 14        | 13                 | 12    | 11    | 10 | 9 | 8 | 7 | 6    | 5    | 4    | 3     | 2     | 1     | 0     |
| Word             |    |           |                    |       |       |    |   | - | - |      |      |      |       |       |       |       |
| Byte             |    |           |                    |       | -     |    |   |   |   |      |      | REMA | PADD  |       |       |       |
| Bit              | -  | -         | -                  | -     | -     | -  | - | - | - | RES2 | RES1 | RES0 | REA15 | REA14 | REA13 | REA12 |
| R/W              | R  | R         | R                  | R     | R     | R  | R | R | R | R    | R    | R/W  | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0  | 0         | 0                  | 0     | 0     | 0  | 0 | 0 | 0 | 0    | 0    | *1   | *1    | *1    | *1    | *1    |

For example, when writing "0x1" to RES2-0 and "0xF" to REA15-12, then remapping them, the area of 0xF000-0xFFFF of code segment 1 is remapped with the area of 0x0000-0x0FFF of segment 0.

A CPU reset for break is happened if setting unused area to this register, and a PC error is not happened.

| Bit<br>No. | Bit symbol name   | Description                                                                               |
|------------|-------------------|-------------------------------------------------------------------------------------------|
| 7          | -                 | Reserved bit                                                                              |
| 6 to 4     | RES2 to<br>RES0   | Set the code segment of the area to remap.<br>Specify 000b always.                        |
| 3 to 0     | REA15 to<br>REA12 | Set the higher 4 bits (bit 15 to 12) of the beginning address of the area to be remapped. |

\*1: The initial value depends on Code Option settings. See Section 30.2.4 "Code Options 2 (CODEOP2)" for details of Code Option settings.

### 2.7.4 Reserved register 1

This register is reserved. Don't execute writing this.

| Address:<br>Access:<br>Access size:<br>Initial value: |                 | R<br>e: 8 | 0xF0A4<br>R/W<br>8 bit<br>0x00 |          |         |    |   |   |    |           |    |    |    |   |   |      |
|-------------------------------------------------------|-----------------|-----------|--------------------------------|----------|---------|----|---|---|----|-----------|----|----|----|---|---|------|
| _                                                     | 15              | 14        | 13                             | 12       | 11      | 10 | 9 | 8 | 7  | 6         | 5  | 4  | 3  | 2 | 1 | 0    |
| Word                                                  |                 |           |                                |          |         |    |   |   | -  |           |    |    |    |   |   |      |
| Byte                                                  |                 |           |                                |          |         |    |   |   |    |           |    | rs | vd |   |   |      |
| Bit                                                   | -               | -         | -                              | -        | -       | -  | - | - | -  | -         | -  | -  | -  | - | - | rsvd |
| R/W                                                   | R               | R         | R                              | R        | R       | R  | R | R | R  | R         | R  | R  | R  | R | R | R/W  |
| Initial<br>value                                      | 0               | 0         | 0                              | 0        | 0       | 0  | 0 | 0 | 0  | 0         | 0  | 0  | 0  | 0 | 0 | 0    |
| Bit<br>No.                                            | Bit symbol name |           |                                | <u>.</u> |         |    |   |   | De | escriptio | on |    |    |   |   |      |
| 7 to 1                                                | -               |           |                                | Reser    | ved bit | S  |   |   |    |           |    |    |    |   |   |      |
| 0                                                     | rsvd            |           |                                | Reser    | ved bit |    |   |   |    |           |    |    |    |   |   |      |

### 2.7.5 Reserved register 2

This register is reserved. Don't execute writing this.

| Address:<br>Access:<br>Access size:<br>Initial value: |      | R<br>8: 8 | 0xF0A6<br>R/W<br>8 bit<br>0x00 |       |         |    |   |   |    |           |    |    |    |   |   |      |
|-------------------------------------------------------|------|-----------|--------------------------------|-------|---------|----|---|---|----|-----------|----|----|----|---|---|------|
|                                                       | 15   | 14        | 13                             | 12    | 11      | 10 | 9 | 8 | 7  | 6         | 5  | 4  | 3  | 2 | 1 | 0    |
| Word                                                  |      |           |                                |       |         |    |   |   |    |           |    |    |    |   |   |      |
| Byte                                                  |      |           |                                |       |         |    |   |   |    |           |    | rs | vd |   |   |      |
| Bit                                                   | -    | -         | -                              | -     | -       | -  | - | - | -  | -         | -  | -  | -  | - | I | rsvd |
| R/W                                                   | R    | R         | R                              | R     | R       | R  | R | R | R  | R         | R  | R  | R  | R | R | R/W  |
| Initial<br>value                                      | 0    | 0         | 0                              | 0     | 0       | 0  | 0 | 0 | 0  | 0         | 0  | 0  | 0  | 0 | 0 | 0    |
| Bit<br>No.                                            |      |           |                                | ·     |         |    |   |   | De | escriptio | on |    |    |   |   |      |
| 7 to 1                                                | 1 -  |           |                                | Reser | ved bit | S  |   |   |    |           |    |    |    |   |   |      |
| 0                                                     | rsvd |           |                                | Reser | ved bit |    |   |   |    |           |    |    |    |   |   |      |

### 2.8 Remapping Function

The remapping function replaces the addresses 0x0000 to 0x0FFF (initial boot area) in the program memory space with the specified arbitrary 4 Kbyte area.

Figure 2-4 shows the general scheme of the remapping function.

The program can be started to execute at the area different from the initial boot area using the remapping function, that enables updating(reprograming) the program code area including the initial boot area with the self-programming function.

The remap function enable your application to reprogram the firmware.

Two ways are available to start the remap function.

- Software Remap: Start remapping by resetting only the CPU after setting a remap address into the Flash Remap Address Register (REMAPADD).
- Code Option Remap: Start remapping at the system reset, available by setting the Code Option.

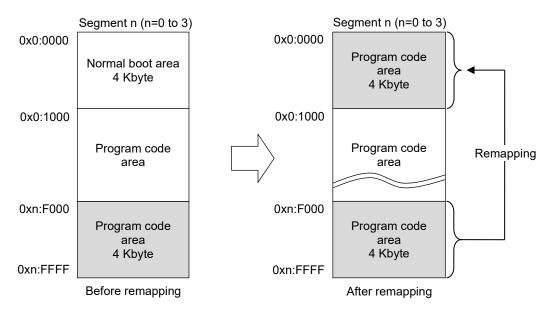



Figure 2-4 Memory Map Before and After Remapping of Program Memory Space



#### 2.8.1 Description of Remapping Function

The remapping function allows the normal boot area of addresses 0x0:0000 to 0x0:0FFF (4 Kbytes) to be replaced (remapped) with the arbitrary 4 Kbyte area set in REMAPADD register.

To use the remapping function, enable it in advance by writing "0" to REMAPMD bit of Code Option 0.

When using the remapping function, the vector table area (reset vector, hardware interrupt vector, and software interrupt vector) is also read from the area specified in REMAPADD register. Prepare the vector table area for areas specified in REMAPADD register.

After remapping, the remapped areas are read through the data segment 0. If reading the normal boot area (0x0:0000 to 0x0:0FFF) prior to remapping, read it through the data segment 8 in the data memory space (the mirror area of segment 0).

After remapping, if reprogramming the 4Kbyte area in the normal boot area, set "0x0:0000 to 0x0:0FFF" into the Flash Address Register (FLASHA).

#### 2.8.2 Software Remap

The remapping function is activated by software setting a value to REMAPADD register to use the BRK instruction to only reset the CPU.

- Set "0" in advance to REMAPMD bit of Code Option 0 (see Chapter 30 "Code Option" for details on how to set the Code Option).
- Set higher 4 bits of the beginning address of the area to be remapped to REMAPADD register.
- Set ELEVEL of CPU program status word to "2", then execute the BRK instruction (see "nX-U16/100 Core Instruction Manual" for details of ELEVEL and BRK instruction).
- Only the CPU is initialized and it executes the program from the area specified in REMAPADD register.

Figure 2-5 below shows an example of the program script of software remapping.

<If the beginning address of the area to be remapped is 0x0:F000>

| #asm    |                                |
|---------|--------------------------------|
| mov     | r0, #00fh                      |
| st      | r0, REMAPADD ; REMAPADD = 0x0F |
| mov     | psw, #02h ; ELEVEL = 2         |
| nop     |                                |
| nop     |                                |
| brk     | ; BRK instruction              |
| #endasm |                                |

Figure 2-5 Program Script Example of Software Remapping

#### [Note]

If the entire LSI is reset through a system reset, the remapping function is disabled as REMAPADD register is restored with the initial value.

### 2.8.3 Code Option Remap

at the system reset on the remap condition.

- If setting both REMAPMD and CREMAPMD to "0", the LSI starts running at the address set in CRES0<sup>\*1</sup> and CREA15-CREA12.
- After updating the address in REMAPADD register, the address is not initialized by the CPU reset (BRK instruction) and the remap starts at the updated address. However, REMAPADD register is initialized by the system reset, the LSI starts running at the address specified by the Code Option.
- <sup>\*1</sup>: In this LSI, always specify "0" for CRES0.

Table 2-7 shows the CPU address at releasing reset of each condition.

| Reset             | REMAPMD | CREMAPMD | CPU instruction execution start address                               |
|-------------------|---------|----------|-----------------------------------------------------------------------|
|                   | 1       | 1        | 0x0000                                                                |
| CPU reset         | 1       | 0        | 0x0000                                                                |
| (BRK instruction) | 0       | 1        | Address set in REMAPADD register                                      |
|                   | 0       | 0        | Address set in REMARADD register                                      |
|                   | 1       | 1        |                                                                       |
|                   | 1       | 0        | 0x0000                                                                |
| System reset      | 0       | 1        |                                                                       |
|                   | 0       | 0        | Initial data of REMAPADD register<br>(data set by the Code Options 2) |

| Table 2-7 | CPU | address | at re | leasing | reset |
|-----------|-----|---------|-------|---------|-------|
|           |     | addicoo | auto  | loasing | 10001 |

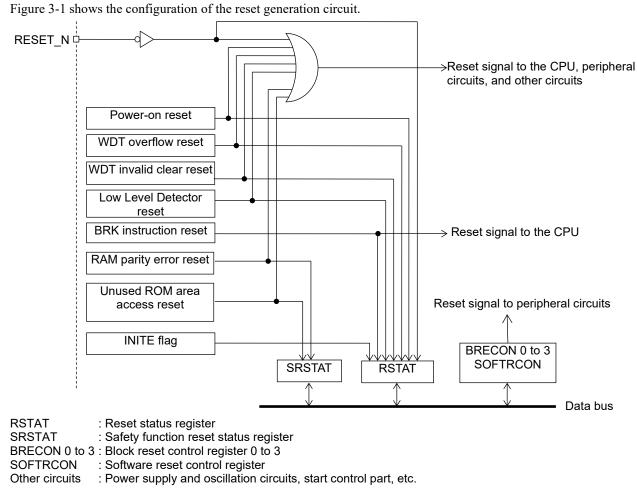
# **Chapter 3 Reset Function**

### 3. Reset Function

#### 3.1 General Description

This LSI has a function to reset the CPU, peripheral circuits and other hardware due to the causes described in Table 3-1. This chapter describes the system reset mode, reset input pin reset and power-on reset (POR). See reference chapters for other causes of resets. See Table 3-1 for reference for each cause of resets. See Table 3-2 for the availability of resets for each cause.

| Table 3-1 Reference for Details of Causes of Resets                             | 8                                       |
|---------------------------------------------------------------------------------|-----------------------------------------|
| Cause                                                                           | Reference                               |
| Reset input pin reset (pin reset)                                               | This chapter                            |
| Power-On Reset (POR)                                                            | This chapter                            |
| Watchdog timer (WDT) overflow reset                                             | Chapter 10 Watchdog Timer               |
| Watchdog timer (WDT) invalid clear reset                                        | Chapter 10 Watchdog Timer               |
| Low Level Detector reset (LLD reset)                                            | Chapter 22 Voltage Level Supervisor     |
| RAM parity error reset                                                          | Chapter 29 Safety Function              |
| Unused ROM area access reset                                                    | Chapter 29 Safety Function              |
| CPU reset by BRK instruction execution (when ELEVEL is 2 or higher)             | "nX-U16/100 Core Instruction<br>Manual" |
| Individual reset to the peripheral circuits (Block reset)                       | Chapter 4 Power Management              |
| One-time reset to the all peripheral circuits and port controller (SOFTR reset) | Chapter 4 Power Management              |


#### 3.1.1 Features

Each reset can uniquely be managed depending on its cause as this function contains following features to identify the cause in an early stage.

- Reset status register (RSTAT) to indicate the cause of the reset •
- Reset status register (SRSTAT) to indicate the cause of the safety function reset

In addition, it has the INITE flag function to detect abnormal start-up of the LSI.

### 3.1.2 Configuration



| Figure 3-1  | Configuration | of Reset | Generation  | Circuit |
|-------------|---------------|----------|-------------|---------|
| 1 19410 0 1 | garadon       | 01110000 | Contonation | Onoun   |

#### 3.1.3 List of Pins

| Pin name | I/O | Function        |
|----------|-----|-----------------|
| RESET_N  | -   | Reset input pin |

### 3.2 Description of Registers

### 3.2.1 List of Registers

| Address | Nama                                  | Symbol | name  | R/W | Size | Initial   |  |
|---------|---------------------------------------|--------|-------|-----|------|-----------|--|
| Address | Name                                  | Byte   | Word  | R/W | Size | value     |  |
| 0xF058  | Reset status register                 | RSTATL | RSTAT | R/W | 8/16 | Undefined |  |
| 0xF059  |                                       | RSTATH | ROTAT | R/W | 8    | Undefined |  |
| 0xF05A  | Safety function reset status register | SRSTAT | -     | R/W | 8    | Undefined |  |

#### 3.2.2 Reset Status Register (RSTAT)

RSTAT is a SFR to indicate the cause of occurrence of a reset.

When a reset occurs except power-on reset, only the bit that indicates the cause of the reset being set to "1". Other bits (excluding the INITE bit) retain values before occurrence of the reset. When the power-on reset occurs, all bits except POR bit will be "0". After identifying the cause of the reset, write "0xFFFF" to the RSTAT register to initialize the bits of cause of the reset in preparation for the next identification of the cause of the reset.

|                  |    | R/<br>8/^ | •  |     | L/RSTA | AT), OxF | <sup>-</sup> 059 (F | RSTATH | 1)    |      |   |      |           |      |   |     |
|------------------|----|-----------|----|-----|--------|----------|---------------------|--------|-------|------|---|------|-----------|------|---|-----|
|                  | 15 | 14        | 13 | 12  | 11     | 10       | 9                   | 8      | 7     | 6    | 5 | 4    | 3         | 2    | 1 | 0   |
| Word             |    |           |    |     |        |          |                     | RS     | TAT   |      |   |      |           |      |   |     |
| Byte             |    |           |    | RST | ATH    |          |                     |        |       |      |   |      | TATL      |      |   |     |
| Bit              | -  | -         | -  | -   | -      | -        | -                   | BRKR   | INITE | RSTR | - | LLDR | WDTW<br>R | WDTR | - | POR |
| R/W              | R  | R         | R  | R   | R      | R        | R                   | R/W    | R     | R/W  | R | R/W  | R/W       | R/W  | R | R/W |
| Initial<br>value | 0  | 0         | 0  | 0   | 0      | 0        | 0                   | 0/1    | 0     | 0/1  | 0 | 0/1  | 0/1       | 0/1  | 0 | 0/1 |

Common description of each bits except bit 7:

It indicates that target reset has occurred. It is initialized to "0" when "1" is written.

0: No target reset occurred. (Initial value)

1: Target reset occurred

| Bit No. | Bit symbol<br>name | Description (target reset)                                                                                                                                                                                                                                                                                            |
|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 9 | -                  | Reserved bits                                                                                                                                                                                                                                                                                                         |
| 8       | BRKR               | CPU reset by BRK instruction                                                                                                                                                                                                                                                                                          |
| 7       | INITE              | A read-only bit to indicate that an abnormality occurred in starting LSI.<br>If this bit is set to "1", restart the LSI by causing a reset to occur with the reset input pin reset,<br>WDT invalid reset, WDT overflow reset or power-on.<br>0: LSI started-up normally<br>1: Abnormality occurred in start-up of LSI |
| 6       | RSTR               | Reset input pin reset                                                                                                                                                                                                                                                                                                 |
| 5       | -                  | Reserved bit                                                                                                                                                                                                                                                                                                          |
| 4       | LLDR               | Low Level Detector reset                                                                                                                                                                                                                                                                                              |
| 3       | WDTWR              | WDT invalid clear reset                                                                                                                                                                                                                                                                                               |
| 2       | WDTR               | WDT overflow reset                                                                                                                                                                                                                                                                                                    |
| 1       | -                  | Reserved bit                                                                                                                                                                                                                                                                                                          |
| 0       | POR                | Power-on reset or command reset of the on-chip debug function.                                                                                                                                                                                                                                                        |

### 3.2.3 Safety Function Reset Status Register (SRSTAT)

SRSTAT is a SFR to indicate the cause of occurrence of a safety function reset.

When the safety function reset occurs, only the bit that indicates the cause of the reset occurred is set to "1". Other bits retain values before occurrence of the reset. After identifying the cause of the reset, write "0xFF" to the SRSTAT register to initialize it to "0x00" for preparing the next reset.

See Chapter 29 "Safety Function" for details of the safety function.

|                  |    | R/<br>8 k |    |    | T) |    |   |   |   |   |   |     |      |   |      |      |
|------------------|----|-----------|----|----|----|----|---|---|---|---|---|-----|------|---|------|------|
|                  | 15 | 14        | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4   | 3    | 2 | 1    | 0    |
| Word             |    |           |    |    |    |    |   |   | - |   |   |     |      |   |      |      |
| Byte             |    |           |    |    | -  |    |   |   |   |   |   | SRS | STAT |   |      |      |
| Bit              | -  | -         | -  | -  | -  | -  | - | - | - | - | - | -   | -    | - | RPER | FIAR |
| R/W              | R  | R         | R  | R  | R  | R  | R | R | R | R | R | R   | R    | R | R/W  | R/W  |
| Initial<br>value | 0  | 0         | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0   | 0    | 0 | 0/1  | 0/1  |

Common description of each bits except bit 7:

It indicates that target reset has occurred. It is initialized to "0" when "1" is written.

0: No target reset occurred. (Initial value)

1: Target reset occurred

| Bit No. | Bit symbol<br>name | Description (target reset)   |
|---------|--------------------|------------------------------|
| 7 to 2  | -                  | Reserved bits                |
| 1       | RPER               | RAM parity error reset       |
| 0       | FIAR               | Unused ROM area access reset |

### 3.3 Description of Operation

### 3.3.1 Operation of Reset Function

Table 3-2 shows the availability of resets for each cause.

| Category         | Cause                             | CPU | RAM | Voltage<br>Level<br>Supervisor | Other<br>Peripheral<br>Circuit | System<br>Circuit *1 |
|------------------|-----------------------------------|-----|-----|--------------------------------|--------------------------------|----------------------|
| System reset     | Reset input pin reset (pin reset) | •   | -   | •                              | •                              | •                    |
|                  | Power-on reset (POR)              | •   | -   | •                              | ٠                              | •                    |
|                  | WDT overflow reset                | •   | -   | -                              | •                              | •                    |
|                  | WDT invalid clear reset           | •   | -   | -                              | ٠                              | •                    |
|                  | Low Level Detector reset          | •   | -   | -                              | ٠                              | •                    |
|                  | RAM parity error reset            | ٠   | -   | -                              | ٠                              | ٠                    |
|                  | Unused ROM area access reset      | ٠   | -   | -                              | ٠                              | ٠                    |
|                  | Command reset in On-chip debug    | ٠   | -   | -                              | ٠                              | ٠                    |
| CPU reset        | BRK instruction reset             | •   | -   | -                              | -                              | -                    |
| Peripheral reset | Block reset                       | -   | -   | -                              | •                              | -                    |
|                  | SOFTR reset                       | -   | -   | -                              | •                              | -                    |

Table 3-2 Availability of Resets for Each Cause

•: Reset available -: Reset not available

\*1: Power circuit, internal oscillation circuit, start control part, code option control part, etc.

[Note]

- The BRK instruction reset only initializes the CPU if ELEVEL is 2 or higher. Peripheral circuits and other circuits are not initialized. Use the pin reset or the watchdog timer (WDT) reset to surely initialize the LSI when an abnormality is detected.
- Command reset in on-chip debug does not reset to Low Level Detector parts. Do initialization of these functions by writing SFRs on debug, if needed. See Chapter 28 for details.

#### 3.3.2 System Reset Mode

The mode of this LSI is transferred to the system reset mode when a reset occurs by any causes, except for resets caused by the block control register (BRECON 0 to 3) and the software reset control register (SOFTRCON) as well as a CPU reset by the BRK instruction.

The transition to the system reset mode has the highest priority over any other processing. Thus any process in progress up until then will be aborted.

In the system reset mode, the following processes are performed.

1. The fundamental hardware for the LSI operation, such as the power supply circuit and oscillation circuit, is initialized. In addition, functions chosen by the code option are configured. The INITE bit of the reset status register (RSTAT) is set to "1" if an abnormality occurs during the initialization and configuration.

See the Chapter 30 "Code Option" for details of the code option.

However, the crystal oscillation circuit and Voltage Level Supervisor are initialized only by power-on reset and reset input pin reset.

- 2. Peripheral circuits, and special function registers (SFRs) with their initial values defined are initialized. See Appendix A "Registers" and chapters for respective functions for the initial values of the SFRs.
- 3. The CPU is initialized.
  - All the registers in the CPU are initialized.
  - The contents of addresses 0x0000, 0x0001 in segment 0 of the program memory are set to the stack pointer (SP).
  - The contents of addresses 0x0002, 0x0003 in segment 0 of the program memory are set to the program counter (PC).
- 4. The transition to the program run mode takes place when the reset is released.

See "nX-U16/100 Core Instruction Manual" for details of registers (SP, PC) in the CPU and the BRK instruction.

#### [Note]

#### In system reset mode, the contents of data memory (RAM) and SFRs that have an undefined initial value are not initialized. Initialize them by the software.

#### 3.3.3 Reset Input Pin Reset

Asserting the "L" level to the reset input pin causes the reset state, as well as causing RSTR bit of the reset status register (RSTAT) to be set to "1". Then, negating the reset input pin to the "H" level causes the reset to be released and the program begins to run.

To cause a reset to occur, assert the "L" level which is longer than the reset activation pulse width (P<sub>RST</sub>).

#### 3.3.4 Power-on Reset

The power-on reset occurs when the power  $(V_{DD})$  is turned on, or when the  $V_{DD}$  decreases and stay below the power-on reset trigger voltage ( $V_{PORF}$ ) for the power-on reset reaction time ( $P_{POR}$ ). If the power-on reset occurs, POR bit of the reset status register (RSTAT) is set to "1".

When the  $V_{DD}$  reaches the power-on reset threshold voltage ( $V_{PORR}$ ) or above, the reset is released and the CPU starts to run with low-speed clock.

See the data sheet of respective products for power-on reset specifications.

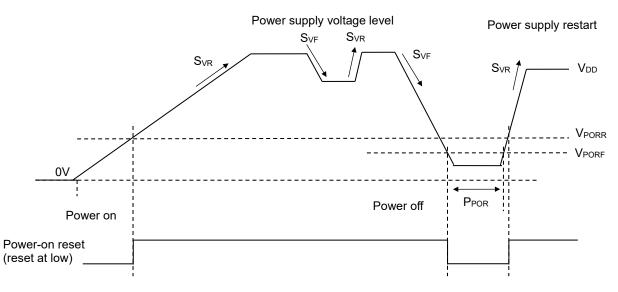



Figure 3-2 Power-on Reset Operation Waveforms

[Note]

 In case of instantaneous power failure and a pulse shorter than the power-on reset reaction time is asserted to V<sub>DD</sub>, MCU may not get reset and it may malfunction. In that case, please have preventive measures such as using bypass capacitor to avoid the instantaneous voltage drop or using pin reset to initialize MCU.

## **Chapter 4 Power Management**

### 4. Power Management

#### 4.1 General Description

This LSI has two power management modes and block control function to save the current consumption. The block control function is to control clock supply and reset with respect to each peripheral.

Figure 4-1 shows the general scheme of the regulator.

The regulator generates a constant internal logic voltage ( $V_{DDL}$ ) independent of the variation of  $V_{DD}$  (4.5 V to 5.5 V) using an amplifier for the low power consumption. The  $V_{DDL}$  generated by the regulator is supplied to peripheral circuits such as the internal logic circuit, flash memory, RAM, and oscillation circuit. In order to stabilize the  $V_{DDL}$ , connect the VDDL pin to VSS via a capacitor (1µF).

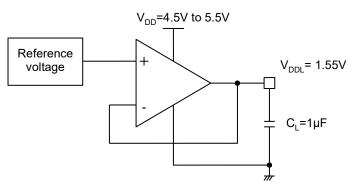



Figure 4-1 General Scheme of Regulator

#### 4.1.1 Features

- 2 standby modes
- HALT mode : The CPU stops executing instruction, peripheral circuits continue working.
- STOP mode : The CPU stops executing instruction and all internal clocks stop.
- Stop code acceptor qualifies for entering STOP mode.
- Data of RAM and SFR are retained even in all standby modes.
- Clock supply is control-able peripheral by peripheral to reduce the current consumption, by block clock control registers.
- Reset is control-able peripheral by peripheral by block reset control registers



### 4.1.2 Configuration

Figure 4-2 shows the transition diagram of the operating state. The bit symbols in the figure are assigned to the standby control register (SBYCON).




Figure 4-2 Operating State Transition Diagram

Figure 4-3 shows the configuration of the internal power supply.

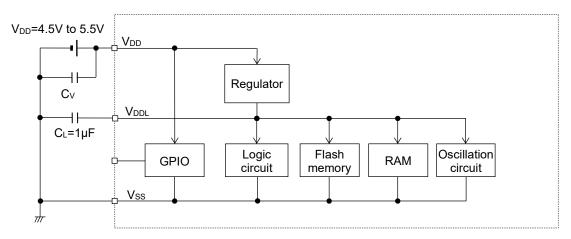



Figure 4-3 Internal Power Supply Configuration

#### 4.1.3 List of Pins

In order to stabilize  $V_{DDL}$ , connect the VDDL pin to VSS via a capacitor (1µF).

| Pin name | I/O | Function                                              |
|----------|-----|-------------------------------------------------------|
| VDDL     | -   | Positive power supply for the internal logic circuits |

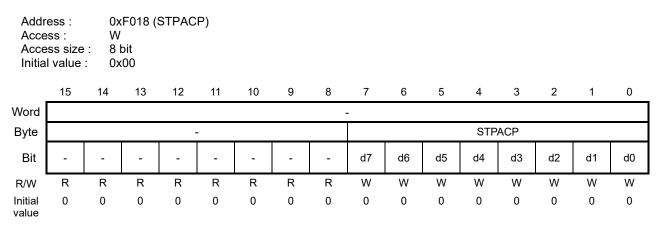
#### [Note]

 In order to improve the noise resistance, place the inter-power supply bypass capacitor (C<sub>V</sub>) and the internal logic voltage (V<sub>DDL</sub>) capacitor (C<sub>L</sub> : 1μF) in the vicinity of LSI on the user board using the shortest possible wiring without passing through via holes.

### 4.2 Description of Registers

### 4.2.1 List of Registers

| Address | Name                                 | Syn      | nbol     | R/W     | Size | Initial |
|---------|--------------------------------------|----------|----------|---------|------|---------|
| Address | Name                                 | Byte     | Word     | FK/ V V | Size | value   |
| 0xF018  | Stop code acceptor                   | STPACP   | -        | W       | 8    | 0x00    |
| 0xF019  | Reserved                             | -        | -        | -       | -    | -       |
| 0xF01A  | Stendby control register             | SBYCONL  | CRYCON   | W       | 8    | 0x00    |
| 0xF01B  | Standby control register             | -        | SBYCON   | -       | -    | -       |
| 0xF01C  | Standby prohibition flag register    | SBYEFLG  | -        | R       | 8    | 0x00    |
| 0xF01D  | Reserved                             | -        | -        | -       | -    | -       |
| 0xF05C  | Software reset acceptor              | SOFTRACP | -        | W       | 8    | 0x00    |
| 0xF05D  | Reserved                             | -        | -        | -       | -    | -       |
| 0xF05E  | Software reset control register      | SOFTRCON | -        | R/W     | 8    | 0x00    |
| 0xF05F  | Reserved                             | -        | -        | -       | -    | -       |
| 0xF070  | Dia da ala ala angeneratura miatan O | BCKCON0L | DOKOONO  | R/W     | 8/16 | 0x00    |
| 0xF071  | Block clock control register 0       | BCKCON0H | BCKCON0  | R/W     | 8    | 0x00    |
| 0xF072  | Dia da ala angeneratura miatan d     | BCKCON1L | DOKOONIA | R/W     | 8/16 | 0x00    |
| 0xF073  | Block clock control register 1       | BCKCON1H | BCKCON1  | R/W     | 8    | 0x00    |
| 0xF074  |                                      | BCKCON2L | DOLGONIO | R/W     | 8/16 | 0x00    |
| 0xF075  | Block clock control register 2       | BCKCON2H | BCKCON2  | R/W     | 8    | 0x00    |
| 0xF076  |                                      | BCKCON3L |          | R/W     | 8/16 | 0x00    |
| 0xF077  | Block clock control register 3       | BCKCON3H | BCKCON3  | R/W     | 8    | 0x00    |
| 0xF078  |                                      | BRECON0L |          | R/W     | 8/16 | 0x00    |
| 0xF079  | Block reset control register 0       | BRECON0H | BRECON0  | R/W     | 8    | 0x00    |
| 0xF07A  |                                      | BRECON1L |          | R/W     | 8/16 | 0x00    |
| 0xF07B  | Block reset control register 1       | BRECON1H | BRECON1  | R/W     | 8    | 0x00    |
| 0xF07C  |                                      | BRECON2L |          | R/W     | 8/16 | 0x00    |
| 0xF07D  | Block reset control register 2       | BRECON2H | BRECON2  | R/W     | 8    | 0x00    |
| 0xF07E  |                                      | BRECON3L |          | R/W     | 8/16 | 0x00    |
| 0xF07F  | Block reset control register 3       | BRECON3H | BRECON3  | R/W     | 8    | 0x00    |


Table 4-1 shows Availability list of the SFR bit symbols.

| Table 4-1 Availability of the | e SFR bit symbols in BCLCONn re | egister and BRECONn register |
|-------------------------------|---------------------------------|------------------------------|
| •: available, - : unavaila    | able                            |                              |

| •. avaliable, - |            |               |            | 1           |
|-----------------|------------|---------------|------------|-------------|
|                 | Control r  | egister / bit |            | Available/  |
| Word symbol     | Bit symbol | Word symbol   | Bit symbol | Unavailable |
| BCKCON0         | DCKTM0     | BRECON0       | RSETM0     | •           |
|                 | DCKOTM0    |               | RSEOTM0    | •           |
|                 | DCKOTM1    |               | RSEOTM1    | •           |
|                 | DCKOTM2    |               | RSEOTM2    | •           |
| BCKCON1         | DCKOTM3    | BRECON1       | RSEOTM3    | •           |
|                 | DCKOTM4    |               | RSEOTM4    | •           |
|                 | DCKOTM5    |               | RSEOTM5    | •           |
|                 | DCKI2CU0   |               | RSEI2CU0   | •           |
|                 | DCKUA0     | DCKUA0        |            | •           |
| BCKCON2         | DCKUA1     | BRECON2       | RSEUA1     | •           |
|                 | DCKACC     |               | RSEACC     | •           |
|                 | DCKSAD     |               | RSESAD     | •           |
|                 | DCKDAC0    |               | RSEDAC0    | •           |
|                 | DCKDAC1    |               | RSEDAC1    | •           |
| BCKCON3         | DCKCMP0    | BRECON3       | RSECMP0    | •           |
|                 | DCKCMP1    |               | RSECMP1    | •           |
|                 | DCKCMP2    |               | RSECMP2    | •           |
|                 | DCKPGA     |               | RSEPGA     | •           |

### 4.2.2 Stop Code Acceptor (STPACP)

STPACP is a write-only SFR to change the operating state into the STOP mode. This returns "0x00" for reading.



#### How to enter the STOP mode:

| Procedure | How to specify the registers                                                   | Description                               |
|-----------|--------------------------------------------------------------------------------|-------------------------------------------|
| 1         | Write "0x5n" and "0xAn" (n=arbitrary in 0-F) in sequence into STPACP register. | Enables to enter the STOP mode only once. |
| 2         | Set STP bit of SBYCON register to"1".                                          | STP= "1" : Enter the STOP mode            |

Any other instructions can be executed between the instruction that writes "0x5n" to STPACP and the instruction that writes "0xAn". However, if write data other than "0xAn" after writing "0x5n", the procedure gets invalid, so need write "0x5n" again.

#### [Note]

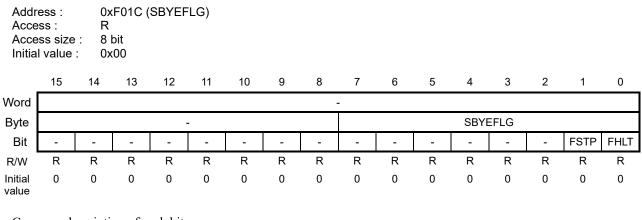
 Writing to the stop code acceptor is invalid on the condition both interrupts enable bits and interrupt request bits are "1", it will not get enabled for entering to the STOP mode.

### 4.2.3 Standby Control Register (SBYCON)

SBYCON is a write-only SFR to switch a standby mode. This returns "0x0000" for reading.

|                  |    | R/<br>: 8/ |    | SBYCO | NL/SB` | (CON) |   |     |     |   |   |     |      |   |     |     |
|------------------|----|------------|----|-------|--------|-------|---|-----|-----|---|---|-----|------|---|-----|-----|
|                  | 15 | 14         | 13 | 12    | 11     | 10    | 9 | 8   | 7   | 6 | 5 | 4   | 3    | 2 | 1   | 0   |
| Word             |    |            |    |       |        |       |   | SBY | CON |   |   |     |      |   |     |     |
| Byte             |    |            |    |       | -      |       |   |     |     |   |   | SBY | CONL |   |     |     |
| Bit              | -  | -          | -  | -     | -      | -     | - | -   | -   | - | - | -   | -    | - | STP | HLT |
| R/W              | R  | R          | R  | R     | R      | R     | R | R   | R   | R | R | R   | R    | R | W   | W   |
| Initial<br>value | 0  | 0          | 0  | 0     | 0      | 0     | 0 | 0   | 0   | 0 | 0 | 0   | 0    | 0 | 0   | 0   |

When the WDT interrupt or an interrupt enabled in the interrupt enable registers (IE0 to IE7) is generated, each standby mode gets canceled and returns to program run mode.


| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                          |
|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 2 | -                  | Reserved bits                                                                                                                                                                                        |
| 1       | STP                | STP is a bit to change the operating state into the STOP mode. When "1" is written in the STP bit after entering the STOP mode is allowed by using STPACP, the operating state enters the STOP mode. |
| 0       | HLT                | HLT is a bit to change the operating state into the HALT mode.                                                                                                                                       |

#### [Note]

- The operating state does not enter the standby mode under some conditions. See "4.3.2.3 Note of entering to the standby mode" for detail conditions.
- When an interrupt enabled in the interrupt enable registers (IE0 to IE7) is generated on the condition of MIE flag of the program status word (PSW) is "0", it cancels the standby mode only and the CPU does not go to the interrupt routine. For more details about MIE flag, see "nX-U16/100 Core Instruction Manual".
- Insert two NOP instructions in the next to the instruction of that sets HLT and STP bit to "1". The
  operation without the two NOP instructions is not guaranteed.

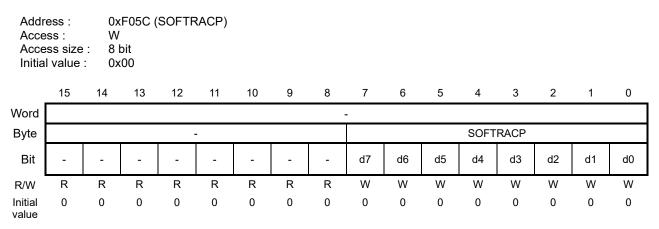
### 4.2.4 Standby Prohibition Flag Register (SBYEFLG)

SBYEFLG is a read-only SFR to indicate availability of entering to standby mode. See section 4.3.2.3 "Note of entering to the standby mode" for condition that each bit becomes to "1"



Common description of each bits:

It is a flag of an entering to a target standby mode


0: Available (Initial value)

1: Prohibited

| Bit No. | Bit symbol<br>name | Description   |
|---------|--------------------|---------------|
| 7 to 2  | -                  | Reserved bits |
| 1       | FSTP               | STOP mode     |
| 0       | FHLT               | HALT mode     |

### 4.2.5 Software Reset Acceptor (SOFTRACP)

SOFTRACP is a write-only SFR to enable writing to SOFTCON register. This returns "0x00" for reading.



How to reset collectively the peripheral circuits:

| Procedure | How to specify the registers                                                         | Description                    |
|-----------|--------------------------------------------------------------------------------------|--------------------------------|
| 1         | Write "0x3n" and "0xCn" (n=arbitrary in 0-F) in sequence into the SOFTRACP register. | Enables SOFTR reset only once. |
| 2         | Set SOFTR bit of the SOFTRCON register to "1".                                       | SOFTR reset state.             |

Any other instructions can be executed between the instruction that writes "0x3n" to SOFTRACP and the instruction that writes "0xCn". However, if write data other than "0xCn" after writing "0x3n", the procedure gets invalid, so need write "0x3n" again.

### 4.2.6 Software Reset Control Register (SOFTRCON)

SOFTRCON is a SFR to reset collectively the all peripheral circuits belong to BRECONn register (n=0 to 3) and general ports.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R/<br>e: 8      | (F05E)<br>/W<br>bit<br>(00 | (SOFTF  | RCON)   |    |   |   |    |           |    |      |      |   |   |          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|---------|---------|----|---|---|----|-----------|----|------|------|---|---|----------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14              | 13                         | 12      | 11      | 10 | 9 | 8 | 7  | 6         | 5  | 4    | 3    | 2 | 1 | 0        |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |         |         |    |   |   | -  |           |    |      |      |   |   |          |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |         | -       |    |   |   |    |           |    | SOFT | RCON |   |   |          |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               | -                          | -       | -       | -  | - | - | -  | -         | -  | -    | -    | - | - | SOF<br>R |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R               | R                          | R       | R       | R  | R | R | R  | R         | R  | R    | R    | R | R | R/W      |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               | 0                          | 0       | 0       | 0  | 0 | 0 | 0  | 0         | 0  | 0    | 0    | 0 | 0 | 0        |
| Bit No.          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                              | it symb<br>name | ol                         |         |         |    |   |   | De | escriptio | on |      |      |   |   |          |
| 7 to 1           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                            | Reserve | ed bits |    |   |   |    |           |    |      |      |   |   |          |
| 0                | <ul> <li>Reserved bits</li> <li>SOFTR Reset collectively the all peripheral circuits belong to the BRECONn register (n=0-3) and general ports. Setting "1" to the bit resets the all peripheral circuits and general ports. The SOFTR is automatically reset to "0" after the reset is completed, so check "0" before reconfiguring the peripheral circuits. Enable the reset by writing the SOFTRACP register before setting the SOFTR bit to "1".</li> </ul> |                 |                            |         |         |    |   |   |    |           |    |      |      |   |   |          |

[Note]

• Do not enter the standby mode when SOFTR bit is "1". Ensure SOFTR bit is "0" before entering the standby mode.

### 4.2.7 Block Clock Control Register 0 (BCKCON0)

BCKCON0 is a SFR to control supplying the clock of system, high-speed and low-speed to the peripheral circuits. The power consumption can be reduced by stopping the clock supply for unused peripheral circuits.

| Acce<br>Acce     | ress : 0xF070 (BCKCON0L/BCKCON0), 0xF071 (BCKCON0H)<br>ess : R/W<br>ess size : 8/16 bit<br>al value : 0x0000 |    |    |      |      |    |   |     |      |   |   |      |      |   |   |            |
|------------------|--------------------------------------------------------------------------------------------------------------|----|----|------|------|----|---|-----|------|---|---|------|------|---|---|------------|
|                  | 15                                                                                                           | 14 | 13 | 12   | 11   | 10 | 9 | 8   | 7    | 6 | 5 | 4    | 3    | 2 | 1 | 0          |
| Word             |                                                                                                              |    |    |      |      |    |   | BCK | CON0 |   |   |      |      |   |   |            |
| Byte             |                                                                                                              |    |    | BCKC | ON0H |    |   |     |      |   |   | BCKC | ONOL |   |   |            |
| Bit              | -                                                                                                            | -  | -  | -    | -    | -  | - | -   | -    | - | - | -    | -    | - | - | DCKT<br>M0 |
| R/W              | R                                                                                                            | R  | R  | R    | R    | R  | R | R   | R    | R | R | R    | R    | R | R | R/W        |
| Initial<br>value | 0                                                                                                            | 0  | 0  | 0    | 0    | 0  | 0 | 0   | 0    | 0 | 0 | 0    | 0    | 0 | 0 | 0          |

Common description of each bits:

It is configured supplying clocks to a target peripheral circuit.

- 0: Supplied clock to a target peripheral circuit (Initial value)
- 1: Stop clock to a target peripheral circuit

| Bit No. | Bit symbol<br>name |                | Description (target peripheral) |
|---------|--------------------|----------------|---------------------------------|
| 15 to 1 | -                  | Reserved bits  |                                 |
| 0       | DCKTM0             | 16-bit timer 0 |                                 |

### 4.2.8 Block Clock Control Register 1 (BCKCON1)

BCKCON1 is a SFR to control supplying the clock of system, high-speed and low-speed to the peripheral circuits. The power consumption can be reduced by stopping the clock supply for unused peripheral circuits.

| Address :0xF072 (BCKCON1L/BCKCON1), 0xF073 (BCKCON1H)Access :R/WAccess size :8/16 bitInitial value :0x0000 |    |    |    |              |      |    |   |     |      |   |             |             |             |             |             |             |
|------------------------------------------------------------------------------------------------------------|----|----|----|--------------|------|----|---|-----|------|---|-------------|-------------|-------------|-------------|-------------|-------------|
|                                                                                                            | 15 | 14 | 13 | 12           | 11   | 10 | 9 | 8   | 7    | 6 | 5           | 4           | 3           | 2           | 1           | 0           |
| Word                                                                                                       |    |    |    |              |      |    |   | BCK | CON1 |   |             |             |             |             |             |             |
| Byte                                                                                                       |    |    |    | BCKC         | ON1H |    |   |     |      |   |             | BCKC        | ON1L        |             |             |             |
| Bit                                                                                                        | -  | -  | -  | DCKI<br>2CU0 | -    | -  | - | -   | -    | - | DCK<br>OTM5 | DCK<br>OTM4 | DCK<br>OTM3 | DCK<br>OTM2 | DCK<br>OTM1 | DCK<br>OTM0 |
| R/W                                                                                                        | R  | R  | R  | R/W          | R    | R  | R | R   | R    | R | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         |
| Initial<br>value                                                                                           | 0  | 0  | 0  | 0            | 0    | 0  | 0 | 0   | 0    | 0 | 0           | 0           | 0           | 0           | 0           | 0           |

Common description of each bits:

It is configured supplying clocks to a target peripheral circuit.

- 0: Supplied clock to a target peripheral circuit (Initial value)
- 1: Stop clock to a target peripheral circuit

| Bit No.  | Bit symbol<br>name | Description (target peripheral) |
|----------|--------------------|---------------------------------|
| 15 to 13 | -                  | Reserved bits                   |
| 12       | DCKI2CU0           | I <sup>2</sup> C Bus Unit 0     |
| 11 to 6  | -                  | Reserved bits                   |
| 5        | DCKOTM5            | Operational Timer 5             |
| 4        | DCKOTM4            | Operational Timer 4             |
| 3        | DCKOTM3            | Operational Timer 3             |
| 2        | DCKOTM2            | Operational Timer 2             |
| 1        | DCKOTM1            | Operational Timer 1             |
| 0        | DCKOTM0            | Operational Timer 0             |

### 4.2.9 Block Clock Control Register 2 (BCKCON2)

BCKCON2 is a SFR to control supplying the clock of system, high-speed and low-speed to the peripheral circuits. The power consumption can be reduced by stopping the clock supply for unused peripheral circuits.

| Acce<br>Acce     | dress : 0xF074 (BCKCON2L/BCKCON2), 0xF075 (BCKCON2H)<br>cess : R/W<br>cess size : 8/16 bit<br>al value : 0x0000 |    |            |      |      |    |   |     |      |   |            |            |      |   |   |   |
|------------------|-----------------------------------------------------------------------------------------------------------------|----|------------|------|------|----|---|-----|------|---|------------|------------|------|---|---|---|
|                  | 15                                                                                                              | 14 | 13         | 12   | 11   | 10 | 9 | 8   | 7    | 6 | 5          | 4          | 3    | 2 | 1 | 0 |
| Word             |                                                                                                                 |    |            |      |      |    |   | BCK | CON2 |   |            |            |      |   |   |   |
| Byte             |                                                                                                                 |    |            | BCKC | ON2H |    |   |     |      |   |            | BCKC       | ON2L |   |   |   |
| Bit              | -                                                                                                               | -  | DCKA<br>CC | -    | -    | -  | - | -   | -    | - | DCK<br>UA1 | DCK<br>UA0 | -    | - | - | - |
| R/W              | R                                                                                                               | R  | R/W        | R    | R    | R  | R | R   | R    | R | R/W        | R/W        | R    | R | R | R |
| Initial<br>value | 0                                                                                                               | 0  | 0          | 0    | 0    | 0  | 0 | 0   | 0    | 0 | 0          | 0          | 0    | 0 | 0 | 0 |

Common description of each bits:

It is configured supplying clocks to a target peripheral circuit.

- 0: Supplied clock to a target peripheral circuit (Initial value)
- 1: Stop clock to a target peripheral circuit

| Bit No.  | Bit symbol<br>name | Description (target peripheral)                            |
|----------|--------------------|------------------------------------------------------------|
| 15 to 14 | -                  | Reserved bits                                              |
| 13       | DCKACC             | Multiplier/Divider<br>An initial value of this bit is "0". |
| 12 to 6  | -                  | Reserved bits                                              |
| 5        | DCKUA1             | UART 1                                                     |
| 4        | DCKUA0             | UART 0                                                     |
| 3 to 0   | -                  | Reserved bits                                              |

#### [Note]

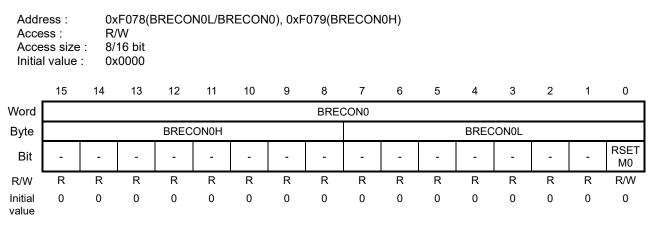
DCKACC bit can be set to "0" when the multiplication/division library "muldivu8.lib" is specified. See a manual of the multiplication/division library for how to use.

### 4.2.10 Block Clock Control Register 3 (BCKCON3)

BCKCON3 is a SFR to control supplying the clock of system, high-speed and low-speed to the peripheral circuits. The power consumption can be reduced by stopping the clock supply for unused peripheral circuits.

| Address :0xF076 (BCKCON3L/BCKCON3), 0xF077 (BCKCON3H)Access :R/WAccess size :8/16 bitInitial value :0x0000 |    |    |    |      |      |    |   |     |      |            |             |             |             |             |             |            |
|------------------------------------------------------------------------------------------------------------|----|----|----|------|------|----|---|-----|------|------------|-------------|-------------|-------------|-------------|-------------|------------|
|                                                                                                            | 15 | 14 | 13 | 12   | 11   | 10 | 9 | 8   | 7    | 6          | 5           | 4           | 3           | 2           | 1           | 0          |
| Word                                                                                                       |    |    |    |      |      |    |   | BCK | CON3 |            |             |             |             |             |             |            |
| Byte                                                                                                       |    |    |    | BCKC | ON3H |    |   |     |      |            |             | BCKC        | ON3L        |             |             |            |
| Bit                                                                                                        | -  | -  | I  | -    | -    | -  | - | -   | -    | DCKP<br>GA | DCK<br>CMP2 | DCK<br>CMP1 | DCK<br>CMP0 | DCK<br>DAC1 | DCK<br>DAC0 | DCKS<br>AD |
| R/W                                                                                                        | R  | R  | R  | R    | R    | R  | R | R   | R    | R/W        | R/W         | R/W         | R/W         | R/W         | R/W         | R/W        |
| Initial<br>value                                                                                           | 0  | 0  | 0  | 0    | 0    | 0  | 0 | 0   | 0    | 0          | 0           | 0           | 0           | 0           | 0           | 0          |

Common description of each bits:


It is configured supplying clocks to a target peripheral circuit.

- 0: Supplied clock to a target peripheral circuit (Initial value)
- 1: Stop clock to a target peripheral circuit

| Bit No. | Bit symbol<br>name | Description (target peripheral) |
|---------|--------------------|---------------------------------|
| 15 to 7 | -                  | Reserved bits                   |
| 6       | DCKPGA             | PGA                             |
| 5       | DCKCMP2            | Analog comparator CH2           |
| 4       | DCKCMP1            | Analog comparator CH1           |
| 3       | DCKCMP0            | Analog comparator CH0           |
| 2       | DCKDAC1            | D/A converter CH1               |
| 1       | DCKDAC0            | D/A converter CH0               |
| 0       | DCKSAD             | SA-ADC                          |

### 4.2.11 Block Reset Control Register 0 (BRECON0)

BRECON0 is a SFR to control resetting the peripheral circuits.



Common description of each bits:

It is configured resetting to a target peripheral circuit.

- 0: Cancel to reset a target peripheral circuit (Initial value)
- 1: Remain to reset a target peripheral circuit

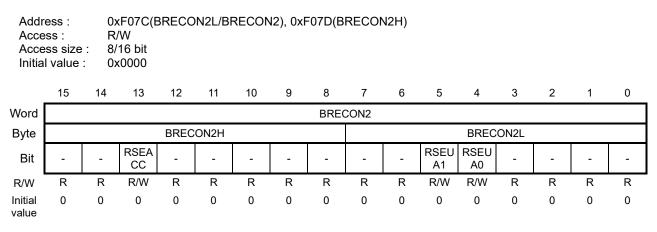
| Bit No. | Bit symbol<br>name |                | Description (target peripheral) |
|---------|--------------------|----------------|---------------------------------|
| 15 to 1 | -                  | Reserved bits  |                                 |
| 0       | RSETM0             | 16-bit timer 0 |                                 |

### 4.2.12 Block Reset Control Register 1 (BRECON1)

BRECON1 is a SFR to control resetting the peripheral circuits.

| Address :0xF07A (BRECON1L/BRECON1), 0xF07B (BRECON1H)Access :R/WAccess size :8/16 bitInitial value :0x0000 |    |    |    |              |      |    |   |      |      |   |             |             |             |             |             |             |
|------------------------------------------------------------------------------------------------------------|----|----|----|--------------|------|----|---|------|------|---|-------------|-------------|-------------|-------------|-------------|-------------|
|                                                                                                            | 15 | 14 | 13 | 12           | 11   | 10 | 9 | 8    | 7    | 6 | 5           | 4           | 3           | 2           | 1           | 0           |
| Word                                                                                                       |    |    |    |              |      |    |   | BREC | CON1 |   |             |             |             |             |             |             |
| Byte                                                                                                       |    |    |    | BREC         | ON1H |    |   |      |      |   |             | BREC        | ON1L        |             |             |             |
| Bit                                                                                                        | -  | -  | -  | RSEI<br>2CU0 | -    | -  | - | -    | -    | - | RSE<br>OTM5 | RSE<br>OTM4 | RSE<br>OTM3 | RSE<br>OTM2 | RSE<br>OTM1 | RSE<br>OTM0 |
| R/W                                                                                                        | R  | R  | R  | R/W          | R    | R  | R | R    | R    | R | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         |
| Initial<br>value                                                                                           | 0  | 0  | 0  | 0            | 0    | 0  | 0 | 0    | 0    | 0 | 0           | 0           | 0           | 0           | 0           | 0           |

Common description of each bits :


It is configured resetting to a target peripheral circuit.

- 0: Cancel to reset a target peripheral circuit (Initial value)
- 1: Remain to reset a target peripheral circuit

| Bit No.  | Bit symbol name | Description (target peripheral) |
|----------|-----------------|---------------------------------|
| 15 to 13 | -               | Reserved bits                   |
| 12       | RSEI2CU0        | I <sup>2</sup> C Bus Unit 0     |
| 11 to 6  | -               | Reserved bits                   |
| 5        | RSEOTM5         | Operational Timer 5             |
| 4        | RSEOTM4         | Operational Timer 4             |
| 3        | RSEOTM3         | Operational Timer 3             |
| 2        | RSEOTM2         | Operational Timer 2             |
| 1        | RSEOTM1         | Operational Timer 1             |
| 0        | RSEOTM0         | Operational Timer 0             |

### 4.2.13 Block Reset Control Register 2 (BRECON2)

BRECON2 is a SFR to control resetting the peripheral circuits.



Common description of each bits :

It is configured resetting to a target peripheral circuit.

- 0: Cancel to reset a target peripheral circuit (Initial value)
- 1: Remain to reset a target peripheral circuit

| Bit No. | Bit symbol name | Description (target peripheral)                            |
|---------|-----------------|------------------------------------------------------------|
| 15, 14  | -               | Reserved bits                                              |
| 13      | RSEACC          | Multiplier/Divider<br>An initial value of this bit is "0". |
| 12 to 6 | -               | Reserved bits                                              |
| 5       | RSEUA1          | UART 1                                                     |
| 4       | RSEUA0          | UART 0                                                     |
| 3 to 0  | -               | Reserved bits                                              |

#### [Note]

RSEACC bit can be set to "0" when the multiplication/division library "muldivu8.lib" is specified. See a manual of the multiplication/division library for how to use.

### 4.2.14 Block Reset Control Register 3 (BRECON3)

BRECON3 is a SFR to control resetting the peripheral circuits.

| Addr<br>Acce<br>Acce<br>Initia | R/<br>: 8/ |    | BRECO | N3L/BF | RECON | 13), OxF | F07F(BI | RECOI | N3H) |            |             |             |             |             |             |            |
|--------------------------------|------------|----|-------|--------|-------|----------|---------|-------|------|------------|-------------|-------------|-------------|-------------|-------------|------------|
|                                | 15         | 14 | 13    | 12     | 11    | 10       | 9       | 8     | 7    | 6          | 5           | 4           | 3           | 2           | 1           | 0          |
| Word                           |            |    |       |        |       |          |         | BREC  | CON3 |            |             |             |             |             |             |            |
| Byte                           |            |    |       | BREC   | ON3H  |          |         |       |      |            |             | BREC        | ON3L        |             |             |            |
| Bit                            | -          | -  | -     | -      | -     | -        | -       | -     | •    | RSEP<br>GA | RSEC<br>MP2 | RSEC<br>MP1 | RSEC<br>MP0 | RSED<br>AC1 | RSED<br>AC0 | RSES<br>AD |
| R/W                            | R          | R  | R     | R      | R     | R        | R       | R     | R    | R/W        | R/W         | R/W         | R/W         | R/W         | R/W         | R/W        |
| Initial<br>value               | 0          | 0  | 0     | 0      | 0     | 0        | 0       | 0     | 0    | 0          | 0           | 0           | 0           | 0           | 0           | 0          |

Common description of each bits :

It is configured resetting to a target peripheral circuit.

- 0: Cancel to reset a target peripheral circuit (Initial value)
- 1: Remain to reset a target peripheral circuit

| Bit No. | Bit symbol name | Description (target peripheral) |
|---------|-----------------|---------------------------------|
| 15 to 7 | -               | Reserved bits                   |
| 6       | RSEPGA          | PGA                             |
| 5       | RSECMP2         | Analog comparator CH2           |
| 4       | RSECMP1         | Analog comparator CH1           |
| 3       | RSECMP0         | Analog comparator CH0           |
| 2       | RSEDAC1         | D/A converter CH1               |
| 1       | RSEDAC0         | D/A converter CH0               |
| 0       | RSESAD          | SA-ADC                          |

### 4.3 Description of Operation

#### 4.3.1 Program Run Mode

The program run mode is the state where the CPU executes instructions sequentially.

When a reset is released after the reset is generated, the operating state is transferred from the system reset mode to the program run mode.

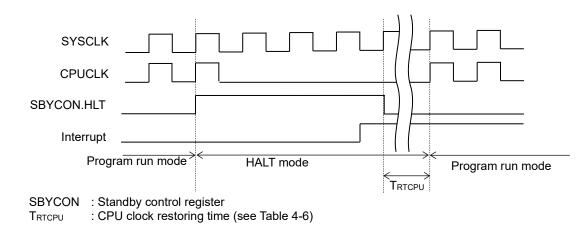
In addition, if an interrupt request is generated during a standby mode, the mode shifts back to the program run mode. See Chapter 3 "Reset Function" for the system reset mode.

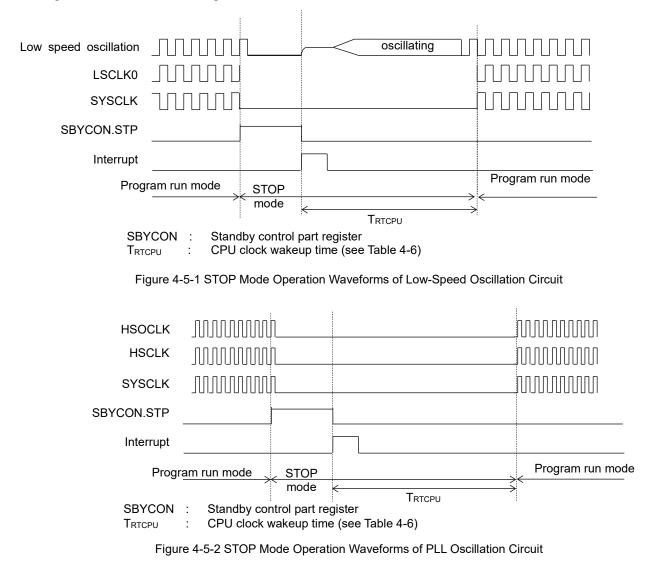
#### 4.3.2 Standby Mode

#### 4.3.2.1 HALT Mode

The HALT mode is the state where the CPU stops and only the peripheral circuits remain in operation with previous clock condition (LSCLK0 or HSCLK) for the system clock (SYSCLK) selected before entering the HALT mode. See section 4.3.2.5 "Operation of Each Function in Standby Mode" for the operation of each function in the HALT mode.

When "1" is written to the HLT bit of the SBYCON register, the operating state switches the HALT mode. When a WDT interrupt or an interrupt enabled in registers IE0 to IE7 occurs, the HALT mode is released at the rising edge of the next SYSCLK, then the mode shifts back to the program run mode. Figure 4-4 shows operation waveforms in the HALT mode.





Figure 4-4 Operation Waveforms in HALT Mode

### 4.3.2.2 STOP Mode

The STOP mode is the state where all clocks are forcibly stopped, and the CPU and the peripheral circuits which need the clock to operate stop. See "4.3.2.5 Operation of Each Function in Standby Mode" for operation of each function in the STOP mode.

To enter the STOP mode, write "0x5n" and "0xAn" (n = arbitrary) in this order to STPACP register to enable the transition to the STOP mode, then write "1" to the STP bit of SBYCON register.

The STOP mode is released by the external interrupts or interrupt requests from the I2C bus unit (slave). The operating state returns to the program run mode with SYSCLK switched before switching the STOP mode. Figure 4-5 shows STOP mode operation waveforms.





#### 4.3.2.3 Note of entering to the standby mode

In the following condition, an entering standby mode is canceled, program run mode is continued. An availability of entering to standby mode is confirmed by monitoring a target bit in SBYEFLG register. Table 4-2 shows availability of entering to standby mode.

#### Table 4-2 availability of entering to standby mode (1 : Not available, 0 : Available)

| Condition                                                                                                                                         | FSTP | FHLT |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| When setting some bits of SBYCONL register at the same time.                                                                                      | 0    | 0    |
| When occurring the interrupt request to CPU.<br>Its status is that both interrupt enable register and<br>interrupt request register are asserted. | 1    | 1    |
| When accepter is disabled by SBYACP.                                                                                                              | 1    | 0    |
| When A/D conversion of SA-ADC in progress.                                                                                                        | 1    | 0    |
| When waiting for stability time of LLD.                                                                                                           | 1    | 0    |
| When erasing/programming for data flash memory.                                                                                                   | 1    | 0    |

### 4.3.2.4 Note on Return Operation from Standby Mode

The operation of returning the standby mode is caused by the interrupt level (ELEVEL) of the program status word (PSW), master interrupt enable flag (MIE), the contents of the register (IE0 to IE7), non-maskable interrupt, or maskable interrupt. The operation varies depending on the cause. See "nX-U16/100 Core Instruction Manual" for details of PSW and Chapter 5 "Interrupts" for IE and IRQ registers respectively. Tables 4-3 shows the return operations from the standby mode for non-maskable interrupt and maskable interrupt respectively.

| ELEVEL | MIE |   |   |                                                                                                                                                                                                              |  |  |  |  |  |  |
|--------|-----|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Х      | Х   | - | 0 | Not returned from the standby mode.                                                                                                                                                                          |  |  |  |  |  |  |
| 3      | x   | - | 1 | After returning from the standby mode, the program operation restarts from the instruction next to the instruction that enters the standby mode. The program operation does not go to the interrupt routine. |  |  |  |  |  |  |
| 0,1,2  | x   |   | 1 | After returning from the standby mode, the program operation restarts from the instruction next to the instruction that enters the standby mode. Then the program operation goes to the interrupt routine.   |  |  |  |  |  |  |

#### Table 4-3-1 Return Operation from Standby Mode (for Non-Maskable Interrupt)

n=0 to 7, m=0 to 7. X: Value-independent

#### Table 4-3-2 Return Operation from Standby Mode (for Maskable Interrupt)

| ELEVEL | MIE | IEn.m | IRQn.m | Return operation from standby mode                                                                                                                                                                         |
|--------|-----|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Х      | Х   | Х     | 0      | Not returned from the standby made                                                                                                                                                                         |
| Х      | Х   | 0     | 1      | Not returned from the standby mode.                                                                                                                                                                        |
| Х      | 0   | 1     | 1      | After returning from the standby mode, the program operation                                                                                                                                               |
| 2,3    | 1   | 1     | 1      | restarts from the instruction next to the instruction that enters the standby mode. The program operation does not go to the interrupt routine.                                                            |
| 0,1    | 1   | 1     | 1      | After returning from the standby mode, the program operation restarts from the instruction next to the instruction that enters the standby mode. Then the program operation goes to the interrupt routine. |

n=0 to 7, m=0 to 7. X: Value-independent

The ELEVEL of PSW has bits that indicate the state of interrupt process performed by the CPU It is set by the hardware when transferring to the interrupt process or returning from the interrupt.

#### Table 4-4 State of CPU-Processed Interrupt Indicated by ELEVEL

| ELEVEL value | State of CPU-processed interrupt                                                                                         |
|--------------|--------------------------------------------------------------------------------------------------------------------------|
| 0            | Indicates that the CPU is not processing any interrupt (non-maskable interrupt, maskable interrupt, software interrupt). |
| 1            | Indicates that the CPU is processing a maskable or software interrupt.                                                   |
| 2            | Indicates that the CPU is processing a non-maskable interrupt.                                                           |
| 3            | Indicates that the CPU is processing an emulator-dedicated interrupt. Usually this is not used in the software.          |

#### [Note]

• Since up to two instructions are executed during the period between the release of standby mode and a transition to interrupt processing, place two NOP instructions next to the instruction set for the standby mode. When a master interrupt enable (MIE) flag of the program status word (PSW) in the nX-U16/100 CPU core is "1", following the execution of the two NOP instructions, the interrupt transition cycle will be executed and execution of the instruction for interrupt routine begins. If MIE is "0", following the execution of the instruction execution is continued from the one that follows the NOP instruction without transition to the interrupt.

#### 4.3.2.5 Operation of Each Function in Standby Mode

Table 4-5 shows the state of each function block in the standby mode.

| • : Operable, - : Not operable                            |        |        |  |  |  |  |  |
|-----------------------------------------------------------|--------|--------|--|--|--|--|--|
| Function blocks                                           | HALT   | STOP   |  |  |  |  |  |
| Low speed oscillation (Internal RC oscillation)           | •      | -      |  |  |  |  |  |
| High speed oscillation (PLL)                              | •      | -      |  |  |  |  |  |
| CPU                                                       | -      | -      |  |  |  |  |  |
| RAM                                                       | Retain | Retain |  |  |  |  |  |
| WDT; Watchdog timer                                       | •      | -      |  |  |  |  |  |
| External interrupt                                        | •      | ●*1    |  |  |  |  |  |
| 16-bit timer                                              | •      | -*3    |  |  |  |  |  |
| Operational timer                                         | •      | -*3    |  |  |  |  |  |
| UART                                                      | •      | -      |  |  |  |  |  |
| I <sup>2</sup> C bus unit (Master)                        | •      | -      |  |  |  |  |  |
| I <sup>2</sup> C bus unit (Slave)                         | •      | •*2    |  |  |  |  |  |
| SA-ADC; Successive approximation type A/D converter       | •      | -      |  |  |  |  |  |
| PGA                                                       | •      | -      |  |  |  |  |  |
| D/A converter*4                                           | •      | •      |  |  |  |  |  |
| Analog comparator                                         | •      | ●*1    |  |  |  |  |  |
| LLD                                                       | •      | ●*1    |  |  |  |  |  |
| BGO operation (erasing/programming for data flash memory) | •      | -      |  |  |  |  |  |
| Multiplier/Divider                                        | -      | -      |  |  |  |  |  |

| Table 4-5 | State of | Each | Function | in Standb | y Mode |
|-----------|----------|------|----------|-----------|--------|
|           |          |      |          |           |        |

\*1 : If a sampling function is selected, it is forcibly disabled.

\*2 : It is available to wake up by coincidence of slave address. A system clock supply is needed for communication after wake up.

\*3 : Internal clocks is stop. If external clock is selected, the peripheral circuit operates. However, its operation is not supported.

\*4 : Maintains the state before the standby mode transition. Since there is no interrupt notification function, it cannot be used as a interrupt factor.



#### 4.3.2.6 Wake-up Time from Standby Mode

Table 4-6 shows the wake-up time (restoring time) from the standby modes. See Chapter 6 "Clock Generation Circuit" for details of the FHWUPT register.

|              | Та                                                                              | able 4-6 Wake-up T          | ime from Standby N                                 | /lode (typ.)                                                     |             |  |
|--------------|---------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------|------------------------------------------------------------------|-------------|--|
| Function     | Condition                                                                       | CPU clock<br>restoring time | Low-speed clock<br>restoring time<br>(Low-speed RC | High-speed clock restoring time (PLL<br>oscillation)<br>[TRTPLL] |             |  |
|              |                                                                                 | [T <sub>rtcpu</sub> ]       | oscillation)<br>[T <sub>RTLS</sub> ]               | FHWUPT=0x01                                                      | FHWUPT=0x00 |  |
|              | Low-speed CPU clock<br>High-speed clock OFF<br>No CRC calculation               | Approx.90µs                 |                                                    | Stopped                                                          |             |  |
| HALT<br>mode | Low-speed CPU clock<br>High-speed clock ON Approx.60<br>or with CRC calculation |                             | Operation<br>continued                             | Operation continued                                              |             |  |
|              | High-speed CPU clock                                                            | -                           |                                                    |                                                                  |             |  |
| STOP         | Low-speed CPU clock TRTLS                                                       |                             | Approx.3ms                                         | Approx.3ms                                                       | Approx.4ms  |  |
| mode         | High-speed CPU clock                                                            | T <sub>RTPLL</sub>          | Approx.onis                                        | Αρριοχ.οπις                                                      | Αρριοχ.4ΠS  |  |

#### [Note]

When the FHWUPT register is set to "0x01", the frequency of PLL oscillation clock gradually increases and reaches the target frequency switched by the code option before approx. 2 ms elapse. The PLL oscillation clock during this time period can be used for the SYSCLK, however, accuracy of the frequency is not guaranteed.

### 4.3.3 Block Control Function

This LSI has the block clock control function, which stops clock supply for each peripheral circuit to reduce current consumption, and the block reset control function to reset each peripheral circuit.

When setting each bit of the BCKCONn registers (n=0 to 3) to "1", the clock supply to the corresponding peripheral circuits stops, and the current consumption is reduced.

When setting each bit of the BRECONn registers (n=0 to 3) to "1", the corresponding peripheral circuits are reset and those SFRs are set with initial values.

Table 4-7 shows the list of peripheral circuits controllable with the block control function and control registers.

| Derinkernteiner it                          |                    | ontrol function   | Block reset co     | Software reset function |                   |  |
|---------------------------------------------|--------------------|-------------------|--------------------|-------------------------|-------------------|--|
| Peripheral circuit                          | SFR<br>word symbol | SFR<br>bit symbol | SFR<br>word symbol | SFR<br>bit symbol       | SFR<br>bit symbol |  |
| 16-bit timer 0                              | BCKCON0            | DCKTM0            | BRECON0            | RSETM0                  |                   |  |
| Operational timer 0                         |                    | DCKOTM0           |                    | RSEOTM0                 |                   |  |
| Operational timer 1                         |                    | DCKOTM1           |                    | RSEOTM1                 |                   |  |
| Operational timer 2                         |                    | DCKOTM2           |                    | RSEOTM2                 |                   |  |
| Operational timer 3                         | BCKCON1            | DCKOTM3           | BRECON1            | RSEOTM3                 |                   |  |
| Operational timer 4                         |                    | DCKOTM4           | -                  | RSEOTM4                 |                   |  |
| Operational timer 5                         |                    | DCKOTM5           |                    | RSEOTM5                 |                   |  |
| I <sup>2</sup> C bus unit 0                 |                    | DCKI2CU0          |                    | RSEI2CU0                |                   |  |
| UART 0                                      |                    | DCKUA0            |                    | RSEUA0                  |                   |  |
| UART 1                                      | BCKCON2            | DCKUA1            | BRECON2            | RSEUA1                  | SOFTR*1           |  |
| Multiplier/Divider                          |                    | DCKACC            |                    | RSEACC                  |                   |  |
| Successive approximation type A/D converter |                    | DCKSAD            |                    | RSESAD                  |                   |  |
| D/A converterCH0                            |                    | DCKDAC0           |                    | RSEDAC0                 |                   |  |
| D/A converterCH1                            |                    | DCKDAC1           |                    | RSEDAC1                 |                   |  |
| Analog comparator CH0                       | BCKCON3            | DCKCMP0           | BRECON3            | RSECMP0                 |                   |  |
| Analog comparator CH1                       |                    | DCKCMP1           | ]                  | RSECMP1                 |                   |  |
| Analog comparator CH2                       |                    | DCKCMP2           | ]                  | RSECMP2                 |                   |  |
| PGA                                         |                    | DCKPGA            |                    | RSEPGA                  |                   |  |

Table 4-7 List of Peripheral Circuits and Control Registers

\*1 : SOFTR resets SFRs for general purpose ports setting too.

After the system reset is released, operation of each peripheral circuit becomes enabled.

If you want to stop the peripheral circuit, set the bit of BRECONn register to "1" to reset the peripheral circuit, and then set the bit of BCKCONn register to "1" to stop the clock of the peripheral circuit. When using, cancel the reset after the clock is supplied.

Also, setting the bit of BRECONn register to "1" only causes a reset to occur while retaining clock supply, enabling each peripheral circuit to be initialized.

In the state where clock supply to each peripheral circuit is suspended or in the reset state, writing to SFRs of corresponding peripheral circuits is disabled. If the clock supply is only stopped, it is possible to read from the SF

corresponding peripheral circuits is disabled. If the clock supply is only stopped, it is possible to read from the SFR.

#### [Note]

 If the clock supply is only stopped without resetting each peripheral circuit using the block control function, it may cause the output levels of the timer and communication pins to be fixed, causing the excess current to flow. Also, in the successive approximation type A/D converter, the circuits may stop their function with the current kept flowing.

#### 4.3.4 Internal Power Supply Voltage

The internal supply voltage, VDDL, is approximately 1.55 V after power on.

# **Chapter 5 Interrupts**

### 5. Interrupt

### 5.1 General Description

This LSI has the non-maskable interrupt, maskable interrupts and the software interrupt (SWI). For details of each interrupt, see the corresponding Chapters. See Chapter 29 "Safety Function" for the MCU status interrupt. See "Table 1-2 Main Function List" to confirm the presence/absence of function in each product.

### 5.1.1 Features

- Master Interrupt Enable (MIE) flag enables or disables collectively the all maskable interrupts. For more details about MIE, see "nX-U16/100 Core Instruction Manual".
- Each maskable interrupt has the enable flag in the register IE0 to IE7.
- The occurrence of interrupt request is confirmable by checking the request flag in IRQ registers.
- The occurrence of interrupt is maskable by setting each request flag by the software in IRQ registers.
- Four interrupt levels are available for each maskable interrupt.

### 5.2 Description of Registers

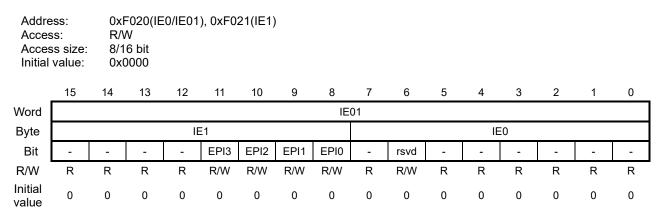
Writing to bits of unequipped interrupt is not available. They return 0x0 for reading. See to Table 5-1 for available interrupt.

### 5.2.1 List of Registers

| Address | Name                                                   | Symbo | ol name | R/W | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Initial |
|---------|--------------------------------------------------------|-------|---------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|         |                                                        | Byte  | Word    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | value   |
| 0xF020  | <ul> <li>Interrupt enable register 01</li> </ul>       | IE0   | IE01    | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF021  |                                                        | IE1   | 1201    | R/W | W       8/16         W       8         W       8         W       8/16         W       8         W       8         W       8         W       8         W       8         W       8         W       8/16         W       8/16 </td <td>0x00</td> | 0x00    |
| 0xF022  | Interrupt enable register 23                           | IE2   | IE23    | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF023  |                                                        | IE3   | IL25    | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF024  | <ul> <li>Interrupt enable register 45</li> </ul>       | IE4   | IE45    | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF025  |                                                        | IE5   | 1243    | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF026  | <ul> <li>Interrupt enable register 67</li> </ul>       | IE6   | IE67    | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF027  |                                                        | IE7   | 107     | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF028  | Interrupt request register 01                          | IRQ0  | 10001   | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF029  | <ul> <li>Interrupt request register 01</li> </ul>      | IRQ1  | IRQ01   | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF02A  | liste must be must be sister 00                        | IRQ2  | 10000   | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF02B  | <ul> <li>Interrupt request register 23</li> </ul>      | IRQ3  | IRQ23   | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF02C  |                                                        | IRQ4  | 10045   | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF02D  | <ul> <li>Interrupt request register 45</li> </ul>      | IRQ5  | IRQ45   | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF02E  |                                                        | IRQ6  | 10007   | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF02F  | <ul> <li>Interrupt request register 67</li> </ul>      | IRQ7  | IRQ67   | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF030  | Interrupt level control enable register                | ILEN  | -       | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF031  | Reserved register                                      | -     | -       | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       |
| 0xF032  | Current interrupt level management register            | CIL   | -       | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF033  | Interrupt level mask register                          | MCIL  | -       | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF034  |                                                        | ILC00 |         | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF035  | <ul> <li>Interrupt level control register 0</li> </ul> | ILC01 | ILC0    | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF036  |                                                        | ILC10 |         | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF037  | <ul> <li>Interrupt level control register 1</li> </ul> | ILC11 | ILC1    | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF038  |                                                        | ILC20 |         | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF039  | Interrupt level control register 2                     | ILC21 | ILC2    | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF03A  |                                                        | ILC30 |         | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF03B  | <ul> <li>Interrupt level control register 3</li> </ul> | ILC31 | ILC3    | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF03C  |                                                        | ILC40 |         | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF03D  | <ul> <li>Interrupt level control register 4</li> </ul> | ILC41 | ILC4    | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF03E  |                                                        | ILC50 |         | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF03F  | <ul> <li>Interrupt level control register 5</li> </ul> | ILC51 | ILC5    | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF040  |                                                        | ILC60 |         | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF041  | <ul> <li>Interrupt level control register 6</li> </ul> | ILC61 | ILC6    | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |
| 0xF042  |                                                        | ILC70 |         | R/W | 8/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x00    |
| 0xF043  | <ul> <li>Interrupt level control register 7</li> </ul> | ILC71 | ILC7    | R/W | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x00    |

Table 5-1 shows presence/absence of interrupt source in each product.

|                               | available,<br>gister assigi | - : unavailable             | e                                                                              |                            |                           |
|-------------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------------------|----------------------------|---------------------------|
| IRQ<br>(interrupt<br>request) | IE<br>(interrupt<br>enable) | ILC<br>(interrupt<br>level) | Interrupt source                                                               | Interrupt<br>source symbol | Available/<br>Unavailable |
| IRQ0[0]                       | -                           | -                           | WDT Interrupt                                                                  | WDTINT                     | •                         |
| -                             | -                           | -                           | -                                                                              | -                          | -                         |
| IRQ0[6]                       | IE0[6]                      | ILC0[13:12]                 | -                                                                              | -                          | -                         |
| IRQ0[7]                       | IE0[7]                      | ILC0[15:14]                 | -                                                                              | -                          | -                         |
| IRQ1[0]                       | IE1[0]                      | ILC1[1:0]                   | External Interrupt 0                                                           | EXI0INT                    | •                         |
| IRQ1[1]                       | IE1[1]                      | ILC1[3:2]                   | External Interrupt 1                                                           | EXI1INT                    | •                         |
| IRQ1[2]                       | IE1[2]                      | ILC1[5:4]                   | External Interrupt 2                                                           | EXI2INT                    | •                         |
| IRQ1[3]                       | IE1[3]                      | ILC1[7:6]                   | External Interrupt 3                                                           | EXI3INT                    | •                         |
| IRQ1[4]                       | IE1[4]                      | ILC1[9:8]                   | -                                                                              | -                          | -                         |
| IRQ1[5]                       | IE1[5]                      | ILC1[11:10]                 | -                                                                              | -                          | -                         |
| IRQ1[6]                       | IE1[6]                      | ILC1[13:12]                 | -                                                                              | -                          | -                         |
| IRQ1[7]                       | IE1[7]                      | ILC1[15:14]                 | -                                                                              | -                          | -                         |
| IRQ2[0]                       | IE2[0]                      | ILC2[1:0]                   | -                                                                              | -                          | -                         |
| IRQ2[1]                       | IE2[1]                      | ILC2[3:2]                   | -                                                                              | -                          | -                         |
| IRQ2[2]                       | IE2[2]                      | ILC2[5:4]                   | MCU Status Interrupt                                                           | MCSINT                     | •                         |
| IRQ2[3]                       | IE2[3]                      | ILC2[7:6]                   | UART00 Interrupt                                                               | UA00INT                    | •                         |
| IRQ2[4]                       | IE2[4]                      | ILC2[9:8]                   | UART01 Interrupt                                                               | UA01INT                    | •                         |
| IRQ2[5]                       | IE2[5]                      | ILC2[11:10]                 | -                                                                              | -                          | -                         |
| IRQ2[6]                       | IE2[6]                      | ILC2[13:12]                 | Successive Approximation type A-D<br>Converter Interrupt<br>(SA-ADC Interrupt) | SADINT                     | •                         |
| IRQ2[7]                       | IE2[7]                      | ILC2[15:14]                 | -                                                                              | -                          | -                         |
| IRQ3[0]                       | IE3[0]                      | ILC3[1:0]                   | -                                                                              | -                          | _                         |
| IRQ3[1]                       | IE3[1]                      | ILC3[3:2]                   | -                                                                              | -                          | -                         |
| IRQ3[2]                       | IE3[2]                      | ILC3[5:4]                   | -                                                                              | -                          | -                         |
| IRQ3[3]                       | IE3[3]                      | ILC3[7:6]                   | _                                                                              | -                          | -                         |
| IRQ3[4]                       | IE3[4]                      | ILC3[9:8]                   | Operational Timer 0 Interrupt                                                  | OTM0INT                    | •                         |
| IRQ3[5]                       | IE3[5]                      | ILC3[11:10]                 | Operational Timer 1 Interrupt                                                  | OTM1INT                    | •                         |
| IRQ3[6]                       | IE3[6]                      | ILC3[13:12]                 | 16-bit Timer 0 Interrupt                                                       | TMOINT                     | •                         |
| IRQ3[7]                       | IE3[7]                      | ILC3[15:14]                 | -                                                                              | -                          | -                         |
| IRQ4[0]                       | IE4[0]                      | ILC4[1:0]                   | I <sup>2</sup> C Bus Unit 0 Interrupt                                          | I2CU0INT                   | •                         |
| IRQ4[1]                       | IE4[1]                      | ILC4[3:2]                   | UART10 Interrupt                                                               | UA10INT                    | •                         |
| IRQ4[2]                       | IE4[2]                      | ILC4[5:4]                   | UART11 Interrupt                                                               | UA11INT                    | •                         |
| IRQ4[3]                       | IE4[3]                      | ILC4[7:6]                   | Analog Comparator 0 Interrupt                                                  | CMP0INT                    | •                         |
| IRQ4[4]                       | IE4[4]                      | ILC4[9:8]                   | Operational Timer 2 Interrupt                                                  | OTM2INT                    | •                         |
| IRQ4[5]                       | IE4[5]                      | ILC4[11:10]                 | Operational Timer 3 Interrupt                                                  | OTM3INT                    | •                         |
| IRQ4[6]                       | IE4[6]                      | ILC4[13:12]                 | -                                                                              | -                          | -                         |
| IRQ4[7]                       | IE4[7]                      | ILC4[15:14]                 | -                                                                              | -                          | -                         |
| IRQ5[0]                       | IE5[0]                      | ILC5[1:0]                   | -                                                                              | -                          | -                         |
| IRQ5[1]                       | IE5[1]                      | ILC5[3:2]                   | -                                                                              | -                          | -                         |
| IRQ5[2]                       | IE5[2]                      | ILC5[5:4]                   | Analog Comparator 1 Interrupt                                                  | CMP1INT                    | •                         |


| Reg                           | ister assigr                | nment                       |                               |                            |                           |
|-------------------------------|-----------------------------|-----------------------------|-------------------------------|----------------------------|---------------------------|
| IRQ<br>(interrupt<br>request) | IE<br>(interrupt<br>enable) | ILC<br>(interrupt<br>level) | Interrupt source              | Interrupt<br>source symbol | Available/<br>Unavailable |
| IRQ5[3]                       | IE5[3]                      | ILC5[7:6]                   | Analog Comparator 2 Interrupt | CMP2INT                    | •                         |
| IRQ5[4]                       | IE5[4]                      | ILC5[9:8]                   | Operational Timer 4 Interrupt | OTM4INT                    | •                         |
| IRQ5[5]                       | IE5[5]                      | ILC5[11:10]                 | Operational Timer 5 Interrupt | OTM5INT                    | •                         |
| IRQ5[6]                       | IE5[6]                      | ILC5[13:12]                 | -                             | -                          | -                         |
| IRQ5[7]                       | IE5[7]                      | ILC5[15:14]                 | -                             | -                          | -                         |
| IRQ6[0]                       | IE6[0]                      | ILC6[1:0]                   | -                             | -                          | -                         |
| IRQ6[1]                       | IE6[1]                      | ILC6[3:2]                   | -                             | -                          | -                         |
| IRQ6[2]                       | IE6[2]                      | ILC6[5:4]                   | -                             | -                          | -                         |
| IRQ6[3]                       | IE6[3]                      | ILC6[7:6]                   | -                             | -                          | -                         |
| IRQ6[4]                       | IE6[4]                      | ILC6[9:8]                   | -                             | -                          | -                         |
| IRQ6[5]                       | IE6[5]                      | ILC6[11:10]                 | -                             | -                          | -                         |
| IRQ6[6]                       | IE6[6]                      | ILC6[13:12]                 | -                             | -                          | -                         |
| IRQ6[7]                       | IE6[7]                      | ILC6[15:14]                 | -                             | -                          | -                         |
| IRQ7[0]                       | IE7[0]                      | ILC7[1:0]                   | -                             | -                          | -                         |
| IRQ7[1]                       | IE7[1]                      | ILC7[3:2]                   | 16-bit Timer 0 Interrupt*1    | TM0INT1                    | •                         |
| IRQ7[2]                       | IE7[2]                      | ILC7[5:4]                   | -                             | -                          | -                         |
| IRQ7[3]                       | IE7[3]                      | ILC7[7:6]                   | -                             | -                          | -                         |
| IRQ7[4]                       | IE7[4]                      | ILC7[9:8]                   | -                             | -                          | -                         |
| IRQ7[5]                       | IE7[5]                      | ILC7[11:10]                 | -                             | -                          | -                         |
| IRQ7[6]                       | IE7[6]                      | ILC7[13:12]                 | -                             | -                          | -                         |
| IRQ7[7]                       | IE7[7]                      | ILC7[15:14]                 | -                             | -                          | -                         |

<sup>\*1</sup> :In the 16-bit timer 0 interrupt, the interrupt factor is assigned to two places. (TM0INT0,TM0INT1) Do not use TM0INT and TM0INT1 at the same time. (See Section 5.3.9. "16-bit timer 0 Interrupt")

### 5.2.2 Interrupt Enable Register 01 (IE01)

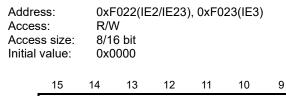
IE01 is a SFR to enable or disable the interrupt for each interrupt request.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.



Common description of each bits:

- It is configured enable/disable a target interrupt
  - 0: Disable a target interrupt (Initial value)
  - 1: Enable a target interrupt


After the interrupt is accepted, the master interrupt enables flag (MIE) of the CPU is reset to "0", however, the each applicable flag of a bit of target interrupt is not reset and remains "1".

| Bit No.  | Bit symbol<br>name | Description                                |
|----------|--------------------|--------------------------------------------|
| 15 to 12 | -                  | Reserved bits                              |
| 11       | EPI3               | external interrupt 3 (EXI3INT)             |
| 10       | EPI2               | external interrupt 2 (EXI2INT)             |
| 9        | EPI1               | external interrupt 1 (EXI1INT)             |
| 8        | EPI0               | external interrupt 0 (EXI0INT)             |
| 7        | -                  | Reserved bit                               |
| 6        | rsvd               | Reserved bit Always write "0" to this bit. |
| 5 to 0   | -                  | Reserved bits                              |

### 5.2.3 Interrupt Enable Register 23 (IE23)

IE23 is a SFR to enable or disable the interrupt for each interrupt request.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.



| _                | 15 | 14        | 13        | 12        | 11 | 10 | 9 | 8  | 7  | 6    | 5  | 4         | 3         | 2        | 1 | 0 |  |  |
|------------------|----|-----------|-----------|-----------|----|----|---|----|----|------|----|-----------|-----------|----------|---|---|--|--|
| Word             |    |           |           |           |    |    |   | IE | 23 |      |    |           |           |          |   |   |  |  |
| Byte             |    |           |           | IE        | 3  |    |   |    |    |      | IE | E2        |           |          |   |   |  |  |
| Bit              | -  | ETM0<br>0 | EOT<br>M1 | EOT<br>M0 | -  | -  | - | -  | -  | ESAD | -  | EUA0<br>1 | EUA0<br>0 | EMC<br>S | - | - |  |  |
| R/W              | R  | R/W       | R/W       | R/W       | R  | R  | R | R  | R  | R/W  | R  | R/W       | R/W       | R/W      | R | R |  |  |
| Initial<br>value | 0  | 0         | 0         | 0         | 0  | 0  | 0 | 0  | 0  | 0    | 0  | 0         | 0         | 0        | 0 | 0 |  |  |

Common description of each bits:

It is configured enable/disable a target interrupt

- 0: Disable a target interrupt (Initial value)
- 1: Enable a target interrupt

After the interrupt is accepted, the master interrupt enables flag (MIE) of the CPU is reset to "0", however, the each applicable flag of a bit of target interrupt is not reset and remains "1".

| Bit No. | Bit symbol<br>name | Description                                                                         |
|---------|--------------------|-------------------------------------------------------------------------------------|
| 15      | -                  | Reserved bit                                                                        |
| 14      | ETM00              | 16-bit Timer 0 interrupt0 (TM0INT0)                                                 |
| 13      | EOTM1              | Operational Timer 1 interrupt (OTM1INT)                                             |
| 12      | EOTM0              | Operational Timer 0 interrupt (OTM0INT)                                             |
| 11 to 7 | -                  | Reserved bits                                                                       |
| 6       | ESAD               | SA-ADC interrupt (SADINT)                                                           |
| 5       | -                  | Reserved bit                                                                        |
| 4       | EUA01              | UART01 interrupt (UA01INT)                                                          |
| 3       | EUA00              | UART00 interrupt (UA00INT)                                                          |
| 2       | EMCS               | MCU Status interrupt (MCSINT)<br>See Chapter 29 "Safety Function" for more details. |
| 1 to 0  | -                  | Reserved bits                                                                       |

#### [Note]

• In the 16-bit timer 0 interrupt, the interrupt factor is assigned to two places. (TM0INT0, TM0INT1) Do not use TM0INT and TM0INT1 at the same time. (See Section 5.3.9 "16-bit Timer 0 Interrupt")

### 5.2.4 Interrupt Enable Register 45 (IE45)

IE45 is a SFR to enable or disable the interrupt for each interrupt request.

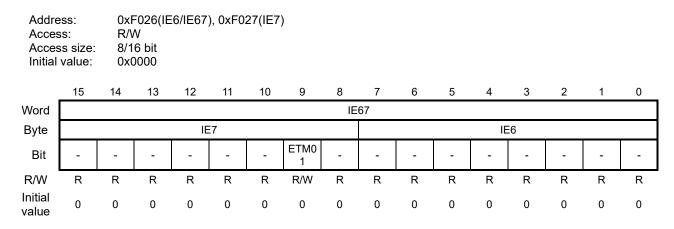
The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.

| Address:0xF024(IE4/IE45), 0xF025(IE5)Access:R/WAccess size:8/16 bitInitial value:0x0000 |      |    |           |           |           |           |   |   |   |   |           |           |           |           |           |            |
|-----------------------------------------------------------------------------------------|------|----|-----------|-----------|-----------|-----------|---|---|---|---|-----------|-----------|-----------|-----------|-----------|------------|
|                                                                                         | 15   | 14 | 13        | 12        | 11        | 10        | 9 | 8 | 7 | 6 | 5         | 4         | 3         | 2         | 1         | 0          |
| Word                                                                                    | IE45 |    |           |           |           |           |   |   |   |   |           |           |           |           |           |            |
| Byte                                                                                    |      |    |           | IE        | 5         |           |   |   |   |   |           | IE        | Ξ4        |           |           |            |
| Bit                                                                                     | -    | -  | EOT<br>M5 | EOT<br>M4 | ECM<br>P2 | ECM<br>P1 | - | - | - | - | EOT<br>M3 | EOT<br>M2 | ECM<br>P0 | EUA1<br>1 | EUA1<br>0 | EI2C<br>U0 |
| R/W                                                                                     | R    | R  | R/W       | R/W       | R/W       | R/W       | R | R | R | R | R/W       | R/W       | R/W       | R/W       | R/W       | R/W        |
| Initial<br>value                                                                        | 0    | 0  | 0         | 0         | 0         | 0         | 0 | 0 | 0 | 0 | 0         | 0         | 0         | 0         | 0         | 0          |

Common description of each bits:

It is configured enable/disable a target interrupt

- 0: Disable a target interrupt (Initial value)
  - 1: Enable a target interrupt


After the interrupt is accepted, the master interrupt enables flag (MIE) of the CPU is reset to "0", however, the each applicable flag of a bit of target interrupt is not reset and remains "1".

| Bit No. | Bit symbol name | Description                                      |
|---------|-----------------|--------------------------------------------------|
| 15, 14  | -               | Reserved bits                                    |
| 13      | EOTM5           | Operational Timer 5 Interrupt (OTM5INT)          |
| 12      | EOTM4           | Operational Timer 4 Interrupt (OTM4INT)          |
| 11      | ECMP2           | Analog Comparator 2 Interrupt (CMP2INT)          |
| 10      | ECMP1           | Analog Comparator 1 Interrupt (CMP1INT)          |
| 9 to 6  | -               | Reserved bits                                    |
| 5       | EOTM3           | Operational Timer 3 Interrupt (OTM3INT)          |
| 4       | EOTM2           | Operational Timer 2 Interrupt (OTM2INT)          |
| 3       | ECMP0           | Analog Comparator 0 Interrupt (CMP0INT)          |
| 2       | EUA11           | UART11 interrupt (UA11INT)                       |
| 1       | EUA10           | UART10 interrupt (UA10INT)                       |
| 0       | EI2CU0          | I <sup>2</sup> C Bus Unit 0 interrupt (I2CU0INT) |

### 5.2.5 Interrupt Enable Register 67 (IE67)

IE67 is a SFR to enable or disable the interrupt for each interrupt request.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.



Common description of each bits:

It is configured enable/disable a target interrupt

- 0: Disable a target interrupt (Initial value)
- 1: Enable a target interrupt

After the interrupt is accepted, the master interrupt enables flag (MIE) of the CPU is reset to "0", however, the each applicable flag of a bit of target interrupt is not reset and remains "1".

| Bit No.  | Bit symbol<br>name | Description                         |
|----------|--------------------|-------------------------------------|
| 15 to 10 | -                  | Reserved bits                       |
| 9        | ETM01              | 16-bit Timer 0 interrupt1 (TM0INT1) |
| 7 to 0   | -                  | Reserved bits                       |

#### [Note]

In the 16-bit timer 0 interrupt, the interrupt factor is assigned to two places. (TM0INT0, TM0INT1) Do not use TM0INT and TM0INT1 at the same time. (See Section 5.3.9 "16-bit Timer 0 Interrupt")

### 5.2.6 Interrupt Request Register 01 (IRQ01)

IRQ01 is a SFR to request interrupts.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.

|                  | ess: R/W<br>ess size: 8/16 bit<br>al value: 0x0000 |       |    |    |      |      |      |      |   |      |   |    |    |   |   |          |
|------------------|----------------------------------------------------|-------|----|----|------|------|------|------|---|------|---|----|----|---|---|----------|
|                  | 15                                                 | 14    | 13 | 12 | 11   | 10   | 9    | 8    | 7 | 6    | 5 | 4  | 3  | 2 | 1 | 0        |
| Word             |                                                    | IRQ01 |    |    |      |      |      |      |   |      |   |    |    |   |   |          |
| Byte             |                                                    |       |    | IR | Q1   |      |      |      |   |      |   | IR | Q0 |   |   |          |
| Bit              | -                                                  | -     | -  | -  | QPI3 | QPI2 | QPI1 | QPI0 | - | rsvd | - | -  | -  | - | - | QWD<br>T |
| R/W              | R                                                  | R     | R  | R  | R/W  | R/W  | R/W  | R/W  | R | R/W  | R | R  | R  | R | R | R/W      |
| Initial<br>value | 0                                                  | 0     | 0  | 0  | 0    | 0    | 0    | 0    | 0 | 0    | 0 | 0  | 0  | 0 | 0 | 0        |

Common description of each bits:

It is a flag of a target interrupt request

- 0: Not request a target interrupt (Initial value)
- 1: Request a target interrupt

QWDT bit of the IRQ01 register becomes "1" when the non-maskable Watch Dog Timer (WDT) interrupt occurs and the CPU goes to the interrupt routine regardless the value of the Master Interrupt Enable flag (MIE bit).

Each request flag of IRQ01 except for the QWDT bit becomes "1" when the interrupt request is generated, regardless of the values of the interrupt enable register 01(IE01) and master interrupt enable flag (MIE). At that time, it requests the interrupt to the CPU if the applicable flag of IE01 is "1" and the CPU accepts the interrupt if the MIE is "1" to goes to the interrupt routine.

Also, an interrupt can be generated by writing "1" to the request flag of IRQ01. In this case, the CPU goes to the interrupt routine immediately after the next one instruction is executed.

The applicable flag of IRQ01 becomes "0" automatically when the interrupt request is accepted by the CPU.

| Bit No.  | Bit symbol<br>name | Description                                 |
|----------|--------------------|---------------------------------------------|
| 15 to 12 | -                  | Reserved bits                               |
| 11       | QPI3               | external interrupt 3 (EXI3INT)              |
| 10       | QPI2               | external interrupt 2 (EXI2INT)              |
| 9        | QPI1               | external interrupt 1 (EXI1INT)              |
| 8        | QPI0               | external interrupt 0 (EXI0INT)              |
| 7        | -                  | Reserved bit                                |
| 6        | rsvrd              | Reserved bit. Always write "0" to this bit. |
| 5 to 1   | -                  | Reserved bits                               |
| 0        | QWDT               | external interrupt 7 (EXI7INT)              |

[Note]

When rewrite a specific bit of this register, use a bit symbol. Otherwise, other request bits in the same register might be cleared.

See Section 5.3.8 "Writing to IRQ01/IRQ23/IRQ45/IRQ67" for more detail.

#### 5.2.7 Interrupt Request Register 23 (IRQ23)

IRQ23 is a SFR to request interrupts.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.

| Address<br>Access:<br>Access<br>Initial va | size: | R/V<br>8/1 | •  | RQ2/IRC | Q23), 0 | xF02B( | IRQ3) |  |
|--------------------------------------------|-------|------------|----|---------|---------|--------|-------|--|
|                                            | 45    | 4.4        | 10 | 10      |         | 10     | 0     |  |

| _                | 15 | 14        | 13        | 12        | 11 | 10 | 9 | 8   | 7    | 6        | 5 | 4         | 3         | 2        | 1 | 0 |
|------------------|----|-----------|-----------|-----------|----|----|---|-----|------|----------|---|-----------|-----------|----------|---|---|
| Word             |    |           |           |           |    |    |   | IRC | 223  |          |   |           |           |          |   |   |
| Byte             |    |           |           | IR        | Q3 |    |   |     | IRQ2 |          |   |           |           |          |   |   |
| Bit              | -  | QTM0<br>0 | QOT<br>M1 | QOT<br>M0 | -  | -  | - | -   | -    | QSA<br>D | - | QUA0<br>1 | QUA0<br>0 | QMC<br>S | - | - |
| R/W              | R  | R/W       | R/W       | R/W       | R  | R  | R | R   | R    | R        | R | R/W       | R/W       | R/W      | R | R |
| Initial<br>value | 0  | 0         | 0         | 0         | 0  | 0  | 0 | 0   | 0    | 0        | 0 | 0         | 0         | 0        | 0 | 0 |

Common description of each bits:

It is a flag of a target interrupt request

- 0: Not request a target interrupt (Initial value)
- 1: Request a target interrupt

Each request flag of IRQ23 becomes "1" when the interrupt request is generated, regardless of the values of the interrupt enable register 01(IE23) and master interrupt enable flag (MIE). At that time, it requests the interrupt to the CPU if the applicable flag of IE23 is "1" and the CPU accepts the interrupt if the MIE is "1" to goes to the interrupt routine. Also, an interrupt can be generated by writing "1" to the request flag of IRQ23. In this case, the CPU goes to the interrupt routine immediately after the next one instruction is executed.

The applicable flag of IRQ23 becomes "0" automatically when the interrupt request is accepted by the CPU.

| Bit No. | Bit symbol<br>name | Description                                                                         |
|---------|--------------------|-------------------------------------------------------------------------------------|
| 15      | -                  | Reserved bit                                                                        |
| 14      | QTM00              | 16-bit Timer 0 interrupt0 (TM0INT0)                                                 |
| 13      | QOTM1              | Operational Timer 1 interrupt (OTM1INT)                                             |
| 12      | QOTM0              | Operational Timer 0 interrupt (OTM0INT)                                             |
| 11 to 7 | -                  | Reserved bits                                                                       |
| 6       | QSAD               | SA-ADC interrupt (SADINT)                                                           |
| 5       | -                  | Reserved bit                                                                        |
| 4       | QUA01              | UART01 interrupt (UA01INT)                                                          |
| 3       | QUA00              | UART00 interrupt (UA00INT)                                                          |
| 2       | QMCS               | MCU Status interrupt (MCSINT)<br>See Chapter 29 "Safety Function" for more details. |
| 1 to 0  | -                  | Reserved bits                                                                       |

#### [Note]

• When rewrite a specific bit of this register, use a bit symbol. Otherwise, other request bits in the same register might be cleared.

See Section 5.3.8 "Writing to IRQ01/IRQ23/IRQ45/IRQ67" for more detail.

 In the 16-bit timer 0 interrupt, the interrupt factor is assigned to two places. (TM0INT0, TM0INT1) Do not use TM0INT and TM0INT1 at the same time. (See Section 5.3.9 "16-bit Timer 0 Interrupt")

### 5.2.8 Interrupt Request Register 45 (IRQ45)

IRQ45 is a SFR to request interrupts.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.

|                  |    | R/\<br>8/1 | •         | RQ4/IR    | Q45), 0   | xF02D(    | (IRQ5) |     |     |   |           |           |           |           |           |            |
|------------------|----|------------|-----------|-----------|-----------|-----------|--------|-----|-----|---|-----------|-----------|-----------|-----------|-----------|------------|
|                  | 15 | 14         | 13        | 12        | 11        | 10        | 9      | 8   | 7   | 6 | 5         | 4         | 3         | 2         | 1         | 0          |
| Word             |    |            |           |           |           |           |        | IRC | Q45 |   |           |           |           |           |           |            |
| Byte             |    |            |           | IR        | Q5        |           |        |     |     |   |           | IR        | Q4        |           |           |            |
| Bit              | -  | -          | QOT<br>M5 | QOT<br>M4 | QCM<br>P2 | QCM<br>P1 | -      | -   | -   | - | QOT<br>M3 | QOT<br>M2 | QCM<br>P0 | QUA1<br>1 | QUA1<br>0 | QI2C<br>U0 |
| R/W              | R  | R          | R/W       | R/W       | R/W       | R/W       | R      | R   | R   | R | R/W       | R/W       | R/W       | R/W       | R/W       | R/W        |
| Initial<br>value | 0  | 0          | 0         | 0         | 0         | 0         | 0      | 0   | 0   | 0 | 0         | 0         | 0         | 0         | 0         | 0          |

Common description of each bits:

It is a flag of a target interrupt request

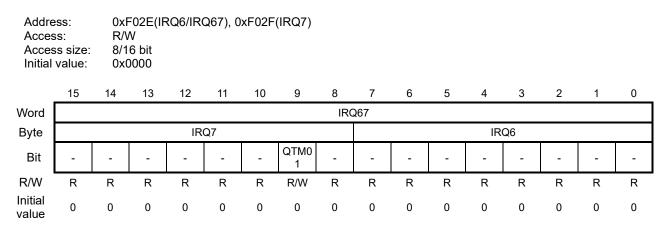
- 0: Not request a target interrupt (Initial value)
- 1: Request a target interrupt

Each request flag of IRQ45 becomes "1" when the interrupt request is generated, regardless of the values of the interrupt enable register 01(IE45) and master interrupt enable flag (MIE). At that time, it requests the interrupt to the CPU if the applicable flag of IE45 is "1" and the CPU accepts the interrupt if the MIE is "1" to goes to the interrupt routine. Also, an interrupt can be generated by writing "1" to the request flag of IRQ45. In this case, the CPU goes to the interrupt routine immediately after the next one instruction is executed.

The applicable flag of IRQ45 becomes "0" automatically when the interrupt request is accepted by the CPU.

| Bit No.  | Bit symbol<br>name | Description                                      |
|----------|--------------------|--------------------------------------------------|
| 15 to 14 | -                  | Reserved bits                                    |
| 13       | QOTM5              | Operational Timer 5 Interrupt (OTM4INT)          |
| 12       | QOTM4              | Operational Timer 4 Interrupt (OTM4INT)          |
| 11       | QCMP2              | Analog Comparator 2 Interrupt (CMP2INT)          |
| 10       | QCMP1              | Analog Comparator 1 Interrupt (CMP1INT)          |
| 9 to 6   | -                  | Reserved bits                                    |
| 5        | QOTM3              | Operational Timer 3 Interrupt (OTM4INT)          |
| 4        | QOTM2              | Operational Timer 2 Interrupt (OTM4INT)          |
| 3        | QCMP0              | Analog Comparator 0 Interrupt (CMP0INT)          |
| 2        | QUA11              | UART11 interrupt (UA11INT)                       |
| 1        | QUA10              | UART10 interrupt (UA10INT)                       |
| 0        | QI2CU0             | I <sup>2</sup> C Bus Unit 0 interrupt (I2CU0INT) |

#### [Note]


When rewrite a specific bit of this register, use a bit symbol. Otherwise, other request bits in the same register might be cleared.

See Section 5.3.8 "Writing to IRQ01/IRQ23/IRQ45/IRQ67" for more detail.

### 5.2.9 Interrupt Request Register 67 (IRQ67)

IRQ67 is a SFR to request interrupts.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.



Common description of each bits:

It is a flag of a target interrupt request

- 0: Not request a target interrupt (Initial value)
- 1: Request a target interrupt

Each request flag of IRQ45 becomes "1" when the interrupt request is generated, regardless of the values of the interrupt enable register 01(IE45) and master interrupt enable flag (MIE). At that time, it requests the interrupt to the CPU if the applicable flag of IE45 is "1" and the CPU accepts the interrupt if the MIE is "1" to goes to the interrupt routine. Also, an interrupt can be generated by writing "1" to the request flag of IRQ45. In this case, the CPU goes to the interrupt routine immediately after the next one instruction is executed.

The applicable flag of IRQ45 becomes "0" automatically when the interrupt request is accepted by the CPU.

| Bit No.  | Bit symbol name | Description                         |
|----------|-----------------|-------------------------------------|
| 15 to 10 | -               | Reserved bits                       |
| 9        | QTM01           | 16-bit Timer 0 interrupt1 (TM0INT1) |
| 8 to 0   | -               | Reserved bits                       |

[Note]

 When rewrite a specific bit of this register, use a bit symbol. Otherwise, other request bits in the same register might be cleared.

See Section 5.3.8 Writing to "IRQ01/IRQ23/IRQ45/IRQ67" for more detail.

 In the 16-bit timer 0 interrupt, the interrupt factor is assigned to two places. (TM0INT0, TM0INT1) Do not use TM0INT and TM0INT1 at the same time. (See Section 5.3.9 "16-bit Timer 0 Interrupt")

### 5.2.10 Interrupt Level Control Enable Register (ILEN)

ILEN is a special function register (SFR) to enable or disable the interrupt level control.

|                  |                                                                                                                                                               | : R/W<br>size: 8 bit<br>alue: 0x00 |    |        |        |    |   |   |    |          |   |    |    |   |   |     |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----|--------|--------|----|---|---|----|----------|---|----|----|---|---|-----|
|                  | 15                                                                                                                                                            | 14                                 | 13 | 12     | 11     | 10 | 9 | 8 | 7  | 6        | 5 | 4  | 3  | 2 | 1 | 0   |
| Word             |                                                                                                                                                               |                                    |    |        |        |    |   |   | -  |          |   |    |    |   |   |     |
| Byte             |                                                                                                                                                               |                                    |    |        | -      |    |   |   |    |          |   | IL | EN |   |   |     |
| Bit              | -                                                                                                                                                             | -                                  | -  | -      | -      | -  | - | - | -  | -        | - | -  | -  | - | - | ILE |
| R/W              | R                                                                                                                                                             | R                                  | R  | R      | R      | R  | R | R | R  | R        | R | R  | R  | R | R | R/W |
| Initial<br>value | 0                                                                                                                                                             | 0                                  | 0  | 0      | 0      | 0  | 0 | 0 | 0  | 0        | 0 | 0  | 0  | 0 | 0 | 0   |
| Bit No.          |                                                                                                                                                               | symbo                              | 1  |        |        |    |   |   | De | scriptio | n |    |    |   |   |     |
| 15 to 1          | -                                                                                                                                                             | name                               | R  | eserve | d bits |    |   |   |    |          |   |    |    |   |   |     |
| 0                | ILE       Control enable or disable the interrupt level control.         0:       Disable the interrupt (Initial value)         1:       Enable the interrupt |                                    |    |        |        |    |   |   |    |          |   |    |    |   |   |     |

[Note]

- Disable the interrupt level control function by resetting ILE bit to "0" after resetting the Interrupt level control register 0 to 7 (ILC0 to ILC7) to "0x0000" and confirming the current interrupt request level register (CIL) is "0x00" when the interrupt is disabled (IE01 to IE67 registers are "0x00").
- Enable the interrupt level control function by setting the ILE bit to "1" when the interrupt is disabled (IE0 • to IE7 registers are "0") or master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.

### 5.2.11 Current Interrupt Level Management Register (CIL)

CIL is a SFR to manage the priority level of the interrupt currently being processed by the CPU. See the section 5.3.6 "How to program the interrupt process when the interrupt level control is enabled".

|                  |    | 0xF032(CIL)<br>R/W<br>8 bit<br>0x0000 |    |    |    |    |   |   |      |   |   |   |           |           |           |           |
|------------------|----|---------------------------------------|----|----|----|----|---|---|------|---|---|---|-----------|-----------|-----------|-----------|
|                  | 15 | 14                                    | 13 | 12 | 11 | 10 | 9 | 8 | 7    | 6 | 5 | 4 | 3         | 2         | 1         | 0         |
| Word             |    |                                       |    |    |    |    |   |   | -    |   |   |   |           |           |           |           |
| Byte             |    |                                       |    |    | -  |    |   |   |      |   |   | C | SIL       |           |           |           |
| Bit              | -  | -                                     | -  | -  | -  | -  | - | - | CILN | - | - | - | CILM<br>3 | CILM<br>2 | CILM<br>1 | CILM<br>0 |
| R/W              | R  | R                                     | R  | R  | R  | R  | R | R | R/W  | R | R | R | R/W       | R/W       | R/W       | R/W       |
| Initial<br>value | 0  | 0                                     | 0  | 0  | 0  | 0  | 0 | 0 | 0    | 0 | 0 | 0 | 0         | 0         | 0         | 0         |

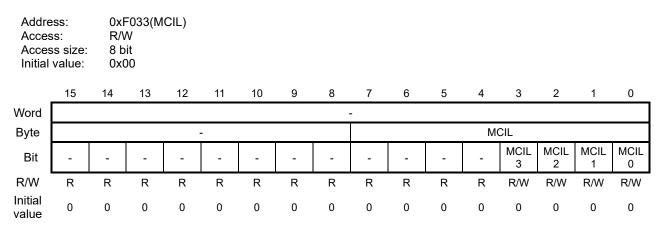
Common description of each bits:

- 0: A target interrupt is not being processed (Initial value)
- 1: A target interrupt is being processed

After maskable or non-maskable interrupts to which the priority levels are specified by the interrupt level control registers (ILC0 to 7) is accepted by the CPU, corresponding bits of CIL are automatically set to "1", indicate the currently processing interrupt level.

Interrupts request to the CPU below the currently processed interrupt level will be disabled.

When the multiple bits are "1" in the CIL, it indicates the CPU is processing the multiple interrupts.


Each bit of CIL is automatically set to "1", so it is required to clear to "0" by the software when the interrupt process has been ended. Clear the bit once by writing an arbitrary data at the last in the interrupt process, which resets a flag of CIL corresponding to the highest level.

| Bit No. | Bit symbol<br>name | Description                     |
|---------|--------------------|---------------------------------|
| 7       | CILN               | Non-maskable interrupt          |
| 6 to 4  | -                  | Reserved bits                   |
| 3       | CILM3              | Maskable interrupt with level 4 |
| 2       | CILM2              | Maskable interrupt with level 3 |
| 1       | CILM1              | Maskable interrupt with level 2 |
| 0       | CILM0              | Maskable interrupt with level 1 |

#### 5.2.12 Masking Interrupt Level Register (MCIL)

MCIL is a SFR to configure masking interrupt level.

It is writeable only when the interrupt level control is enabled by setting ILE bit of the interrupt level control enable register (ILEN) to "1".



The interrupt notification to the CPU is suspended if interrupt level specified by the ILC0 to ILC7 registers is equal or less than the level specified in the MCIL register.

The interrupt request is notified by lowering the setting value of MCIL register below the suspended interrupt level.

Common description of each bits:

- 0: A maskable interrupt of a target interrupt level is being processed (Initial value)
- 1: A maskable interrupt under a target interrupt level is being processed

| Bit No. | Bit symbol<br>name | Description       |
|---------|--------------------|-------------------|
| 7 to 4  | -                  | Reserved bits     |
| 3       | MCIL3              | Interrupt level 4 |
| 2       | MCIL2              | Interrupt level 3 |
| 1       | MCIL1              | Interrupt level 2 |
| 0       | MCIL0              | Interrupt level 1 |

### 5.2.13 Interrupt Level Control Register 0 (ILC0)

ILC0 is a SFR to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting ILE bit of the interrupt level control enable register (ILEN) to "1".

|                  |    | R/\<br>8/1 |      | .C00/IL0 | C0), 0x | F035(IL | _C01) |     |    |   |   |     |    |   |   |   |
|------------------|----|------------|------|----------|---------|---------|-------|-----|----|---|---|-----|----|---|---|---|
|                  | 15 | 14         | 13   | 12       | 11      | 10      | 9     | 8   | 7  | 6 | 5 | 4   | 3  | 2 | 1 | 0 |
| Word             |    |            |      |          |         |         |       | ILO | C0 |   |   |     |    |   |   |   |
| Byte             |    |            |      | ILC      | 01      |         |       |     |    |   |   | ILC | 00 |   |   |   |
| Bit              | -  | -          | rsvd | rsvd     | -       | -       | -     | -   | -  | - | - | -   | -  | - | - | - |
| R/W              | R  | R          | R/W  | R/W      | R       | R       | R     | R   | R  | R | R | R   | R  | R | R | R |
| Initial<br>value | 0  | 0          | 0    | 0        | 0       | 0       | 0     | 0   | 0  | 0 | 0 | 0   | 0  | 0 | 0 | 0 |

Common description of each bits:

It is configured a target interrupt level.

- 00: level 1; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3
- 11: level 4; a priority is higher.

| Bit No. | Bit symbol<br>name | Description                                    |
|---------|--------------------|------------------------------------------------|
| 15,14   | -                  | Reserved bits                                  |
| 13,12   | rsvd               | Reserved bits. Always write "0" to these bits. |
| 11 to 0 | -                  | Reserved bits                                  |

#### [Note]

Write to this register when the interrupt is disabled (IE01 to IE67 registers are "0x0000") or the master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.

### 5.2.14 Interrupt Level Control Register 1 (ILC1)

ILC1 is a SFR to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting ILE bit of the interrupt level control enable register (ILEN) to "1".

|                  |    | R/V<br>8/1 |    | .C10/IL0 | C1), 0x | F037(IL | _C11) |    |            |            |            |            |            |            |            |            |
|------------------|----|------------|----|----------|---------|---------|-------|----|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | 15 | 14         | 13 | 12       | 11      | 10      | 9     | 8  | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             |    |            |    |          |         |         |       | IL | C1         |            |            |            |            |            |            |            |
| Byte             |    |            |    | ILC      | C11     |         |       |    |            |            |            | ILC        | 210        |            |            |            |
| Bit              | -  | -          | -  | -        | -       | -       | -     | -  | ILPI<br>3H | ILPI<br>3L | ILPI<br>2H | ILPI<br>2L | ILPI<br>1H | ILPI<br>1L | ILPI<br>0H | ILPI<br>0L |
| R/W              | R  | R          | R  | R        | R       | R       | R     | R  | R/W        |
| Initial<br>value | 0  | 0          | 0  | 0        | 0       | 0       | 0     | 0  | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |

Common description of each bits:

It is configured a target interrupt level.

- 00: level 1; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3

11: level 4; a priority is higher.

| Bit No. | Bit symbol name | Description                    |
|---------|-----------------|--------------------------------|
| 15 to 8 | -               | Reserved bits                  |
| 7,6     | ILPI3H, ILPI3L  | external interrupt 3 (EXI3INT) |
| 5,4     | ILPI2H, ILPI2L  | external interrupt 2 (EXI2INT) |
| 3,2     | ILPI1H, ILPI1L  | external interrupt 1 (EXI1INT) |
| 1,0     | ILPI0H, ILPI0L  | external interrupt 0 (EXI0INT) |

[Note]

 Write to this register when the interrupt is disabled (IE01 to IE67 registers are "0x0000") or the master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.

### 5.2.15 Interrupt Level Control Register 2 (ILC2)

ILC2 is a SFR) to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting IEL bit of the interrupt level control enable register (ILEN) to "1".

|                  |    | R/\<br>8/1  | =038(IL<br>N<br>6 bit<br>0000 | C20/IL     | C2), 0x | F039(II | LC21)       |             |             |             |            |            |   |   |   |   |
|------------------|----|-------------|-------------------------------|------------|---------|---------|-------------|-------------|-------------|-------------|------------|------------|---|---|---|---|
|                  | 15 | 14          | 13                            | 12         | 11      | 10      | 9           | 8           | 7           | 6           | 5          | 4          | 3 | 2 | 1 | 0 |
| Word             |    |             |                               |            |         |         |             | ILO         | C2          |             |            |            |   |   |   |   |
| Byte             |    | ILC21 ILC20 |                               |            |         |         |             |             |             |             |            |            |   |   |   |   |
| Bit              | -  | -           | ILSA<br>DH                    | ILSA<br>DL | -       | -       | ILUA0<br>1H | ILUA0<br>1L | ILUA0<br>0H | ILUA0<br>0L | ILMC<br>SH | ILMC<br>SL | - | - | - | - |
| R/W              | R  | R           | R/W                           | R/W        | R       | R       | R/W         | R/W         | R/W         | R/W         | R/W        | R/W        | R | R | R | R |
| Initial<br>value | 0  | 0           | 0                             | 0          | 0       | 0       | 0           | 0           | 0           | 0           | 0          | 0          | 0 | 0 | 0 | 0 |

Common description of each bits:

It is configured a target interrupt level.

- 00: level 1 ; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3
- 11: level 4; a priority is higher.

| Bit No. | Bit symbol name     | Description                                                                         |
|---------|---------------------|-------------------------------------------------------------------------------------|
| 15,14   | -                   | Reserved bits                                                                       |
| 13,12   | ILSADH,<br>ILSADL   | SA-ADC interrupt (SADINT)                                                           |
| 11,10   | -                   | Reserved bits                                                                       |
| 9,8     | ILUA01H,<br>ILUA01L | UART01 interrupt (UA01INT)                                                          |
| 7,6     | ILUA00H,<br>ILUA00L | UART00 interrupt (UA00INT)                                                          |
| 5,4     | ILMCSH,<br>ILMCSL   | MCU Status interrupt (MCSINT)<br>See Chapter 29 "Safety Function" for more details. |
| 3 to 0  | -                   | Reserved bits                                                                       |

#### [Note]

Write to this register when the interrupt is disabled (IE01 to IE67 registers are "0x0000") or the master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.

### 5.2.16 Interrupt Level Control Register 3 (ILC3)

ILC3 is a SFR to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting ILE bit of the interrupt level control enable register (ILEN) to "1".

|                  |    | R/\<br>8/1  | 0xF03A(ILC30/ILC3), 0xF03B(ILC31)<br>R/W<br>8/16 bit<br>0x0000 |             |             |             |             |             |   |   |   |   |   |   |   |   |
|------------------|----|-------------|----------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|---|---|---|---|---|---|---|---|
|                  | 15 | 14          | 13                                                             | 12          | 11          | 10          | 9           | 8           | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Word             |    | ILC3        |                                                                |             |             |             |             |             |   |   |   |   |   |   |   |   |
| Byte             |    | ILC31 ILC30 |                                                                |             |             |             |             |             |   |   |   |   |   |   |   |   |
| Bit              | -  | -           | ILTM0<br>0H                                                    | ILTM0<br>0L | ILOT<br>M1H | ILOT<br>M1L | ILOT<br>M0H | ILOT<br>M0L | - | - | - | - | - | - | - | - |
| R/W              | R  | R           | R/W                                                            | R/W         | R/W         | R/W         | R/W         | R/W         | R | R | R | R | R | R | R | R |
| Initial<br>value | 0  | 0           | 0                                                              | 0           | 0           | 0           | 0           | 0           | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Common description of each bits:

It is configured a target interrupt level.

- 00: level 1 ; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3
- 11: level 4; a priority is higher.

| Bit No. | Bit symbol name  | Description                             |
|---------|------------------|-----------------------------------------|
| 15,14   | -                | Reserved bits                           |
| 13,12   | ILTM00H, ILTM00L | 16-bit Timer 0 interrupt0 (TM0INT0)     |
| 11,10   | ILOTM1H, ILOTM1L | Operational timer 1 interrupt (OTM1INT) |
| 9,8     | ILOTM0H, ILOTM0L | Operational timer 0 interrupt (OTM0INT) |
| 7 to 0  | -                | Reserved bits                           |

[Note]

- Write to this register when the interrupt is disabled (IE01 to IE67 registers are "0x0000") or the master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.
- In the 16-bit timer 0 interrupt, the interrupt factor is assigned to two places. (TM0INT0, TM0INT1) Do not use TM0INT and TM0INT1 at the same time. (See Section 5.3.9 "16-bit Timer 0 Interrupt")

### 5.2.17 Interrupt Level Control Register 4 (ILC4)

ILC4 is a SFR to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting IEL bit of the interrupt level control enable register (ILEN) to "1".

|                  |    | R/\<br>8/1  | •  | _C40/IL | .C4), 0x    | (F03D(I     | ILC41)      |             |             |             |             |             |             |             |              |              |
|------------------|----|-------------|----|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|
|                  | 15 | 14          | 13 | 12      | 11          | 10          | 9           | 8           | 7           | 6           | 5           | 4           | 3           | 2           | 1            | 0            |
| Word             |    |             |    |         |             |             |             | IL          | C4          |             |             |             |             |             |              |              |
| Byte             |    | ILC41 ILC40 |    |         |             |             |             |             |             |             |             |             |             |             |              |              |
| Bit              | -  | -           | -  | -       | ILOT<br>M3H | ILOT<br>M3L | ILOT<br>M2H | ILOT<br>M2L | ILCM<br>P0H | ILCM<br>P0L | ILUA1<br>1H | ILUA1<br>1L | ILUA1<br>0H | ILUA1<br>0L | ILI2C<br>U0H | ILI2C<br>U0L |
| R/W              | R  | R           | R  | R       | R/W          | R/W          |
| Initial<br>value | 0  | 0           | 0  | 0       | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0            | 0            |

Common description of each bits:

It is configured a target interrupt level.

- 00: level 1; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3

11: level 4; a priority is higher.

| Bit No. | Bit symbol name    | Description                                      |
|---------|--------------------|--------------------------------------------------|
| 15 to12 | -                  | Reserved bits                                    |
| 11,10   | ILOTM3H, ILOTM3L   | Operational timer 3 interrupt (OTM3INT)          |
| 9,8     | ILOTM2H, ILOTM2L   | Operational timer 2 interrupt (OTM2INT)          |
| 7,6     | ILCMP0H, ILCMP0L   | Analog Comparator 0 Interrupt (CMP0INT)          |
| 5,4     | ILUA11H, ILUA11L   | UART11 interrupt (UA11INT)                       |
| 3,2     | ILUA10H, ILUA10L   | UART10 interrupt (UA10INT)                       |
| 1,0     | ILI2CU0H, ILI2CU0L | I <sup>2</sup> C Bus Unit 0 interrupt (I2CU0INT) |

[Note]

Write to this register when the interrupt is disabled (IE01 to IE67 registers are "0x0000") or the master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.

### 5.2.18 Interrupt Level Control Register 5 (ILC5)

ILC5 is a SFR to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting IEL bit of the interrupt level control enable register (ILEN) to "1".

|                  |    | R/\<br>8/1 | •  | .C50/IL | C5), 0x     | F03F(I      | LC51)       |             |             |             |             |             |    |   |   |   |
|------------------|----|------------|----|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----|---|---|---|
|                  | 15 | 14         | 13 | 12      | 11          | 10          | 9           | 8           | 7           | 6           | 5           | 4           | 3  | 2 | 1 | 0 |
| Word             |    |            |    |         |             |             |             | ILO         | C5          |             |             |             |    |   |   |   |
| Byte             |    |            |    | ILC     | C51         |             |             |             |             |             |             | ILC         | 50 |   |   |   |
| Bit              | -  | -          | -  | -       | ILOT<br>M5H | ILOT<br>M5L | ILOT<br>M4H | ILOT<br>M4L | ILCM<br>P2H | ILCM<br>P2L | ILCM<br>P1H | ILCM<br>P1L | -  | - | - | - |
| R/W              | R  | R          | R  | R       | R/W         | R  | R | R | R |
| Initial<br>value | 0  | 0          | 0  | 0       | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0  | 0 | 0 | 0 |

Common description of each bits :

It is configured a target interrupt level.

- 00: level 1; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3

11: level 4; a priority is higher.

| Bit No.  | Bit symbol name  | Description                             |
|----------|------------------|-----------------------------------------|
| 15 to 12 | -                | Reserved bits                           |
| 11,10    | ILOTM5H, ILOTM5L | Operational timer 5 interrupt (OTM5INT) |
| 9,8      | ILCMP2H, ILCMP2L | Analog Comparator 2 Interrupt (CMP2INT) |
| 7,6      | ILCMP1H, ILCMP1L | Analog Comparator 1 Interrupt (CMP1INT) |
| 5,4      | ILOTM5H, ILOTM5L | Operational timer 5 interrupt (OTM5INT) |
| 3 to 0   | -                | Reserved bits                           |

[Note]

Write to this register when the interrupt is disabled (IE01 to IE67 registers are "0x0000") or the master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.

### 5.2.19 Interrupt Level Control Register 6 (ILC6)

ILC6 is a SFR to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting ILE bit of the interrupt level control enable register (ILEN) to "1".

|                  |     | R/\<br>8/1    |    | C60/IL | C6), 0x  | F041(IL | .C61) |     |    |          |   |     |    |   |   |   |
|------------------|-----|---------------|----|--------|----------|---------|-------|-----|----|----------|---|-----|----|---|---|---|
|                  | 15  | 14            | 13 | 12     | 11       | 10      | 9     | 8   | 7  | 6        | 5 | 4   | 3  | 2 | 1 | 0 |
| Word             |     |               |    |        |          |         |       | ILO | C6 |          |   |     |    |   |   |   |
| Byte             |     |               |    | ILC    | 61       |         |       |     |    |          |   | ILC | 60 |   |   |   |
| Bit              | -   | -             | -  | -      | -        | -       | -     | -   | -  | -        | - | -   | -  | - | - | - |
| R/W              | R   | R             | R  | R      | R        | R       | R     | R   | R  | R        | R | R   | R  | R | R | R |
| Initial<br>value | 0   | 0             | 0  | 0      | 0        | 0       | 0     | 0   | 0  | 0        | 0 | 0   | 0  | 0 | 0 | 0 |
|                  |     |               |    |        |          |         |       |     |    |          |   |     |    |   |   |   |
| Bit I            | No. | Bit sy<br>nar |    |        |          |         |       |     | De | scriptio | n |     |    |   |   |   |
| 15 tc            | 0 - |               |    | Rese   | erved bi | ts      |       |     |    |          |   |     |    |   |   |   |
|                  |     |               |    |        |          |         |       |     |    |          |   |     |    |   |   |   |

[Note]

• Write to this register when the interrupt is disabled (IE01 to IE67 registers are "0x0000") or the master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.

### 5.2.20 Interrupt Level Control Register 7 (ILC7)

ILC7 is a SFR to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting IEL bit of the interrupt level control enable register (ILEN) to "1".

|             |        | R/V<br>8/1 |        | C70/IL   | C7), 0x | F043(IL | _C71)  |        |        |        |        |              |                    |             |        |        |
|-------------|--------|------------|--------|----------|---------|---------|--------|--------|--------|--------|--------|--------------|--------------------|-------------|--------|--------|
|             | 15     | 14         | 13     | 12       | 11      | 10      | 9      | 8      | 7      | 6      | 5      | 4            | 3                  | 2           | 1      | 0      |
| Word        |        |            |        |          |         |         |        | ILO    | C7     |        |        |              |                    |             |        |        |
|             |        |            |        |          |         |         |        |        |        |        |        |              |                    |             |        |        |
| Byte        |        |            |        | ILC      | 271     |         |        |        |        |        |        | ILO          | C70                |             |        |        |
| Byte<br>Bit | -      | -          | -      | ILC<br>- | -       | -       | -      | -      | -      | -      | -      | ILO<br>-     | C70<br>ILTM0<br>1H | ILTM0<br>1L | -      | -      |
| -           | -<br>R | -<br>R     | -<br>R |          |         | -<br>R  | -<br>R | -<br>R | -<br>R | -<br>R | -<br>R | IL<br>-<br>R | ILTM0              |             | -<br>R | -<br>R |

Common description of each bits:

It is configured a target interrupt level.

- 00: level 1; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3

11: level 4; a priority is higher.

| Bit No. | Bit symbol name  | Description                         |
|---------|------------------|-------------------------------------|
| 15 to 4 | -                | Reserved bits                       |
| 3,2     | ILTM01H, ILTM01L | 16-bit Timer 0 interrupt1 (TM0INT1) |
| 1,0     | -                | Reserved bits                       |

#### [Note]

- Write to this register when the interrupt is disabled (IE01 to IE67 registers are "0x0000") or the master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.
- In the 16-bit timer 0 interrupt, the interrupt factor is assigned to two places. (TM0INT0, TM0INT1)
   Do not use TM0INT and TM0INT1 at the same time. (See Section 5.3.9 "16-bit Timer 0 Interrupt")

### 5.3 Description of Operation

Enabling/disabling the maskable interrupt can be controlled by the master interrupt enable flag (MIE) of the CPU and each interrupt enable register (IE1 to 7).

A WDT interrupt (WDTINT) is unavailable to disable as it is a non-maskable interrupt.

When interrupt conditions are satisfied, the CPU calls a branching destination address from the vector table determined for each interrupt source and the interrupt transfer cycle starts to branch to the interrupt processing routine.

If multiple interrupts are generated concurrently when the interrupt level control function is disabled, they are processed starting from the interrupt with the highest priority (with a smallest interrupt source number). The lower- priority interrupts (with larger interrupt source numbers) remain pending.

If multiple interrupts are generated concurrently when the interrupt level control function is enabled, they are processed starting from the interrupt with both the highest interrupt level and the highest priority level. The lower- priority interrupts remain pending.

Table 5-2 lists the interrupt sources.

The interrupt vector address is an address of the interrupt vector defined in the program memory. See "nX-U16/100 Core Instruction Manual" for details of the interrupt vector address.

#### ML62Q2033/2035/2043/2045 User's Manual Chapter 5 Interrupts

| Table 5-2 List of interrupt sources |                        |                       |                      |           |          |           |                                     |          |
|-------------------------------------|------------------------|-----------------------|----------------------|-----------|----------|-----------|-------------------------------------|----------|
| Interrupt                           |                        | egister assig         |                      | Interrupt |          | External  |                                     |          |
| source<br>number                    | IRQ                    | IE                    | ILC                  | vector    | Mask     | /internal | Interrupt source                    | Symbol   |
| (priority)                          | (interrupt<br>request) | (interrupt<br>enable) | (interrupt<br>level) | address   |          | source    |                                     |          |
| 1(high)                             | IRQ0[0]                | -                     | -                    | 0x0008    | Disabled |           | WDT interrupt                       | WDTINT   |
| 2                                   | -                      | -                     | -                    | 0x000A    | Disabled | lute      | -                                   | -        |
| 3                                   | IRQ0[6]                | IE0[6]                | ILC0[13:12]          | 0x000C    | Enabled  | Internal  | -                                   | -        |
| 4                                   | IRQ0[7]                | IE0[7]                | ILC0[15:14]          | 0x000E    | Enabled  |           | -                                   | -        |
| 5                                   | IRQ1[0]                | IE1[0]                | ILC1[1:0]            | 0x0010    | Enabled  |           | External interrupt 0                | EXI0INT  |
| 6                                   | IRQ1[1]                | IE1[1]                | ILC1[3:2]            | 0x0012    | Enabled  |           | External interrupt 1                | EXI1INT  |
| 7                                   | IRQ1[2]                | IE1[2]                | ILC1[5:4]            | 0x0014    | Enabled  |           | External interrupt 2                | EXI2INT  |
| 8                                   | IRQ1[3]                | IE1[3]                | ILC1[7:6]            | 0x0016    | Enabled  | External  | External interrupt 3                | EXI3INT  |
| 9                                   | IRQ1[4]                | IE1[4]                | ILC1[9:8]            | 0x0018    | Enabled  | LAtemai   | -                                   | -        |
| 10                                  | IRQ1[5]                | IE1[5]                | ILC1[11:10]          | 0x001A    | Enabled  |           | -                                   | -        |
| 11                                  | IRQ1[6]                | IE1[6]                | ILC1[13:12]          | 0x001C    | Enabled  |           | -                                   | -        |
| 12                                  | IRQ1[7]                | IE1[7]                | ILC1[15:14]          | 0x001E    | Enabled  |           | -                                   | -        |
| 13                                  | IRQ2[0]                | IE2[0]                | ILC2[1:0]            | 0x0020    | Enabled  |           | -                                   | -        |
| 14                                  | IRQ2[1]                | IE2[1]                | ILC2[3:2]            | 0x0022    | Enabled  |           | -                                   | -        |
| 15                                  | IRQ2[2]                | IE2[2]                | ILC2[5:4]            | 0x0024    | Enabled  |           | MCU status interrupt*1              | MCSINT   |
| 16                                  | IRQ2[3]                | IE2[3]                | ILC2[7:6]            | 0x0026    | Enabled  | Internal  | UART00 interrupt                    | UA00INT  |
| 17                                  | IRQ2[4]                | IE2[4]                | ILC2[9:8]            | 0x0028    | Enabled  | mema      | UART01 interrupt                    | UA01INT  |
| 18                                  | IRQ2[5]                | IE2[5]                | ILC2[11:10]          | 0x002A    | Enabled  |           | -                                   | -        |
| 19                                  | IRQ2[6]                | IE2[6]                | ILC2[13:12]          | 0x002C    | Enabled  |           | SA-ADC interrupt                    | SADINT   |
| 20                                  | IRQ2[7]                | IE2[7]                | ILC2[15:14]          | 0x002E    | Enabled  |           | -                                   | -        |
| 21                                  | IRQ3[0]                | IE3[0]                | ILC3[1:0]            | 0x0030    | Enabled  |           | -                                   | -        |
| 22                                  | IRQ3[1]                | IE3[1]                | ILC3[3:2]            | 0x0032    | Enabled  |           | -                                   | -        |
| 23                                  | IRQ3[2]                | IE3[2]                | ILC3[5:4]            | 0x0034    | Enabled  |           | -                                   | -        |
| 24                                  | IRQ3[3]                | IE3[3]                | ILC3[7:6]            | 0x0036    | Enabled  | Internal  | -                                   | -        |
| 25                                  | IRQ3[4]                | IE3[4]                | ILC3[9:8]            | 0x0038    | Enabled  | moma      | Operational Timer 0 interrupt       | OTM0INT  |
| 26                                  | IRQ3[5]                | IE3[5]                | ILC3[11:10]          | 0x003A    | Enabled  |           | Operational Timer 1 interrupt       | OTM1INT  |
| 27                                  | IRQ3[6]                | IE3[6]                | ILC3[13:12]          | 0x003C    | Enabled  |           | 16-bit Timer 0 interrupt0           | TM0INT0  |
| 28                                  | IRQ3[7]                | IE3[7]                | ILC3[15:14]          | 0x003E    | Enabled  |           | -                                   | -        |
| 29                                  | IRQ4[0]                | IE4[0]                | ILC4[1:0]            | 0x0040    | Enabled  |           | I <sup>2</sup> C bus unit interrupt | I2CU0INT |
| 30                                  | IRQ4[1]                | IE4[1]                | ILC4[3:2]            | 0x0042    | Enabled  |           | UART10 interrupt                    | UA10INT  |
| 31                                  | IRQ4[2]                | IE4[2]                | ILC4[5:4]            | 0x0044    | Enabled  |           | UART11 interrupt                    | UA11INT  |
| 32                                  | IRQ4[3]                | IE4[3]                | ILC4[7:6]            | 0x0046    | Enabled  | Internal  | Analog Comparator 0<br>Interrupt    | CMP0INT  |
| 33                                  | IRQ4[4]                | IE4[4]                | ILC4[9:8]            | 0x0048    | Enabled  |           | Operational timer 2 interrupt       | OTM2INT  |
| 34                                  | IRQ4[5]                | IE4[5]                | ILC4[11:10]          | 0x004A    | Enabled  |           | Operational timer 3 interrupt       | OTM3INT  |
| 35                                  | IRQ4[6]                | IE4[6]                | ILC4[13:12]          | 0x004C    | Enabled  |           | -                                   | -        |
| 36                                  | IRQ4[7]                | IE4[7]                | ILC4[15:14]          | 0x004E    | Enabled  |           | -                                   | -        |

Table 5-2 List of interrupt sources

#### ML62Q2033/2035/2043/2045 User's Manual Chapter 5 Interrupts

| Interrupt                      | Re                            | egister assig               | Inment                      | Interrupt         |         | External            |                                  |         |
|--------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------|---------|---------------------|----------------------------------|---------|
| source<br>number<br>(priority) | IRQ<br>(interrupt<br>request) | IE<br>(interrupt<br>enable) | ILC<br>(interrupt<br>level) | vector<br>address | Mask    | /internal<br>source | Interrupt source                 | Symbol  |
| 37                             | IRQ5[0]                       | IE5[0]                      | ILC5[1:0]                   | 0x0050            | Enabled |                     | -                                | -       |
| 38                             | IRQ5[1]                       | IE5[1]                      | ILC5[3:2]                   | 0x0052            | Enabled |                     | -                                | -       |
| 39                             | IRQ5[2]                       | IE5[2]                      | ILC5[5:4]                   | 0x0054            | Enabled |                     | Analog Comparator 1<br>Interrupt | CMP1INT |
| 40                             | IRQ5[3]                       | IE5[3]                      | ILC5[7:6]                   | 0x0056            | Enabled | Internal            | Analog Comparator 2<br>Interrupt | CMP2INT |
| 41                             | IRQ5[4]                       | IE5[4]                      | ILC5[9:8]                   | 0x0058            | Enabled |                     | Operational timer 4 interrupt    | OTM4INT |
| 42                             | IRQ5[5]                       | IE5[5]                      | ILC5[11:10]                 | 0x005A            | Enabled |                     | Operational timer 5 interrupt    | OTM5INT |
| 43                             | IRQ5[6]                       | IE5[6]                      | ILC5[13:12]                 | 0x005C            | Enabled |                     | -                                | -       |
| 44                             | IRQ5[7]                       | IE5[7]                      | ILC5[15:14]                 | 0x005E            | Enabled |                     | -                                | -       |
| 45                             | IRQ6[0]                       | IE6[0]                      | ILC6[1:0]                   | 0x0060            | Enabled |                     | -                                | -       |
| 46                             | IRQ6[1]                       | IE6[1]                      | ILC6[3:2]                   | 0x0062            | Enabled |                     | -                                | -       |
| 47                             | IRQ6[2]                       | IE6[2]                      | ILC6[5:4]                   | 0x0064            | Enabled |                     | -                                | -       |
| 48                             | IRQ6[3]                       | IE6[3]                      | ILC6[7:6]                   | 0x0066            | Enabled | Internal            | -                                | -       |
| 49                             | IRQ6[4]                       | IE6[4]                      | ILC6[9:8]                   | 0x0068            | Enabled | memai               | -                                | -       |
| 50                             | IRQ6[5]                       | IE6[5]                      | ILC6[11:10]                 | 0x006A            | Enabled |                     | -                                | -       |
| 51                             | IRQ6[6]                       | IE6[6]                      | ILC6[13:12]                 | 0x006C            | Enabled |                     | -                                | -       |
| 52                             | IRQ6[7]                       | IE6[7]                      | ILC6[15:14]                 | 0x006E            | Enabled |                     | -                                | -       |
| 53                             | IRQ7[0]                       | IE7[0]                      | ILC7[1:0]                   | 0x0070            | Enabled |                     | -                                | -       |
| 54                             | IRQ7[1]                       | IE7[1]                      | ILC7[3:2]                   | 0x0072            | Enabled |                     | 16-bit Timer 0 interrupt1 *2     | TM0INT1 |
| 55                             | IRQ7[2]                       | IE7[2]                      | ILC7[5:4]                   | 0x0074            | Enabled |                     | -                                | -       |
| 56                             | IRQ7[3]                       | IE7[3]                      | ILC7[7:6]                   | 0x0076            | Enabled | Internel            | -                                | -       |
| 57                             | IRQ7[4]                       | IE7[4]                      | ILC7[9:8]                   | 0x0078            | Enabled | Internal            | -                                | -       |
| 58                             | IRQ7[5]                       | IE7[5]                      | ILC7[11:10]                 | 0x007A            | Enabled |                     | -                                | -       |
| 59                             | IRQ7[6]                       | IE7[6]                      | ILC7[13:12]                 | 0x007C            | Enabled |                     | -                                | -       |
| 60(low)                        | IRQ7[7]                       | IE7[7]                      | ILC7[15:14]                 | 0x007E            | Enabled |                     | -                                | -       |

\*1 The MCU status interrupt occurs when the following request is asserted.

RAM parity error

Data flash erasing/programming completion

These requests are configurable to enable/disable. See Chapter 29 "Safety Function" for detail.

\*2 In the 16-bit timer 0 interrupt, the interrupt factor is assigned to two places. (TM0INT0, TM0INT1) It is forbidden to allow both interrupts at the same time. (See Section 5.3.9 "16-bit Timer 0 Interrupt")

#### [Note]

- The WDT interrupt (WDTINT) is a non-maskable interrupt. If the non-maskable interrupt occurs while an interrupt processing is in progress, abort the interrupt processing and proceed with processing the non-maskable interrupt preferentially regardless of multiple interrupts enabled/disabled.
- For failsafe, define unused all interrupt vectors. If an unused interrupt occurs, it may indicate the possibility that the CPU went out of control. It is recommended to cause the WDT overflow reset to occur using the infinite loop to initialize the LSI.

#### 5.3.1 Maskable Interrupt Processing

When an interrupt is generated with MIE set to "1", the following process is executed by hardware and the CPU goes to the interrupt routine.

- 1. Save the program counter (PC) in ELR1.
- 2. Save CSR in ECSR1 (not processed if the program memory size is 64 Kbytes or less).
- 3. Save PSW in EPSW1.
- 4. Set ELEVEL of PSW to "1".
- 5. Reset the MIE flag to "0".
- 6. Set CSR to "0" (not processed if the program memory size is 64 Kbytes or less).
- 7. Transfer the value of the interrupt vector address to the program counter (PC).

#### 5.3.2 Non-Maskable Interrupt Processing

When an interrupt occurs, the following process is executed by hardware and the CPU goes to the interrupt routine regardless of the value of MIE.

- 1. Save the program counter (PC) in ELR2.
- 2. Save CSR in ECSR2 (not processed if the program memory size is 64 Kbytes or less).
- 3. Save PSW fin EPSW2.
- 4. Set ELEVEL of PSW to "2".
- 5. Set CSR to "0" (not processed if the program memory size is 64 Kbytes or less).
- 6. Transfer the value of the interrupt vector address to the program counter (PC).

#### 5.3.3 Software Interrupt Processing

The software interrupt is arbitrarily produced in software.

When the SWI instruction is performed within the program, a software interrupt occurs, the following process is performed by hardware, and the CPU goes to the software interrupt routine. The vector table is specified with the SWI instruction.

- 1. Save the program counter (PC) in ELR1.
- 2. Save CSR in ECSR1 (not processed if the program memory size is 64 Kbytes or less).
- 3. Save PSW in EPSW1.
- 4. Set ELEVEL of PSW to "1".
- 5. Set the MIE flag to "0".
- 6. Set CSR to "0" (not processed if the program memory size is 64 Kbytes or less).
- 7. Transfer the value of the interrupt vector address to the program counter (PC).

See "nX-U16/100 Core Instruction Manual" for MIE, the program counter (PC), ELR1, CSR, ECSR1, PSW, EPSW1, ELEVEL, ELR2, ECSR2, EPSW2 and vector table.

### 5.3.4 Notes on Interrupt Routine (with Interrupt Level Control Disabled)

Writing "0" to the ILE bit of the interrupt level control enable register (ILEN) causes the interrupt level control to be disabled.

The description below shows notes on each of the following states when the interrupt level control is not in use.

- When the sub routine is called/not called in the interrupt routine while execution of the maskable interrupt is in progress (state A).
- When the sub routine is called/not called in the interrupt routine while execution of a non-maskable interrupt is in progress (state B).

State A: Maskable interrupt is being executed

A-1: When a subroutine is not called in an interrupt routine

A-1-1: When multiple interrupts are disabled

• When the script is written in the assembly language

• Processing immediately after the start of interrupt routine execution No specific notes.

• Processing at the end of interrupt routine execution

Specify the RTI instruction to return the contents of the ELR register to the PC and those of the EPSW register to PSW.

• When the script is written in C

Define the interrupt routine using the INTERRUPT pragma. Specify "1" in the category field. In this way, appropriate codes are produced through the C compiler.

Example of description: State A-1-1

For assembly language:

| i el decembly language. |                            |
|-------------------------|----------------------------|
| Intrpt_A-1-1;           | ; State of A-1-1           |
| DI                      | ; Disable interrupt        |
| :                       |                            |
| :                       |                            |
| :                       |                            |
| RTI                     | ; Return PC from ELR       |
|                         | ; Return PSW form EPSW     |
|                         | ; End of interrupt routine |
|                         |                            |

For C language:

| static void Intrpt_A_1_1(void);       |                                |  |  |  |  |
|---------------------------------------|--------------------------------|--|--|--|--|
| #pragma interrupt Intrpt_A_1_1 0x10 1 |                                |  |  |  |  |
| static void Intrpt_A_1_1(void)        |                                |  |  |  |  |
| {                                     |                                |  |  |  |  |
| _DI();                                | /* Disable interrupt */        |  |  |  |  |
| :                                     |                                |  |  |  |  |
| }                                     | /* End of interrupt routine */ |  |  |  |  |
|                                       |                                |  |  |  |  |

A-1-2: When multiple interrupts are enabled

- When the script is written in the assembly language
  - Processing immediately after the start of interrupt routine execution
    - Specify "PUSH ELR, EPSW" to save the interrupt return address and the PSW status in the stack.
  - Processing at the end of interrupt routine execution
- Specify "POP PC, PSW" instead of the RTI instruction to return the contents of the stack to PC and PSW. • When the script is written in C
  - Define the interrupt routine using the INTERRUPT pragma. Specify "2" in the category field. In this way, appropriate codes are produced through the C compiler.

Example of description: State A-1-2

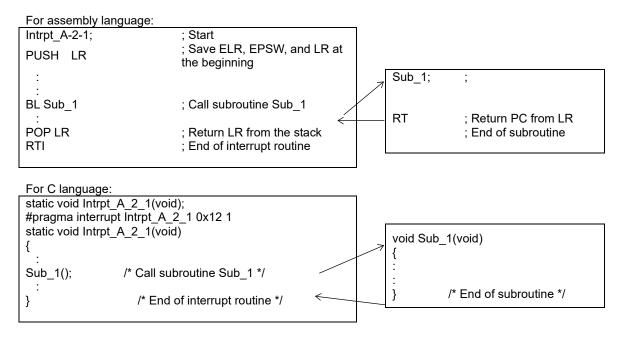
| For assembly | language: |
|--------------|-----------|
|--------------|-----------|

| Intrpt_A-1-2;  | ; Start                                 |
|----------------|-----------------------------------------|
| PUSH ELR, EPSW | ; Save ELR and EPSW at the<br>beginning |
| :              |                                         |
| :              |                                         |
| EI             | ; Enable interrupt                      |
| :              |                                         |
| POP PSW, PC    | ; Return PC from the stack              |
|                | ; Return PSW from the stack             |
|                | ; End of interrupt routine              |

For C language:

| static void Intrpt_A<br>#pragma interrupt In<br>static void Intrpt_A_ | utrpt_A_1_2 0x20 2             |
|-----------------------------------------------------------------------|--------------------------------|
| {<br>_EI();                                                           | /* Enable interrupt */         |
| }                                                                     | /* End of interrupt routine */ |
|                                                                       |                                |

A-2: When a subroutine is called in an interrupt routine


A-2-1: When multiple interrupts are disabled

• When the script is written in the assembly language

- · Processing immediately after the start of interrupt routine execution
  - Specify the "PUSH LR" instruction to save the subroutine return address in the stack.
- Processing at the end of interrupt routine execution
  - Specify "POP LR" immediately before the RTI instruction to return from the interrupt processing after returning the subroutine return address to LR.
- When the script is written in C

Define the interrupt routine using the INTERRUPT pragma. Specify "1" in the category field. In this way, appropriate codes are produced through the C compiler.

Example of description: State A-2-1



[Note]

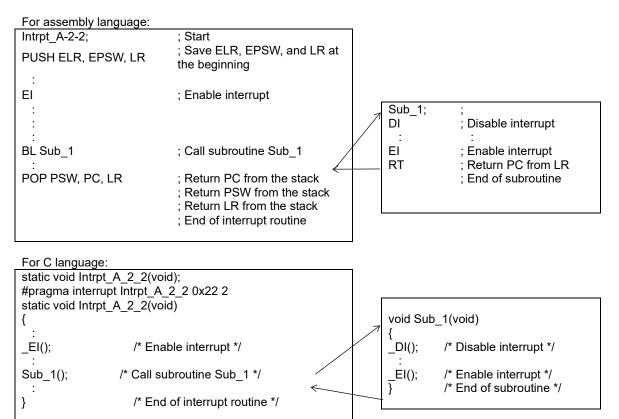
Do not enable interrupts in a subroutine called from an interrupt routine for which multiple interrupts are disabled. Otherwise, the program may run out of control when multiple interrupts occur.

A-2-2: When multiple interrupts are enabled

• When the script is written in the assembly language

• Processing immediately after the start of interrupt routine execution

Specify "PUSH LR, ELR, EPSW, LR" to save the interrupt return address, the subroutine return address, and the EPSW1 status in the stack.


• Processing at the end of interrupt routine execution

Specify "POP PSW, PC, LR", instead of the RTI instruction, to return the saved data of the interrupt return address to PC, the saved data of EPSW1 to PSW, and the saved data of LR to LR.

• When the script is written in C

Define the interrupt routine using the INTERRUPT pragma. Specify "2" in the category field. In this way, appropriate codes are produced through the C compiler.

Example of description: Status A-2-2



State B: Non-maskable interrupt is being processed

B-1: When a subroutine is not called in an interrupt routine

- When the script is written in the assembly language
  - Processing immediately after the start of interrupt routine execution
    - Specify "PUSH ELR, EPSW" to save the interrupt return address and the PSW status in the stack.
  - Processing at the end of interrupt routine execution
  - Specify "POP PSW, PC" to return the contents of the stack to PC and PSW.
- When the script is written in C
  - Define the interrupt routine using the INTERRUPT pragma. Specify "2" in the category field. In this way, appropriate codes are produced through the C compiler.

Example of description: Status B-1

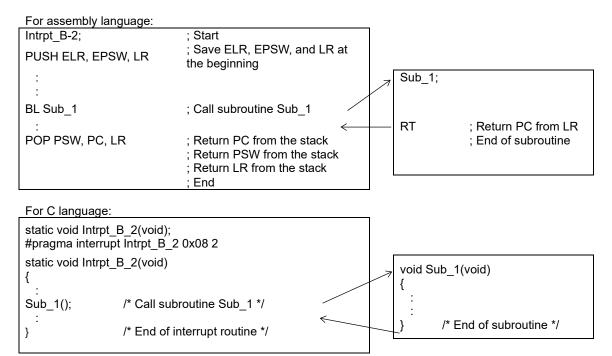
| For assembly language: |                                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Intrpt_B-1;            | ; Status B-1                                                                                                          |
| PUSH ELR, EPSW         | ; Save ELR and EPSW at the<br>beginning                                                                               |
| :                      |                                                                                                                       |
| :<br>POP PSW, PC       | ; Return PC from the stack<br>; Return PSW from the stack<br>; Return LR from the stack<br>; End of interrupt routine |
|                        | , End of interrupt routine                                                                                            |

For C language:

static void Intrpt\_B\_1(void); #pragma interrupt Intrpt\_B\_1 0x08 2 static void Intrpt\_B\_1(void) { : } /\* End of interrupt routine \*/

B-2: When a subroutine is called in an interrupt routine

• When the script is written in the assembly language


- Processing immediately after the start of interrupt routine execution Specify "PUSH ELR, EPSW, LR" to save the interrupt return address, the subroutine return address, and EPSW status in the stack.
- Processing at the end of interrupt routine execution

Specify "POP PSW, PC, LR" to return the saved data of the interrupt return address to PC, the saved data of EPSW to PSW, and the saved data of LR to LR.

• Description for C language

Define the interrupt routine by using INTERRUPT pragma and specify "2" in the category field. The C compiler generates the proper codes.

Example of description: Status B-2



### 5.3.5 Flow Charts When Interrupt Level Control Is Enabled

Figure 5-1 shows flow charts of the software interrupt processing when multiple interrupts are disabled and enabled respectively with the interrupt level control enabled.

When multiple interrupts are enabled, save ELR1, ECSR (not processed for products with 64 Kbytes or less of program memory) and EPSW1 in the stack (RAM) so that they are not overwritten by the multiple interrupt. In addition, the EI and DI instructions enable the execution of multiple interrupts due to a high-level maskable interrupt request while "execution of the target process" is in progress.

If a non-maskable interrupt is occurred while the maskable interrupt is being processed, the transition to non-maskable interrupt takes place regardless of multiple interrupts enabled/disabled and the execution of the EI instruction.

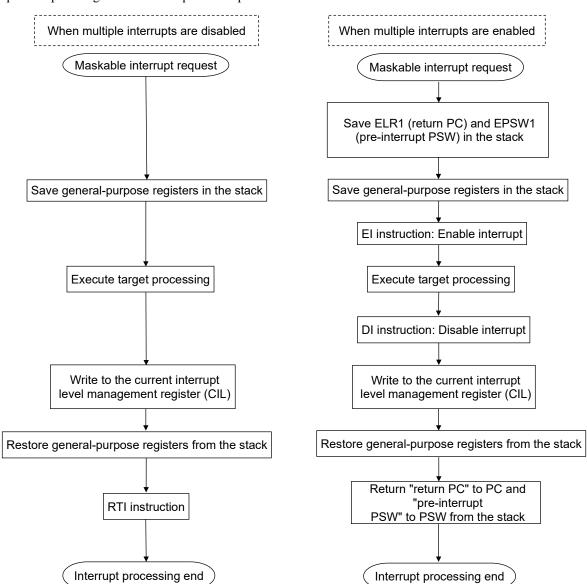



Figure 5-1 Maskable Interrupt Processing Flow

#### [Note]

- For processing of non-maskable interrupt, follow the flow chart "When multiple interrupts are enabled". Registers that should be saved in the stack are ELR2 and EPSW2.
- When programming in C, it is not required to write program codes for saving/restoring registers because they are generated in the C compiler. However, program codes for enabling/disabling interrupts through EI and DI instructions and for writing to the current interrupt level management register (CIL) must be written. See Section 5.3.6 "How To Write Interrupt Processing When Interrupt Level Control Enabled" for the specific program description.

### 5.3.6 How To Write Interrupt Processing When Interrupt Level Control Enabled

This section describes examples of program scripts of interrupt function when ILE of the interrupt level control enable register (ILEN) is set to enable the interrupt level control. See the programming guide of the C compiler for the detailed scripting method of and notes on interrupt processing.

#### 5.3.6.1 Description of Interrupt Function to Disable Multiple Interrupts

To describe the interrupt function to disable multiple interrupts, specify 1 in the category field of the INTERRUPT pragma and SWI pragma. When built-in function \_EI is called in the interrupt function to disable multiple interrupts, the C compiler displays an error.

After completion of the target interrupt processing, it is necessary to write to the CIL register and clear the highest current interrupt request level (CILMn bit) to "0". Otherwise, interrupts equivalent to or less than the current interrupt request level is unacceptable.

```
Example of description

static void intr_fn_0A (void);

#pragma interrupt intr_fn_0A 0x0A 1

volatile unsigned short TM1msec;

static void intr_fn_0A (void)

{

TM1msec++;

CIL = 0; /*Clear the highest current interrupt request level*/

}
```

When described as in the example, intr\_fn\_0A is handled as an interrupt processing function to disable multiple interrupts. the C compiler outputs the assembly code as shown below.

```
Example of output
  _intr_fn_0A
       push
               er0
  ;;
       TM1msec++;
       I
               er0,
                       NEAR TM1msec
       add
               er0.
                        #1
       st
               er0,
                        NEAR _TM1msec
  ;;}
       CIL = 0;
  ;;
               r0,
                        #00h
       mov
       st
                  r0,
                           0f022h
  ;;}
               er0
       pop
       rti
```

In the interrupt function, the register (here, only ER0) that may be used in the interrupt routine is saved in the stack. "RTI" instruction is used to return from the interrupt function to disable multiple interrupts. The example below shows how to call other functions from an interrupt function.

```
Example of description
 static void intr fn 10 (void);
 #pragma interrupt intr_fn_10 0x10 1
 void func (void);
 static void intr_fn_10 (void)
 {
          func ();
        CIL = 0; /*Clear the highest current interrupt request level*/
 }
Example of output
  _intr_fn_10
     push
            lr,
                   ea
     push
            xr0
             r0,
                     DSR
     push
             r0
     func();
 ;;
     bl
             func
 ;;;}
;;
     CIL = 0;
             r0,
                   #00h
     mov
             r0,
                  0f022h
     st
  ;;}
             r0
     pop
                   DSR
             r0,
     st
             xr0
     pop
     pop
             ea,
                  lr
     rti
```

When another function is called from an interrupt function, the output code becomes redundant compared with the case where another function is not called from the interrupt function. Thus the processing time of the interrupt becomes also longer. This is because the C compiler does not know which registers the function func () should use and it save the all registers that may be changed by calling the func () in the stack.

#### [Note]

Do not enable interrupts in a function called from a function for which multiple interrupts are disabled.
 Otherwise, the program may run out of control when the multiple interrupts occur.

#### 5.3.6.2 Description of Interrupt Function to Enable Multiple Interrupts

When describing an interrupt function to enable multiple interrupts, specify "2" in the category field in INTERRUPT pragma and SWI pragma. Even if it is not specified in the category field, multiple interrupt are enabled. Built-in function \_EI can be called in an interrupt function to enable multiple interrupts.

```
Example of description

static void intr_fn_20 (void);

volatile unsigned short TM2msec;

#pragma interrupt intr_fn_20 0x20 2

static void intr_fn_20 (void)

{

_EI(); /*Enable multiple interrupts*/

TM2msec++;

_DI(); /*Disable multiple interrupts*/

CIL = 0; /*Clear the highest current interrupt request level*/

}
```

If described as in the example,  $intr_fn_20$  () is handled as an interrupt processing function to enable multiple interrupts. the C compiler outputs the assembly code as shown below.

```
Example of output
  _intr_fn_20
     push elr,
                 epsw
           er0
     push
    _EI( );
ei
                    /*Enable multiple interrupts*/
 ;;
       TM1msec++;
 ;;
            er0, NEAR _TM2msec
     Т
            er0, #1
     add
            er0, NEAR TM2msec
     st
 ;;
       _DI( );
                  /*Disable multiple interrupts*/
     di
 ;;}
       CIL = 0;
 ;;
            r0,
                    #00h
     mov
                    0f022h
            r0,
     st
 ;;}
            er0
     рор
     рор
               psw, pc
```

In an interrupt function to enable multiple interrupts, ELR and EPSW are saved in the stack so that they should not be destroyed by multiple interrupts. This is the difference from the interrupt function to disable multiple interrupts. To return from the interrupt function, "POP PSW, PC" is used instead of "RTI".

#### 5.3.7 Interrupt Disable State

The interrupt disable state refers to an operating state where no interrupt is accepted even if the interrupt conditions are satisfied.

The following describes the interrupt disabled state and operation of interrupts in the situation.

- State 1. Between the interrupt transfer cycle and the instruction at the beginning of the interrupt routine When the interrupt conditions are satisfied here, an interrupt is generated immediately after the execution of the instruction at the beginning of the interrupt routine that corresponds to the interrupt already enabled.
- State 2. Between the DSR prefix code and the next instruction When the interrupt conditions are satisfied here, an interrupt is generated immediately after execution of the instruction following the DSR prefix code.

See "nX-U16/100 Core Instruction Manual" for the DSR prefix instruction.

#### 5.3.8 Writing to IRQ01/IRQ23/IRQ45/IRQ67

Use the bit symbol to write to IRQ01/IRQ23/IRQ45/IRQ67 register. The example below shows how to write "0" to the bit symbol QLTBC0.

Example of description #define clear\_bit(n) ((n)) = 0)

clear bit (QLTBC0);

\* "n" is the bit symbol name of user's manual.

#### 5.3.9 16-bit timer 0 Interrupt

In the 16-bit timer 0 interrupt, the interrupt factor is assigned to two places. (TM0INT0, TM0INT1) If you want to change the interrupt processing detail according to the conditions, it is possible to do appropriate interrupt processing without determining the condition in the interrupt process by switching the factors to be enabled. If two places are enabled at the same time, multiple interrupts may occur and unintended operation may occur, so it is prohibited to enable two places at the same time.

Also, if an interrupt occurs with only one of the factors enabled, the IRQ bit of the enabled factor is cleared, but the IRQ bit of the disabled factor remains the interrupt request. To switch the interrupt source, clear the IRQ bit (IRQ3[6]:TM0INT0 and IRQ7[1]:TM0INT1) before switching.

# **Chapter 6 Clock generation Circuit**

### 6. Clock Generation Circuit

### 6.1 General Description

The clock generation circuit generates following kinds of clock and supplied them to the CPU or the peripheral circuits.

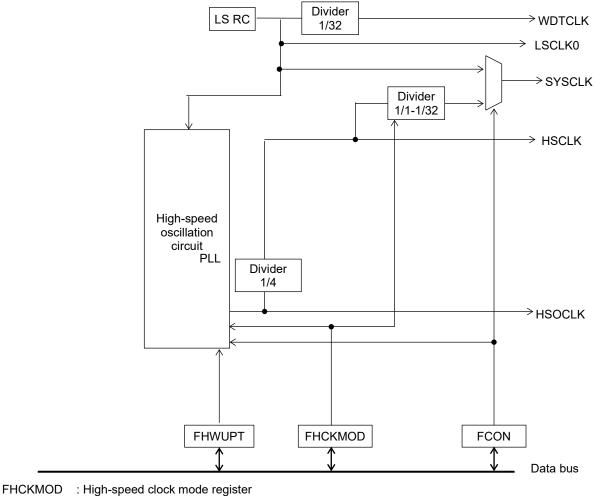
| Clock Name                   | Symbol | Frequency    | Description                                                 |
|------------------------------|--------|--------------|-------------------------------------------------------------|
| Internal low-speed clock     | RC32K  | 32.768kHz    | Internal generated RC oscillating low-speed clock.          |
| Internal high-speed<br>clock | PLL    | 64.012288MHz | high-speed clock multiplied LSCLK0.<br>Multiplied by 1953.5 |

Table 6-2 Clocks generated by the clock generation circuit

| Clock Name                                     | Symbol                            | Frequency | Description                                          |
|------------------------------------------------|-----------------------------------|-----------|------------------------------------------------------|
| Low speed clock 0                              | LSCLK0                            | RC32k     | For system and peripheral circuits.                  |
| High speed source clock                        | HSOCLK                            | PLL       | For Operational Timer.                               |
| High speed clock                               | High speed clock HSCLK (HSOCLK/4) |           | Divided HSOCLK. For system and peripheral circuits.  |
| System clock SYSCLK 32.768kHz/<br>0.5 to 16MHz |                                   |           |                                                      |
| CPU clock                                      | CPUCLK                            | SYSCLK    | A system clock for CPU. It is stop in stand-by mode. |
| WDT clock                                      | WDTCLK                            | 1.024kHz  | For counting watchdog timer.                         |

#### 6.1.1 Features

- Low-speed clock generation circuit
  - Low-speed RC oscillation circuit.
- High-speed clock generation circuit
- PLL oscillation mode.
- The wait time at the start of the high-speed clock can be selected.
- WDT clock
  - It is generated by dividing from LSCLK0.


Table 6-3 shows relation of CPU operating mode and PLL frequency.

|       | Maxim  | _     |           |                               |
|-------|--------|-------|-----------|-------------------------------|
| PLL   | HSOCLK | HSCLK | SYSCLK    | output frequency<br>(maximum) |
|       | HSUCLK | HOULK | Wait mode | (maximani)                    |
| 64MHz | 64MHz  | 16MHz | 0.5-16MHz | 4MHz                          |

Table 6-3 Frequency range for high-speed clock operation.

### 6.1.2 Configuration

Figure 6-1 shows the configuration of the clock generation circuit. Table 6-4 shows the list of operation clocks for each function.



FCON : Clock control register

FHWUPT : High-speed clock wake-up time setting register

Figure 6-1 Configuration of Clock Generation Circuit

#### [Note]

• After the power-on or the system reset, LSCLK0 (32.768 kHz) is initially selected as SYSCLK.

| Function                   | SYSCLK | LSCLK0      | HSCLK       | HSOCLK | WDTCLK |
|----------------------------|--------|-------------|-------------|--------|--------|
| CPU/Data bus               | •      | -           | -           | -      | -      |
| RAM                        | •      | -           | -           | -      | -      |
| Watchdog timer             | -      | -           | -           | -      | •      |
| External interrupt control | -      | <b>●</b> *1 | <b>●</b> *1 | -      | -      |
| 16-bit timer 0-4           | -      | •           | •           | -      | -      |
| Operational timer          | -      | •           | •           | •      | -      |
| UART                       | -      | •           | •           | -      | -      |
| I <sup>2</sup> C bus unit  | •*2    | -           | -           | -      | -      |
| SA type A/D converter      | -      | •           | •           | -      | -      |
| Analog comparator          | -      | ●*1         | -           | -      | -      |
| LLD                        | -      | ●*1         | -           | -      | -      |

#### Table 6-4 Operating clock list in each function

 supplied. - : not supplied.
 \*1 : for controlling to start or sampling.
 \*2 : Each block is supplied with a SYSCLK for the register interface. The I<sup>2</sup>C bus unit is also used for communication.

#### 6.1.3 List of Pins

This LSI does not have a clock output function.

### 6.2 Description of Registers

### 6.2.1 List of Registers

| Address | Name                                           | Sym      | R/W      | Size    | Initial |       |  |
|---------|------------------------------------------------|----------|----------|---------|---------|-------|--|
| Address | Name                                           | Byte     | Word     | FX/ V V | Size    | Value |  |
| 0xF002  | High-speed clock mode register                 | FHCKMODL | FHCKMOD  | R/W     | 8/16    | 0x00  |  |
| 0xF003  | nigh-speed clock mode register                 | FHCKMODH | FICKINOD | R/W     | 8       | 0x03  |  |
| 0xF004  | Reserved register                              | -        |          | -       | -       | -     |  |
| 0xF005  | Reserved register                              | -        | -        | -       | -       | -     |  |
| 0xF006  | Clock control register                         | FCON     | FCONW    | R/W     | 8/16    | 0x00  |  |
| 0xF007  | Clock control register                         | FCON1    | -        | R/W     | 8       | 0x00  |  |
| 0xF008  | High-speed clock wake up time setting register | FHWUPT   | -        | R/W     | 8       | 0x00  |  |
| 0xF009  | Reserved register                              | -        | -        | -       | -       | -     |  |

### 6.2.2 High-Speed Clock Mode Register (FHCKMOD)

FHCKMOD is a SFR to selects the frequency of the high-speed clock .

| Address :0xF002(FHCKMODL/FHCKMOD), 0xF003(FHCKMODH)Access :R/WAccess size :8/16 bitInitial value :0x0300 | R/W<br>e : 8/16 bi | CKMODL/FHCKMOD), 0xF003(FHCKMODH) |  |
|----------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|--|
|----------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|--|

|                  | 15 | 14 | 13 | 12   | 11   | 10    | 9     | 8     | 7   | 6 | 5 | 4    | 3    | 2 | 1 | 0 |
|------------------|----|----|----|------|------|-------|-------|-------|-----|---|---|------|------|---|---|---|
| Word             |    |    |    |      |      |       |       | FHCK  | MOD |   |   |      |      |   |   |   |
| Byte             |    |    |    | FHCK | MODH |       |       |       |     |   |   | FHCK | MODL |   |   |   |
| Bit              | -  | -  | -  | -    | -    | SYSC2 | SYSC1 | SYSC0 | -   | - | - | -    | -    | - | - | - |
| R/W              | R  | R  | R  | R    | R    | R/W   | R/W   | R/W   | R   | R | R | R    | R    | R | R | R |
| Initial<br>value | 0  | 0  | 0  | 0    | 0    | 0     | 1     | 1     | 0   | 0 | 0 | 0    | 0    | 0 | 0 | 0 |

| Bit No.  | Bit symbol<br>name | Description                                       |      |                          |  |  |
|----------|--------------------|---------------------------------------------------|------|--------------------------|--|--|
| 15 to 11 | -                  | Reserved bits                                     |      |                          |  |  |
| 10 to 8  | SYSC2 to<br>SYSC0  | Select frequency of system clock with high-speed. |      |                          |  |  |
|          |                    |                                                   | SYSC | SYSCLK(16MHz)            |  |  |
|          |                    |                                                   | 000  | HSCLK *1                 |  |  |
|          |                    |                                                   | 001  | 1/2 HSCLK *1             |  |  |
|          |                    |                                                   | 010  | 1/4 HSCLK                |  |  |
|          |                    |                                                   | 011  | 1/8 HSCLK(Initial value) |  |  |
|          |                    |                                                   | 100  | 1/16 HSCLK               |  |  |
|          |                    |                                                   | 101  | 1/32 HSCLK               |  |  |
|          |                    |                                                   | 110  | Do not use (1/32 HSCLK)  |  |  |
|          |                    |                                                   | 111  | Do not use (1/32 HSCLK)  |  |  |

#### Table 6-5 SYSC setting and SYSCLK frequency [MHz]

| PLL   | SYSC | Frequency<br>[MHz] |
|-------|------|--------------------|
|       | 000  | 16                 |
|       | 001  | 8                  |
| 64MHz | 010  | 4                  |
|       | 011  | 2                  |
|       | 100  | 1                  |
|       | 101  | 0.5                |

### 6.2.3 Clock Control Register (FCONW)

FCONW is a SFR to control the clock generation circuit.

| Address :<br>Access :<br>Access size :<br>Initial value : |                                                                                                                                                                                                                                                                                                                        |      | 0xF00<br>R/W<br>8/16 b<br>0x000 |        | N/FCC    | )NW), 0  | xF007    | (FCON   | J1)                                   |           |          |   |   |        |           |             |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------|--------|----------|----------|----------|---------|---------------------------------------|-----------|----------|---|---|--------|-----------|-------------|
| _                                                         | 15                                                                                                                                                                                                                                                                                                                     | 14   | 13                              | 12     | 11       | 10       | 9        | 8       | 7                                     | 6         | 5        | 4 | 3 | 2      | 1         | 0           |
| Word                                                      | FCONW                                                                                                                                                                                                                                                                                                                  |      |                                 |        |          |          |          |         |                                       |           |          |   |   |        |           |             |
| Byte                                                      | /te FCON1                                                                                                                                                                                                                                                                                                              |      |                                 |        |          |          |          |         |                                       | FC        | ON       |   |   |        |           |             |
| Bit                                                       | -                                                                                                                                                                                                                                                                                                                      | -    | -                               | -      | -        | -        | -        | -       | LPLL                                  | -         | -        | - | - | -      | ENOS<br>C | SELSC<br>LK |
| R/W                                                       | R                                                                                                                                                                                                                                                                                                                      | R    | R                               | R      | R        | R        | R        | R       | R                                     | R         | R        | R | R | R      | R/W       | R/W         |
| Initial<br>value                                          | 0                                                                                                                                                                                                                                                                                                                      | 0    | 0                               | 0      | 0        | 0        | 0        | 0       | 0                                     | 0         | 0        | 0 | 0 | 0      | 0         | 0           |
| Bit No.                                                   | Bit symbol Description                                                                                                                                                                                                                                                                                                 |      |                                 |        |          |          |          |         |                                       |           |          |   |   |        |           |             |
| 15 to 8                                                   |                                                                                                                                                                                                                                                                                                                        |      |                                 | Reserv | /ed bits | ;        |          |         |                                       |           |          |   |   |        |           |             |
| 7                                                         | LPLL Indicates that the frequency of the PLL oscillation is within the target error. The LPLL has<br>the read-only attribute.<br>0: The frequency of PLL oscillation is out of the target error or the PLL oscillation is<br>stopped (Initial value)<br>1: The frequency of PLL oscillation is within the target error |      |                                 |        |          |          |          |         |                                       |           |          |   |   |        |           |             |
| 6 to 2                                                    | -                                                                                                                                                                                                                                                                                                                      |      |                                 | Reserv | /ed bits | ;        |          |         |                                       |           |          |   |   |        |           |             |
| 1                                                         | EN                                                                                                                                                                                                                                                                                                                     | IOSC |                                 | 0: E   | Disable  | d/turn o | ff the h | igh-spe | cillation o<br>eed clocl<br>eed clock | k oscilla | ation (I |   |   | lation | circuit.  |             |

When ENOSC=0, writing "1" to the SELSCLK bit is disabled.

the SELSCLK bit to "1" after executing two NOP instructions.

1: High-speed clock chosen by the SYSC2 to SYSC0 bit

If the FHWUPT register is set to wait for PLL frequency stability (FHUT0 bit = "0"), it is possible to write "1" to the ENOSC bit and the SELSCLK bit at the same time.

If you do not wait for frequency stability (FHUT0 bit = "1"), set the ENOSC bit to "1" and set

When the high-speed generation circuit is stopped (ENOSC bit = "0"), the SELSCLK bit is

0

SELSCLK

Switch the system clock.

0: LSCLK0 (Initial value)

fixed to "0".

### 6.2.4 High-Speed Clock Wake-up Time Setting Register (FHWUPT)

FHWUPT is a SFR to switch a wakeup time of the high speed clock. This is writable only when ENOSC=0. See Table 4-6 "Wake-up Time from Standby Mode" in the Chapter 4 for details about the wake-up time from the standby modes.

| Access : I<br>Access size : 8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 0xF0<br>R/W<br>8 bit<br>0x00 | 08 (FHV | /UPT)   |    |   |   |        |   |   |   |   |   |   |       |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------|---------|---------|----|---|---|--------|---|---|---|---|---|---|-------|
|                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 | 13                           | 12      | 11      | 10 | 9 | 8 | 7      | 6 | 5 | 4 | 3 | 2 | 1 | 0     |
| Word                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                              |         |         |    |   |   | -      |   |   |   |   |   |   |       |
| Byte                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                              |         | -       |    |   |   | FHWUPT |   |   |   |   |   |   |       |
| Bit                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -  | -                            | -       | -       | -  | - | - | -      | - | - | - | - | - | - | FHUT0 |
| R/W                           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R  | R                            | R       | R       | R  | R | R | R      | R | R | R | R | R | R | R/W   |
| Initial<br>value              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0  | 0                            | 0       | 0       | 0  | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0 | 0 | 0     |
| Bit No.                       | Bit symbol Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                              |         |         |    |   |   |        |   |   |   |   |   |   |       |
| 7 to 1                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                              | Reserv  | /ed bit |    |   |   |        |   |   |   |   |   |   |       |
| 0                             | FHUT0       Configures the timing of starting to supply the high-speed clock oscillation when ENOSC=1.         0 : After Locked; the frequency clock is stabilized. (Initial value)       A system clock stops until the high-speed clock is locked, if SELSCLK is set to "1".         1 : Soon after ENOSC=1; approx. 30µs. The frequency is not guaranteed as the specification, however it is useable for the system clock.       High speed source clock (HSOCLK) supplies the source vibration of the PLL regardless of the setting of this bit. |    |                              |         |         |    |   |   |        |   |   |   |   |   |   |       |

### 6.3 Description of Operation

### 6.3.1 Low-Speed Clock

When the system reset is released, SYSCLK selects a low-speed clock.

### 6.3.1.1 Low-Speed RC Oscillation Circuit

The low-speed RC oscillation clock is selected for the system clock at the power on.

When a system reset is released, the low-speed clock (LSCLK0) is output and the CPU runs a program after 512 counts of clock chosen for LSCLK0. When the STOP mode is released, the low-speed clock is output after a stable time has elapsed, and the CPU executes the program.

Figure 6-3 shows the configuration of the low-speed RC oscillation circuit.

Figure 6-4 shows the operation waveforms at the start of the low-speed RC oscillation circuit and in the STOP mode.

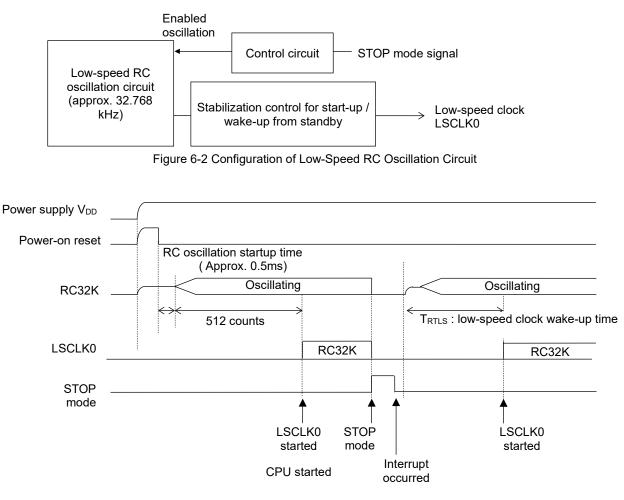



Figure 6-3 Low-speed Clock Operation Waveforms at Start of Low-speed RC Oscillation Circuit and in STOP Mode

### 6.3.2 High-speed Clock

The PLL oscillation circuit generates the high-speed clock; HSOCLK by multiplying LSCLK0.

#### 6.3.2.1 PLL Oscillation Circuit

The PLL oscillation circuit generates the high-speed clock; HSOCLK by multiplying LSCLK0. The multiplying by 1953.5 is 64MHz of PLL frequency.

After high-speed clock oscillation is enabled, the high-speed clocks; HSCLK is output by continuing count operation until the PLL oscillation clock is stabilized.

When set "1" to FHUT0 bit of FHWUPT register, the clock supply is started approximately 30 µs after the high-speed clock oscillation is enabled.

The clock frequency reaches to the target approximately 1 ms after the high-speed clock oscillation is enabled. Although the frequency within the 1 ms is not guaranteed, it can be used for the system clock.

When FHUT0 bit is set to "1" and the system clock is switched to HSCLK immediately after the PLL oscillation starts, setENOSC bit of the FCONW register to "1" and set SELSCLK bit of FCONW register to "1" after executing the two NOP instructions.

When set "0" to FHUT0 bit, the clock supply is started approximately 1ms after it is enabled.

In addition, the PLL oscillation circuit stops oscillation when entering the STOP mode. Its oscillation is output, after wakeup from standby and waiting stabilization.

Figure 6-4 shows the PLL oscillation circuit configuration.

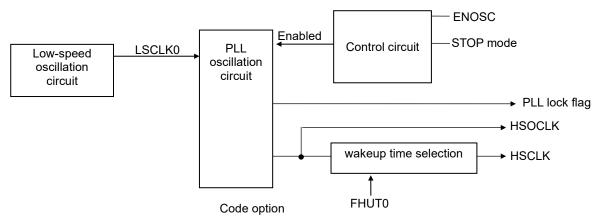



Figure 6-4 PLL Oscillation Circuit Configuration

Figure 6-5 show the high-speed clock operation waveforms at startup PLL circuit, in the standby mode. See chapter 4 "Power Management" for details of the STOP mode.

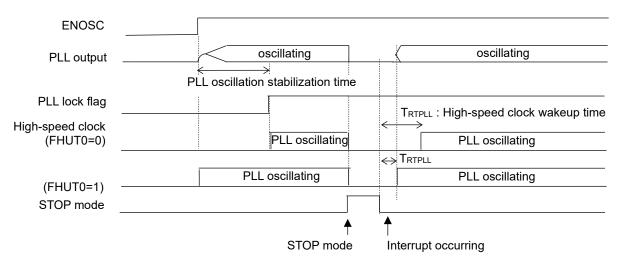



Figure 6-5 High-speed clock operation at startup PLL circuit and in STOP mode

### 6.3.2.2 High-speed Clock Control

The following is a procedure to control high-speed clock.

In the case of with waiting stabilization for high-speed clock.

- (1) Set with waiting stabilization for high-speed clock by FHWUPT register. (FHUT0=0)
- (2) Set enabled PLL oscillation by ENOSC=1. SELSCLK bit can be set to "1" at once.

In the case of with waiting stabilization; FHUT0=0: The clock is supplied after LPLL bit becomes to "1". The system clock stops until the high-speed clock oscillates when SELSCLK=1.

In the case of with not waiting stabilization for high-speed clock.

- (1) Set without waiting stabilization for high-speed clock by FHWUPT register. (FHUT0=1).
- (2) Set enabled PLL oscillation by ENOSC=1.
- (3) When select HSCLK as the system clock (SELSCLK="1"), executing the two NOP instructions after (2) and then change SELSCLK.

In the case of without waiting stabilization; FHUT0=1: Although the high-speed clock frequency is not guaranteed just after setting ENOSC=1, it can be used for the system clock and peripheral clocks. If specific frequency is required, wait stabilization time; LPLL=1.

In the case of stop the high-speed clock:

Set "0" to ENOSC bit to turn off high-speed clock by the software. Then SELSCLK is cleared at once, and the system clock is switched to low-speed clock.

If high-speed clock is kept on, do not set "0" to ENOSC bit, and set "0" to SELSCLK bit only.

### 6.3.3 WDT Clock (WDTCLK)

1kHz clock for WDT is oscillation that frequency is 1.024kHz (typ.), which is divided by 32 degrees of RC32K. It is supplied to the WDT, trigger for an operational timer. When WDT operation is stopped with the code option, the WDT clock supply is also stopped. In case of want to use the WDT clock as a trigger in an operational timer, pay attention to the following code option settings.

In the case of the WDT operation is enabled by setting code option; WDTMD=1 : WDT clock is oscillating after system reset is released. It turns off at entry to STOP mode, and then it turns on at wakeup from standby. In the HALT-D mode, it stops only when WDTPWMD1=0 is selected by setting code option. The clock wakeup time is approx. 2ms.

In the case of WDTMD = 0 : WDT clock has stopping after system reset is released.

See Chapter 30 "Code Option" for how to set code options.

Figure 6-6-1 shows WDT clock operation waveform when the RC32K is started up and in STOP mode. Figure 6-6-2 shows WDTPWMD0=0, Indicates the WDT clock operation waveform in HALT mode.

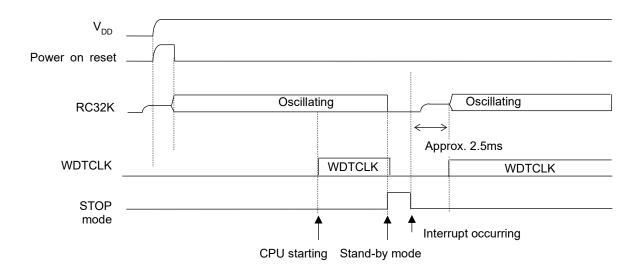
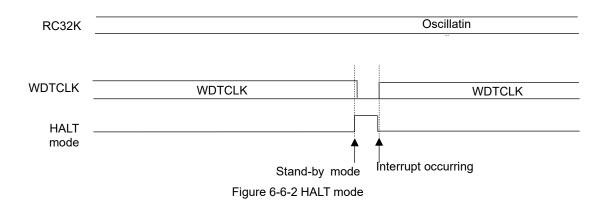




Figure 6-6-1 Startup and Wakeup from STOP mode of WDTCLK



#### 6.3.4 System Clock

A system clock is LSCLK0 with RC32K after power-on-reset/pin reset.

A system clock can be dynamically switched the high-speed system clock or LSCLK0 by SELSCLK bit. The high-speed system clock can be dynamically changed dividing value by SYSC bits.

There are 2 types as system clock; CPUCLK supplied to CPU and SYSCLK supplied to peripherals.

The CPUCLK stops in all stand-by mode. The SYSCLK normally supplies in the HALT mode.

See chapter 4 "Power Management" for detail.

#### [Note]

 While the CPU is running with the low-speed clock, if running the peripheral circuits with the high-speed clock which can frequently generate interrupts, the operation may fail to function properly due to the CPU becoming incapable of processing interrupts in time. If interrupts frequently occur for reasons such as short interrupt cycles of peripheral circuits, take into account the operating frequency of the CPU so that it can process interrupts in time.

# **Chapter 8 16-Bit Timer**

### 8. 16-Bit Timer

#### 8.1 General Description

The 16-bit timer enables following functions.

- Generate periodical interrupts in an arbitrary period
- Generate one shot interrupts in an arbitrary period

Table 8-1 shows the number of channels.

#### Table 8-1 Number of 16-bit Timer channels

| • : available |                       |
|---------------|-----------------------|
| Channel no.   | Available/Unavailable |
| 0             | •                     |

#### 8.1.1 Features

| Operation mode | Description                                                                                    |
|----------------|------------------------------------------------------------------------------------------------|
| Repeat mode    | Count-able up to the max. 0xffff<br>Repeat the specified operation until stop by the software. |
| One shot mode  | Count-able up to the max. 0xffff<br>Run the specified operation once and stop it.              |

- Selectable counter clock from various sources (divided by 1 to 8 of LSCLK0, HSCLK, external clock, Operational timer triggers)
- A timer interrupt request is generated when the value of the timer counter register value coincides with that of the 16-bit timer n data register

### 8.1.2 Configuration

Figure 8-1 shows configuration of the 16-bit timer

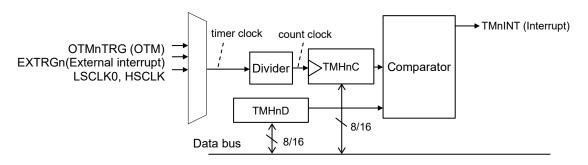



Figure 8-1 Configuration of the timer

| TMnINT : 16-bit timer n interrupt request |
|-------------------------------------------|
|-------------------------------------------|

- EXTRGn : EXIn pin input (come through the noise filter of the external interrupt function)
- TMHnD : 16-bit timer n data register
- TMHnC : 16-bit timer n counter register

### 8.2 Description of Registers

### 8.2.1 List of Registers

#### Registers for unequipped channels are not available to use. They return 0x0000 for reading.

|                     | 1 11                            |          |         | 0     |      |                  |  |
|---------------------|---------------------------------|----------|---------|-------|------|------------------|--|
| Address             | Name                            | Syn      | nbol    | R/W   | Size | Initial<br>value |  |
| Address             | Name                            | Byte     | Word    | 10,00 | 0120 |                  |  |
| 0xF300              | - 16-bit timer 0 data register  | TMH0DL   | TMH0D   | R/W   | 8/16 | 0xFF             |  |
| 0xF301              | To-bit timer o data register    | TMH0DH   | ТМНОВ   | R/W   | 8    | 0xFF             |  |
| 0xF302              |                                 | TMH0CL   | TMUOC   | R/W   | 8/16 | 0x00             |  |
| 0xF303              | 16-bit timer 0 counter register | TMH0CH   | TMH0C   | R/W   | 8    | 0x00             |  |
| 0xF304              |                                 | TMH0MODL |         | R/W   | 8/16 | 0x00             |  |
| 0xF305              | 16-bit timer 0 mode register    | TMH0MODH | TMH0MOD | R/W   | 8    | 0x00             |  |
| 0xF306 to<br>0xF33F | Reserved registers              | -        | -       | -     | -    | -                |  |
| 0xF340              |                                 | TMHSTRL  | TMUCTO  | W     | 8/16 | 0x00             |  |
| 0xF341              | 16-bit timer start register     | TMHSTRH  | TMHSTR  | W     | 8    | 0x00             |  |
| 0xF342              |                                 | TMHSTPL  | TALLOTD | W     | 8/16 | 0x00             |  |
| 0xF343              | 16-bit timer stop register      | TMHSTPH  | TMHSTP  | W     | 8    | 0x00             |  |
| 0xF344              | 10 hit times status register    | TMHSTATL | TMUSTAT | R     | 8/16 | 0x00             |  |
| 0xF345              | 16-bit timer status register    | TMHSTATH | TMHSTAT | R     | 8    | 0x00             |  |

### 8.2.2 16-Bit Timer n Data Register (TMHnD :n=0)

TMHnD is a SFR to set the comparison value with the 16-bit timer n counter register (TMHnC).

When TMHnD register is rewritten during timer operation, the value written to TMHnD is set at the beginning of the next cycle.

When TMHnD register is rewritten while the timer is stopped, the value is set immediately.

| Acce<br>Acce     | Address :0xF300 (TMH0DL/TMH0D), 0xF301 (TMH0DH)Access :R/WAccess size :8/16 bitInitial value :0xFFFF |            |            |            |            |            |       |       |       |       |       |       |       |       |       |       |
|------------------|------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  | 15                                                                                                   | 14         | 13         | 12         | 11         | 10         | 9     | 8     | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
| Word             |                                                                                                      |            |            |            |            |            |       | TM    | HnD   |       |       |       |       |       |       |       |
| Byte             | TMHnDH TMHnDL                                                                                        |            |            |            |            |            |       |       |       |       |       |       |       |       |       |       |
| Bit              | THnD1<br>5                                                                                           | THnD1<br>4 | THnD1<br>3 | THnD1<br>2 | THnD1<br>1 | THnD1<br>0 | THnD9 | THnD8 | THnD7 | THnD6 | THnD5 | THnD4 | THnD3 | THnD2 | THnD1 | THnD0 |
| R/W              | R/W                                                                                                  | R/W        | R/W        | R/W        | R/W        | R/W        | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 1                                                                                                    | 1          | 1          | 1          | 1          | 1          | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

#### [Note]

• When "0x0000" is written in TMHnD in the 16-bit timer mode, "0x0001" is set in TMHnD.

## 8.2.3 16-Bit Timer n Counter Register (TMHnC :n=0)

TMHnC is a SFR that functions as a 16-bit binary counter.

- This is reset to 0x0000 at the reset function and also when the following event occurred.
- When an arbitrary value is written in this register
- When the value of TMHnD register coincides with that of TMHnC register

| Acce<br>Acce     | ess :<br>ess :<br>ess size<br>I value | R/<br>e: 8/* | •          | ТМН0С      | /TMH0      | CL), 0>    | (F303 ( | ТМН0С | CH)   |       |       |       |       |       |       |       |
|------------------|---------------------------------------|--------------|------------|------------|------------|------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  | 15                                    | 14           | 13         | 12         | 11         | 10         | 9       | 8     | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
| Word             |                                       |              |            |            |            |            |         | TM    | HnC   |       |       |       |       |       |       |       |
| Byte             |                                       |              |            | TMH        | InCH       |            |         |       |       |       |       | TMH   | InCL  |       |       |       |
| Bit              | THnC1<br>5                            | THnC1<br>4   | THnC1<br>3 | THnC1<br>2 | THnC1<br>1 | THnC1<br>0 | THnC9   | THnC8 | THnC7 | THnC6 | THnC5 | THnC4 | THnC3 | THnC2 | THnC1 | THnC0 |
| R/W              | R/W                                   | R/W          | R/W        | R/W        | R/W        | R/W        | R/W     | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0                                     | 0            | 0          | 0          | 0          | 0          | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

This data is counted up synchronizing at the rising edge of the count clock. Reading value is always available if timer clock source is as same as system clock source.

An available condition:

| System clock | Timer clock |  |  |  |  |
|--------------|-------------|--|--|--|--|
| LSCLK0       | LSCLK0      |  |  |  |  |
| HSCLK        | HSCLK       |  |  |  |  |

[Note]

Read TMHnC register twice to verify the valid data to prevent reading uncertain data while counting-up, if a source of timer clock is as different as one of system clock.

## 8.2.4 16-Bit Timer n Mode Register (TMHnMOD :n=0)

TMHnMOD is a SFR to control the operation mode of 16-bit timer.

|                  |    | R/<br>: 8/* | •  | ТМНОМ | 10DL/T | мном | OD), 0x    | F305 ( | TMHON | 10DH) |             |             |            |            |            |            |
|------------------|----|-------------|----|-------|--------|------|------------|--------|-------|-------|-------------|-------------|------------|------------|------------|------------|
|                  | 15 | 14          | 13 | 12    | 11     | 10   | 9          | 8      | 7     | 6     | 5           | 4           | 3          | 2          | 1          | 0          |
| Word             |    |             |    |       |        |      |            | TMHr   | MOD   |       |             |             |            |            |            |            |
| Byte             |    |             |    | TMHn  | MODH   |      |            |        |       |       |             | TMHn        | MODL       |            |            |            |
| Bit              | -  | -           | -  | -     | -      | -    | THn<br>OST | -      | -     | -     | THn<br>DIV1 | THn<br>DIV0 | THnCK<br>3 | THnCK<br>2 | THnC<br>K1 | THnCK<br>0 |
| R/W              | R  | R           | R  | R     | R      | R    | R/W        | R      | R     | R     | R/W         | R/W         | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0  | 0           | 0  | 0     | 0      | 0    | 0          | 0      | 0     | 0     | 0           | 0           | 0          | 0          | 0          | 0          |

| Bit No.  | Bit symbol name       | Description                                                                                                                                                                                                                                                                                                                         |
|----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 10 | -                     | Reserved bits                                                                                                                                                                                                                                                                                                                       |
| 9        | TLnOST                | Select the operation mode.<br>0: Repeat mode (Initial value)<br>1: One-shot mode                                                                                                                                                                                                                                                    |
| 8 to 6   | -                     | Reserved bits                                                                                                                                                                                                                                                                                                                       |
| 5 to 4   | THnDIV1 to<br>THnDIV0 | Select frequency dividing ratio for the count clock<br>00: No dividing (Initial value)<br>01: Divided by 2<br>10: Divided by 4<br>11: Divided by 8                                                                                                                                                                                  |
| 3 to 0   | THnCK3 to<br>THnCK0   | Select the timer clock source.<br>0000: LSCLK0 (Initial value)<br>0011: HSCLK<br>0010: Do not use<br>0011: Do not use<br>0100: EXTRG0<br>0101: EXTRG1<br>0110: EXTRG2<br>0111: EXTRG3<br>1000: OTM0TRG<br>1001: OTM1TRG<br>1011: OTM3TRG<br>1101: OTM3TRG<br>1101: OTM4TRG<br>1101: OTM5TRG<br>1111: Do not use<br>1111: Do not use |

[Note]

Set TMHnMOD when the timer n is stopped (THnSTAT bits of TMHSTAT/TMHXSTAT register are "0"). If it is changed while it is operating, the operation is not guaranteed.

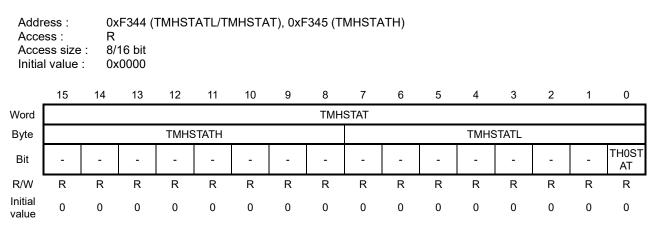
## 8.2.5 16-Bit Timer Start Register (TMHSTR)

TMHSTR is a SFR to control to start counting the 16-bit timer n. This is a write-only register and returns always "0x0000" for reading.

| Acce<br>Acce     | ess :<br>ess :<br>ess size<br>l value | W<br>: 8/ | F340 (<br>16 bit<br>0000 | TMHST  | RL/TM | HSTR) | , 0xF34 | 1 (TMF | HSTRH <u>)</u> | ) |   |     |      |   |   |            |
|------------------|---------------------------------------|-----------|--------------------------|--------|-------|-------|---------|--------|----------------|---|---|-----|------|---|---|------------|
|                  | 15                                    | 14        | 13                       | 12     | 11    | 10    | 9       | 8      | 7              | 6 | 5 | 4   | 3    | 2 | 1 | 0          |
| Word             |                                       |           |                          |        |       |       |         | TMH    | ISTR           |   |   |     |      |   |   |            |
| Byte             |                                       |           |                          | TMH    | STRH  |       |         |        |                |   |   | TMH | STRL |   |   |            |
| Bit              | -                                     | -         | -                        | -      | -     | -     | -       | -      | -              | - | - | -   | -    | - | - | THORU<br>N |
| R/W              | R                                     | R         | R                        | R      | R     | R     | R       | R      | R              | R | R | R   | R    | R | R | W          |
| Initial<br>value | 0                                     | 0         | 0                        | 0      | 0     | 0     | 0       | 0      | 0              | 0 | 0 | 0   | 0    | 0 | 0 | 0          |
|                  |                                       |           | target t<br>: Inva       | timer. |       |       |         |        |                |   |   |     |      |   |   |            |

| Bit No. | Bit symbol<br>name |                | Description (target) |  |
|---------|--------------------|----------------|----------------------|--|
| 15 to 1 | -                  | Reserved bits  |                      |  |
| 0       | THORUN             | 16-bit timer 0 |                      |  |

## 8.2.6 16-Bit Timer Stop Register (TMHSTP)


TMHSTP is a SFR to control to stop counting the 16-bit timer n. This is a write-only register and returns always "0x0000" for reading.

| Acce<br>Acce     | Iress : 0xF342 (TMHSTPL/TMHSTP), 0xF343 (TMHS<br>ess : W<br>ess size : 8/16 bit<br>al value : 0x0000 |          |                   |       |      |    | STPH) |     |      |   |   |     |      |   |   |            |
|------------------|------------------------------------------------------------------------------------------------------|----------|-------------------|-------|------|----|-------|-----|------|---|---|-----|------|---|---|------------|
|                  | 15                                                                                                   | 14       | 13                | 12    | 11   | 10 | 9     | 8   | 7    | 6 | 5 | 4   | 3    | 2 | 1 | 0          |
| Word             |                                                                                                      |          |                   |       |      |    |       | TMH | ISTP |   |   |     |      |   |   |            |
| Byte             |                                                                                                      |          |                   | TMH   | STPH |    |       |     |      |   |   | TMH | STPL |   |   |            |
| Bit              | -                                                                                                    | -        | -                 | -     | -    | -  | -     | -   | -    | - | - | -   | -    | - | - | TH0ST<br>P |
| R/W              | R                                                                                                    | R        | R                 | R     | R    | R  | R     | R   | R    | R | R | R   | R    | R | R | W          |
| Initial<br>value | 0                                                                                                    | 0        | 0                 | 0     | 0    | 0  | 0     | 0   | 0    | 0 | 0 | 0   | 0    | 0 | 0 | 0          |
|                  |                                                                                                      | stop a f | target ti<br>Inva | imer. |      |    |       |     |      |   |   |     |      |   |   |            |

| Bit No. | Bit symbol<br>name | Description (target) |
|---------|--------------------|----------------------|
| 15 to 1 | -                  | Reserved bits        |
| 0       | TH0STP             | 16-bit timer 0       |

## 8.2.7 16-Bit Timer Status Register (TMHSTAT)

TMHSTAT is a SFR to indicate the status of the 16-bit timer n.



Common description of each bits:

It is used to indicate an operating status of a target timer

- 0: A counting of target timer is stopped (Initial value)
  - 1: A counting of target timer is progress

| Bit No. | Bit symbol<br>name |                | Description (target) |
|---------|--------------------|----------------|----------------------|
| 15 to 1 | -                  | Reserved bits  |                      |
| 0       | TH0STAT            | 16-bit timer 0 |                      |

### 8.3 Description of Operation

### 8.3.1 Operation Mode

Writing "1" to THnRUN bit causes the 16-bit counter n to start counting up in synchronization with the rising edges of the count clock.

Following two operation modes are available:

- Repeat mode
- One-shot mode

### 8.3.1.1 Repeat Mode

Figure 8-2 shows the repeat mode operation.

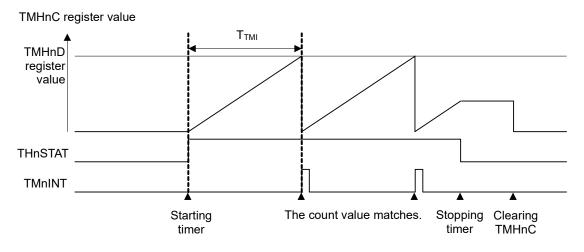



Figure 8-2 Repeat Mode Operation Timing

In the repeat mode, when the timer count value matches with TMHnD register, 16-bit timer n interrupt request (TMnINT) is generated and the output of the port is reversed. Then, the timer count value automatically is reset to "0x0000" and the counting up operation is continued.

TMnINT generation cycle and the port output reverse cycle can be expressed in the following formula:

$$T_{TMI} = \frac{TMHnD + 1}{fTHnCK (Hz)}$$
(n=0)

TMHnD: TMHnD register setting value (0x0001 to 0xFFFF)fTHnCK: Count clock frequency chosen in TMHnMOD register

See Section 8.3.2 "Start/Stop Timing" for the timing of the timer start/stop and counting up.

### 8.3.1.2 One-shot Mode

Figure 8-3 shows the one-shot mode operation

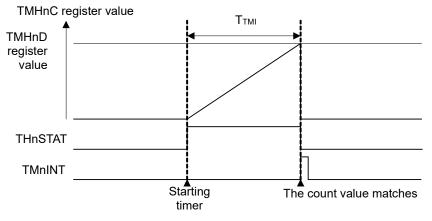



Figure 8-3 One-shot Mode Operation Timing

In the one-shot mode, when the timer count value matches with TMHnD register, 16-bit timer n interrupt (TMnINT) is generated. Then, the timer count value is reset to "0x0000" and the counting is stopped.

TMnINT generation cycle are the same as those in the repeat mode. The same applies to the timer start/stop timing and counting up timing.

## 8.3.2 Start/Stop Timing

Writing "1" to THnRUN bit of TMHSTR register causes the counting operation to start at the rising edge of the timer clock after the falling edge of the timer clock.

Figure 8-4 shows the timer start timing when the timer clock is LSCLK0 and frequency dividing ratio of the count clock is 1/2 of the timer clock

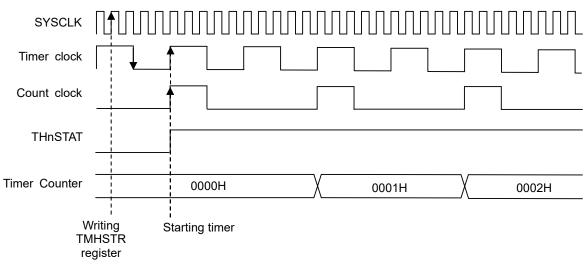
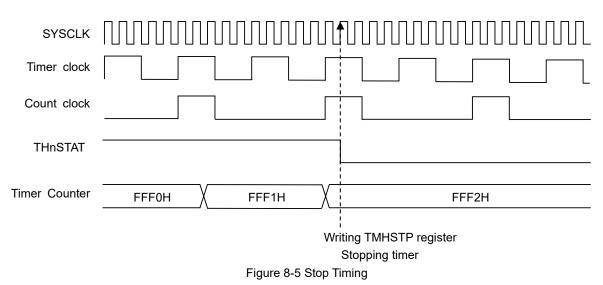




Figure 8-4 Start Timing

Writing "1" to THnSTP bit of TMHSTP register causes the counting operation to stop at the rising edge of the timer clock that follows.

Figure 8-5 shows the timer stop timing when the timer clock is LSCLK0 and frequency dividing ratio of the count clock is 1/2 of the timer clock.



### [Note]

- After THnRUN bit is set to "1", the first interrupt has a time error equivalent to maximum of one clock of the timer clock because the counting operation starts in synchronization with the timer clock. The 2<sup>nd</sup> timer interrupt or later interrupts have constant cycles.
- After THnSTP bit is set to "1", a 16-bit timer n interrupt (TMnINT) may be generated depending on the stop timing because the counting operation stops in synchronization with the timer clock.

### 8.3.3 TMHnD Register Update Timing

When TMHnD register is rewritten during timer operation, the value written to TMHnD is set at the beginning of the next cycle.

WhenTMHnD register is rewritten while the timer is stopped, the value is set immediately. Figure 8-6 shows TMHnD register update timing in continuous operation mode.

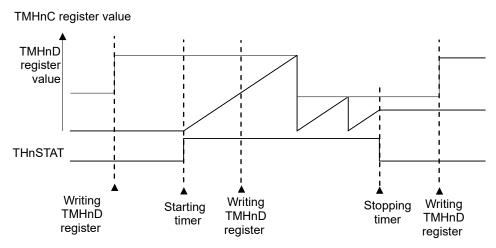
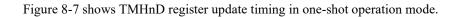




Figure 8-6 Continuous operation mode TMHnD register update timing



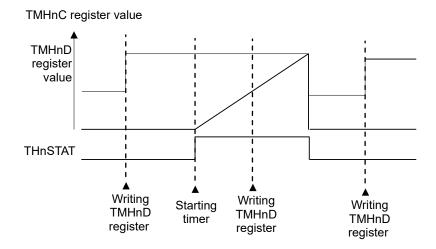



Figure 8-7 one-shot mode TMHnD register update timing

## 8.3.4 Setting Example

Figure 8-6 shows a setting example.

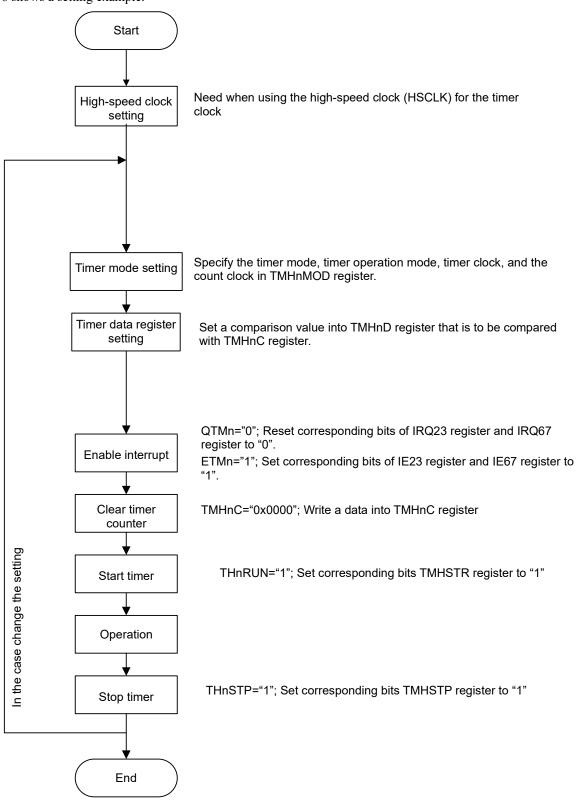
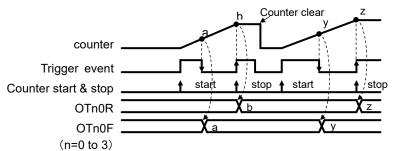



Figure 8-6 Setting Example

# Chapter 9 Operational timer

## 9. Operational timer


### 9.1 General Description

Operational timer (OTM) has two operation mode (CAPTURE mode and PWM mode) as described below.

#### CAPTURE Mode:

In this mode, the counter value is captured.

The captured value at the rising edge of the selected trigger event is stored in OTn0R register, and the captured value at the falling edge is stored in OTn0F register."



#### PWM Mode:

This mode outputs a pulse-width-modulated waveform with configurable dead time and duty cycle.

Two types of pulse-width-modulated waveforms (OTMn0 and OTMn1) with different duties are generatable with a common period for each channel.

Additionally, a pulse-width-modulated waveform are synthesizable with a pulse-width-modulated waveform generated by other channels or with an output of the analog comparator.

Refer to table 9-2 for the pin assignment of OTOnA and OTOnB.

The rise timing of the modulated OTMn0 output is set with the setting value of OTn0R register. The fall timing of the modulated OTMn0 output is set with the setting value of OTn0F register. And

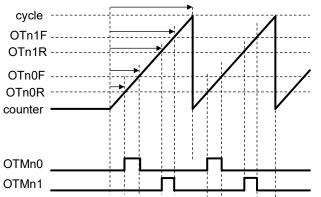
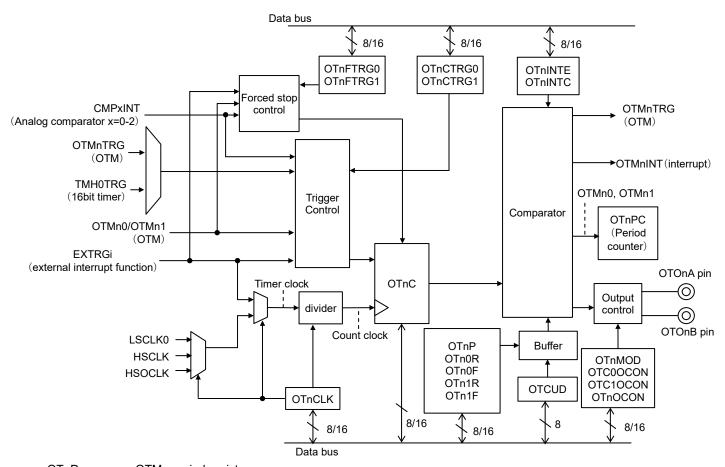



Table 9-1 shows the number of outputs for each channel.

| Iac                  |       |       |
|----------------------|-------|-------|
| Channel<br>Number(n) | OTMn0 | OTMn1 |
| 0                    | •     | •     |
| 1                    | •     | •     |
| 2                    | •     | -     |
| 3                    | •     | -     |
| 4                    | •     | •     |
| 5                    | •     | •     |
|                      |       |       |

Table 9-1 Number of output of each channel

### 9.1.1 Features


• Capture/PWM functionality using the 16bit counter

<sup>•:</sup>available -:not available

- Selectable count clock from LSCLK0(32kHz), HSCLK(16MHz), HSOCLK(64MHz), and from 1 to 128 dividers of an external trigger input.
- Logical switching of a timer output (positive logic/negative logic).
- Logical AND output with another channel's pulse-width-modulated waveform output, an external trigger, and an analog comparator output.
- In addition to periodic interrupts, interrupts that match various setting values such as duty settings is generatable.
- One shot mode.
- Adjustable timing to stop operation in continuous mode.
- Counter control (Start / Stop / Counter clear) by an external trigger input, a Timer interrupt request, an analog comparator output.
- An external trigger input, a timer interrupt request (event trigger), and an analog comparator output enable counter operation start, stop, and clear counters.
- Counter operation can be started/stopped/cleared by an external trigger input, a timer interrupt request (event trigger), and an analog comparator output.
- Forced stop of a terminal output by an external trigger input or an analog comparator output, and an interrupt generated by an external trigger input or an analog comparator output forced stop.
- Output a different duty pulse-width-modulated pulse with same cycle.
- Duty and cycle of an input signal can be measured by the capture function.

## 9.1.2 Configuration

Figure 9-1 shows the OTM circuit configuration



| OTnP     | : | OTMn period register                              |
|----------|---|---------------------------------------------------|
| OTn0R    | : | OTMn0 Rise Point register                         |
| OTn0F    | : | OTMn0 Fall Point register                         |
| OTn1R    | : | OTMn1 Rise Point register                         |
| OTn1F    | : | OTMn1 Fall Point register                         |
| OTnC     | : | OTMn counter register                             |
| OTnCTRG0 | : | OTM0 counter trigger 0 register                   |
| OTnCTRG1 | : | OTM0 counter trigger1 register                    |
| OTnFTRG0 | : | OTM0 Forced stop trigger0 register                |
| OTnFTRG1 | : | OTM0 Forced stop trigger1 register                |
| OTnMOD   | : | OTMn mode register                                |
| OTC0OCON | : | OTM common OTMn0 output logic permission register |
| OTC10CON | : | OTM common OTMn1 output logic permission register |
| OTnOCON  | : | OTMn output logic control register                |
| OTnINTE  | : | OTMn interrupt permission register                |
| OTnINTC  | : | OTMn interrupt clear register                     |
| OTMnTRG  | : | Operational timer trigger (n=0 to 5)              |
| EXTRGi   | : | External trigger / External clock (i=0 to 3)      |
| TMH0TRG  | : | 16bit timer trigger                               |
|          |   |                                                   |

Fig. 9-1 Configuration of Operational timer

## 9.1.3 Pin list

Operational timer input/output pins are assigned to general port shared function.

| Pin name  | I/O | Function                          |
|-----------|-----|-----------------------------------|
| EXI0 to 3 | Ι   | External trigger / External clock |
| OTOnA     | 0   | Operational timer n A output      |
| OTOnB     | 0   | Operational timer n B output      |

(n=0 to 5)

Table 9-2 shows the general-purpose ports and register settings used by operational timers.

|          |     |                          | Setting             |                   | Availa           | ability          |
|----------|-----|--------------------------|---------------------|-------------------|------------------|------------------|
| Pin name | Sha | ared port                | register            | Setting value     | 20pin<br>Product | 24pin<br>product |
| EXI0     |     |                          |                     |                   | •                | •                |
| EXI1     |     | Pins assig               | ned by an externa   | l interrupt       | •                | •                |
| EXI2     | R   | lefer to the sect        | ion 18 "External in | terrupt function" | •                | •                |
| EXI3     |     |                          |                     |                   | •                | •                |
| OTO0A    | P03 |                          | P0MOD3              | 0011_XXXX*1       | •                | •                |
| OTO0B    | P04 |                          | P0MOD4              | 0011_XXXX*1       | •                | •                |
| OTO1A    | P05 |                          | P0MOD5              | 0011_XXXX*1       | •                | •                |
| 07040    | P07 |                          | P0MOD7              | 0011_XXXX*1       | -                | •                |
| OTO1B    | P12 |                          | P1MOD2              | 0011_XXXX*1       | •                | •                |
| OTO2A    | P06 |                          | P0MOD6              | 0011_XXXX*1       | •                | •                |
| OTO3A    | P10 | 4 <sup>th</sup> function | P1MOD0              | 0011_XXXX*1       | •                | •                |
| OTO4A    | P11 |                          | P1MOD1              | 0011_XXXX*1       | •                | •                |
| 07040    | P02 |                          | P0MOD2              | 0011_XXXX*1       | •                | •                |
| OTO4B    | P21 |                          | P2MOD1              | 0011_XXXX*1       | -                | •                |
| OTO5A    | P23 |                          | P2MOD3              | 0011_XXXX*1       | •                | •                |
| OTOFR    | P13 |                          | P1MOD3              | 0011_XXXX*1       | •                | •                |
| OTO5B    | P22 |                          | P2MOD2              | 0011_XXXX*1       | -                | •                |

Table 9-2 Ports that use the Operational timer function and register setting

•: Available -: Not available

\*1: The setting values for XXXX are as follows

| XXXX | Port output status                     |
|------|----------------------------------------|
| 0010 | CMOS output                            |
| 1010 | Nch Open drain output(without pull up) |
| 1111 | Nch Open drain output(with pull up)    |

## 9.2 Register description

## 9.2.1 List of register

Writing to register for non-loaded channels is not valid. "0x0000" is always read out when reading.

| Address | Name                                     | -          | nbol     | R/W | Size | Initial<br>value |
|---------|------------------------------------------|------------|----------|-----|------|------------------|
| 0.5000  |                                          | Byte       | Word     |     | 0    |                  |
| 0xF380  | OTM common update register               | OTCUD      | -        | W   | 8    | 0x00             |
| 0xF381  | Reserved register                        | -          | -        | -   | -    | -                |
| 0xF382  | OTM common control register              | OTCCONL    | OTCCON   | R/W | 8/16 | 0x00             |
| 0xF383  |                                          | OTCCONH    |          | R/W | 8    | 0x00             |
| 0xF384  | OTM common start register                | OTCSTRL    | OTCSTR   | W   | 8/16 | 0x00             |
| 0xF385  |                                          | OTCSTRH    |          | W   | 8    | 0x00             |
| 0xF386  | OTM common stop register                 | OTCSTPL    | OTCSTP   | W   | 8/16 | 0x00             |
| 0xF387  |                                          | OTCSTPH    |          | W   | 8    | 0x00             |
| 0xF388  | OTM common status register               | OTCSTATL   | OTCSTAT  | R   | 8/16 | 0x00             |
| 0xF389  |                                          | OTCSTATH   |          | R   | 8    | 0x00             |
| 0xF38A  | OTM common break control register        | OTCBRK     | -        | R/W | 8    | 0x3F             |
| 0xF38B  | Reserved register                        | -          | -        | -   | -    | -                |
| 0xF38C  | OTM common OTMn0 output logical          | OTC0OCONL  | OTC0OCON | R/W | 8/16 | 0x00             |
| 0xF38D  | authorized register                      | OTC0OCONH  |          | R/W | 8    | 0x00             |
| 0xF38E  | OTM common OTMn1 output logical          | OTC10CONL  | OTC1OCON | R/W | 8/16 | 0x00             |
| 0xF38F  | authorized register                      | OTC10CONH  |          | R/W | 8    | 0x00             |
| 0xF390  | OTM0 output logical authorized register  | OT0OCONL   | OT0OCON  | R/W | 8/16 | 0x00             |
| 0xF391  |                                          | OT0OCONH   |          | R/W | 8    | 0x00             |
| 0xF392  | OTM1 output logical authorized register  | OT10CONL   | OT1OCON  | R/W | 8/16 | 0x00             |
| 0xF393  |                                          | OT1OCONH   | OTTOOON  | R/W | 8    | 0x00             |
| 0xF394  | OTM2 output logical authorized register  | OT2OCONL   | OT2OCON  | R/W | 8/16 | 0x00             |
| 0xF395  |                                          | OT2OCONH   | 0120001  | R/W | 8    | 0x00             |
| 0xF396  | OTM3 output logical authorized register  | OT3OCONL   | OT3OCON  | R/W | 8/16 | 0x00             |
| 0xF397  | O TWO Output logical authorized register | OT3OCONH   | 0130001  | R/W | 8    | 0x00             |
| 0xF398  | OTM4 output logical outborized register  | OT4OCONL   |          | R/W | 8/16 | 0x00             |
| 0xF399  | OTM4 output logical authorized register  | OT4OCONH   | OT4OCON  | R/W | 8    | 0x00             |
| 0xF39A  | OTME subsuble sized subberined register  | OT5OCONL   |          | R/W | 8/16 | 0x00             |
| 0xF39B  | OTM5 output logical authorized register  | OT5OCONH   | OT5OCON  | R/W | 8    | 0x00             |
| 0xF39C  | Deserved register                        | -          |          | -   | -    | -                |
| 0xF39D  | Reserved register                        | -          | -        | -   | -    | -                |
| 0xF39E  | Deserved register                        | -          |          | -   | -    | -                |
| 0xF39F  | Reserved register                        | -          | -        | -   | -    | -                |
| 0xF3A0  |                                          | OT0CTRG1L  | 07007004 | R/W | 8/16 | 0x00             |
| 0xF3A1  | OTM0 counter trigger 1 register          | OT0CTRG1H  | OT0CTRG1 | R/W | 8    | 0x00             |
| 0xF3A2  |                                          | OT1CTRG1L  |          | R/W | 8/16 | 0x00             |
| 0xF3A3  | OTM1 counter trigger 1 register          | OT1CTRG1H  | OT1CTRG1 | R/W | 8    | 0x00             |
| 0xF3A4  |                                          | OT2CTRG1L  |          | R/W | 8/16 | 0x00             |
| 0xF3A5  | OTM2 counter trigger 1 register          | OT2CTRG1H  | OT2CTRG1 | R/W | 8    | 0x00             |
| 0xF3A6  |                                          | OT3CTRG1L  |          | R/W | 8/16 | 0x00             |
| 0xF3A7  | OTM3 counter trigger 1 register          | OT3CTRG1H  | OT3CTRG1 | R/W | 8    | 0x00             |
| 0xF3A8  |                                          | OT4CTRG1L  |          | R/W | 8/16 | 0x00             |
| 0xF3A9  | OTM4 counter trigger 1 register          | OT4CTRG1H  | OT4CTRG1 | R/W | 8    | 0x00             |
| 0xF3AA  |                                          | OT5CTRG1L  |          | R/W | 8/16 | 0x00             |
|         | OTM5 counter trigger 1 register          | OT5CTRG1H  | OT5CTRG1 | R/W | 8    | 0x00             |
| 0xF3AB  |                                          | 0100110111 |          |     |      | 0,00             |

| Address             | Name                                | Syn       | nbol          | R/W | Size | Initia |
|---------------------|-------------------------------------|-----------|---------------|-----|------|--------|
| Audiess             |                                     | Byte      | Word          |     | Size | value  |
| 0xF3AC to<br>0xF3EE | Reserved registers                  | -         | -             | -   | -    | -      |
| 0xF3F0              | OTM Cycle setting method selection  | OTCPCL    | 07000         | R/W | 8/16 | 0x00   |
| 0xF3F1              | register                            | OTCPCH    | OTCPC         | R/W | 8    | 0x00   |
| 0xF3F2 to<br>0xF3FF | Reserved registers                  | -         | -             | -   | -    | -      |
| 0xF400              | OTM0 cycle register                 | OT0PL     | OT0P          | R/W | 8/16 | 0xFF   |
| 0xF401              |                                     | OT0PH     | OTOP          | R/W | 8    | 0xFF   |
| 0xF402              | OTM00 Rise Point register           | OT00RL    | OT00R         | R/W | 8/16 | 0x00   |
| 0xF403              | O TWO Rise Point Tegister           | OT00RH    | OTOOK         | R/W | 8    | 0x00   |
| 0xF404              | OTM00 Fall Baint register           | OT00FL    | OT00F         | R/W | 8/16 | 0x00   |
| 0xF405              | OTM00 Fall Point register           | OT00FH    | OTUUF         | R/W | 8    | 0x00   |
| 0xF406              |                                     | OT01RL    | 07040         | R/W | 8/16 | 0x00   |
| 0xF407              | OTM01 Rise Point register           | OT01RH    | OT01R         | R/W | 8    | 0x00   |
| 0xF408              |                                     | OT01FL    | 07045         | R/W | 8/16 | 0x0    |
| 0xF409              | OTM01 Fall Point register           | OT01FH    | OT01F         | R/W | 8    | 0x0    |
| 0xF40A              | OTMO sources in t                   | OT0CL     | OTOC          | R/W | 8/16 | 0x0    |
| 0xF40B              | OTM0 counter register               | OT0CH     | OT0C          | R/W | 8    | 0x0    |
| 0xF40C              |                                     | OTOSTATL  |               | R   | 8/16 | 0x0    |
| 0xF40D              | OTM0 status register                | OTOSTATH  | OT0STAT       | R   | 8    | 0x0    |
| 0xF40E              |                                     | OT0MODL   |               | R/W | 8/16 | 0x0    |
| 0xF40F              | OTM0 mode register                  | OTOMODH   | OT0MOD        | R/W | 8    | 0x4(   |
| 0xF410              |                                     | OTOSCLRL  |               | R/W | 8/16 | 0x0    |
| 0xF411              | OTM0 cycle stop timing register     | OTOSCLRH  | OT0SCLR       | R/W | 8    | 0x0(   |
| 0xF412              |                                     | OTOCLKL   |               | R/W | 8/16 | 0x00   |
| 0xF413              | OTM0 clock register                 | OTOCLKH   | OT0CLK        | R/W | 8    | 0x00   |
| 0xF414              |                                     | OTOCTRGOL |               | R/W | 8/16 | 0x0    |
| 0xF415              | OTM0 counter trigger 0 register     | OTOCTRGOH | OT0CTRG0      | R/W | 8    | 0x0(   |
| 0xF415<br>0xF416    |                                     | OTOFTRGOL |               | R/W | 8/16 | 0x00   |
| 0xF410<br>0xF417    | OTM0 Forced stop trigger 0 register | OTOFTRGOL | OT0FTRG0      | R/W | 8    | 0x00   |
| 0xF417<br>0xF418    |                                     |           |               |     |      |        |
|                     | OTM0 Forced stop trigger 1 register | OT0FTRG1L | OT0FTRG1      | R/W | 8/16 | 0x00   |
| 0xF419              |                                     | OT0FTRG1H |               | R/W | 8    | 0x00   |
| 0xF41A              | OTM0 Interrupt enable Register      | OTOINTEL  | OT0INTE       | R/W | 8/16 | 0x00   |
| 0xF41B              |                                     | OTOINTEH  |               | R/W | 8    | 0x00   |
| 0xF41C              | OTM0 interrupt status register      | OTOINTSL  | OT0INTS       | R   | 8/16 | 0x00   |
| 0xF41D              | -                                   | OTOINTSH  |               | R   | 8    | 0x00   |
| 0xF41E              | OTM0 interrupt clear register       | OTOINTCL  | -             | W   | 8    | 0x00   |
| 0xF41F              | -                                   | OTOINTCH  |               | W   | 8    | 0x00   |
| 0xF420              | OTM1 cycle register                 | OT1PL     | OT1P          | R/W | 8/16 | 0xFI   |
| 0xF421              |                                     | OT1PH     |               | R/W | 8    | 0xFI   |
| 0xF422              | OTM10 Rise Point register           | OT10RL    | OT10R         | R/W | 8/16 | 0x00   |
| 0xF423              |                                     | OT10RH    |               | R/W | 8    | 0x00   |
| 0xF424              | OTM10 Fall Point register           | OT10FL    | OT10F         | R/W | 8/16 | 0x00   |
| 0xF425              |                                     | OT10FH    |               | R/W | 8    | 0x00   |
| 0xF426              | OTM11 Rise Point register           | OT11RL    | OT11R         | R/W | 8/16 | 0x0    |
| 0xF427              |                                     | OT11RH    | _ · · · · • • | R/W | 8    | 0x0    |
| 0xF428              | OTM11 Fall Point register           | OT11FL    | OT11F         | R/W | 8/16 | 0x0    |
| 0xF429              |                                     | OT11FH    |               | R/W | 8    | 0x0    |
| 0xF42A              | OTM1 counter register               | OT1CL     | OT1C          | R/W | 8/16 | 0x0    |
| 0xF42B              |                                     | OT1CH     | 5110          | R/W | 8    | 0x0    |

| Address          | Name                                | Syn       | nbol     | R/W             | Size              | Initia               |
|------------------|-------------------------------------|-----------|----------|-----------------|-------------------|----------------------|
| Address          | Name                                | Byte      | Word     | FK/ V V         | Size              | value                |
| 0xF42C           |                                     | OT1STATL  | 07/07/7  | R               | 8/16              | 0x06                 |
| 0xF42D           | OTM1 status register                | OT1STATH  | OT1STAT  | R               | 8                 | 0x00                 |
| 0xF42E           |                                     | OT1MODL   |          | R/W             | 8/16              | 0x00                 |
| 0xF42F           | OTM1 mode register                  | OT1MODH   | OT1MOD   | R/W             | 8                 | 0x40                 |
| 0xF430           |                                     | OT1SCLRL  |          | R/W             | 8/16              | 0x00                 |
| 0xF431           | OTM1 cycle stop timing register     | OT1SCLRH  | OT1SCLR  | R/W             | 8                 | 0x00                 |
| 0xF432           |                                     | OT1CLKL   |          | R/W             | 8/16              | 0x00                 |
| 0xF433           | OTM1 clock register                 | OT1CLKH   | OT1CLK   | R/W             | 8                 | 0x00                 |
| 0xF434           |                                     | OT1CTRG0L |          | R/W             | 8/16              | 0x00                 |
| 0xF435           | OTM1 counter trigger 0 register     | OT1CTRG0H | OT1CTRG0 | R/W             | 8                 | 0x00                 |
| 0xF436           |                                     | OT1FTRG0L |          | R/W             | 8/16              | 0x00                 |
| 0xF437           | OTM1 Forced stop trigger 0 register | OT1FTRG0H | OT1FTRG0 | R/W             | 8                 | 0x00                 |
| 0xF438           |                                     | OT1FTRG1L |          | R/W             | 8/16              | 0x00                 |
| 0xF430           | OTM1 Forced stop trigger 1 register | OT1FTRG1E | OT1FTRG1 | R/W             | 8                 | 0x00                 |
|                  |                                     | OTTFIRGIN |          | R/W             | 8/16              | 0x00                 |
| 0xF43A           | OTM1 interrupt enable register      |           | OT1INTE  |                 |                   |                      |
| 0xF43B           |                                     | OT1INTEH  |          | R/W             | 8                 | 0x00                 |
| 0xF43C           | OTM1 interrupt status register      | OT1INTSL  | OT1INTS  | R               | 8/16              | 0x00                 |
| 0xF43D           |                                     | OT1INTSH  |          | R               | 8                 | 0x00                 |
| 0xF43E           | OTM1 interrupt clear register(L/H)  | OT1INTCL  | -        | W               | 8                 | 0x00                 |
| 0xF43F           |                                     | OT1INTCH  |          | W               | 8                 | 0x00                 |
| 0xF440           | OTM2 cycle register                 | OT2PL     | OT2P     | R/W             | 8/16              | 0xFI                 |
| 0xF441           |                                     | OT2PH     |          | R/W             | 8                 | 0xFl                 |
| 0xF442           | OTM20 Rise Point register           | OT20RL    | OT20R    | R/W             | 8/16              | 0x00                 |
| 0xF443           |                                     | OT20RH    | 012010   | R/W             | 8                 | 0x00                 |
| 0xF444           | OTM20 Fall Point register           | OT20FL    | OT20F    | R/W             | 8/16              | 0x00                 |
| 0xF445           |                                     | OT20FH    | 01201    | R/W             | 8                 | 0x00                 |
| 0xF446           | Reserved register                   | -         | _        | -               | -                 | -                    |
| 0xF447           |                                     | -         | _        | -               | -                 | -                    |
| 0xF448           | Reserved register                   | -         | _        | -               | -                 | -                    |
| 0xF449           |                                     | -         | _        | -               | -                 | -                    |
| 0xF44A           | OTM2 counter register               | OT2CL     | OT2C     | R/W             | 8/16              | 0x00                 |
| 0xF44B           |                                     | OT2CH     | 0120     | R/W             | 8                 | 0x0                  |
| 0xF44C           | OTM2 status register                | OT2STATL  | OTOSTAT  | R               | 8/16              | 0x02                 |
| 0xF44D           | OTM2 status register                | OT2STATH  | OT2STAT  | R               | 8                 | 0x00                 |
| 0xF44E           | OTM2 mode register                  | OT2MODL   | OTAMOD   | R/W             | 8/16              | 0x0                  |
| 0xF44F           | OTM2 mode register                  | OT2MODH   | OT2MOD   | R/W             | 8                 | 0x0                  |
| 0xF450           | OTMO such as the first sector       | OT2SCLRL  |          | R/W             | 8/16              | 0x00                 |
| 0xF451           | OTM2 cycle stop timing register     | OT2SCLRH  | OT2SCLR  | R/W             | 8                 | 0x00                 |
| 0xF452           |                                     | OT2CLKL   | 0700111  | R/W             | 8/16              | 0x00                 |
| 0xF453           | OTM2 clock register                 | OT2CLKH   | OT2CLK   | R/W             | 8                 | 0x00                 |
| 0xF454           |                                     | OT2CTRG0L | 07007555 | R/W             | 8/16              | 0x00                 |
| 0xF455           | OTM2 counter trigger 0 register     | OT2CTRG0H | OT2CTRG0 | R/W             | 8                 | 0x00                 |
| 0xF456           |                                     | OT2FTRG0L |          | R/W             | 8/16              | 0x00                 |
| 0xF457           | OTM2 Forced stop trigger 0 register | OT2FTRG0H | OT2FTRG0 | R/W             | 8                 | 0x00                 |
|                  |                                     | OT2FTRG1L | <u> </u> | R/W             | 8/16              | 0x00                 |
| 0xF458           | OTM2 Forced stop trigger 1 register | OT2FTRG1H | OT2FTRG1 | R/W             | 8                 | 0x00                 |
| 0xF458<br>0xF459 | 1 00 0                              |           | 1        | 1.7.4.4         | U U               | 0,00                 |
| 0xF459           |                                     |           |          | R/\//           | 8/16              | 0.00                 |
| 0xF459<br>0xF45A | OTM2 interrupt enable register      | OT2INTEL  | OT2INTE  | R/W             | 8/16<br>8         |                      |
| 0xF459           |                                     |           | OT2INTE  | R/W<br>R/W<br>R | 8/16<br>8<br>8/16 | 0x00<br>0x00<br>0x00 |

| Address          | Name                                                |                    | nbol           | R/W | Size | Initia<br>value |
|------------------|-----------------------------------------------------|--------------------|----------------|-----|------|-----------------|
|                  |                                                     | Byte               | Word           |     |      |                 |
| 0xF45E           | OTM2 interrupt clear register(L/H)                  | OT2INTCL           | -              | W   | 8    | 0x00            |
| 0xF45F           |                                                     | OT2INTCH           |                | W   | 8    | 0x00            |
| 0xF460           | OTM3 cycle register                                 | OT3PL              | OT3P           | R/W | 8/16 | 0xFF            |
| 0xF461           |                                                     | OT3PH              | 010            | R/W | 8    | 0xFF            |
| 0xF462           | OTM30 Rise Point register                           | OT30RL             | OT30R          | R/W | 8/16 | 0x00            |
| 0xF463           | O TWISE POINT register                              | OT30RH             | OTSOK          | R/W | 8    | 0x00            |
| 0xF464           | OTM30 Fall Point register                           | OT30FL             | OT30F          | R/W | 8/16 | 0x00            |
| 0xF465           |                                                     | OT30FH             | OTSUF          | R/W | 8    | 0x00            |
| 0xF466           | De comunadore misetem                               | -                  |                | -   | -    | -               |
| 0xF467           | Reserved register                                   | -                  | -              | -   | -    | -               |
| 0xF468           |                                                     | -                  |                | -   | -    | -               |
| 0xF469           | Reserved register                                   | -                  | -              | -   | -    | -               |
| 0xF46A           |                                                     | OT3CL              |                | R/W | 8/16 | 0x00            |
| 0xF46B           | OTM3 counter register                               | OT3CH              | OT3C           | R/W | 8    | 0x00            |
| 0xF46C           |                                                     | OT3STATL           |                | R   | 8/16 | 0x02            |
| 0xF46D           | OTM3 status register                                | OT3STATH           | OT3STAT        | R   | 8    | 0x0(            |
| 0xF46E           |                                                     | OT3MODL            |                | R/W | 8/16 | 0x0             |
| 0xF46F           | OTM3 mode register                                  | OT3MODH            | OT3MOD         | R/W | 8    | 0x0             |
| 0xF470           |                                                     | OT3SCLRL           |                | R/W | 8/16 | 0x0             |
| 0xF470           | <ul> <li>OTM3 cycle stop timing register</li> </ul> | OT3SCLRH           | OT3SCLR        | R/W | 8    | 0x0             |
| 0xF471<br>0xF472 |                                                     | OT3CLKL            |                | R/W | 8/16 | 0x0             |
| 0xF472           | <ul> <li>OTM3 clock register</li> </ul>             | OT3CLKL            | OT3CLK         | R/W | 8    | 0x0             |
|                  |                                                     |                    |                | -   | -    |                 |
| 0xF474           | OTM3 counter trigger 0 register                     | OT3CTRG0L          | OT3CTRG0       | R/W | 8/16 | 0x0             |
| 0xF475           |                                                     | OT3CTRG0H          |                | R/W | 8    | 0x00            |
| 0xF476           | OTM3 Forced stop trigger 0 register                 | OT3FTRG0L          | OT3FTRG0       | R/W | 8/16 | 0x00            |
| 0xF477           |                                                     | OT3FTRG0H          |                | R/W | 8    | 0x00            |
| 0xF478           | OTM3 Forced stop trigger 1 register                 | OT3FTRG1L          | OT3FTRG1       | R/W | 8/16 | 0x0             |
| 0xF479           | 1 33 3                                              | OT3FTRG1H          |                | R/W | 8    | 0x0             |
| 0xF47A           | OTM3 interrupt enable register                      | OT3INTEL           | <b>OT3INTE</b> | R/W | 8/16 | 0x0             |
| 0xF47B           | ••••••••••••••••••••••••••••••••••••••              | OT3INTEH           |                | R/W | 8    | 0x0             |
| 0xF47C           | OTM3 interrupt status register                      | OT3INTSL           | OT3INTS        | R   | 8/16 | 0x0             |
| 0xF47D           |                                                     | OT3INTSH           | 0101110        | R   | 8    | 0x0             |
| 0xF47E           | OTM3 interrupt clear register(L/H)                  | OT3INTCL           | _              | W   | 8    | 0x0             |
| 0xF47F           |                                                     | OT3INTCH           | _              | W   | 8    | 0x0             |
| 0xF480           | OTM4 cycle register                                 | OT4PL              | OT4P           | R/W | 8/16 | 0xF             |
| 0xF481           |                                                     | OT4PH              |                | R/W | 8    | 0xF             |
| 0xF482           | OTM/0 Rise Point register                           | OT40RL             | OT40R          | R/W | 8/16 | 0x0             |
| 0xF483           | OTM40 Rise Point register                           | OT40RH             |                | R/W | 8    | 0x0             |
| 0xF484           | OTM40 Foll Deint register                           | OT40FL             |                | R/W | 8/16 | 0x0             |
| 0xF485           | OTM40 Fall Point register                           | OT40FH             | OT40F          | R/W | 8    | 0x0             |
| 0xF486           |                                                     | OT41RL             | 07445          | R/W | 8/16 | 0x0             |
| 0xF487           | OTM41 Rise Point register                           | OT41RH             | OT41R          | R/W | 8    | 0x0             |
| 0xF488           |                                                     | OT41FL             | <b>6711</b>    | R/W | 8/16 | 0x0             |
| 0xF489           | OTM41 Fall Point register                           | OT41FH             | OT41F          | R/W | 8    | 0x0             |
| 0xF48A           |                                                     | OT4CL              |                | R/W | 8/16 | 0x0             |
| 0xF48B           | OTM4 counter register                               | OT4CH              | OT4C           | R/W | 8    | 0x0             |
| 0xF48C           |                                                     | OT4STATL           |                | R   | 8/16 | 0x06            |
| 0xF48D           | <ul> <li>OTM4 status register</li> </ul>            | OT4STATH           | OT4STAT        | R   | 8    | 0x00            |
| 0xF48E           |                                                     | OT4MODL            |                | R/W | 8/16 | 0x0             |
|                  | <ul> <li>OTM4 mode register</li> </ul>              | OT4MODE<br>OT4MODH | OT4MOD         | R/W | 8    | 0x40            |

| Addross          | Nama                                                    | Syr                  | nbol     |     | Size | Initial |
|------------------|---------------------------------------------------------|----------------------|----------|-----|------|---------|
| Address          | Name                                                    | Byte                 | Word     | R/W | Size | value   |
| 0xF490           |                                                         | OT4SCLRL             |          | R/W | 8/16 | 0x00    |
| 0xF491           | OTM4 cycle stop timing register                         | OT4SCLRH             | OT4SCLR  | R/W | 8    | 0x00    |
| 0xF492           |                                                         | OT4CLKL              |          | R/W | 8/16 | 0x00    |
| 0xF493           | OTM4 clock register                                     | OT4CLKH              | OT4CLK   | R/W | 8    | 0x00    |
| 0xF494           |                                                         | OT4CTRG0L            |          | R/W | 8/16 | 0x00    |
| 0xF495           | OTM4 counter trigger 0 register                         | OT4CTRG0H            | OT4CTRG0 | R/W | 8    | 0x00    |
| 0xF496           |                                                         | OT4FTRG0L            |          | R/W | 8/16 | 0x00    |
| 0xF497           | OTM4 Forced stop trigger 0 register                     | OT4FTRG0H            | OT4FTRG0 | R/W | 8    | 0x00    |
| 0xF498           |                                                         | OT4FTRG1L            |          | R/W | 8/16 | 0x00    |
| 0xF499           | OTM4 Forced stop trigger 1 register                     | OT4FTRG1H            | OT4FTRG1 | R/W | 8    | 0x00    |
| 0xF49A           |                                                         | OT4INTEL             |          | R/W | 8/16 | 0x00    |
| 0xF49B           | OTM4 interrupt enable register                          | OT4INTEH             | OT4INTE  | R/W | 8    | 0x00    |
| 0xF49C           |                                                         | OT4INTSL             |          | R   | 8/16 | 0x00    |
| 0xF49D           | <ul> <li>OTM4 interrupt status register</li> </ul>      | OT4INTSH             | OT4INTS  | R   | 8    | 0x00    |
| 0xF49E           |                                                         | OT4INTCL             |          | W   | 8    | 0x00    |
| 0xF49F           | OTM4 interrupt clear register(L/H)                      | OT4INTCH             | -        | W   | 8    | 0x00    |
| 0xF4A0           |                                                         | OT5PL                |          | R/W | 8/16 | 0xFF    |
| 0xF4A1           | <ul> <li>OTM5 cycle register</li> </ul>                 | OT5PH                | OT5P     | R/W | 8    | 0xFF    |
| 0xF4A2           |                                                         | OT50RL               |          | R/W | 8/16 | 0x00    |
| 0xF4A3           | <ul> <li>OTM50 Rise Point register</li> </ul>           | OT50RH               | OT50R    | R/W | 8    | 0x00    |
| 0xF4A4           |                                                         | OT50FL               |          | R/W | 8/16 | 0x00    |
| 0xF4A5           | <ul> <li>OTM50 Fall Point register</li> </ul>           | OT50FH               | OT50F    | R/W | 8    | 0x00    |
| 0xF4A6           |                                                         | OT51RL               |          | R/W | 8/16 | 0x00    |
| 0xF4A7           | OTM51 Rise Point register                               | OT51RH               | OT51R    | R/W | 8    | 0x00    |
| 0xF4A8           |                                                         | OT51FL               |          | R/W | 8/16 | 0x00    |
| 0xF4A9           | <ul> <li>OTM51 Fall Point register</li> </ul>           | OT51FH               | OT51F    | R/W | 8    | 0x00    |
| 0xF4AA           |                                                         | OT5CL                |          | R/W | 8/16 | 0x00    |
| 0xF4AB           | OTM5 counter register                                   | OT5CH                | OT5C     | R/W | 8    | 0x00    |
| 0xF4AC           |                                                         | OT5STATL             |          | R   | 8/16 | 0x06    |
| 0xF4AD           | <ul> <li>OTM5 status register</li> </ul>                | OT5STATH             | OT5STAT  | R   | 8    | 0x00    |
| 0xF4AE           |                                                         | OT5MODL              |          | R/W | 8/16 | 0x00    |
| 0xF4AF           | <ul> <li>OTM5 mode register</li> </ul>                  | OT5MODH              | OT5MOD   | R/W | 8    | 0x40    |
| 0xF4B0           |                                                         | OT5SCLRL             | <u> </u> | R/W | 8/16 | 0x00    |
| 0xF4B1           | <ul> <li>OTM5 cycle stop timing register</li> </ul>     | OT5SCLRH             | OT5SCLR  | R/W | 8    | 0x00    |
| 0xF4B2           |                                                         | OT5CLKL              |          | R/W | 8/16 | 0x00    |
| 0xF4B3           | OTM5 clock register                                     | OT5CLKH              | OT5CLK   | R/W | 8    | 0x00    |
| 0xF4B4           |                                                         | OT5CTRG0L            |          | R/W | 8/16 | 0x00    |
| 0xF4B5           | OTM5 counter trigger 0 register                         | OT5CTRG0H            | OT5CTRG0 | R/W | 8    | 0x00    |
| 0xF4B6           |                                                         | OT5FTRG0L            |          | R/W | 8/16 | 0x00    |
| 0xF4B7           | OTM5 Forced stop trigger 0 register                     | OT5FTRG0H            | OT5FTRG0 | R/W | 8    | 0x00    |
| 0xF4B8           |                                                         | OT5FTRG1L            |          | R/W | 8/16 | 0x00    |
| 0xF4B9           | <ul> <li>OTM5 Forced stop trigger 1 register</li> </ul> | OT5FTRG1H            | OT5FTRG1 | R/W | 8    | 0x00    |
| 0xF4B9           |                                                         | OT5INTEL             |          | R/W | 8/16 | 0x00    |
| 0xF4BA           | <ul> <li>OTM5 interrupt enable register</li> </ul>      | OTSINTEL             | OT5INTE  | R/W | 8    | 0x00    |
| 0xF4BC           |                                                         | OTSINTEL             |          | R   | 8/16 | 0x00    |
| 0xF4BC<br>0xF4BD | <ul> <li>OTM5 interrupt status register</li> </ul>      | OT5INTSL<br>OT5INTSH | OT5INTS  | R   | 8    | 0x00    |
|                  |                                                         | OTSINTSH             |          | W   | 8    |         |
| 0xF4BE           | OTM5 interrupt clear register(L/H)                      |                      | -        |     |      | 0x00    |
| 0xF4BF           |                                                         | OT5INTCH             |          | W   | 8    | 0x00    |

## 9.2.2 OTMn cycle register OTnP : n=0 to 5)

OTnP is a SFR to set OTMn cycle (clock count) The configurable range is 0x0001 to 0xFFFF (clock count:2 to 65536)

If "1" is written to either OTnPC0 or OTnPC1 bits of OTCPC register, the read value of OTnP register is the buffer value set in OTCPC register..

See "9.3.7 Changes during periodic and duty operation" for details on buffers. Writing to OTnP register is invalid in this time.

Address: 0xF400(OT0PL/OT0P), 0xF401(OT0PH), 0xF420(OT1PL/OT1P), 0xF421(OT1PH), 0xF440(OT2PL/OT2P), 0xF441(OT2PH), 0xF460(OT3PL/OT3P), 0xF461(OT3PH), 0xF480(OT4PL/OT4P), 0xF481(OT4PH), 0xF4A0(OT5PL/OT5P), 0xF4A1(OT5PH) Access: R/W Access size: 8bit/16bit Initial value: 0xFFFF 15 13 7 0 14 12 11 10 9 8 6 5 4 3 2 1 Word OTnP OTnPH OTnPL Byte OTnP1 OTnP1 OTnP1 OTnP1 OTnP1 OTnP1 Blt OTnP9 OTnP8 OTnP7 OTnP6 OTnP5 OTnP4 OTnP3 OTnP2 OTnP1 OTnPC 5 4 3 2 0 R/W Initial 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Value Bit No. Bit symbol name Description 15 to 0 OTnP15 to OTnP0 0x0001 to 0xFFFF: Set the period to the set value in OTnP register + 1 clock.

#### [Note]

When 0x0000 is written in this register, 0x0001 is set and the read value is also becoming 0x0001.

## 9.2.3 OTMn0 Rise Point register (OTn0R : n=0 to 5)

OTn0R is a SFR to set rise timing of output or store a captured data. In CAPTURE mode, the register is read only (writing is invalid).

| Addr             | Address:         0xF402(OT00RL/OT00R), 0xF403(OT00RH), 0xF422(OT10RL/OT10R), 0xF423(OT10RH),           0xF442(OT20RL/OT20R), 0xF443(OT20RH), 0xF462(OT30RL/OT30R), 0xF463(OT30RH),           0xF482(OT40RL/OT40R), 0xF483(OT40RH), 0xF4A2(OT50RL/OT50R), 0xF4A3(OT50RH) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |             |             |             |            |            |            |            |            |            | ,          |            |            |            |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | ess:<br>ess size<br>al value:                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W<br>16bit<br>:0000 |             |             |             |            |            |            |            |            |            |            |            |            |            |
|                  | 15                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                  | 12          | 11          | 10          | 9          | 8          | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |             |             |             |            | OTi        | n0R        |            |            |            |            |            |            |            |
| Byte             |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | OTn         | 0RH         |             |            |            |            |            |            | OTn        | 0RL        |            |            |            |
| Bit              | OTn0R<br>15                                                                                                                                                                                                                                                             | OTn0R<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OTn0R<br>13         | OTn0R<br>12 | OTn0R<br>11 | OTn0R<br>10 | OTn0R<br>9 | OTn0R<br>8 | OTn0R<br>7 | OTn0R<br>6 | OTn0R<br>5 | OTn0R<br>4 | OTn0R<br>3 | OTn0R<br>2 | OTn0R<br>1 | OTn0R<br>0 |
| R/W              | R/W                                                                                                                                                                                                                                                                     | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W                 | R/W         | R/W         | R/W         | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                   | 0           | 0           | 0           | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Bit<br>No.       | Bi                                                                                                                                                                                                                                                                      | t symbo<br>name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ol                  |             |             |             |            |            | De         | escriptio  | on         |            |            |            |            |            |
| 15 to 0          |                                                                                                                                                                                                                                                                         | Bit symbol<br>name       Description         OTn0R15 to<br>OTn0R0       CAPTURE mode<br>0x0000 to 0xFFFF: Captured count value is stored.<br>Reading out of this register clears the status bit which indicate capture<br>status shown below.<br>- OTnFLGA bit of OTnSTAT register<br>- OTnISOR bit of OTnINTS register         PWM mode<br>0x0000 to 0xFFFF: Set rise timing of OTMn0 output.<br>OTMn0 output becomes "H" when counter value = OTn0R.<br>If same value is set to both OTn0R and OTn0F, the duty becomes 0%. |                     |             |             |             |            |            |            |            |            |            |            |            |            |            |

## 9.2.4 OTMn0 Fall Point register (OTn0F : n=0 to 5)

OTn0F is a SFR to set Fall timing of output or store a captured data. In CAPTURE mode, the register is read only (writing is invalid).

| Acce             | Address:       0xF404(OT00FL/OT00F), 0xF405(OT00FH), 0xF424(OT10FL/OT10F), 0xF425(OT10FH),<br>0xF444(OT20FL/OT20F), 0xF445(OT20FH), 0xF464(OT30FL/OT30F), 0xF465(OT30FH),<br>0xF484(OT40FL/OT40F), 0xF485(OT40FH), 0xF4A4(OT50FL/OT50F), 0xF4A5(OT50FH)         Accesss ize:       8/16bit         nitial value:       0x0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |             |             |             |             |                                                  |                                                               |                                                                 |                                                   |                                                 |              |            |                               |            |                |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|-------------|-------------|-------------|--------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------|------------|-------------------------------|------------|----------------|
| ITIIIZ           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             |             |             |             |                                                  |                                                               |                                                                 |                                                   |                                                 |              |            |                               |            |                |
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14               | 13          | 12          | 11          | 10          | 9                                                | 8                                                             | 7                                                               | 6                                                 | 5                                               | 4            | 3          | 2                             | 1          | 0              |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             |             |             |             |                                                  | 01                                                            | n0F                                                             |                                                   |                                                 |              |            |                               |            |                |
| Byte             | OTn0FH         OTn0FL           OTn0F OTNF OTNF OTNF OTNF OTNF OTNF OTNF OTN |                  |             |             |             |             |                                                  |                                                               |                                                                 |                                                   |                                                 |              |            |                               |            |                |
| Bit              | OTn0F<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OTn0F<br>14      | OTn0F<br>13 | OTn0F<br>12 | OTn0F<br>11 | OTn0F<br>10 | OTn0F<br>9                                       | OTn0F<br>8                                                    | OTn0F<br>7                                                      | OTn0F<br>6                                        | OTn0F<br>5                                      | OTn0F<br>4   | OTn0F<br>3 | OTn0F<br>2                    | OTn0F<br>1 | OTn0F<br>0     |
| R/W              | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R/W              | R/W         | R/W         | R/W         | R/W         | R/W                                              | R/W                                                           | R/W                                                             | R/W                                               | R/W                                             | R/W          | R/W        | R/W                           | R/W        | R/W            |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                | 0           | 0           | 0           | 0           | 0                                                | 0                                                             | 0                                                               | 0                                                 | 0                                               | 0            | 0          | 0                             | 0          | 0              |
| Bit<br>No.       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | it symb<br>name  | ol          |             |             |             |                                                  |                                                               | De                                                              | escripti                                          | on                                              |              |            |                               |            |                |
| 15 to 0          | OTn<br>OTn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10F15 ta<br>10F0 |             | PWM m       | 0 to 0x     | FFFF:       | status<br>- OTnF<br>- OTnI<br>Set fall f<br>OTMn | ng out c<br>shown<br>FLGB b<br>SOF bit<br>timing c<br>0 outpu | of this re<br>below.<br>it of OT<br>of OTr<br>of OTM<br>t becor | egister<br>nSTAT<br>nINTS r<br>n0 outp<br>mes "L" | clears s<br>registe<br>egister<br>ut.<br>when o | r<br>counter | value :    | n indica<br>= OTn0<br>ne duty | F          | ure<br>ues 0%. |

## 9.2.5 OTMn1 Rise Point register (OTn1R : n=0, 1, 4, 5)

OTn1R is a SFR to set rising time of OTMn1 output.

| Addı             | ress:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x              | F486(               | OT01RI<br>OT41RI |     |     |     |     |     |           |     |     |     |     |     |     |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|------------------|-----|-----|-----|-----|-----|-----------|-----|-----|-----|-----|-----|-----|
|                  | ess:<br>ess size<br>al value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e: 8/           | W<br>16bit<br>:0000 |                  |     |     |     |     |     |           |     |     |     |     |     |     |
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14              | 13                  | 12               | 11  | 10  | 9   | 8   | 7   | 6         | 5   | 4   | 3   | 2   | 1   | 0   |
| Word             | OTn1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                     |                  |     |     |     |     |     |           |     |     |     |     |     |     |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                     |                  |     |     |     |     |     |           |     |     |     |     |     |     |
| Bit              | OTn1R OTN1 |                 |                     |                  |     |     |     |     |     |           |     |     |     |     |     |     |
| R/W              | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R/W             | R/W                 | R/W              | R/W | R/W | R/W | R/W | R/W | R/W       | R/W | R/W | R/W | R/W | R/W | R/W |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0               | 0                   | 0                | 0   | 0   | 0   | 0   | 0   | 0         | 0   | 0   | 0   | 0   | 0   | 0   |
| Bit<br>No.       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | it symb<br>name | ol                  |                  |     |     |     |     | De  | escriptio | on  |     |     |     |     |     |
| 15 to 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                     |                  |     |     |     |     |     |           |     |     |     |     |     |     |

## 9.2.6 OTMn1 Fall Point register (OTn1F : n=0, 1, 4, 5)

OTn1F is a SFR to set falling time of OTMn1 output.

| Addr             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x              | F488(               |     |     |     |     |     |     |           | 11FL/C<br>51FL/C |     | ,   |     |     |     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|-----|-----|-----|-----|-----|-----|-----------|------------------|-----|-----|-----|-----|-----|
|                  | ess:<br>ess size<br>al value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | W<br>16bit<br>:0000 |     |     |     |     |     |     |           |                  |     |     |     |     |     |
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14              | 13                  | 12  | 11  | 10  | 9   | 8   | 7   | 6         | 5                | 4   | 3   | 2   | 1   | 0   |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                     |     |     |     |     | OT  | n1F |           |                  |     |     |     |     |     |
| Byte             | OTn1FH OTn1FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                     |     |     |     |     |     |     |           |                  |     |     |     |     |     |
| bit              | OTn1F         OTn1F <th< td=""></th<> |                 |                     |     |     |     |     |     |     |           |                  |     |     |     |     |     |
| R/W              | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R/W             | R/W                 | R/W | R/W | R/W | R/W | R/W | R/W | R/W       | R/W              | R/W | R/W | R/W | R/W | R/W |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0               | 0                   | 0   | 0   | 0   | 0   | 0   | 0   | 0         | 0                | 0   | 0   | 0   | 0   | 0   |
| Bit<br>No.       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | it symb<br>name | ol                  |     |     |     |     |     | De  | escriptio | on               |     |     |     |     |     |
| 15 to 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                     |     |     |     |     |     |     |           |                  |     |     |     |     |     |

## 9.2.7 OTMn counter register (OTnC : n=0 to 5)

OTnC is a SFR to monitor OTMn count value.

When any data is written, OTnC is cleared to "0x0000".

| Addr             | ess :      | 0x         | F44A(      | OT0CL<br>OT2CL<br>OT4CL | (OT2C)     | , 0xF4     | 4B(OT | 2CH), | 0xF46A | A(OT30 | CL/OT3 | C), 0xl | F46B(C | DT3CH | ),    |       |
|------------------|------------|------------|------------|-------------------------|------------|------------|-------|-------|--------|--------|--------|---------|--------|-------|-------|-------|
| Acce             | ess:       | R/         | W/         |                         |            |            |       |       |        |        |        |         |        |       |       |       |
|                  | ess size   | •••••      | 16bit      |                         |            |            |       |       |        |        |        |         |        |       |       |       |
| initia           | l value    | : 0x       | 0000       |                         |            |            |       |       |        |        |        |         |        |       |       |       |
|                  | 15         | 14         | 13         | 12                      | 11         | 10         | 9     | 8     | 7      | 6      | 5      | 4       | 3      | 2     | 1     | 0     |
| Word             |            |            |            |                         |            |            |       | ОТ    | 'nC    |        |        |         |        |       |       |       |
| Byte             |            |            |            | OTr                     | пCH        |            |       |       |        |        |        | OTi     | nCL    |       |       |       |
| Bit              | OTnC1<br>5 | OTnC1<br>4 | OTnC1<br>3 | OTnC1<br>2              | OTnC1<br>1 | OTnC1<br>0 | OTnC9 | OTnC8 | OTnC7  | OTnC6  | OTnC5  | OTnC4   | OTnC3  | OTnC2 | OTnC1 | OTnC0 |
| R/W              | R/W        | R/W        | R/W        | R/W                     | R/W        | R/W        | R/W   | R/W   | R/W    | R/W    | R/W    | R/W     | R/W    | R/W   | R/W   | R/W   |
| Initial<br>value | 0          | 0          | 0          | 0                       | 0          | 0          | 0     | 0     | 0      | 0      | 0      | 0       | 0      | 0     | 0     | 0     |

[Note]

If the timer clock frequency is same as the system clock frequency, a proper counted value is readout.

If the timer clock frequency is faster than the system clock frequency, a wrong value is readout.

If the timer clock frequency is slower than the system clock frequency, read OTnC multiple times and determine the validity from the period difference between the timer clock and the system clock and the increase in the count value.

## 9.2.8 OTMn status register (OTnSTAT : n=0 to 5)

OTnSTAT is a SFR to indicate OTMn status.

| Addr             | Address:         0xF40C(OT0STATL/OT0STAT), 0xF40D(OT0STATH),<br>0xF42C(OT1STATL/OT1STAT), 0xF42D(OT1STATH),<br>0xF44C(OT2STATL/OT2STAT), 0xF44D(OT2STATH),<br>0xF46C(OT3STATL/OT3STAT), 0xF46D(OT3STATH),<br>0xF48C(OT4STATL/OT4STAT), 0xF48D(OT4STATH),<br>0xF4AC(OT5STATL/OT5STAT), 0xF4AD(OT5STATH) |    |        |      |      |    |   |     |            |             |             |             |      |               |              |       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|------|------|----|---|-----|------------|-------------|-------------|-------------|------|---------------|--------------|-------|
| Acce             | ess:                                                                                                                                                                                                                                                                                                   | R  |        |      |      |    |   |     |            |             |             |             |      |               |              |       |
| Acce             | ss size:                                                                                                                                                                                                                                                                                               | 8/ | 16 bit |      |      |    |   |     |            |             |             |             |      |               |              |       |
| Initia           | l value:                                                                                                                                                                                                                                                                                               | 0x | 0000   |      |      |    |   |     |            |             |             |             |      |               |              |       |
|                  |                                                                                                                                                                                                                                                                                                        |    |        |      |      |    |   |     |            |             |             |             |      |               |              |       |
| _                | 15                                                                                                                                                                                                                                                                                                     | 14 | 13     | 12   | 11   | 10 | 9 | 8   | 7          | 6           | 5           | 4           | 3    | 2             | 1            | 0     |
| Word             |                                                                                                                                                                                                                                                                                                        |    |        |      |      |    |   | OTn | STAT       |             |             |             |      |               |              |       |
| Byte             |                                                                                                                                                                                                                                                                                                        |    |        | OTnS | TATH |    |   |     |            |             |             | OTnS        | FATL |               |              |       |
| Bit              | -                                                                                                                                                                                                                                                                                                      | -  | -      | -    | -    | -  | - | -   | OTnST<br>A | OTnFL<br>GC | OTnFL<br>GB | OTnFL<br>GA | -    | OTnOB<br>STA* | OTnOA<br>STA | OTnUD |
| R/W              | R                                                                                                                                                                                                                                                                                                      | R  | R      | R    | R    | R  | R | R   | R          | R           | R           | R           | R    | R             | R            | R     |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                      | 0  | 0      | 0    | 0    | 0  | 0 | 0   | 0          | 0           | 0           | 0           | 0    | 0             | 0            | 0     |
| * • N            | Not evailable in CH2 and CH2                                                                                                                                                                                                                                                                           |    |        |      |      |    |   |     |            |             |             |             |      |               |              |       |

\* : Not available in CH2 and CH3.

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 8    | -                  | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7          | OTnSTA             | Indicate OTMn operating status.<br>0: Counter stopped (initial value)<br>1: Counter in operation                                                                                                                                                                                                                                                                                                                             |
| 6          | OTnFLGC            | Indicate whether the setting of OTnCST bit of OTnMOD register is valid or not.<br>When OTnFLGC bit is set to "1", the counter start by the counter control trigger is disabled.<br>When the value of OTnC register is read out, it is automatically cleared.<br>0: Startable status by event trigger (initial value)<br>1: Un-startable status by event trigger                                                              |
| 5          | OTnFLGB            | Indicate flag B status.<br>•CAPTURE mode<br>0: No capture data (initial value)<br>1: With capture data (cleared by reading out OTn0F register)<br>•PWM mode*1<br>0: "L" is output from OTOnB pin. (Initial value)<br>1: "H" is output from OTOnB pin.<br>*1) CH2, CH3 (n=2,3) is always fixed at 0 in PWM mode.                                                                                                              |
| 4          | OTnFLGA            | Indicate flag A status.<br>•CAPTURE mode<br>0: No capture data (initial value)<br>1: With capture data (cleared by reading out OTn0R register)<br>•PWM mode<br>0: "L" is output from OTOnA pin. (Initial value)<br>1: "H" is output from OTOnA pin.                                                                                                                                                                          |
| 3          | -                  | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2          | OTnOBSTA           | <ul> <li>Indicate OTMn1 output status *Not available in CH2 and CH3.</li> <li>CAPTURE mode</li> <li>The read value of this bit is always fixed at 0.</li> <li>PWM mode*1</li> <li>0: Indicate that OTMn1 output is as set (initial value).</li> <li>1: Indicate that OTMn1 output is fixed to the value set by OTnSTPON bit of OTnMOD register.</li> <li>*1) CH2, CH3 (n=2, 3) are always fixed to 0 in PWM mode.</li> </ul> |

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                      |
|------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | OTnOASTA           | <ul> <li>Indicate OTMn0 output status.</li> <li>CAPTURE mode</li> <li>The read value of this bit is always fixed at 0.</li> <li>PWM mode</li> <li>0: Indicate that OTMn0 output is as set (initial value).</li> <li>1: Indicate that OTMn0 output is fixed to the value set by OTnSTPOP bit of OTnMOD register.</li> </ul>       |
| 0          | OTnUD              | Indicate the status of the completion after generating an update request of OTnP register or<br>OTn0R/OTn0F/OTn1R/OTn1F register by writing "1" to OTCUDn bit of OTCUD register.<br>When the transfer is completed, this bit is cleared automatically.<br>0: The update is completed (Initial value)<br>1: Requesting the update |

## [Note]

When switching from PWM mode to CAPTURE mode, OTnFLGA bit and OTnFLGB bits might be unintentionally set to "1".

So, when switching to CAPTURE mode, read OTn0R register and OTn0F register once to initialize OTnFLGA and OTnFLGB bits.

## 9.2.9 OTMn mode register (OTnMOD : n=0 to 5)

| OTnMOD is a SFR to select OTMn output. |                                          |  |  |  |  |  |  |  |  |
|----------------------------------------|------------------------------------------|--|--|--|--|--|--|--|--|
| Address:                               | 0xF40E(OT0MODL/OT0MOD), 0xF40F(OT0MODH), |  |  |  |  |  |  |  |  |
|                                        | 0xF42E(OT1MODL/OT1MOD), 0xF42F(OT1MODH), |  |  |  |  |  |  |  |  |
|                                        | 0xF44E(OT2MODL/OT2MOD), 0xF44F(OT2MODH), |  |  |  |  |  |  |  |  |
|                                        | 0xF46E(OT3MODL/OT3MOD), 0xF46F(OT3MODH)  |  |  |  |  |  |  |  |  |
|                                        | 0xF48E(OT4MODL/OT4MOD), 0xF48F(OT4MODH), |  |  |  |  |  |  |  |  |
|                                        | 0xF4AE(OT5MODL/OT5MOD), 0xF4AF(OT5MODH)  |  |  |  |  |  |  |  |  |
| Access:                                | R/W                                      |  |  |  |  |  |  |  |  |
| Access size:                           | 8/16bit                                  |  |  |  |  |  |  |  |  |
| Initial value:                         | 0x4000                                   |  |  |  |  |  |  |  |  |

|                  | 15           | 14           | 13           | 12          | 11 | 10 | 9             | 8            | 7          | 6            | 5           | 4          | 3 | 2 | 1 | 0          |
|------------------|--------------|--------------|--------------|-------------|----|----|---------------|--------------|------------|--------------|-------------|------------|---|---|---|------------|
| Word             |              |              |              |             |    |    |               | OTn          | MOD        |              |             |            |   |   |   |            |
| Byte             | OTnMODH      |              |              |             |    |    |               | OTnMODL      |            |              |             |            |   |   |   |            |
| Bit              | OTnOS<br>L1* | OTnOS<br>L0* | OTnOS<br>NB* | OTnOS<br>NA | -  | -  | OTnST<br>PON* | OTnST<br>POP | OTnOS<br>T | OTnST<br>SYN | OTnDC<br>LH | OTnCS<br>T | - | - | - | OTnM<br>D0 |
| R/W              | R/W          | R/W          | R/W          | R/W         | R  | R  | R/W           | R/W          | R/W        | R/W          | R/W         | R/W        | R | R | R | R/W        |
| Initial<br>value | 0            | 1            | 0            | 0           | 0  | 0  | 0             | 0            | 0          | 0            | 0           | 0          | 0 | 0 | 0 | 0          |

\* : Not available in CH2 and CH3.

| Bit<br>No. | Bit symbol name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15         | OTnOSL1         | Selects the phase of the signal to be output from OTOnB pin. *Not available in CH2 and CH3.<br>0: Output OTMn1 from OTOnB pin (Initial value)<br>1: Output OTMn0 from OTOnB pin                                                                                                                                                                                                                                                                                                                                                                            |
| 14         | OTnOSL0         | Selects the phase of the signal to be output from OTOnA pin. *Not available in CH2 and CH3.<br>OTO1A and OTO3A is fixed to<br>0: Output OTMn1 from OTOnA pin (Initial value)<br>1: Output OTMn0 from OTOnA pin                                                                                                                                                                                                                                                                                                                                             |
| 13         | OTnOSNB         | Inverts OTOnB pin output signal. *Not available in CH2 and CH3.<br>Invert the signal selected by OTnOSL1 (bit 15).<br>0: No invert the output (initial values)<br>1: Invert the output                                                                                                                                                                                                                                                                                                                                                                     |
| 12         | OTnOSNA         | Inverts OTOnA pin output signal.<br>Invert the signal selected by OTnOSL0 (bit 14).<br>0: No invert the output (initial values)<br>1: Invert the output                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11, 10     | -               | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9          | OTnSTPON        | <ul> <li>Set OTMn1 output state during the counter is stopped or during the output is stopped in forced stop state. *Not available in CH2 and CH3.</li> <li>•CAPTURE mode <ul> <li>Not used.</li> <li>•PWM mode</li> <li>0: Set OTMn1 output "L" when stopped. (Initial value)</li> <li>If the counter is restarted without clearing, the state will be "L" until the next cycle.</li> <li>1: Set OTMn1 output "H" when stopped.</li> <li>If the counter is restarted without clearing, the state will be "H" until the next cycle.</li> </ul> </li> </ul> |
| 8          | OTnSTPOP        | <ul> <li>Set OTMn0 output state during the counter is stopped or during the output is stopped in forced stop state.</li> <li>CAPTURE mode <ul> <li>Not used.</li> <li>PWM mode</li> <li>O: Set OTMn0 output "L" when stopped. (Initial value)</li> <li>If the counter is restarted without clearing, the state will be "L" until the next cycle.</li> <li>1: Set OTMn0 output "H" when stopped.</li> <li>If the counter is restarted without clearing, the state will be "H" until the next cycle.</li> </ul> </li> </ul>                                  |

### ML62Q2033/2035/2043/2045 User's Manual Chapter 9 Operational timer

# ROHM Co., Ltd.

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | OTnOST             | <ul> <li>Set OTMn operation mode (continuous mode/one-shot mode).</li> <li>•CAPTURE mode <ul> <li>0: Auto mode (Initial value)</li> <li>Whenever a capture trigger comes to OTn0R and OTn0F registers, these registers are updated to the captured data.</li> <li>1: Single mode <ul> <li>Once the data is captured to OTn0R or OTn0F register, the next capture will not be performed until it is readout.</li> </ul> </li> <li>•PWM mode <ul> <li>0: Continuous mode (initial value)</li> <li>1: One-shot mode</li> </ul> </li> </ul></li></ul>                                                                                                                                                                                                                                                                                                                                                               |
| 6          | OTnSTSYN           | <ul> <li>Set OTMn stop timing <ul> <li>Stop at the timing of writing the corresponding bit of OTCSTP register or stop when a stop input is received due to a trigger event. (Initial value) <ul> <li>Stop after writing the corresponding bit of OTCSPT register, or after accepting a stop input by a trigger event, wait for the interval set by OTnSCLR register from the end of the period and stop.</li> </ul> </li> <li>The setting of this bit is enabled when the software is stopped or when it is stopped by a trigger event. <ul> <li>It is not valid for stopping by force stop. In capture mode and one-shot mode, the setting of this bit is disabled.</li> <li>When this bit is set to "1", if a software stop or trigger event stop is entered, and a count start by software or trigger input is entered before the end of the cycle is reached, the counting</li> </ul> </li> </ul></li></ul> |
| 5          | OTnDCLH            | operation will continue without stopping at the end of the cycle.<br>Disable counter clear by a trigger event when OTMn0 level is "H".<br>•CAPTURE mode<br>Unused<br>•PWM mode<br>0: Clear enabled regardless of OTMn0 level (initial value)<br>1: Clear disabled when OTMn0 level is "H"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4          | OTnCST             | <ul> <li>Select a counter start operation mode by trigger event.</li> <li>0: During the counter is stopped (excluding forced stop), the counter is always started by the trigger event. (Initial value)</li> <li>1: During counter stop (excluding forced stop), the trigger event is used until OTnC register is read. The counter does not start.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 to 1     | -                  | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0          | OTnMD0             | Set OTMn mode<br>0: PWM mode (initial value)<br>1: CAPTURE mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### [Note] Set OTnMOD register when the counter operation is stopped.

## 9.2.10 OTMn Output logic control register (OTnOCON : n=0 to 5)

OTnOCON is a SFR to set OTMn pin output function.

This register is enabled when the logical output permission state is set with OTM common OTMn0/1 output logical authorized register (OTC0/10CON).

| 0xF390(OT0OCONL/OT0OCON), 0xF391(OT0OCONH), |
|---------------------------------------------|
| 0xF392(OT1OCONL/OT1OCON), 0xF393(OT1OCONH), |
| 0xF394(OT2OCONL/OT0OCON), 0xF395(OT2OCONH), |
| 0xF396(OT3OCONL/OT1OCON), 0xF397(OT3OCONH)  |
| 0xF398(OT4OCONL/OT4OCON), 0xF399(OT4OCONH), |
| 0xF39A(OT5OCONL/OT5OCON), 0xF39B(OT5OCONH)  |
|                                             |

Access: R/W Access size: 8/16bit

Initial value: 0x0000

|                  | 15            | 14            | 13            | 12            | 11            | 10            | 9             | 8             | 7            | 6            | 5            | 4            | 3            | 2            | 1            | 0            |
|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Word             |               | OTnOCON       |               |               |               |               |               |               |              |              |              |              |              |              |              |              |
| Byte             | OTnOCONH      |               |               |               |               |               |               | OTnOCONL      |              |              |              |              |              |              |              |              |
| Bit              | OTnAN<br>D17* | OTnAN<br>D16* | OTnAN<br>D15* | OTnAN<br>D14* | OTnAN<br>D13* | OTnAN<br>D12* | OTnAN<br>D11* | OTnAN<br>D10* | OTnAN<br>D07 | OTnAN<br>D06 | OTnAN<br>D05 | OTnAN<br>D04 | OTnAN<br>D03 | OTnAN<br>D02 | OTnAN<br>D01 | OTnAN<br>D00 |
| R/W              | R/W           | R/W           | R/W           | R/W           | R/W           | R/W           | R/W           | R/W           | R/W          | R/W          | R/W          | R/W          | R/W          | R/W          | R/W          | R/W          |
| Initial<br>value | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |

\* : Not available in CH2 and CH3.

| Bit<br>No. | Bit symbol name         | Description                                                                                                                                                                           |
|------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to12    | OTnAND17 to<br>OTnAND14 | Select an output signal to take Logical AND with OTMn1 output.<br>It is enabled when OTn1OEN1 bit of OTC1OCON register is "1".<br>See Table 9-3A for signals that can be Logical AND. |
| 11 to 8    | OTnAND13 to<br>OTnAND10 | Select an output signal to take Logical AND with OTMn1 output.<br>It is enabled when OTn1OEN0 bit of OTC1OCON register is "1".<br>See Table 9-3B for signals that can be Logical AND. |
| 7 to 4     | OTnAND07 to<br>OTnAND04 | Select an output signal to take Logical AND with OTMn0 output.<br>It is enabled when OTn0OEN1 bit of OTC0OCON register is "1".<br>See Table 9-3A for signals that can be Logical AND. |
| 3 to 0     | OTnAND03 to<br>OTnAND00 | Select an output signal to take Logical AND with OTMn0 output.<br>It is enabled when OTn0OEN0 bit of OTC0OCON register is "1".<br>See Table 9-3B for signals that can be Logical AND. |

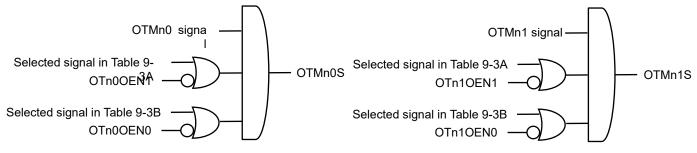



Fig. 9-3 OTnOCON register Configuration Diagram

#### Table 9-3A OTnAND17 to 14,OTnAND07 to 04 Correspondence table

| OTnAND17 to 14<br>OTnAND07 to 04 | OTMn0/OTMn1                       |  |  |  |  |  |  |
|----------------------------------|-----------------------------------|--|--|--|--|--|--|
| 0000                             | OTM30S                            |  |  |  |  |  |  |
| 0001                             | OTM40S                            |  |  |  |  |  |  |
| 0010                             | OTM41S                            |  |  |  |  |  |  |
| 0011                             | OTM50S                            |  |  |  |  |  |  |
| 0100                             | OTM51S                            |  |  |  |  |  |  |
| 0101                             | Inverted of OTM30S                |  |  |  |  |  |  |
| 0110                             | Inverted of OTM40S                |  |  |  |  |  |  |
| 0111                             | Inverted of OTM41S                |  |  |  |  |  |  |
| 1000                             | Inverted of OTM50S                |  |  |  |  |  |  |
| 1001                             | Inverted of OTM51S                |  |  |  |  |  |  |
| 1010                             | Analog comparator CH0             |  |  |  |  |  |  |
| 1011                             | Analog comparator CH2             |  |  |  |  |  |  |
| 1100                             | Inverted of Analog comparator CH0 |  |  |  |  |  |  |
| 1101                             | Inverted of Analog comparator CH2 |  |  |  |  |  |  |
| 1110                             | External trigger 2 input(EXTRG2)  |  |  |  |  |  |  |
| 1111                             | External trigger 3 input(EXTRG3)  |  |  |  |  |  |  |

#### Table 9-3B OTnAND13 to 10,OTnAND03 to 00 Correspondence table

| OTnAND13 to 10<br>OTnAND03 to 00 | OTMn0/OTMn1                       |  |  |  |  |  |  |
|----------------------------------|-----------------------------------|--|--|--|--|--|--|
| 0000                             | OTM00S                            |  |  |  |  |  |  |
| 0001                             | OTM01S                            |  |  |  |  |  |  |
| 0010                             | OTM10S                            |  |  |  |  |  |  |
| 0011                             | OTM11S                            |  |  |  |  |  |  |
| 0100                             | OTM20S                            |  |  |  |  |  |  |
| 0101                             | Inverted of OTM00S                |  |  |  |  |  |  |
| 0110                             | Inverted of OTM01S                |  |  |  |  |  |  |
| 0111                             | Inverted of OTM10S                |  |  |  |  |  |  |
| 1000                             | Inverted of OTM11S                |  |  |  |  |  |  |
| 1001                             | Inverted of OTM20S                |  |  |  |  |  |  |
| 1010                             | Analog comparator CH0             |  |  |  |  |  |  |
| 1011                             | Analog comparator CH1             |  |  |  |  |  |  |
| 1100                             | Inverted of Analog comparator CH0 |  |  |  |  |  |  |
| 1101                             | Inverted of Analog comparator CH1 |  |  |  |  |  |  |
| 1110                             | External trigger 0 input(EXTRG0)  |  |  |  |  |  |  |
| 1111                             | External trigger 1 input(EXTRG1)  |  |  |  |  |  |  |
|                                  |                                   |  |  |  |  |  |  |

### [Note]

If it is required to update OTnOCON register while the counter is running, change the setting value after stopping the logical output by OTC0OCON/OTC1OCON register.

If the setting of OTnOCON register is changed during counter operation in the logical output permitting state, unintended waveforms might be output.

## 9.2.11 OTMn cycle stop timing register (OTnSCLR : n=0 to 5)

OTnSCLR is a SFR to set a counter stop timing at OTMn cycle end. Setting of the SFR is disabled when operating in CAPTURE mode and One-shot mode.

Address: 0xF410(OT0SCLRL/OT0SCLR), 0xF411(OT0SCLRH), 0xF430(OT1SCLRL/OT1SCLR), 0xF431(OT1SCLRH), 0xF450(OT2SCLRL/OT2SCLR), 0xF451(OT2SCLRH), 0xF470(OT3SCLRL/OT3SCLR), 0xF471(OT3SCLRH), 0xF490(OT4SCLRL/OT4SCLR), 0xF491(OT4SCLRH), 0xF4B0(OT5SCLRL/OT5SCLR), 0xF4B1(OT5SCLRH)

Access: R/W Access size: 8/16bit

Initial value: 0x0000

|                  | 15 | 14       | 13 | 12 | 11 | 10 | 9 | 8   | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |  |
|------------------|----|----------|----|----|----|----|---|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|
| Word             |    |          |    |    |    |    |   | OTn | SCLR        |             |             |             |             |             |             |             |  |
| Byte             |    | OTnSCLRH |    |    |    |    |   |     |             | OTnSCLRL    |             |             |             |             |             |             |  |
| Bit              | -  | -        | -  | -  | -  | -  | - | -   | OTnDL<br>Y7 | OTnDL<br>Y6 | OTnDL<br>Y5 | OTnDL<br>Y4 | OTnDL<br>Y3 | OTnDL<br>Y2 | OTnDL<br>Y1 | OTnDL<br>Y0 |  |
| R/W              | R  | R        | R  | R  | R  | R  | R | R   | R/W         |  |
| Initial<br>value | 0  | 0        | 0  | 0  | 0  | 0  | 0 | 0   | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |  |

| Bit<br>No. | Bit symbol<br>name    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 8    | -                     | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7 to 0     | OTnDLY7 to<br>OTnDLY0 | <ul> <li>When stop the counter at the end of the cycle by setting OTnSTSYN bit of OTnMOD register to "1", the counter stops after the time interval set by this bit has elapsed.</li> <li>•PWM mode <ul> <li>0x00 to 0xFF: Set OTMn counter stop time interval.</li> </ul> </li> <li>Time interval is calculated by the below formula. <ul> <li>Time interval (between when the counter is stopped after the count is completed)</li> <li>= count clock period x OTnDLY setting value</li> </ul> </li> </ul> |

### [Note]

- Set OTnSCLR register when counter operation is stopped.
- The time interval set to OTnDLY bit must be shorter than the interval set to OTnP register.
   If the time interval is set for OTnDLY bit longer than the interval set to OTnP register, the counter may stop even if the time interval is less than the interval set by OTnDLY bit.

### 9.2.12 OTMn clock register (OTnCLK : n=0 to 5)

OTnCLK is a SFR to set timer clock of OTMn.

0xF412(OT0CLKL/OT0CLK), 0xF413(OT0CLKH), 0xF432(OT1CLKL/OT1CLK), 0xF433(OT1CLKH), Address: 0xF452(OT2CLKL/OT2CLK), 0xF453(OT2CLKH), 0xF472(OT3CLKL/OT3CLK), 0xF473(OT3CLKH), 0xF492(OT4CLKL/OT4CLK), 0xF493(OT4CLKH), 0xF4B2(OT5CLKL/OT5CLK), 0xF4B3(OT5CLKH) R/W Access: Access size: 8/16bit Initial value: 0x0000 15 7 14 13 12 11 10 9 8 6 5 4 3 2 1 0 OTnCLK Word OTnCLKH OTnCLKL Byte OTnCK OTnCK OTnCK OTnCK OTnCK Bit \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ D1 D0 2 0 1 R/W R R R R R R R R R R R/W R/W R R/W R/W R/W Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 value Bit Bit symbol Description name No. 15 to 6 Reserved bit 5 to 4 OTnCKD1 to Select OTMn count clock frequency division ratio. OTnCKD0 00: No divide (Initial value) Divide 2 of timer clock frequency 01: Divide 4 of timer clock frequency 10: 11: Divide 8 of timer clock frequency 3 Reserved bit 2 to 0 OTnCK2~ Select a timer clock source of OTMn. 000: LSCLK0(initial value) OTnCK0 001: HSCLK HSOCLK 010: 011: Reserved bit 100: External clock 0 input (EXTRG0) 101: External clock 1 input (EXTRG1) 110: External clock 2 input (EXTRG2) External clock 3 input (EXTRG3) 111:

[Note]

• Set OTnCLK register when counter operation is stopped.

## 9.2.13 OTMn Counter control trigger register 0 register (OTnCTRG0 : n=0 to 5)

OTnCTRG0 is a SFR to set OTMn counter control function.

The counter is controlled by taking Logical OR of the setting of this register with the setting of OTnCTRG1. The register setting is enabled when OTnTGEN bit of OTCSTAT register is "1".

| Address: | 0xF414(OT0CTRG0L/OT0CTRG0), 0xF415(OT0CTRG0H), |
|----------|------------------------------------------------|
|          | 0xF434(OT1CTRG0L/OT1CTRG0), 0xF435(OT1CTRG0H), |
|          | 0xF454(OT2CTRG0L/OT2CTRG0), 0xF455(OT2CTRG0H), |
|          | 0xF474(OT3CTRG0L/OT3CTRG0), 0xF475(OT3CTRG0H), |
|          | 0xF494(OT4CTRG0L/OT4CTRG0), 0xF495(OT4CTRG0H), |
|          | 0xF4B4(OT5CTRG0L/OT5CTRG0), 0xF4B5(OT5CTRG0H)  |

Access: R/W Access size: 8/16bit

Initial value: 0x0000

|                  | 15           | 14           | 13           | 12 | 11           | 10           | 9            | 8            | 7             | 6 | 5 | 4 | 3           | 2          | 1           | 0          |
|------------------|--------------|--------------|--------------|----|--------------|--------------|--------------|--------------|---------------|---|---|---|-------------|------------|-------------|------------|
| Word             |              |              |              |    |              |              |              | OTnC         | TRG0          |   |   |   |             |            |             |            |
| Byte             |              | OTnCTRG0H    |              |    |              |              |              |              | OTnCTRG0L     |   |   |   |             |            |             |            |
| Bit              | OTnTR<br>M02 | OTnTR<br>M01 | OTnTR<br>M00 | -  | OTnST<br>S03 | OTnST<br>S02 | OTnST<br>S01 | OTnST<br>S00 | OTnCA<br>PEN0 | - | - | - | OTnSP<br>C0 | OTnSP<br>0 | OTnST<br>C0 | OTnST<br>0 |
| R/W              | R/W          | R/W          | R/W          | R  | R/W          | R/W          | R/W          | R/W          | R/W           | R | R | R | R/W         | R/W        | R/W         | R/W        |
| Initial<br>value | 0            | 0            | 0            | 0  | 0            | 0            | 0            | 0            | 0             | 0 | 0 | 0 | 0           | 0          | 0           | 0          |

| Bit<br>No. | Bit symbol name         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 15 to 13   | OTnTRM02 to<br>OTnTRM00 | Select edge or level of OTMn counter control signal 0.         If OTMnTRG and WDTCLK are selected, this bit is disabled.         Both counter start and counter stop are fixed to rising edge.         Other than above, the edge of both Counter start/Counter stop is fixed to rising edge.         Counter start       Counter stop         000:       Rising edge         Falling edge       Falling edge (initial value)         001:       Falling edge         010:       Rising edge         Falling edge       Falling edge         011:       Falling edge         Falling edge       Falling edge         111:       Falling edge         112:       "H" level         113:       "L" level         114:       "L" level         115:       "H" level         116:       "H" level         117:       "L" level         118:       "L" level         119:       "H" level         111:       "L" level         112:       "H" level         113:       "L" level         114:       "H" level         115:       "H" level         116:       "H" level |  |  |  |  |
| 12         | -                       | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 11 to 8    | OTnSTS03 to<br>OTnSTS00 | to Select the source of OTMn counter control signal 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | OTnCAPEN0          | Select whether to use the source of the counter control signal 0 set in OTnSTS03 to 00 bit as<br>the trigger in capture mode.<br>0: Capture trigger disable (initial value)<br>1: Capture trigger enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6 to 4     | -                  | reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3          | OTnSPC0            | <ul> <li>Select whether to clear the counter when the counter stop signal of counter control signal 0 occurs.</li> <li>The setting of this bit is enabled regardless of OTnSP0 bit setting.</li> <li>And if a register update request has been occurred using OTCUDn bit of OTCUD register, register is also updated when the counter stop signal of counter control signal 0 is occurred.</li> <li>0: Counter clear disable (initial value)</li> <li>1: Counter clear enable</li> <li>However, in the following cases, the counter is not cleared/registered when the counter stop signal of the counter control signal 0 is occurred.</li> <li>In case the counter is stopped by setting OTNTRM02 to 00 to "000" or "011".</li> <li>In case the counter is stopped by setting OTMnTRG with OTnSTS03 to 00.</li> </ul>                                                                                                                                                      |
|            |                    | Regardless of the setting of OTnSTSYN bit of OTnMOD register, if the setting of this bit is "1", the counter is cleared when a counter stop signal of counter control signal 0 is occurred.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2          | OTnSP0             | <ul> <li>Select enable/disable of the counter stop by counter control signal "0".</li> <li>0: Counter stop disable (initial value)</li> <li>1: Counter stop enable</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1          | OTnSTC0            | Select whether to clear the counter when the counter start signal of counter control signal 0 occurs.<br>The setting of this bit is enabled regardless of OTnST0 bit setting.<br>And if a register update request has been occurred using OTCUDn bit of OTCUD register, register is also updated when the counter start signal of counter control signal 0 is occurred.<br>0: Counter clear disable (initial value)<br>1: Counter clear enable<br>However, in the following cases, the counter is not cleared/registered when the counter start signal of the counter control signal 0 is occurred.<br>• In case the counter is in operation by setting OTnTRM02 to 00 to "000" or "011".<br>• In case the counter is in operation by setting ORMnTRG with OTnSTS03 to 00.<br>Regardless of the setting of OTnSTSYN bit of OTnMOD register, if the setting of this bit is "1", the counter is cleared when the counter start signal of counter control signal 0 is occurred. |
| 0          | OTnST0             | <ul> <li>Select enable/disable of the counter start by counter control signal "0".</li> <li>0: Counter start disable (initial value)</li> <li>1: Counter start enable</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### [Note]

- Trigger pulse width must be 2cloks wide of timer clock or more.
- In one-shot mode, set OTnTRM02 to OTnTRM00 bits to "1X0" or "1X1", and if the start condition and the level of the counter control signal 0 match, and the stop condition in one-shot mode is satisfied, the counting operation is continued (count-up is resumed from 0).
- If OTnCTRG0 register is set when a trigger event is enabled, a trigger event may occur at the moment of the setting. So when setting OTnCTRG0 register, verify that OTnTGEN bit of OTCSTAT register is "0" and change the setting of OTnCTRG0 register in the trigger operation stopped state.

## 9.2.14 OTMn Counter control trigger 1 register (OTnCTRG1 : n=0 to 5)

OTnCTRG1 is a SFR to set OTMn counter control function.

The counter is controlled by taking Logical OR of the setting of this register with the setting of OTnCTRG0. The register setting is enabled when OTnTGEN bit of OTCSTAT register is "1".

| 0xF3A0(OT0CTRG1L/OT0CTRG1), 0xF3A1(OT0CTRG1H), |
|------------------------------------------------|
| 0xF3A2(OT1CTRG1L/OT1CTRG1), 0xF3A3(OT1CTRG1H), |
| 0xF3A4(OT2CTRG1L/OT2CTRG1), 0xF3A5(OT2CTRG1H), |
| 0xF3A6(OT3CTRG1L/OT3CTRG1), 0xF3A7(OT3CTRG1H), |
| 0xF3A8(OT4CTRG1L/OT4CTRG1), 0xF3A9(OT4CTRG1H), |
| 0xF3AA(OT5CTRG1L/OT5CTRG1), 0xF3AB(OT5CTRG1H)  |
|                                                |

Access: R/W Access size: 8/16bit

Initial value: 0x0000

|                  | 15           | 14           | 13           | 12   | 11           | 10           | 9            | 8            | 7             | 6 | 5 | 4 | 3           | 2          | 1           | 0          |  |
|------------------|--------------|--------------|--------------|------|--------------|--------------|--------------|--------------|---------------|---|---|---|-------------|------------|-------------|------------|--|
| Word             |              |              |              |      |              |              |              | OTnC         | TRG1          |   |   |   |             |            |             |            |  |
| Byte             |              |              |              | OTnC | TRG1H        |              |              |              | OTnCTRG1L     |   |   |   |             |            |             |            |  |
| Bit              | OTnTR<br>M12 | OTnTR<br>M11 | OTnTR<br>M10 | -    | OTnST<br>S13 | OTnST<br>S12 | OTnST<br>S11 | OTnST<br>S10 | OTnCA<br>PEN1 | - | - | - | OTnSP<br>C1 | OTnSP<br>1 | OTnST<br>C1 | OTnST<br>1 |  |
| R/W              | R/W          | R/W          | R/W          | R    | R/W          | R/W          | R/W          | R/W          | R/W           | R | R | R | R/W         | R/W        | R/W         | R/W        |  |
| Initial<br>value | 0            | 0            | 0            | 0    | 0            | 0            | 0            | 0            | 0             | 0 | 0 | 0 | 0           | 0          | 0           | 0          |  |

| Bit<br>No. | Bit symbol name         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 13   | OTnTRM12 to<br>OTnTRM10 | Select edge or level of OTMn counter control signal 1.         It is valid only when OTnSTS13 to OTnSTS10 bits of OTnCTRG1 register are selected for external triggering or analog comparator output, OTMn0, and OTMn1. Other than above, the edge of both Counter start/Counter stop is fixed to rising.         Counter start       Counter stop         000:       Rising edge         Rising edge       Rising edge (initial value)         001:       Falling edge         010:       Rising edge         Falling edge       Falling edge         011:       Falling edge         Falling edge       Falling edge         1X0:       "H" level         X:       either 0 or 1                                                                                                                                                                                                                                                                                |
| 12         | -                       | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11 to 8    | OTnSTS13 to<br>OTnSTS10 | Select the source of OTMn counter control signal 1.<br>When selecting ORMnTRG or OTMn0/OTMn1, select a channel other than the same channel<br>(e.g When OTM4 setting, select other than OTM4TRG, OTM40, or OTM41).<br>•CAPTURE, PWM mode<br>0000: External trigger 0 input (EXTRG0)(initial value)<br>0001: External trigger 1 input (EXTRG1)<br>0010: External trigger 2 input (EXTRD2)<br>0011: Analog comparator CH0<br>0100: Analog comparator CH1<br>0101: Analog comparator CH2<br>0110: OTM30<br>0111: OTM40<br>1000: OTM41<br>1001: OTM50<br>1010: OTM51<br>1011: OTM0TRG (operational timer 0 trigger)<br>1100: OTM1TRG (operational timer 1 trigger)<br>1101: OTM3TRG (operational timer 3 trigger)<br>1110: OTM3TRG (operational timer 3 trigger)<br>1111: 16bit timer 0 trigger (TMH0TRG)<br>*OTMnTRG can set the output timing with<br>OTnIOOT0R/OTnIOTPROTnIO1F/OTnIO1R/OTnIO0F/OTnIO0F/OTnIOP<br>bits of OTMn interrupt permit register (OTnINTE). |

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | OTnCAPEN1          | Select whether to use the source of the counter control signal 1 set in OTnSTS13 to 10 bit as<br>the trigger in capture mode.<br>0: Capture trigger disable (initial value)<br>1: Capture trigger enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6 to 4     | -                  | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3          | OTnSPC1            | Select whether to clear the counter when the counter stop signal of counter control signal 1<br>occurs.<br>The setting of this bit is enabled regardless of OTnSP1 bit setting.<br>And if a register update request has been occurred using OTCUDn bit of OTCUD register,<br>register is also updated when the counter stop signal of counter control signal 1 is occurred.<br>0: Counter clear disable (initial value)<br>1: Counter clear enable<br>However, in the following cases, the counter is not cleared/registered when the counter stop<br>signal of the counter control signal 0 is occurred.<br>•In case the counter is stopped by setting OTnTRM12 to 10 to "000" or "011".<br>•In case the counter is stopped by setting OTMnTRG with OTnSTS13 to 10.<br>Regardless of the setting of OTnSTSYN bit of OTnMOD register, if the setting of this bit is<br>"1", the counter is cleared when the counter stop signal of counter control signal 1 is<br>occurred.                                  |
| 2          | OTnSP1             | <ul> <li>Select enable/disable of the counter stop by counter control signal "1".</li> <li>0: Counter stop disable (initial value)</li> <li>1: Counter stop enable</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1          | OTnSTC1            | Select whether to clear the counter when the counter start signal of the counter control signal<br>1 occurs.<br>The setting of this bit is enabled regardless of OTnST1 bit setting.<br>And if a register update request has been occurred by OTCUDn bit of OTCUD register,<br>register is also updated when the counter start signal of counter control signal 1 is occurred.<br>0: Counter clear disable (initial value)<br>1: Counter clear enable<br>However, in the following cases, the counter is not cleared/registered when the counter start<br>signal of the counter control signal 0 is occurred.<br>•In the case of the counter is in operation by setting OTnTRM12 to 10 to "000" or "011".<br>•In the case of the counter is in operation by setting ORMnTRG with OTnSTS13 to 10.<br>Regardless of the setting of OTnSTSYN bit of OTnMOD register, if the setting of this bit is<br>"1", the counter is cleared when the counter start signal of the counter control signal 1 is<br>occurred. |
| 0          | OTnST1             | Select enable/disable of the counter start by counter control signal "1".<br>0: Counter start disable (initial value)<br>1: Counter start enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

[Note]

- Trigger pulse width must be 2cloks wide of timer clock or more.
- In one-shot mode, OTnTRM02 to OTnTRM00 bits are set to "1X0" or "1X1", and if the start condition and the level of the counter control signal 0 match, and the stop condition in one-shot mode is satisfied, the counting operation is continued (count-up is resumed from 0).
- If OTnCTRG0 register is set when a trigger event is enabled, a trigger event may occur at the moment of the setting. So, when setting OTnCTRG0 register, verify that OTnTGEN bit of OTCSTAT register is "0" and change the setting of OTnCTRG0 register in the trigger operation stopped state.

## 9.2.15 OTMn Forced stop control trigger 0 register (OTnFTRG0 : n=0 to 5)

OTnFTRG0 is a SFR to set OTMn trigger function.

The counter is controlled by taking Logical OR of the setting of this register with the setting of OTnCTRG1.

| Address: | 0xF416(OT0FTRG0L/OT0FTRG0), 0xF417(OT0FTRG0H), |
|----------|------------------------------------------------|
|          | 0xF436(OT1FTRG0L/OT1FTRG0), 0xF437(OT1FTRG0H), |
|          | 0xF456(OT2FTRG0L/OT2FTRG0), 0xF457(OT2FTRG0H), |
|          | 0xF476(OT3FTRG0L/OT3FTRG0), 0xF477(OT3FTRG0H), |
|          | 0xF496(OT4FTRG0L/OT4FTRG0), 0xF497(OT4FTRG0H), |
|          | 0xF4B6(OT5FTRG0L/OT5FTRG0), 0xF4B7(OT5FTRG0H)  |
| Access   | R/W                                            |

Access: R/W Access size: 8/16bit

Initial value: 0x0000

|                  | 15      | 14           | 13           | 12     | 11    | 10           | 9            | 8            | 7         | 6 | 5 | 4 | 3 | 2           | 1             | 0            |  |
|------------------|---------|--------------|--------------|--------|-------|--------------|--------------|--------------|-----------|---|---|---|---|-------------|---------------|--------------|--|
| Word             |         | OTnFTRG0     |              |        |       |              |              |              |           |   |   |   |   |             |               |              |  |
| Byte             |         |              |              | OTnF   | rrg0h |              |              |              | OTnFTRG0L |   |   |   |   |             |               |              |  |
| Bit              | -       | OTnFC<br>E01 | OTnFC<br>E00 | -      | -     | OTnES<br>T02 | OTnES<br>T01 | OTnES<br>T00 | -         | - | - | - | - | OTnFC<br>C0 | OTnFC<br>N01* | OTnFC<br>N00 |  |
| R/W              | R       | R/W          | R/W          | R      | R     | R/W          | R/W          | R/W          | R         | R | R | R | R | R/W         | R/W           | R/W          |  |
| Initial<br>value | 0       | 0            | 0            | 0      | 0     | 0            | 0            | 0            | 0         | 0 | 0 | 0 | 0 | 0           | 0             | 0            |  |
| * . N            | at area | :1.1.1       | CIT          | ad CII | 2     |              |              |              |           |   |   |   |   |             |               |              |  |

\* : Not available in CH2 and CH3.

| Bit<br>No. | Bit symbol name         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15         | -                       | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 to 13   | OTnFCE01 to<br>OTnFCE00 | Select edge or level of OTMn Forced stop signal 0<br>00: Rising edge (initial value)<br>01: Falling edge<br>10: "H" level<br>11: "L" level                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12 to 11   | -                       | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10 to 8    | OTnEST02 to<br>OTnEST00 | Select the source of OTMn Forced stop signal 0.000: External trigger 0 input (EXTRG0) (initial value)001: External trigger 2 input (EXTRG2)010: Analog comparator CH0011: Analog comparator CH1100: Analog comparator CH2101: OTM00110: OTM10111: OTM20                                                                                                                                                                                                                                                                                                          |
| 7 to 3     | -                       | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2          | OTnFCC0                 | <ul> <li>Select whether to continue the counter operation when OTMn is forced stopped by forced stop signal 0 when forced stop is enabled.</li> <li>0: When forced stopped, counter operation continues (initial value)</li> <li>1: When forced stopped, counter operation is stopped.</li> <li>When OTnFCC0 bit is set to "1", OTnFCN00/OTnFCN01 bit must also be set to "1".</li> <li>When OTnFCN00/OTnFCN01 bits are set to "0" and shift to the forced stop state, unexpected short pulse signal might be output to OTOnA/OTOnB pin.</li> </ul>              |
| 1          | OTnFCN01                | <ul> <li>Select enable/disable of OTMn1 output forced stop. * Not available in CH2 and CH3.</li> <li>When the output force stop of OTMn1 is enabled, the output of OTMn1 is fixed to the output state selected by OTnSTPON bit of OTnMOD when the forced stop state is forced to stop due to the forced stop signal 0.</li> <li>If OTnFCC0 bit is set to "0" and select edge as forced stop trigger, forced stop state is released at the end of period.</li> <li>0: Output forced stop disable (Initial value)</li> <li>1: Output forced stop enable</li> </ul> |

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | OTnFCN00           | Select enable/disable of OTMn0 output forced stop.<br>When the output forced stop of OTMn0 is enabled, the output of OTMn0 is fixed to the output<br>state selected by OTnSTPOP bit of OTnMOD when the forced stop state is caused by a stop<br>signal of 0.<br>If OTnFCC0 bit is set to "0" and select edge as forced stop trigger, forced stop state is<br>released at the end of period.<br>0: Output forced stop disable (Initial value)<br>1: Output forced stop enable |

[Note]

- When changing the setting of OTnFTRG0 register during counter operation, set the following bits of the register to "0" once, and then change the setting value.
  - OTnFCC0 bit
  - •OTnFCN01 bit
  - -OTnFCN00 bit

## 9.2.16 OTMn Forced stop control trigger 1 register (OTnFTRG1 : n=0 to 5)

OTnFTRG1 is a SFR to set OTMn trigger function.

The logical OR of the forced stop signal 0 set by OTnFTRG0 register and the forced stop signal 1 set by this register is input as the forced stop trigger.

| Addre<br>Acces<br>Acces<br>Initial | s:<br>s size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0x<br>0x<br>0x<br>0x<br>0x<br>0x<br>8/1<br>e: 8/1 | F438(<br>F458(<br>F478(<br>F498(<br>F498) | (OT0FTF<br>(OT1FTF<br>(OT2FTF<br>(OT3FTF<br>(OT4FTF<br>(OT5FTF                 | RG1L/0<br>RG1L/0<br>RG1L/0<br>RG1L/0                                         | DT1FTF<br>DT2FTF<br>DT3FTF<br>DT4FTF                                       | RG1), (<br>RG1), (<br>RG1), (<br>RG1), (        | )xF439<br>)xF459<br>)xF479<br>)xF499                          | (OT1F <sup>-</sup><br>(OT2F <sup>-</sup><br>(OT3F <sup>-</sup><br>(OT4F <sup>-</sup> | TRG1H<br>TRG1H<br>TRG1H<br>TRG1H        | ),<br>),<br>),<br>),           |                                |                              |                        |                      |              |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------|--------------------------------|------------------------------|------------------------|----------------------|--------------|
|                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                | 13                                        | 12                                                                             | 11                                                                           | 10                                                                         | 9                                               | 8                                                             | 7                                                                                    | 6                                       | 5                              | 4                              | 3                            | 2                      | 1                    | 0            |
| Word                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                           |                                                                                |                                                                              |                                                                            |                                                 | OTnF                                                          | TRG1                                                                                 |                                         |                                |                                |                              |                        |                      |              |
| Byte                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                           | OTnFT                                                                          | RG1H                                                                         |                                                                            |                                                 |                                                               |                                                                                      |                                         |                                | OTnF                           | TRG1L                        | _                      |                      |              |
| Bit                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OTnFC<br>E11                                      | OTnF0<br>E10                              | C _                                                                            | -                                                                            | OTnES<br>T12                                                               | OTnES<br>T11                                    | OTnES<br>T10                                                  | -                                                                                    | -                                       | -                              | -                              | -                            | OTnFC<br>C1            | OTnFC<br>N11*        | OTnFC<br>N10 |
| R/W                                | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W                                               | R/W                                       | R                                                                              | R                                                                            | R/W                                                                        | R/W                                             | R/W                                                           | R                                                                                    | R                                       | R                              | R                              | R                            | R/W                    | R/W                  | R/W          |
| Initial<br>value                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                 | 0                                         | 0                                                                              | 0                                                                            | 0                                                                          | 0                                               | 0                                                             | 0                                                                                    | 0                                       | 0                              | 0                              | 0                            | 0                      | 0                    | 0            |
|                                    | ot avai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lable in                                          | CH2                                       | and CH.                                                                        | 3.                                                                           |                                                                            |                                                 |                                                               |                                                                                      |                                         |                                |                                |                              |                        |                      |              |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                           |                                                                                |                                                                              |                                                                            |                                                 |                                                               |                                                                                      |                                         |                                |                                |                              |                        |                      |              |
| Bit<br>No.                         | Bit symbol Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                           |                                                                                |                                                                              |                                                                            |                                                 |                                                               |                                                                                      |                                         |                                |                                |                              |                        |                      |              |
| 15                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                           | Reserve                                                                        | d bit                                                                        |                                                                            |                                                 |                                                               |                                                                                      |                                         |                                |                                |                              |                        |                      |              |
| 14 to 13                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FCE11<br>FCE10                                    |                                           | 01: Fa<br>10: "H'<br>11: "L"                                                   | sing ed<br>lling ec<br>' level<br>level                                      | ge (init                                                                   | f forceo<br>ial valu                            |                                                               | igger.                                                                               |                                         |                                |                                |                              |                        |                      |              |
| 12 to 11                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                           | Reserve                                                                        |                                                                              |                                                                            |                                                 |                                                               |                                                                                      |                                         |                                |                                |                              |                        |                      |              |
| 10 to 8                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EST12<br>EST10                                    | IO                                        | 001: 1<br>010: 7<br>011: 7<br>100: 7<br>101: 0<br>110: 0                       | Externa<br>Externa<br>Analog<br>Analog                                       | al trigge<br>al trigge<br>compa<br>compa<br>compa<br>compa                 | er 1 inp                                        | ut (EXT<br>ut (EXT<br>H0<br>H1                                | RG1) (                                                                               | initial va                              | alue)                          |                                |                              |                        |                      |              |
| 7 to 3                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                           | Reserve                                                                        |                                                                              |                                                                            |                                                 |                                                               |                                                                                      |                                         |                                |                                |                              |                        |                      |              |
| 2                                  | -       Reserved bit         OTnFCC1       Select whether to continue the counter operation when OTMn is forced stopped by forced stop signal 1 when forced stop is enabled.         0:       When forced stopped, counter operation continues (initial value)         1:       When forced stopped, counter operation is stopped         When OTnFCC1 bit is set to "1", OTnFCN10/OTnFCN11 bit must also be set to "1".         When OTnFCN10/OTnFCN11 bits are set to "0" and shift to the forced stop state, unexpected short pulse signal might be output to OTOnA/OTOnB pin. |                                                   |                                           |                                                                                |                                                                              |                                                                            |                                                 |                                                               |                                                                                      |                                         |                                |                                |                              |                        |                      |              |
| 1                                  | OTn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FCN11                                             |                                           | Select e<br>When th<br>state sel<br>due to th<br>If OTnF(<br>released<br>0: Ou | nable/o<br>le outp<br>lected l<br>ne forco<br>CC1 bit<br>I at the<br>tput fo | disable<br>ut force<br>by OTn<br>ed stop<br>t is set<br>end of<br>rced sto | of OTN<br>stop o<br>STPON<br>signal<br>to "0" a | In1 out<br>f OTMn<br>N bit of 0<br>1.<br>nd sele<br>ble (Init | out forc<br>1 is en<br>OTnMC<br>ct edge                                              | ed stop<br>abled, t<br>D whe<br>as forc | o. * Not<br>he out<br>n the fo | availat<br>put of C<br>orced s | ole in (<br>DTMn1<br>top sta | is fixed<br>ate is for | to the c<br>ced to s | stop         |

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 0          | OTnFCN10           | Select enable/disable of OTMn0 output forced stop.<br>When the output forced stop of OTMn0 is enabled, the output of OTMn0 is fixed to the output<br>state selected by OTnSTPOP bit of OTnMOD when the forced stop state is caused by a stop<br>signal of 1.<br>If OTnFCC0 bit is set to "0" and select edge as forced stop trigger, forced stop state is<br>released at the end of period.<br>0: Output forced stop disable (Initial value)<br>1: Output forced stop enable |  |  |  |  |  |  |  |  |

【注意】

- When changing the setting of OTnFTRG1 register during counter operation, set the following bits of the register to "0" once, and then change the setting value.
- •OTnFCC1 bit
- •OTnFCN11 bit
- OTnFCN10 bit

## 9.2.17 OTMn interrupt enable register (OTnINTE : n=0 to 5)

OTnINTE is a SFR to control an interrupt and a trigger output of OTMn.

An interrupt is enabled when writing "1" to each bit of OTnINTEL register and notifies it to the interrupt controller. A trigger output is enabled when writing "1" to each bit of OTnINTEH register and notifies it to the other channels.

| Address:     | 0xF41A(OT0INTEL/OT0INTE), 0xF41B(OT0INTEH), |
|--------------|---------------------------------------------|
|              | 0xF43A(OT1INTEL/OT1INTE), 0xF43B(OT1INTEH), |
|              | 0xF45A(OT2INTEL/OT2INTE), 0xF45B(OT2INTEH), |
|              | 0xF47A(OT3INTEL/OT3INTE), 0xF47B(OT3INTEH)  |
|              | 0xF49A(OT4INTEL/OT4INTE), 0xF49B(OT4INTEH), |
|              | 0xF4BA(OT5INTEL/OT5INTE), 0xF4BB(OT5INTEH)  |
| Access:      | R/W                                         |
| Access size: | 8/16bit                                     |
|              |                                             |

Initial value: 0x0000

| _                | 15 | 14      | 13           | 12            | 11            | 10          | 9           | 8          | 7 | 6           | 5           | 4             | 3             | 2           | 1           | 0          |  |  |
|------------------|----|---------|--------------|---------------|---------------|-------------|-------------|------------|---|-------------|-------------|---------------|---------------|-------------|-------------|------------|--|--|
| Word             |    | OTnINTE |              |               |               |             |             |            |   |             |             |               |               |             |             |            |  |  |
| Byte             |    |         |              | OTnl          | NTEH          |             |             |            |   | OTnINTEL    |             |               |               |             |             |            |  |  |
| Bit              | -  | -       | OTnIO<br>H0R | OTnIO<br>1F * | OTnIO<br>1R * | OTnIO<br>0F | OTnIO<br>0R | OTnIO<br>P | - | OTnIE<br>TR | OTnIE<br>TS | OTnIE1<br>F * | OTnIE1<br>R * | OTnIE0<br>F | OTnIE0<br>R | OTnIE<br>P |  |  |
| R/W              | R  | R       | R/W          | R/W           | R/W           | R/W         | R/W         | R/W        | R | R/W         | R/W         | R/W           | R/W           | R/W         | R/W         | R/W        |  |  |
| Initial<br>value | 0  | 0       | 0            | 0             | 0             | 0           | 0           | 0          | 0 | 0           | 0           | 0             | 0             | 0           | 0           | 0          |  |  |

\* : Not available in CH2 and CH3.

Common explanation of each bit:

This bit enables or disables the appropriate interrupts and functions.

- 0: disable (initial value)
- 1: enable

| Bit<br>No. | Bit symbol<br>name | Description (appropriate functions)                                                                                                                                                                                                                                                           |
|------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15         | -                  | Reserved bit                                                                                                                                                                                                                                                                                  |
| 14         | -                  | Reserved bit                                                                                                                                                                                                                                                                                  |
| 13         | OTnIOH0R           | CAPTURE mode:<br>When set to enable, OTMnTRG is output when the value of OTnC register matches 1/2 of<br>the value captured in OTn0R register.<br>PWM mode:<br>When set to enable, OTMnTRG is output when the value of OTnC register matches 1/2 of<br>the value set in the buffer for OTn0R. |
| 12         | OTnIO1F            | When set to enable, OTMnTRG is output when the value of OTnC register matches the value of the buffer for OTn1F.<br>No output in CAPTURE mode.                                                                                                                                                |
| 11         | OTnIO1R            | When set to enable, OTMnTRG is output when the value of OTnC register matches the value of the buffer for OTn1R.<br>No output in CAPTURE mode.                                                                                                                                                |
| 10         | OTnIO0F            | CAPTURE mode:<br>When set to enable, OTMnTRG is output when captured to OTn0F register.<br>PWM mode:<br>When set to enable, OTMnTRG is output when the value of OTnC register matches the<br>value of the buffer for OTn0F.                                                                   |
| 9          | OTnIO0R            | CAPTURE mode:<br>When set to enable, OTMnTRG is output when captured to OTn0R register.<br>PWM mode:<br>When set to enable, OTMnTRG is output when the value of OTnC register matches the<br>value of the buffer for OTn0R.                                                                   |
| 8          | OTnIOP             | When set to enable, OTMnTRG is output when the value of OTnC register matches the value of the buffer for OTnP.                                                                                                                                                                               |
| 7          | -                  | Reserved bit                                                                                                                                                                                                                                                                                  |

| Bit<br>No. | Bit symbol<br>name | Description (appropriate functions)                                                                                                                                                                                                                                     |
|------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6          | OTnIETR            | Trigger count start interrupt for OTMn<br>An interrupt is output at the timing of the counter start triggered by OTMn.<br>In addition, an interrupt is output at the timing of the counter clearing due to the occurrence<br>of the trigger event of the counter start. |
| 5          | OTnIETS            | Trigger count stop interrupt for OTMn<br>An interrupt is output at the timing of the counter stop triggered by OTMn.<br>In addition, an interrupt is output at the timing of the counter clearing due to the occurrence<br>of the trigger event of the counter stop.    |
| 4          | OTnIE1F            | Interrupt by OTMn1 Fall Point<br>When set to enable, OTMnINT is output when the value of OTnC register matches the value<br>of the buffer for OTn1F.<br>No output in CAPTURE mode.                                                                                      |
| 3          | OTnIE1R            | Interrupt by OTMn1 Rise Point<br>When set to enable, OTMnINT is output when the value of OTnC register matches the value<br>of the buffer for OTnC.<br>No output in CAPTURE mode.                                                                                       |
| 2          | OTnIE0F            | Interrupt by OTMn0 Fall Point<br>CAPTURE mode:<br>When set to enable, OTMnINT is output when captured to OTn0F register.<br>PWM mode:<br>When set to enable, OTMnINT is output when the value of OTnC register matches the<br>value of the buffer for OTn0F.            |
| 1          | OTnIE0R            | Interrupt by OTMn0 Rise Point<br>CAPTURE mode:<br>When set to enable, OTMnINT is output when captured to OTn0R register.<br>PWM mode:<br>When set to enable, OTMnINT is output when the value of OTnC register matches the<br>value of the buffer for OTn0R.            |
| 0          | OTnIEP             | OTMn periodical interrupt<br>When set to enable, OTMnINT is output when the value of OTnC register matches the value<br>of the buffer for OTn0P.                                                                                                                        |

## 9.2.18 OTMn interrupt status register (OTnINTS : n=0 to 5)

OTnINTS is a read only SFR to indicate OTMn interrupt status. In addition to the reset function, bit 7 to 0 are initialized to "0" by writing "1" to the same bit of OTnINTC register

| Address:     | 0xF41C(OT0INTSL/OT0INTS), 0xF41D(OT0INTSH), |
|--------------|---------------------------------------------|
|              | 0xF43C(OT1INTSL/OT1INTS), 0xF43D(OT1INTSH), |
|              | 0xF45C(OT2INTSL/OT2INTS), 0xF45D(OT2INTSH), |
|              | 0xF47C(OT3INTSL/OT3INTS), 0xF47D(OT3INTSH), |
|              | 0xF49C(OT4INTSL/OT4INTS), 0xF49D(OT4INTSH), |
|              | 0xF4BC(OT5INTSL/OT5INTS), 0xF4BD(OT5INTSH)  |
| Access:      | R                                           |
| Access size: | 8/16bit                                     |

Initial value: 0x0000

|                  | 15      | 14 | 13 | 12   | 11   | 10 | 9 | 8        | 7           | 6           | 5           | 4             | 3             | 2           | 1           | 0          |
|------------------|---------|----|----|------|------|----|---|----------|-------------|-------------|-------------|---------------|---------------|-------------|-------------|------------|
| Word             | OTnINTS |    |    |      |      |    |   |          |             |             |             |               |               |             |             |            |
| Byte             |         |    |    | OTnl | NTSH |    |   | OTnINTSL |             |             |             |               |               |             |             |            |
| Bit              | -       | -  | -  | -    | -    | -  | - | -        | OTnIS<br>FS | OTnIS<br>TR | OTnIS<br>TS | OTnIS1<br>F * | OTnIS1<br>R * | OTnIS0<br>F | OTnIS0<br>R | OTnIS<br>P |
| R/W              | R       | R  | R  | R    | R    | R  | R | R        | R           | R           | R           | R             | R             | R           | R           | R          |
| Initial<br>value | 0       | 0  | 0  | 0    | 0    | 0  | 0 | 0        | 0           | 0           | 0           | 0             | 0             | 0           | 0           | 0          |

\* : Not available in CH2 and CH3.

Common explanation of each bit:

This bit indicates a status of an appropriate interrupt.

- 0: No appropriate interrupt occurs (initial value)
- 1: Appropriate interrupt occur

| Bit<br>No. | Bit symbol<br>name | Description (appropriate functions)                                                                                                                                                                                                                           |
|------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 8    | -                  | Reserved bit                                                                                                                                                                                                                                                  |
| 7          | OTnISFS            | OTMn forced stop interrupt<br>It is cleared by writing "1" to OTnICFS bit of OTnINTC register.                                                                                                                                                                |
| 6          | OTnISTR            | OTMn Trigger counter start interrupt<br>It is cleared by writing "1" to OTnICTR bit of OTnINTC register.                                                                                                                                                      |
| 5          | OTnISTS            | OTMn Trigger counter stop interrupt<br>It is cleared by writing "1" to OTnICTS bit of OTnINTC register.                                                                                                                                                       |
| 4          | OTnIS1F            | Interrupt by OTMn1 Fall point<br>Fixed to "0" at CAPTURE mode.<br>It is cleared by writing "1" to OTnIC1F bit of OTnINTC register.                                                                                                                            |
| 3          | OTnIS1R            | Interrupt by OTMn1 Rise point<br>Fixed to "0" at CAPTURE mode.<br>It is cleared by writing "1" to OTnIC1R bit of OTnINTC register.                                                                                                                            |
| 2          | OTnIS0F            | Interrupt by OTMn0 Fall point<br>In CAPTURE mode, the status of the capture data stored in OTn0F register is indicated.<br>It is cleared by writing "1" to OTnIC0F bit of OTnINTC register.<br>In CAPTURE mode, it is also cleared by reading OTn0F register. |
| 1          | OTnIS0R            | Interrupt by OTMn0 Rise point<br>In CAPTURE mode, the status of the capture data stored in OTn0R register is indicated.<br>It is cleared by writing "1" to OTnIC0R bit of OTnINTC register.<br>In CAPTURE mode, it is also cleared by reading OTn0R register. |
| 0          | OTnISP             | OTMn periodical interrupt<br>It is cleared by writing "1" to OTnICP bit of OTnINTC register.                                                                                                                                                                  |

### 9.2.19 OTMn interrupt clear register L/H (OTnINTCL, OTnINTCH : n=0 to 5)

OTnINTCL and OTnINTCH are SFRs to clear an interrupt status.

Writing "1" to bit 7 to 0 clears the interrupt status of the same bit in OTnINTS register. When it is read, it always reads "0x0000".

Address: 0xF41E(OT0INTCL), 0xF41F(OT0INTCH), 0xF43E(OT1INTCL), 0xF43F(OT1INTCH), 0xF45E(OT2INTCL), 0xF45F(OT2INTCH), 0xF47E(OT3INTCL), 0xF47F(OT3INTCH), 0xF49E(OT4INTCL), 0xF49F(OT4INTCH), 0xF4BE(OT5INTCL), 0xF4BF(OT5INTCH) Access: W Access size: 8bit initial value: 0x0000 15 14 13 12 10 9 8 7 5 0 11 6 4 3 2 1 Word Byte **OTnINTCH** OTnINTCL OTnIC OTnIC OTnIC OTnIC OTnIC OTnIC OTnIC OTnIC Bit OTnIR \_ \_ \_ \_ \_ \_ \_ 1F \* 1R \* 0F 0R FS TR ΤS Ρ R/W R R R W W W w w w W W R R R R W Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 value \* : Not available in CH2 and CH3.

Common explanation of each bit (bit5 to 0):

The bit clears an appropriate status.

"0" Writing : disable

"1" Writing : Clear an appropriate status

| Bit<br>No. | Bit symbol name | Description (appropriate functions)                                                                                                                                                                                                                                                          |
|------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15         | OTnIR           | OTMn interrupt request bit                                                                                                                                                                                                                                                                   |
|            |                 | Write "1" before an interrupt routine completes                                                                                                                                                                                                                                              |
|            |                 | "0"Writing : disable                                                                                                                                                                                                                                                                         |
|            |                 | "1" Writing : If there is an outstanding interrupt source, output an interrupt request again.                                                                                                                                                                                                |
| 14 to 8    | -               | Reserved bit                                                                                                                                                                                                                                                                                 |
| 7          | OTnICFS         | OTMn forced stop interrupt status<br>However, when the "H" level/"L" level is set by OTnFCE11 to10 bits of<br>OTnFTRG0/OTnFTRG1 register, OTnISFS bit is not cleared when writing to OTnICFS bit<br>It is automatically cleared when stop state caused by a forced stop trigger is released. |
| 6          | OTnICTR         | OTMn Trigger counter start interrupt status                                                                                                                                                                                                                                                  |
| 5          | OTnICTS         | OTMn Trigger counter stop interrupt status                                                                                                                                                                                                                                                   |
| 4          | OTnIC1F         | OTMn 1 Fall Point interrupt status                                                                                                                                                                                                                                                           |
| 3          | OTnIC1R         | OTMn 1 Rise Point interrupt status                                                                                                                                                                                                                                                           |
| 2          | OTnIC0F         | OTMn 0 Fall Point interrupt status                                                                                                                                                                                                                                                           |
| 1          | OTnIC0R         | OTMn 0 Rise Point interrupt status                                                                                                                                                                                                                                                           |
| 0          | OTnICP          | OTMn periodical interrupt status                                                                                                                                                                                                                                                             |

## 9.2.20 OTM common update register (OTCUD)

OTCUD is a SFR to update OTnP, OTn0R, OTn0F, OTn1R, and OTn1F register of OTMn during operation. This SFR commons to each channel. Bit n corresponds to channel n. Writing to bits of non-equipped channels is not valid.

| Address:<br>Access:<br>Access size:<br>Initial value: |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W<br>8bit       | 80(OT | CUD)    |         |    |   |        |                               |   |            |            |            |            |            |            |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|---------|---------|----|---|--------|-------------------------------|---|------------|------------|------------|------------|------------|------------|--|
| _                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14              | 13    | 12      | 11      | 10 | 9 | 8      | 7                             | 6 | 5          | 4          | 3          | 2          | 1          | 0          |  |
| Word                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |         |         |    |   |        | -                             |   |            |            |            |            |            |            |  |
| Byte                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |         |         |    |   |        |                               |   |            | OTO        | CUD        |            |            |            |  |
| Bit                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               | -     | -       | -       | -  | - | -      | -                             | - | OTCU<br>D5 | OTCU<br>D4 | OTCU<br>D3 | OTCU<br>D2 | OTCU<br>D1 | OTCU<br>D0 |  |
| R/W                                                   | R                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R               | R     | R       | R       | R  | R | R      | R                             | R | W          | W          | W          | W          | W          | W          |  |
| Initial<br>value                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0               | 0     | 0       | 0       | 0  | 0 | 0      | 0                             | 0 | 0          | 0          | 0          | 0          | 0          | 0          |  |
| Bit<br>No.                                            | Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                            | it symb<br>name | ol    |         |         |    |   | Descri | ption (appropriate functions) |   |            |            |            |            |            |            |  |
| 15 to 6                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       | Reserve | ed bits |    |   |        |                               |   |            |            |            |            |            |            |  |
| 5 to 0                                                | OTCUD5 to<br>OTCUD0 Write only bit to update OTnP, OTn0R, OTn0F, OTn1R, and OTn1F register of OTMn during<br>operation.<br>After updating the above register, by writing "1" to this bit, setting value of each register is<br>transferred to the buffer at the end of the period, and pulse-width-modulated waveform is<br>updated.<br>OTnUD bit of OTnSTAT indicates update request status.<br>"0" Writing : disable<br>"1" Writing : update request occurs |                 |       |         |         |    |   |        |                               |   |            |            |            |            |            |            |  |

## 9.2.21 OTM Common control register (OTCCON)

OTCCON is a SFR to set enable/disable OTMn output. This SFR commons to each channel. Bit n corresponds to channel n. Writing to bits of non-equipped channels is not valid.

| Address:       | 0xF382(OTCCONL/OTCCON), 0xF383(OTCCONH) |
|----------------|-----------------------------------------|
| Access:        | R/W                                     |
| Access size:   | 8/16bit                                 |
| Initial value: | 0x0000                                  |

| _                | 15     | 14 | 13         | 12         | 11         | 10         | 9          | 8          | 7 | 6       | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|------------------|--------|----|------------|------------|------------|------------|------------|------------|---|---------|---|---|---|---|---|---|--|--|
| Word             | OTCCON |    |            |            |            |            |            |            |   |         |   |   |   |   |   |   |  |  |
| Byte             |        |    |            | отсо       | CONH       |            |            |            |   | OTCCONL |   |   |   |   |   |   |  |  |
| Bit              | -      | -  | OT5SD<br>N | OT4SD<br>N | OT3SD<br>N | OT2SD<br>N | OT1SD<br>N | OT0SD<br>N | - | -       | - | - | - | - | - | - |  |  |
| R/W              | R      | R  | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R | R       | R | R | R | R | R | R |  |  |
| Initial<br>value | 0      | 0  | 0          | 0          | 0          | 0          | 0          | 0          | 0 | 0       | 0 | 0 | 0 | 0 | 0 | 0 |  |  |

| Bit<br>No. | Bit symbol<br>name  | Description (appropriate functions)                                                                                                                                                     |
|------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 14   | -                   | Reserved bit                                                                                                                                                                            |
| 13 to 8    | OT5SDN to<br>OT0SDN | Set permission of OTMn0/OTMn1 output.<br>•CAPTURE mode<br>Unused<br>•PWM mode<br>0: Output permission (default value)<br>1: Output inhibition (OTMn0/OTMn1 output fixed to "low" level) |
| 7 to 0     | -                   | Reserved bit                                                                                                                                                                            |

## 9.2.22 OTM Common start register (OTCSTR)

OTCSTR is a SFR to set valid/invalid of OTMn counter start. This SFR commons to each channel. The digits in the bit symbol correspond to the channel number. Writing to bits of non-equipped channels is not valid.

| Address:       | 0xF384(OTCSTRL/OTCSTR), 0xF385(OTCSTRH) |
|----------------|-----------------------------------------|
| Access:        | W                                       |
| Access size:   | 8/16bit                                 |
| Initial value: | 0x0000                                  |

| _                | 15 | 14 | 13         | 12         | 11         | 10         | 9          | 8          | 7   | 6 | 5          | 4          | 3          | 2          | 1          | 0          |
|------------------|----|----|------------|------------|------------|------------|------------|------------|-----|---|------------|------------|------------|------------|------------|------------|
| Word             |    |    |            |            |            |            |            | OTC        | STR |   |            |            |            |            |            |            |
| Byte             |    |    |            | OTC        | STRH       |            |            | OTCSTRL    |     |   |            |            |            |            |            |            |
| Bit              | -  | -  | OT5ET<br>G | OT4ET<br>G | OT3ET<br>G | OT2ET<br>G | OT1ET<br>G | OT0ET<br>G | -   | - | OT5ST<br>R | OT4ST<br>R | OT3ST<br>R | OT2ST<br>R | OT1ST<br>R | OT0ST<br>R |
| R/W              | R  | R  | W          | W          | W          | W          | W          | W          | R   | R | W          | W          | W          | W          | W          | W          |
| Initial<br>value | 0  | 0  | 0          | 0          | 0          | 0          | 0          | 0          | 0   | 0 | 0          | 0          | 0          | 0          | 0          | 0          |

| Bit<br>No. | Bit symbol name     | Description (appropriate functions)                                                                                                                                                                                                                |  |  |  |  |  |
|------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 15 to 14   | -                   | eserved bits                                                                                                                                                                                                                                       |  |  |  |  |  |
| 13 to 8    | OT5ETG to<br>OT0ETG | Enable count stop/start by trigger event.<br>To disable, set by OTSCTP register.<br>In the initial state after power-on, the trigger operation is disabled.<br>"0" Writing : disable<br>"1" Writing : Trigger operation (count stop/start) enabled |  |  |  |  |  |
| 7 to 6     | -                   | Reserved bits                                                                                                                                                                                                                                      |  |  |  |  |  |
| 5 to 0     | OT5STR~<br>OT0STR   | Start OTMn count by software.<br>Count start by writing "1".<br>In the initial state after power-on, count is stop.<br>"0" Writing : disable<br>"1" Writing : count start by software                                                              |  |  |  |  |  |

## 9.2.23 OTM Common stop register (OTCSTP)

OTCSTP is a SFR to set enable/disable OTMn counter stop. This SFR commons to each channel. The digits in the bit symbol correspond to the channel number. Writing to bits of non-equipped channels is not valid.

|                  | s:<br>s size                                                                                                                                                                                                                                                             | 0xF3<br>W<br>: 8/16<br>: 0x00 | bit       | TCSTPL                                   | OTCS                                | TP), 0                | xF387(                    | OTCST      | PH)      |        |            |            |            |            |            |            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|------------------------------------------|-------------------------------------|-----------------------|---------------------------|------------|----------|--------|------------|------------|------------|------------|------------|------------|
|                  | 15                                                                                                                                                                                                                                                                       | 14                            | 13        | 12                                       | 11                                  | 10                    | 9                         | 8          | 7        | 6      | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             |                                                                                                                                                                                                                                                                          |                               |           |                                          |                                     |                       |                           | OTC        | TCSTP    |        |            |            |            |            |            |            |
| Byte             |                                                                                                                                                                                                                                                                          |                               |           | OTCS                                     | STPH                                |                       |                           |            | OTCSTPL  |        |            |            |            |            |            |            |
| Bit              | -                                                                                                                                                                                                                                                                        | •                             | OT5D<br>G | T OT4DT<br>G                             | OT3DT<br>G                          | OT2DT<br>G            | OT1DT<br>G                | OT0DT<br>G | -        | -      | OT5ST<br>P | OT4ST<br>P | OT3ST<br>P | OT2ST<br>P | OT1ST<br>P | OT0ST<br>P |
| R/W              | R                                                                                                                                                                                                                                                                        | R                             | W         | W                                        | W                                   | W                     | W                         | W          | R        | R      | W          | W          | W          | W          | W          | W          |
| Initial<br>value | 0                                                                                                                                                                                                                                                                        | 0                             | 0         | 0                                        | 0                                   | 0                     | 0                         | 0          | 0        | 0      | 0          | 0          | 0          | 0          | 0          | 0          |
| Bit<br>No.       | Bi                                                                                                                                                                                                                                                                       | it symb<br>name               | ol        |                                          |                                     |                       |                           | Descrip    | otion (a | ppropr | iate fun   | ctions)    |            |            |            |            |
| 15 to 14         | -                                                                                                                                                                                                                                                                        |                               |           | Reserve                                  | ed bits                             |                       |                           |            |          |        |            |            |            |            |            |            |
| 13 to 8          | OT5DTG to<br>OT0DTG Disable count stop/start by a trigger event.<br>To enable, set by OTSCTP register.<br>In the initial state after power-on, the trigger operation is disabled.<br>"0" Writing : disable<br>"1" Writing : Trigger operation (count stop/start) disable |                               |           |                                          |                                     |                       |                           |            |          |        |            |            |            |            |            |            |
| 7 to 6           |                                                                                                                                                                                                                                                                          |                               |           |                                          |                                     |                       |                           |            |          |        |            |            |            |            |            |            |
| 5 to 0           | OT5<br>OT0                                                                                                                                                                                                                                                               | STP to<br>STP                 | )         | Stop OT<br>Count s<br>In the in<br>"0" W | top by v<br>itial sta<br>riting : o | writing '<br>te after | "1"<br><sup>-</sup> power | -on, cou   | unt is s | top.   |            |            |            |            |            |            |

"1" Writing : count stop by software

## 9.2.24 OTM Common status register (TCSTAT)

TCSTAT is a SFR to indicate OTMn status.

This SFR commons to each channel. Bit n corresponds to channel n. Writing to bits of non-equipped channels is not valid.

Address:0xF388(OTCSTATL/OTCSTAT), 0xF389(OTCSTATH)Access:RAccess size:8/16bitInitial value:0x0000

|                  | 15                                    | 14                                                                                                                                                                    | 13                                  | 12           | 11          | 10          | 9           | 8                    | 7        | 6        | 5          | 4          | 3          | 2          | 1          | 0          |
|------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|-------------|-------------|-------------|----------------------|----------|----------|------------|------------|------------|------------|------------|------------|
| Word             |                                       |                                                                                                                                                                       |                                     |              |             |             |             | OTCS                 | STAT     |          |            |            |            |            |            |            |
| Byte             |                                       |                                                                                                                                                                       |                                     | OTCSTATH     |             |             |             |                      |          | OTCSTATL |            |            |            |            |            |            |
| Bit              | -                                     | -                                                                                                                                                                     | OT5TO<br>EN                         | GOT4TG<br>EN | OT3TG<br>EN | OT2TG<br>EN | OT1TG<br>EN | OT0TG<br>EN          | -        | -        | OT5RU<br>N | OT4RU<br>N | OT3RU<br>N | OT2RU<br>N | OT1RU<br>N | OT0RU<br>N |
| R/W              | R                                     | R                                                                                                                                                                     | R                                   | R            | R           | R           | R           | R                    | R        | R        | R          | R          | R          | R          | R          | R          |
| Initial<br>value | 0                                     | 0                                                                                                                                                                     | 0                                   | 0            | 0           | 0           | 0           | 0                    | 0        | 0        | 0          | 0          | 0          | 0          | 0          | 0          |
| Bit<br>No.       | Bit symbol<br>name                    |                                                                                                                                                                       | Description (appropriate functions) |              |             |             |             |                      |          |          |            |            |            |            |            |            |
| 15 to 14         | -                                     |                                                                                                                                                                       |                                     | Reserve      | ed bit      |             |             |                      |          |          |            |            |            |            |            |            |
| 13 to 8          |                                       | OT5TGEN to<br>OT0TGEN Verify setting status of OTMn.<br>The initial state after power-on, the<br>0: Trigger operation (count stop<br>1: Trigger operation (count stop |                                     |              |             |             |             | n, the ti<br>stop/st | art) dis | able (ir |            |            |            |            |            |            |
| 7 to 6           | -                                     |                                                                                                                                                                       |                                     | Reserved bit |             |             |             |                      |          |          |            |            |            |            |            |            |
| 5 to0            | OT5RUN to Indicate OTMn count status. |                                                                                                                                                                       |                                     |              |             |             |             |                      |          |          |            |            |            |            |            |            |

OTORUN OTnSTA bit of OTnSTAT register also indicate the same status. In the initial state after power-on, count is stop.

0: Counting stopped (default value) 1: Counting in operation

## 9.2.25 OTM Common break control register (OTCBRK)

OTCBRK is a SFR to set the behavior of OTMn during a break when a debugger is connected. This SFR commons to each channel. Bit n corresponds to channel n. Writing to bits of non-equipped channels is not valid.

|                  | ss:<br>ss size | R/W             |    | CBRK)    |        |    |   |        |          |       |            |            |            |            |            |            |
|------------------|----------------|-----------------|----|----------|--------|----|---|--------|----------|-------|------------|------------|------------|------------|------------|------------|
|                  | 15             | 14              | 13 | 12       | 11     | 10 | 9 | 8      | 7        | 6     | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             |                |                 |    |          |        |    |   |        | -        |       |            |            |            |            |            |            |
| Byte             |                |                 |    | - OTCBRK |        |    |   |        |          |       |            |            |            |            |            |            |
| Bit              | -              | -               | -  | -        | I      | -  | - | •      | -        | -     | OT5BR<br>K | OT4BR<br>K | OT3BR<br>K | OT2BR<br>K | OT1BR<br>K | OT0BR<br>K |
| R/W              | R              | R               | R  | R        | R      | R  | R | R      | R        | R     | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0              | 0               | 0  | 0        | 0      | 0  | 0 | 0      | 0        | 0     | 1          | 1          | 1          | 1          | 1          | 1          |
| Bit<br>No.       | В              | it symb<br>name | ol |          |        |    |   | Descri | ption (a | pprop | riate fun  | ctions)    |            |            |            |            |
| 15 to 6          | -              |                 |    | Reserve  | ed bit |    |   |        |          |       |            |            |            |            |            |            |
| 5 to 0           |                | BRK to          |    |          |        |    |   |        |          |       |            |            |            |            |            |            |

### 9.2.26 OTM common OTMn0 output control register (OTC0OCON)

OTCOOCON is a SFR that enables/disables the lower 8 bits (OTnOCONL register) of OTnOCON register. This SFR commons to each channel. Bit n corresponds to channel n. Writing to bits of non-equipped channels is not valid.

Address:0xF38C(OTC0OCONL/OTC0OCON), 0xF38D(OTC0OCONH)Access:R/WAccess size:8bit/16bitInitial value:0x0000

|                  | 15 | 14 | 13           | 12           | 11           | 10           | 9            | 8            | 7    | 6 | 5            | 4            | 3            | 2            | 1            | 0            |
|------------------|----|----|--------------|--------------|--------------|--------------|--------------|--------------|------|---|--------------|--------------|--------------|--------------|--------------|--------------|
| Word             |    |    |              |              |              |              |              | OTC00        | DCON |   |              |              |              |              |              |              |
| Byte             |    |    |              | OTCOC        | CONH         |              |              |              |      |   |              | OTCOC        | CONL         |              |              |              |
| Bit              | -  | -  | OT50O<br>EN1 | OT40O<br>EN1 | OT30O<br>EN1 | OT20O<br>EN1 | OT10O<br>EN1 | OT00O<br>EN1 | -    | - | OT50O<br>EN0 | OT40O<br>EN0 | OT30O<br>EN0 | OT20O<br>EN0 | OT10O<br>EN0 | OT00O<br>EN0 |
| R/W              | R  | R  | R/W          | R/W          | R/W          | R/W          | R/W          | R/W          | R    | R | R/W          | R/W          | R/W          | R/W          | R/W          | R/W          |
| Initial<br>value | 0  | 0  | 0            | 0            | 0            | 0            | 0            | 0            | 0    | 0 | 0            | 0            | 0            | 0            | 0            | 0            |

| Bit<br>No. | Bit symbol name | Description (appropriate functions)                                                                                    |
|------------|-----------------|------------------------------------------------------------------------------------------------------------------------|
| 15 to 14   | -               | Reserved bit                                                                                                           |
| 13         | OT50OEN1        | Set valid/invalid of OT5AND07 to 04 bit of OT5OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |
| 12         | OT40OEN1        | Set valid/invalid of OT4AND07 to 04 bit of OT4OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |
| 11         | OT30OEN1        | Set valid/invalid of OT3AND07 to 04 bit of OT3OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |
| 10         | OT20OEN1        | Set valid/invalid of OT2AND07 to 04 bit of OT2OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |
| 9          | OT10OEN1        | Set valid/invalid of OT1AND07 to 04 bit of OT1OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |
| 8          | OT00OEN1        | Set valid/invalid of OT0AND07 to 04 bit of OT0OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |
| 7 to 6     | -               | Reserved bit                                                                                                           |
| 5          | OT50OEN0        | Set valid/invalid of OT5AND03 to 00 bit of OT5OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |
| 4          | OT40OEN0        | Set valid/invalid of OT4AND03 to 00 bit of OT4OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |
| 3          | OT30OEN0        | Set valid/invalid of OT3AND03 to 00 bit of OT3OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |
| 2          | OT20OEN0        | Set valid/invalid of OT2AND03 to 00 bit of OT2OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |
| 1          | OT10OEN0        | Set valid/invalid of OT1AND03 to 00 bit of OT1OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |
| 0          | OT00OEN0        | Set valid/invalid of OT0AND03 to 00 bit of OT0OCONL register<br>0: setting invalid (initial value)<br>1: setting valid |

Initial

value

0

0

0

0

0

0

0

EN0

R/W

0

### 9.2.27 OTM common OTMn1 output control register (OTC1OCON)

OTC1OCON is a SFR that enables/disables the upper 8 bits (OTnOCONH register) of OTnOCON register. This SFR commons to each channel. Bit n corresponds to channel n. Writing to bits of non-equipped channels is not valid.

0xF38E(OTC1OCONL/OTC1OCON), 0xF38F(OTC1OCONH) Address: Access: R/W Access size: 8/16bit Initial value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Word OTC10CON Byte OTC10CONH OTC1OCONL OT510 OT410 OT110 OT010 OT510 OT410 OT010 OT110 Bit -\_ \_ -\_ \_ \_ \_ EN1 EN1 EN1 EN1 EN0 EN0 EN0 R R R/W R/W R R/W R/W R R/W R/W R/W R/W R R R R

0

0

0

0

0

0

0

0

0

| Bit<br>No. | Bit symbol<br>name | Description (appropriate functions)                                                                                    |
|------------|--------------------|------------------------------------------------------------------------------------------------------------------------|
| 15 to 14   | -                  | Reserved bit                                                                                                           |
| 13         | OT51OEN1           | Set valid/invalid of OT5AND17 to 14 bit of OT5OCONH register<br>0: setting invalid (initial value)<br>1: setting valid |
| 12         | OT41OEN1           | Set valid/invalid of OT4AND17 to 14 bit of OT4OCONH register<br>0: setting invalid (initial value)<br>1: setting valid |
| 11 to 10   | -                  | Reserved bit                                                                                                           |
| 9          | OT11OEN1           | Set valid/invalid of OT1AND17 to 14 bit of OT1OCONH register<br>0: setting invalid (initial value)<br>1: setting valid |
| 8          | OT01OEN1           | Set valid/invalid of OT0AND17 to 14 bit of OT0OCONH register<br>0: setting invalid (initial value)<br>1: setting valid |
| 7 to 6     | -                  | Reserved bit                                                                                                           |
| 5          | OT51OEN0           | Set valid/invalid of OT5AND13 to 10 bit of OT5OCONH register<br>0: setting invalid (initial value)<br>1: setting valid |
| 4          | OT41OEN0           | Set valid/invalid of OT4AND13 to 10 bit of OT4OCONH register<br>0: setting invalid (initial value)<br>1: setting valid |
| 3 to 2     | -                  | Reserved bit                                                                                                           |
| 1          | OT11OEN0           | Set valid/invalid of OT1AND13 to 10 bit of OT1OCONH register<br>0: setting invalid (initial value)<br>1: setting valid |
| 0          | OT01OEN0           | Set valid/invalid of OT0AND13 to 10 bit of OT0OCONH register<br>0: setting invalid (initial value)<br>1: setting valid |

### 9.2.28 OTM Common cycle interlocking control register (OTCPC)

OTCPC is a SFR to select a value to set to OTnP.

When OTM2 and OTM3 are used in capture mode, the capture data is usable as OTMn cycle.

In this case, OTnP is update automatically with the following conditions.

- count value is stop at 0 (OTnC=0x0000)
- end of cycle

- counter clear by a trigger

When OTM2 and OTM3 are used PWM mode, they are updated in OTTM Common Update Register (OTCUD).

When OT20R and OT30R are selected, the value set in OTnP buffer is the value of OT20R and OT30R buffer.

In CAPTURE mode, OT20R and OT30R buffer are set to the value after capture.

In PWM mode, the value is set after OT20R are OT30R register is set and the update request is completed

 This SFR commons to each channel.

 Address:
 0xF3F0(OTCPCL/OTCPC), 0xF3F1(OTCPCH)

 Access:
 R/W

 Access size:
 8/16bit

 Initial value:
 0x0000

|                  | 15 | 14 | 13 | 12  | 11         | 10         | 9          | 8          | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
|------------------|----|----|----|-----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Word             |    |    |    |     |            |            |            | ОТО        | CPC        |            |            |            |            |            |            |            |
| Byte             |    |    |    | OTC | PCH        |            |            |            |            |            |            | OTC        | PCL        |            |            |            |
| Bit              | -  | -  | -  | -   | OT5PC<br>1 | OT5PC<br>0 | OT4PC<br>1 | OT4PC<br>0 | OT3PC<br>1 | OT3PC<br>0 | OT2PC<br>1 | OT2PC<br>0 | OT1PC<br>1 | OT1PC<br>0 | OT0PC<br>1 | OT0PC<br>0 |
| R/W              | R  | R  | R  | R   | R/W        |
| Initial<br>value | 0  | 0  | 0  | 0   | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |

| Bit<br>No. | Bit symbol<br>name  | Description (appropriate functions)                                                                                                         |
|------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 12   | -                   | Reserved bit                                                                                                                                |
| 11 to 10   | OT5PC0 to<br>OT5PC1 | Select a value to set to OT5P<br>00: writing value to OT5P (initial value)<br>01: OT20R<br>10: OT30R<br>11: setting prohibited              |
| 9 to 8     | OT4PC0 to<br>OT4PC1 | Select a value to set to OT4P<br>00: writing value to OT4P (initial value)<br>01: OT20R<br>10: OT30R<br>11: setting prohibited              |
| 7 to 6     | OT3PC0 to<br>OT3PC1 | Select a value to set to OT3P<br>00: writing value to OT3P (initial value)<br>01: OT20R<br>10: setting prohibited<br>11: setting prohibited |
| 5 to 4     | OT2PC0 to<br>OT2PC1 | Select a value to set to OT2P<br>00: writing value to OT2P (initial value)<br>01: setting prohibited<br>10: OT30R<br>11: setting prohibited |
| 3 to 2     | OT1PC0to<br>OT1PC1  | Select a value to set to OT1P<br>00: writing value to OT1P (initial value)<br>01: OT20R<br>10: OT30R<br>11: setting prohibited              |
| 1 to 0     | OT0PC0 to<br>OT0PC1 | Select a value to set to OT0P<br>00: writing value to OT0P (initial value)<br>01: OT20R<br>10: OT30R<br>11: setting prohibited              |

[Note]

- Set OTCPC register in a state where the counter operation is stopped.
- When the period is set to be linked with OT20R/OT30R, set the period of the count clock to be set to the linked OTMn so that it is less than or equal to the period of the count clock set in OTM2 and OTM3.
- If the period is set to longer than the period of the count clock set in OTM2 and OTM3, there is a possibility that an unintended value may be set to OTnP during period-linked operation.

### 9.3 Description of operation

### 9.3.1 Common sequence (Initial settings common to all modes)

OTMn start operation by OTCSTR register after the setting 1 to 6 as follows. During operation, it is available to check the hardware status such as interrupt status and update the period/event settings.

- 1: Mode setting (OTnMOD register) Select CAPTURE/PWM mode by OTnMOD register. In addition, set the continuous mode/one-shot mode, waveform output status when stopped, etc.
- 2: Clock setting (OTnCLK register) Select timer clock and count clock. Set the source clock and its divider ratio.
- 3: Trigger setting (OTnCTRG0/1 register, OTnFTRG0/1 register) OTnCTRG0/1 is set in the case of start or stop the counter by a trigger. OTnFTRG0/1 is set in the case of there is a trigger that wants to be stopped in addition to the trigger of OTnCTRG0/1, such as stopping in the event of an abnormality.

Select a source and edge of an event trigger to start/stop counter and an action when a trigger is entered in OTnCTRG0 and OTnCTRG1 register.

Select a source of forced stop trigger and behavior at forced stop in OTnFTRG0, OTnFTRG1 registe.

- 4: Interrupt setting (OTnINTE register) Set an interrupt source. Select from cycle, event (Counter match, Capture), trigger start, and stop interrupt.
- 5: Period/Duty setting (OTnP register, OTn0R register, OTn0F register, OTn1R register, OTn1F register) Set period, data for counter match, and etc. The period can also be set in OTCPC/OTCADC register

| e per | ioù can also de set in OT | CPC/OTCADC register.         |                                 |
|-------|---------------------------|------------------------------|---------------------------------|
|       |                           | CAPTURE mode                 | PWM mode                        |
|       | OTnP register             | Period in continuous mode or | timeout period in one-shot mode |
|       | OTn0R register            | (conture data)               | OTMn0 output Duty               |
|       | OTn0F register            | (capture data)               |                                 |
|       | OTn1R register            |                              |                                 |

(Unused)

The formula for calculating the period is as follows:

OTn1F register

OTnP + 1 Count clock frequency [Hz]

 $(OTnP:0x0001{\sim}0xFFFF)$ 

OTMn1 output Duty

#### 6: External output signal selecting

By OTnOCON register, set a combination of a logical AND of OTMn0/OTMn1 output with OTMn0/OTMn1 output of other channels, analog comparator output, and EXTRG input.

After the setting, enables OTnOCON register setting by OTC1OCON/OTC1OCON register.

OTnOSL1 and OTnOSL0 bits of OTnMOD register select whether to output OTMn0/OTMn1 output (OTMn0S/OTMn1S) from OTOnA/OTOnB pin.

In addition, select whether or not to invert OTMn0/OTMn1 output from OTOnA pin by OTnOSNA bit, select whether or not to invert OTMn0/OTMn1 output from OTOnB pin by OTnOSNB bit.

Fig. 9-2 shows the configuration of external output signal selection.

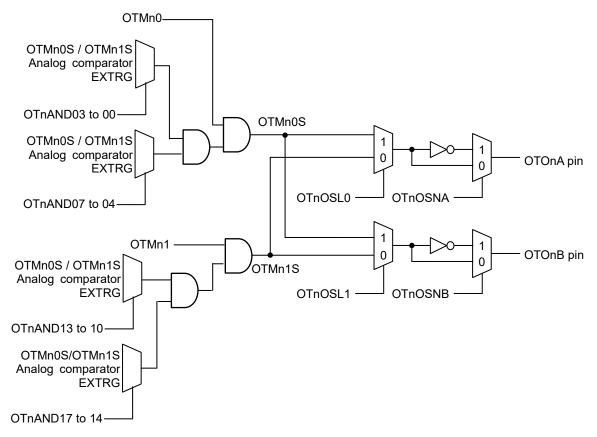



Fig. 9-2 Configuration of External Output Signal Selection

7: Start/Stop control

Count operation is started by software start or acceptance of a counter start/stop event trigger.

The counter counts up on the rising edge of the count clock.

Because software start/stop is synchronized by the timer clock, after a maximum of 4 cycles of the timer clock from the start, OTnSTA bit becomes "1" and the counter starts operating.

Since the software start/stop is synchronized with the timer clock, OTnSTA bit becomes "1" at a maximum of 4 cycles after the timer clock is set in the software, and the counter starts operating.

Stop case, the count stops by software stop and OTnSTA bit becomes "0". In this case, the count value is held. If the software is started again, it will restart after a maximum of 4 cycles of the timer clock.

To clear the counter, write an arbitrary value to OTnC register.

#### 8: Processing in operation

The status of counters and pins are monitorable during operation with OTnSTAT register, OTCSTAT register, and OTnINTS register.

In case of changing the waveform such as PWM, set a corresponding bit of OTCUD register after setting the period/event, and it will be updated at the next PWM cycle.

In addition, setting OTnSDN bit of OTCCON register forces OTMn0/OTMn1 output to be fixed at the "L" level.

### 9.3.2 Counter operation (Common to all modes)

The counters inside OTMn behaves the same operation in each mode.

Count up to OTnP register setting value.

In continuous mode (OTnOST bit of OTnMOD register is "0"), the counter is cleared at the time of overflow and continues the counting operation.

In one-shot mode (OTnOST bit of OTnMOD register is "1"), the counter is cleared at the time of overflow and stops the counting operation.

Counting operation start/stop is controllable by software or trigger events.

### 9.3.2.1 Count start/stop by software

When "1" is written to OTnSTR bit of OTCSTR register, OTnSTA bit of OTnSTAT register, which indicates the counting status, becomes "1" and the counting operation starts.

In one-shot mode (OTnOST bit of OTnMOD register is "1"), the counting operation is stopped due to overflow, and OTnSTA bit of OTnSTAT register, which indicates the counting status, is automatically set to "0".

When "1" is written to OTnSTP bit of OTCSTP register while the counter is running (OTnSTA bit of OTnSTAT register indicating the counting status is "1"), the counter will stop running.

When OTnSTSYN bit of OTnMOD register is "1", the count will continue from the end of the period to the value set by OTnDLY and then stop.

Confirm that the counter is stopped by setting OTnSTA bit of OTnSTAT register to "0" in the software. When the counter is stopped, the value of the counter is held.

After the counter is stopped, when written "1" to OTnSTR bit of OTCSTR register again, the counter will continue to operate from the value at the time of stopping.

If the counter is to be cleared, a write operation is performed to OTnC register while it is stopped.

When restart the counter after that, write "1" to OTnSTR bit of OTCSTR register after confirming that OTnC register is "0x0000".

The timing at which the period/duty setting register setting is reflected to the buffer is as follows.

If cycle/duty register is written with counter is 0 with counter is stopped, it will be reflected at the start.

If cycle/duy register is written in timer operation, write is executed during timer operation, it will be reflected in the next PWM cycle of the update request with OTCUDn bit of OTCUD register.

Even if the timer is stopping, if the counter is not "0", even if a write is made, it will not be reflected until an update is requested. Reflect the setting value in one of the following ways.

- Reflect the setting value in one of the following ways. Execute a write operation to OTnC register and clear the counter.
- The settings are updated when start.
- After rewriting the corresponding register, update request with OTCUDn bit of OTCUD register. After starting, the settings are updated in the next cycle.

See "9.3.7 Changes during periodic and duty operation" for details on when the period/duty setting register is reflected.

### 9.3.2.2 Start/Stop by Trigger event

If write "1" to OTnETG bit of OTCSTR register, counter operation becomes controllable by the trigger event. Trigger selection etc. is set by OTnCTRG0/OTnCTRG1 register.

Trigger event source is selectable from EXTRG0 to EXTRG3, TMH0INT, WDTCLK, OTMn0/OTMn1, OTMnTRG, and CMPnINT.

Depending on the trigger event that select, actions (counter start, counter stop, counter clear) is selectable. When the counter is stopped due to a trigger event, if OTnSTSYN bit of OTnMOD register is "1", the count will continue from the end of the period to the value set by OTnDLY and then stop.

### 9.3.3 CAPTURE mode operation

In CAPTURE mode, the count value when the event trigger factor occurs is stored in OTn0R register or OTn0F register. The event trigger factors to be captured are the same as those used for counter start/stop.

| OTn0R register stored data | Count value when the rising edge of the event trigger occurs  |
|----------------------------|---------------------------------------------------------------|
| OTn0F register stored data | Count value when the falling edge of the event trigger occurs |

### 9.3.3.1 Example of CAPTURE mode operation

The following is an example of measuring only one period and duty of the PWM signal input from the EXTRG0 pin using the start/stop of a counter due to a trigger event.

Follow the steps below to set each register before measuring.

- Step1: Select CAPTURE mode by writing "1" to OTnMD0 bit of OTnMOD register.
- Step2: When an interrupt is used, set trigger counter stop interrupt to enable by writing "1" to OTnIE0R bit of OTnINTE register.
- Step3: Setting OTnCTRG0 Register

Write OTnSTS03-00 = 0000 : Select EXTRG0 as trigger event Write OTnST0 =1: Enabled to start by triggering the counter Write OTnSP0=1: Counter trigger stop enabled Write OTnCAPEN0=1: Capture trigger enabled Write OTnTRM02 to 00 = 000: Counter start/stop is the rising edge of the trigger

Step4: Write "1" to OTnETG bit of OTCSTR register to enable the trigger operation of the capture.

An example of the operation in the case of the measurement in Figure 9-3 is as follows.

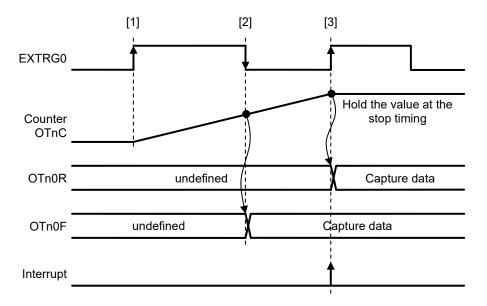



Fig. 9-3 Example of periodic/duty measurement of a PWM signal (only one period)

[1] Start counting when EXTRG0 rises

[2] When EXTRG0 fall timing, the value of OTMn counter register OTnC is stored in OTn0F register.

[3] When EXTRG0 rise timing, the value of OTMn counter register OTnC is stored in OTn0R register.

Stop counting, and an interrupt occurs.

The period of the PWM signal input from EXTRG0 pin is the value of OTn0R register, and the duty is the value of OTn0F register.

The following example shows how to measure the period and duty of a PWM signal (continuous) input from the EXTRG0 pin using the start/stop of a counter due to a trigger event.

Follow the steps below to set each register before measuring.

Step1: Write "1" to OTnMD0 bit of OTnMOD register to select CAPTURE mode.

Step2: When an interrupt is used, write "1" to OTnIE0R bit to enable 0 Rise Point interrupt.

Step3: Write "0000" to OTnSTS03 to OTnSTS00 bit of OTnCRTG0 register to set EXTRG0 as trigger event source. Write "1" to OTnST0 bit to enable counter start function.

Write "1" to OTnSPC0 bit to enable counter clearing when a counter stop trigger event occurs.

Write "1" to OTnCAPEN0 bit to use trigger event source selected by OTnCTRG0 register as capture trigger.

Step4: Write "000" to OTnTRM02 to OTnTRM00 of OTnCTRG0 register to select a trigger by rising edge for both counter start and counter stop.

Step5: Write "1" to OTNnETG bit of OTCTRS register to enable capture trigger operation.

An example of the operation in the case of the measurement in Figure 9-4 is as follows.

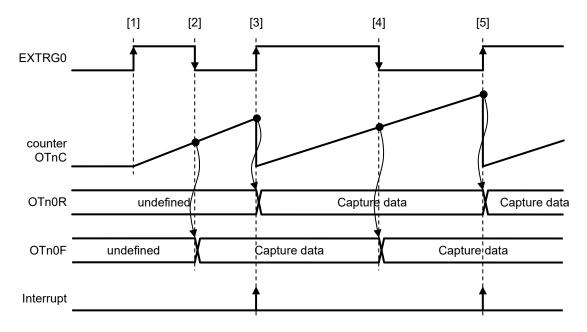
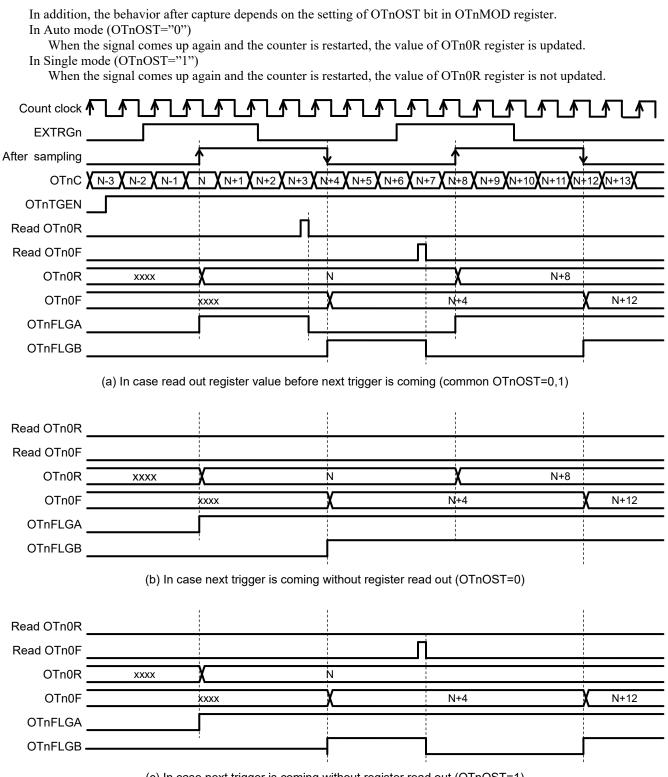




Fig. 9-4 Example of periodic/duty measurement of a PWM signal (continuous)

- [1] Counter operation starts when EXTRG0 rises
- [2] When EXTRG0 fall timing, the value of OTMn counter register OTnC is stored in OTn0F register.
- [3] When EXTRG0 rise timing, the value of OTMn counter register OTnC is stored in OTn0R register. Counter clear, 0 Rise Point interrupt occurred. After confirming the interrupt, clear the interrupt status. Counter operation continues
- [4] When EXTRG0 fall timing, the value of OTMn counter register OTnC is stored in OTn0F register.
- [5] When EXTRG0 rise timing, the value of OTMn counter register OTnC is stored in OTn0R register. Counter clear, 0 Rise Point interrupt occurred. After confirming the interrupt, clear the interrupt status. Counter operation continues

The period of the PWM signal input from EXTRG0 pin is the value of OTn0R register, and the duty is the value of OTn0F register.



(c) In case next trigger is coming without register read out (OTnOST=1)

Fig.9-5 CAPTURE mode operation timing

### 9.3.4 PWM mode operation

In PWM mode, generate a pulse with a period set by OTnP register. Set the rise of OTMn0 output with OTn0R register and set the fall of OTMn0 output with OTn0F register. Set the rise of OTMn1 output with OTn1R register and set the fall of OTMn1 output with OTn1F register.

### 9.3.4.1 PWM mode output waveform

In continuous mode, initial value of OTMn0/OTMn1 output is the level set by OTnSTPON/OTnSTPON bit of OTnMOD register.

If the count value matches the value of OTn0R/OTn1R, OTMn0/OTMn1 outputs "H".

If the count value matches the value of OTn0F/OTn1F, OTMn0/OTMn1 outputs "L".

Repeat above operation until OTMn is stop.

In one-shot mode, it will automatically stop and reach the level set by OTnSTPOP/OTnSTPON bits after one cycle.

Figure 9-6(a) shows the operating waveforms of OTMn0/OTMn1 in PWM mode (continuous mode), and Figure 9-6(b) shows the operating waveforms of OTMn0/OTMn1 in PWM mode (one-shot mode).

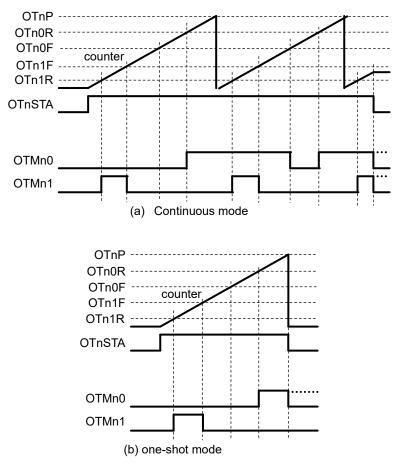



Fig. 9-6 OTMn0/OTMn1 waveform in PWM mode

By OTnOSL1/OTnOSL0 bit of OTnMOD register, the followings are selectable.

The phase of output fom OTOnA/OTOnB pin.

Whether or not OTOnA pin output is inverted by OTnOSNA bit.

Whether or not OTOnB pin output is inverted by OTnOSNB bit.

Figure 9-7-1 shows the output waveform in PWM mode when the phase output from OTOnA/OTOnB pin is set with OTnOSL1 and OTnOSL0 bits of OTnMOD register.

Figure 9-7-2 shows the output waveform in PWM mode when OTOnA pin output is inverted with OTnOSNA bit and OTOnB pin output is inverted with OTnOSNB bit.

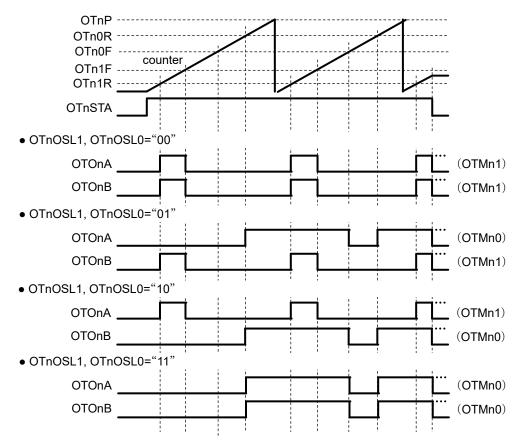



Fig. 9-7-1 PWM mode output waveform (Output phase selection by OTnOSL1 and OTnOSL0 bit)

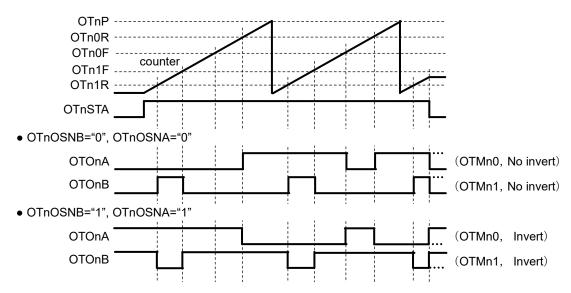



Fig. 9-7-2 PWM mode output waveform (Select with or without output inversion by OTnOSNB and OTnOSNA bits)

When the counter is stopped by software control or event triggering, or when the output waveform is fixed by forced stop the state of OTMn0/OTMn1 output can be set by OTnSTPOP/N bit of OTnMOD register.

1) Case of OTnSTPOP/N bit is "0"

OTMn0/OTMn1 output becomes "L" level when it is stopped.

If the count restart from the stopped state, OTMn0/OTMn1 output will remain "L" level output during the period and will change according to the count value from the next period.

When the output waveform is fixed by forced stop, "L" level output is held until the next period after the forced stop is released.

2) Case of OTnSTPOP/N bit is "1"

OTMn0/OTMn1 output becomes "H" level when it is stopped.

If the count restart from the stopped state, OTMn0/OTMn1 output will remain "H" level output during the period and will change according to the count value from the next period.

When the output waveform is fixed by forced stop, "H" level output is held until the next period after the forced stop is released.

When the counter is cleared by the trigger input, or when the counter is cleared by software after the counting operation is stopped, the count value is counted up from "0x0000" and the output changes according to the count value.

Fig. 9-8 shows the output waveform of PWM mode when the counter is stopped when OTnSTPOP/N bit of OTnMOD register is set to "0" and OTnSTPOP/N bit of OTnMOD register is set to "1".

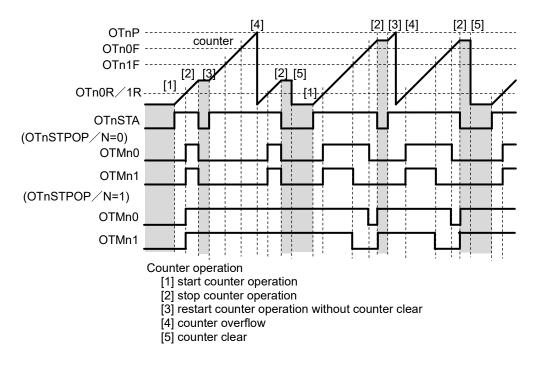



Fig. 9-8 PWM mode output waveform (counter is sopped)

By OTnOCON register, it is feasible to output a signal obtained by logical AND between OTMn1/OTMn0 output and OTMn1/OTMn0 output of another channel, or output of a comparator, external trigger input to OTOnA/OTOnB pin. The channel selection for logical AND is selectable in OTnAND17 to OTnAND10, OTnAND07 to OTnAND00.

Fig. 9-9-1 shows the output waveform of PWM mode setting by OT0OCON register when the logical AND of OTM00 and OTM10 is output to OT00A pin and the logical AND of OTM01 and OTM11 is output to OT00B pin . Fig. 9-9-2 shows the output waveform of PWM mode setting by OT0OCON register when the logical AND of OTM00, OTM10, and OTM40 is output to OT00A pin, and the logical AND of OTM01, OTM11, and OTM41 is output to OT00B pin.

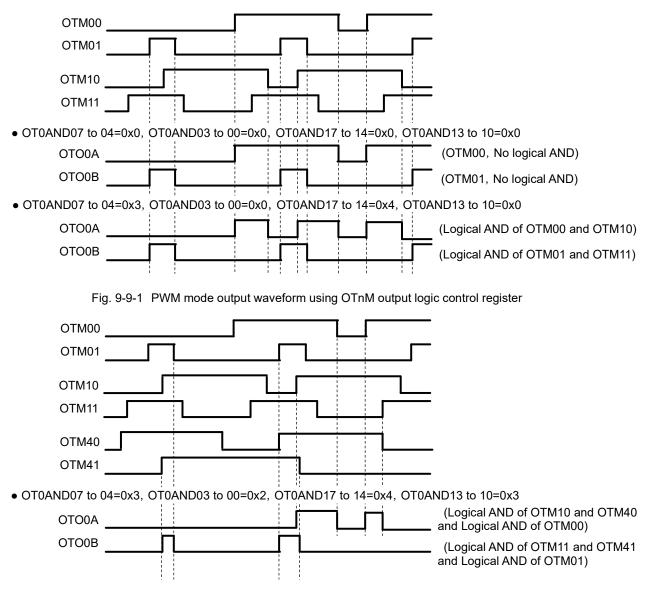
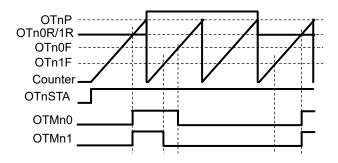



Fig. 9-9-2 PWM mode output waveform using OTnM output logic control register

### 9.3.5 PWM duty setting

### 9.3.5.1 Output waveform control when Duty = 100%, 0%


The duty of the pulse width modulated output waveform are configurable to 100% or 0% by setting OTn0R, OTn0F, OTn1R, and OTn1F register in PWM mode.

If OTn0R(OTn1R) register is set to a value larger than OTnP's, or if OTn0R(OTn1R) register and OTn0F(OTn1F) register are set to the same value, the duty = 0%.

If OTn0F(OTn1F) register is set to a value larger than OTnP, the duty = 100%.

Fig. 9-10-1 shows the output waveform with duty = 0% in PWM mode, and Fig. 9-10-2 shows the duty = 100%.

| _        | OTn0R/1R | OTn0F/1F |
|----------|----------|----------|
| OTMn0    | > OTnP   | ≤OTnP    |
| OTIVITIO | *        | = OTn0R  |
| OTMn1    | > OTnP   | ≤OTnP    |
| OTMIT    | *        | = OTn1R  |



\*:Don't care

Fig. 9-10-1 OTn0R/1R, OTn0F/1F register and OTMn0/OTMn1 output (Duty = 0%) in PWM mode

|       | OTn0R/1R | OTn0F/1F |
|-------|----------|----------|
| OTMn0 | ≤OTnP    | > OTnP   |
| OTMn1 | ≤OTnP    | > OTnP   |

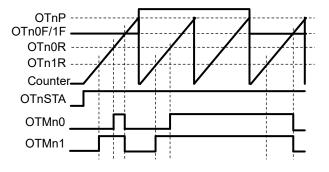



Fig. 9-10-2 OTn0R/1R, OTn0F/1F register and OTMn0/OTMn1 output (Duty = 100%)

### 9.3.6 Control of External clock input / Event trigger / Forced stop trigger

Operational timer is controllable by event input such as an external pin input as below.

·External clock input

External pin input is usable as a counter clock.

- Set the clock by OTnCLK register.
- •Event trigger

Controllable counter start and stop control by events of an external pin input, analog comparator output, operational timer, and other channel output triggers.

Forced stop trigger

Forced stop control of counter and outputs by a trigger of an external pins input.

The external clock input is selectable from EXTRG0 to EXTRG3 to be used as a count clock.

Event triggers are used to start/stop of counter and to trigger captures.

A trigger source is selectable from EXTRG0 to EXTRG3, CMP0INT to CMP2INT, TMH0TRG, WDTCLK, OTMn0/OTMn1, and OTMnTRG.

The forced stop trigger is a trigger to stop OTMn0/OTMn1 output.

By setting OTnFCC0/OTnFCC1 bit of OTnFTRG0/OTnFTRG1 register to "1", the counter operation can be stopped during forced stop.

By setting OTnFCN01, OTnFCN00, OTnFCN11, and OTnFCN10 bits to "1", the output of OTMn0/OTMn1 will be the value set by OTnSTPON/OTnSTPOP bit of OTnMOD register during forced stop.

When OTnFCN01, OTnFCN00, OTnFCN11, and OTnFCN10 bits are set to "0", OTMn0/OTMn1 outputs hold their current state during forced stop.

A trigger source is selectable from EXTRG0 to EXTRG3, CMP0INT to CMP2INT, and OTMn0/OTMn1 The start/stop of the counter by event trigger is delayed by 2 clocks of the timer clock.

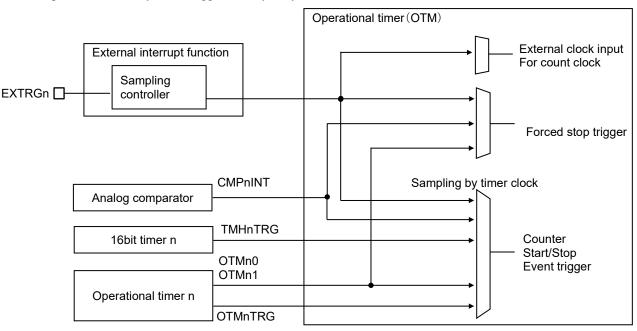



Fig. 9-11 Input Path of Trigger Signal

### 9.3.6.1 Start/Stop operation by event trigger

The following are the settings for controlling counters by event triggers. First, set the following items in OTnMOD, OTnCTRG0, and OTnCTRG1 register before controlling the counter.

Setting of OTnMOD register

- After stopping by an event trigger, accept the next counter start or not.
- When OTMn0 output is "H" level when counter is cleared by an event trigger, accept clear counter or not.

Setting of OTnCTRG0, OTnCTRG1 register

- Select whether to enable/disable counter start/stop in an event trigger.
- Select whether to clear counter or not at start/stop due to event triggers.
- Select an event trigger source from EXTRG0 to EXTRG3, CMP0INT to CMP2INT, TMH0TRG, WDTCLK, OTM00 to OTM51, and OTM0TRG to OTM5TRG.
- Setting of accept timing of an event trigger source (edge/level).

Setting of a timer clock to be used.

Select a timer clock by OTnCLK register.

After the above settings, control the counter with OTCSTR register. Here are the steps:

Step1. Set waiting state of an event trigger

If "1" is written to OTnETG bit, it will be in the waiting state for the event trigger (If the trigger start is set to a level, the counter operation will start as soon as OTnTGEN bit of OTCSTAT register becomes "1" when the corresponding level is reached.).

Step2. Timer count start by software

Write "1" to OTnETG bit and write "1" to OTnSTR bit with the trigger operation enabled, the software starts counting the timer.

Also, if "0" is written to OTnSTP bit of OTCSTP register during counter operation, the software stops counting the timer.

### 9.3.6.2 Forced stop operation (Counter count stop, Waveform output stop)

Write "1" to any of OTnFCC0/OTnFCC1, OTnFCN00/OTnFCN10, or OTnFCN01/OTnFCN11 bits of OTnFTRG0/OTnFTRG1 register, the forced stop function is enabled.

When the forced stop function is enabled, a forced stop interrupt occurs when a forced stop trigger is input.

If a forced stop trigger is entered while "1" is being set to OTnFCC0/OTnFCC1 bit of OTnFTRG0/OTnFTRG1 register, the counter stops.

To restart counter operation, write "1" to OTnICFS bit of OTnINTC register to clear the forced stop interrupt status (OTnISFS).

If OTnISFS is "1", the counter will not be restarted. In addition, the forced stop state is also canceled when the counter is cleared by the trigger clear

If the forced stop trigger input is set to "H" level or "L" level, the forced stop interrupt status is automatically cleared after the force stop trigger input is released.

If the forced stop trigger input is set to "H" level or "L" level, the forced stop interrupt status will not be cleared even if "1" is written to OTnICFS bit of OTnINTC register.

If the forced stop trigger is input while "1" is been setting to OTnFCN00/OTnFCN10, OTnFCN01/OTnFCN11 bits of OTnFTRG0/OTnFTRG1 register, the output level of OTMn0/OTMn1 is set to the output level set by OTnSTPOP/N bit of OTnMOD register.

Fig. 9-12-1 and 9-12-2 shows operation timing at forced stop.

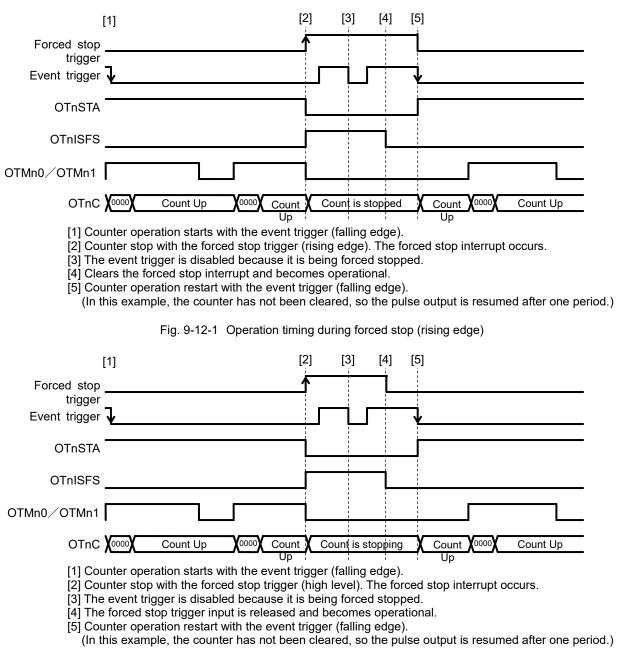



Fig. 9-12-2 Operation timing during forced stop (high level)

When the forced stop occurs, the counter is stopped, and OTnISFS bit of OTnINTS register becomes "1" ([2] in Figure 9-12).

When OTnISFS bit is "1", the counter start event trigger is not accepted.

After clearing OTnISFS bit ([4] in Figure 9-12), the counting up restart when the counter start event trigger occurs ([5] in Figure 9-12).

When restart the counting operation by software, OTnISFS bit must be set to "0".

When the forced stop trigger input is set to "H" level or "L" level, OTnISFS bit is automatically cleared after the forced stop input is released (Fig. 9-12-2[4]).

### 9.3.6.3 Forced stop operation (Counter count continues, Waveform output stop)

When forced to stop, if OTnFCC0/OTnFCC1 bit of OTnFTRG0/OTnFTRG1 register is set to "0", the counter does not stop, fix OTMn0/OTMn1 outputs level to the output level set in OTnSTPO bits of OTnMOD register or hold the current output state by OTnFCN00/OTnFCN10, OTnFCN01/OTnFCN11bits.

The waveform output when stopped are selectable from the following three states.

- Keep in the same output mode
- Fixed at H level (OTnSTPOP/N bit = OTnMOD register =1)
- Fixed at L level (OTnSTPOP/N bit = OTnMOD register =0)

When OTnFCC0/OTnFCC1 bit of OTnFTRG0/OTnFTRG1 registers are set to "0" and the rising/falling edge is selected for the forced stop trigger, the forced stop interrupt status is automatically cleared at the next period when the forced stop trigger is entered.

And also, If OTnFCC0/OTnFCC1 bit of OTnFTRG0/OTnFTRG1 registers are set to "0", and the rising/falling edge is selected for the forced stop trigger, the forced stop interrupt status is automatically cleared at the next period when the force stop trigger is entered.

When the forced stop trigger input is set to "H" level or "L" level, the forced stop interrupt status is automatically cleared after the forced stop is released, and the waveform output restart from the next period after the forced stop is released. When the forced stop trigger input is set to "H" level or "L" level, the forced stop state is not canceled either when the counter is cleared by the trigger clearing nor when "1" is written to OTNICFS bit of OTNINTC register.

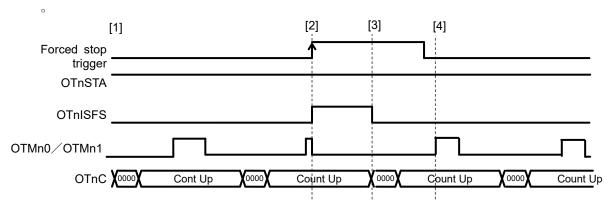
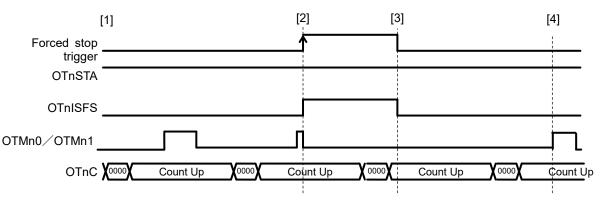



Fig. 9-13-1, 9-13-2 shows the operation timing at the time of forced stop when OTnFCEC bit is set to "1".


[1] Counter operation starts with soft start.

[2] Forced stop trigger (rising edge) input. the forced stop interrupt occurs. The counter operation continues.

[3] Since the next cycle is reached, the forced stop state is cleared and the waveform output is enabled.

[4] After the forced stop state is released, waveform output restart from the next cycle.

Fig. 9-13-1 Operation timing at forced stop (rising edge)



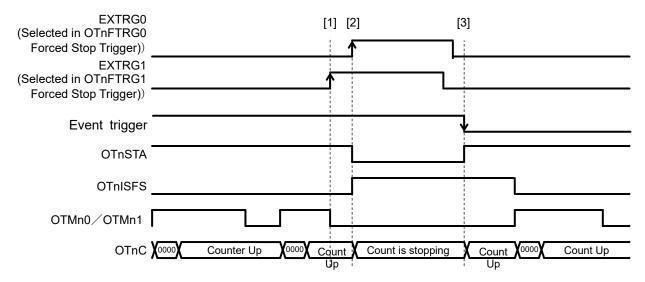
[1] Counter operation starts with soft start.

[2] Forced stop trigger ("H" level) input. the forced stop interrupt occurs. The counter operation continues.

[3] The forced stop trigger input is released and the waveform output is enabled.

[4] After the forced stop state is released, waveform output restart from the next cycle.

Fig. 9-13-2 Operation timing at forced stop ("H" level)


#### 9.3.6.4 Forced stop operation (in case of multiple forced stop triggers are selected)

By using OTnFTRG0/OTnFTRG1 register, it is feasible to use two inputs as forced stop triggers. In addition, it is feasible to set an action for each force stop trigger input.

The following settings are set by OTnFTRG0 register.Force Stop Trigger: EXTRG0 (OTnEST02 to 00="000")Force stop event: "H" level (OTnFCE01,00="10")Stop the counter when forced to stop (OTnFCC0="1")Output forced stop enabled when forced stop (OTnFCN01=1, OTnFCN00=1)

The following settings are set by OTnFTRG1 register.Force Stop Trigger:EXTRG1 (OTnEST12 to 10="000")Force Stop Event:Rising Edge (OTnFCE11,10="00")Counter continues when forced to stop (OTnFCC1="0")Output forced stop enabled when forced stop (OTnFCN01=1, OTnFCN00=1)

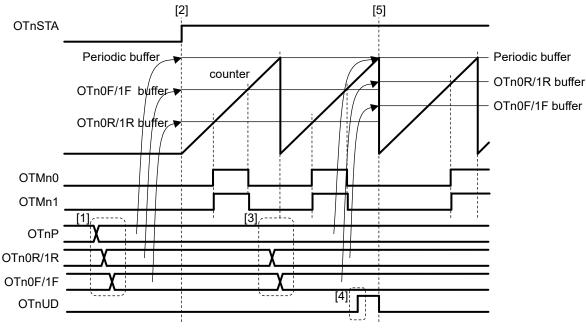
Fig. 9-14 shows the operation timing of a forced stop when multiple forced stop triggers are selected.



[1] Waveform output is stopped by EXTRG1 forced stop trigger (rising edge). (Counter operation continues) [2] The counter operation is stopped by EXTRG0 forced stop trigger ("H" level).

[3] Counter operation restart by event trigger input in the forced stop release state by EXTRG0.

Fig. 9-14 Operation timing at forced stop (Rising edge)


### 9.3.7 Changing Cycle and Duty during Operation

It is feasible to change the period and the duty according to the setting value of OTnP/OTn0R/OTn0F/OTn1R/OTn1F registers.

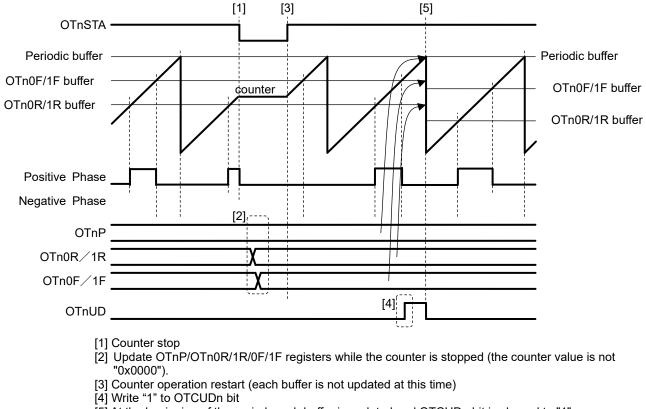
The timing of the change differs depending on the counter operation state and the counter value when writing the setting value of OTnP/OTn0R/OTn1R/OTn1F register.

| Counter operating<br>status at register<br>setting | Counter value<br>at register<br>setting | Update timing of setting value                                                                                                                                                                                                   |
|----------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| stop                                               | 0x0000                                  | Update at the counter start                                                                                                                                                                                                      |
| stop                                               | Except 0x0000                           | Update at the beginning of the period when OTCUDn bit is set to "1" during counter reoperation.                                                                                                                                  |
| oprating                                           | arbitrary                               | Update when the beginning of the period when OTCUDn bit is set<br>to "1" during counter operation.<br>Update when OT20R/OT30R/SADR0 is set to OTnP in OTCCCC,<br>the start of the cycle regardless of the setting of OTCUDn bit. |
| At trigger clear                                   | 0x0000                                  | Update when OTCUDn bit is set to "1" during counter operation and<br>the trigger is cleared.<br>Update when OT20R/OT30R/SADR0 is set to OTnP in OTCCCC,<br>the trigger is cleared regardless of OTCUDn bit setting.              |

Fig. 9-15 shows the operation waveform when the register setting value is updated while the counter is stopped (counter value "0x0000") and when the register setting value is updated while the counter is in operation. Fig. 9-16 shows the operation waveform when the register setting value is changed while the counter is stopped (other than the counter value "0x0000").



[1] Update OTnP/OTn0R/1R/0F/1F registers while the counter is stopped (the counter value is "0x0000").

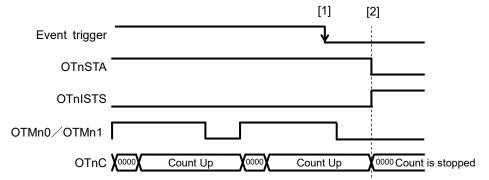

[2] Each buffer is updated at the timing of the start of counter operation

[3] Update OTnP/OTn0R/1R/0F/1F registers during counter operation

[4] Write "1" to OTCUDn bit

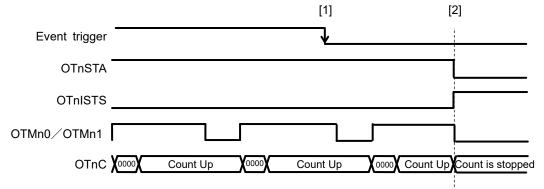
[5] At the beginning of the period, each buffer is updated and OTCUDn bit is cleared to "0"






[5] At the beginning of the period, each buffer is updated and OTCUDn bit is cleared to "1".

Fig. 9-16 when the register setting value is changed during stop (other than the counter value is "0x0000") and during operation

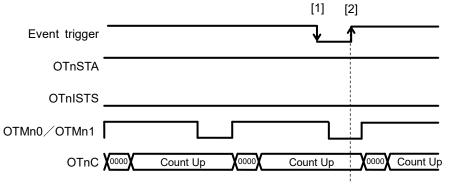

#### 9.3.8 Cycle stop function

Cycle stop function is a function that counts to the expiration of the period (OTnP) + set value (OTnSCLR) before stopping the counter when a request to stop is received by software or a trigger event during timer operation. Fig. 9-17-1, 9-17-2 shows the operation timing when a stop due to a trigger event is entered when OTnSTSYN bit is set to "1".



[1] Counter stop request with event trigger (falling edge). The counter does not stop at this moment.[2] Counter stop at the end of the cycle. Trigger counter stop interrupt (OTnISTS bit of OTnINTS) occur by event trigger.

Fig. 9-17-1 Operation timing when trigger event is stopped (OTnSTSYN="1"/OTnDLT7 to 0="0x00").




[1] Counter stop input with event trigger (falling edge). The counter does not stop at this moment.[2] After counting the interval set by OTnDLY7 to 0 from the end of the cycle, stop the counter. The interrupt occurs due to input stop by event trigger.

Fig. 9-17-2 Operation timing when trigger event is stopped (OTnSTSYN="1"/OTnDLT7 to 0≠"0x00")

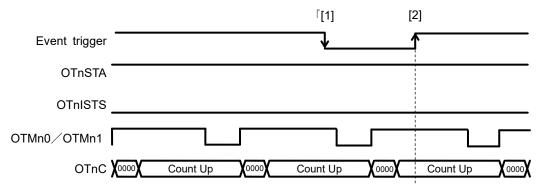

If a request to stop is received when the cycle stop function is enabled, and a request to start the counter is received by the software or trigger while counting to the expiration of the period (OTnP) + the set value (OTnSCLR), the request to stop is canceled.

Fig. 9-18-1 and Fig. 9-18-2 shows the operation timing when a stop due to a trigger event is entered when OTnSTSYN bit is set to "1" and when a counter start by a trigger event is entered before the counter stops.



[1] Counter stop input by the event trigger (falling edge). The counter does not stop at this point[2] Counter start input by the event trigger (rising edge) before counter stop. Counter operation continues thereafter.

Fig, 9-18-1 Operation timing when trigger event stop is released (OTnSTSYN="1"/OTnDLT7 to 0="0x00")



[1] Counter stop input by the event trigger (falling edge). The counter does not stop at this point[2] Counter start input by the event trigger (waiting for the interval set by OTnDLY7 to 0) before counter stop. Counter operation continues thereafter. Counter operation continues thereafter.

Fig. 9-18-2 Operation timing when trigger event stop is released (OTnSTSYN≠"1"/OTnDLT7 to 0="0x00")

#### 9.3.9 Interrupt

Writing "1" to the corresponding bit (OTnIE\*) of OTnINTE register causes each interrupt request to be enabled. Note that permission of the forced stop interrupt is not available. If the forced stop function is enabled, the interrupt is also enabled.

For the source which caused the interrupt status to become "1", write "1" to each interrupt status clear bit (OTnIC\*) to clear each interrupt status bit (OTnIS\*).

If using an interrupt, clear each interrupt status bit (OTnIS\*) at the end of the interrupt routine.

| Name                     | Mode     | Status      | Method of clear                                           |
|--------------------------|----------|-------------|-----------------------------------------------------------|
| Periodic interrupts      | All mode | OTnISP bit  | Write "1" to OTnICP bit                                   |
|                          | PWM      | OTnIS0R bit | Write "1" to OTnIC0R bit                                  |
| 0 Rise Point interrupt   | CAPTURE  | OTnIS0R bit | Write "1" to OTnIC0R bit<br>or<br>Read out OTn0R register |
|                          | PWM      | OTnIS0F bit | Write "1" to OTnIC0F bit                                  |
| 0 Fall Point B interrupt | CAPTURE  | OTnIS0F bit | Write "1" to OTnIC0F bit<br>or<br>Read out OTn0F register |
| 1 Pice Point interrunt   | PWM      | OTnIS1R bit | Write "1" to OTnIC1R bit                                  |
| 1 Rise Point interrupt   | CAPTURE  | Unused      | -                                                         |
| 1 Fell Deint R interrunt | PWM      | OTnIS1F bit | Write "1" to OTnIC1F bit                                  |
| 1 Fall Point B interrupt | CAPTURE  | Unused      | -                                                         |
| Trigger stop interrupt   | All mode | OTnISTS bit | Write "1" to OTnICTS bit                                  |
| Trigger start interrupt  | All mode | OTnISTR bit | Write "1" to OTnICTR bit                                  |
| Forced stop interrupt    | All mode | OTnISFS bit | Write "1" to OTnICFS bit                                  |

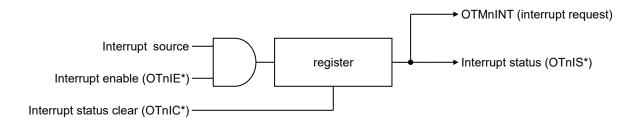



Fig. 9-19 Interrupt Control Signals

#### 9.3.10 Clock Mutual Monitoring Function

It is monitorable whether the low-speed clock (low-speed RC oscillator circuit) and the high-speed clock (PLL oscillator circuit) oscillate normally using 16-bit timer and operational timer

Fig. 9-20 shows an example of oscillation monitoring operation of a high-speed clock (PLL oscillator circuit) using a 16bit timer 0 and an operational timer 0.

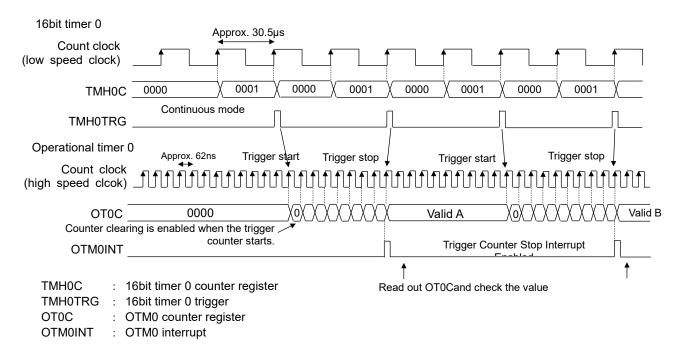



Fig. 9-20 Example of mutual monitoring of low-speed clock and high-speed clock

Fig. 9-21 shows the settings for the example operation shown in Fig. 9-20.

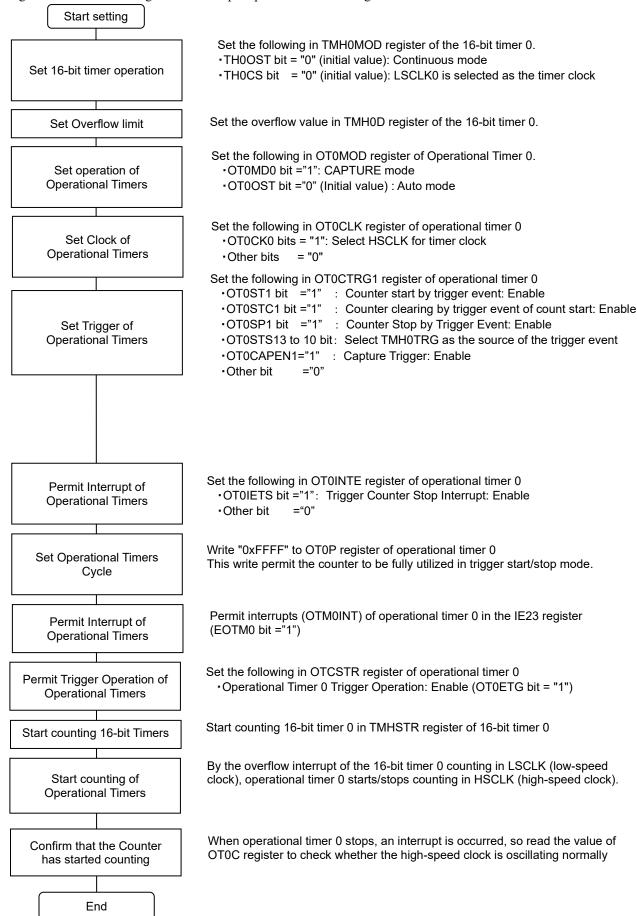



Fig. 9-21 Setting of an oscillation monitoring operation example of a high-speed clock (PLL oscillator circuit)

# **Chapter 10 Watchdog Timer**

### 10. Watchdog Timer

#### 10.1 General Description

The watchdog timer (WDT) is equipped with the following functions and can detect the runaway state of program or the undefined state of the CPU by generating an interrupt or reset when an abnormality occurs.

- If the counter is not cleared for more than a certain time period in program operation and overflows, the WDT interrupt is generated in the first overflow and the WDT reset in the second overflow (if the window function is disabled).
- If the counter is not cleared for more than a certain time period in program operation and overflow occurs, the WDT reset is generated in the first overflow (if the window function is enabled).
- If the counter is cleared in the unexpected time period, the WDT invalid clear reset is generated (if the window function is enabled).

The window function refers to the function through which "the time period during which WDT counter clear is enabled" = "the time period during which the window is opened" and

"the time period in which WDT counter clear is disabled" = "the time period in which the window is closed" can be set.

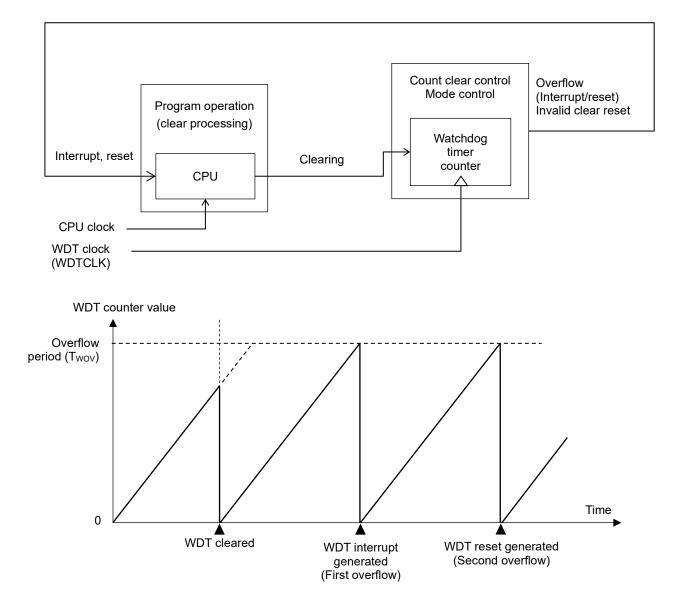



Figure 10-1 Watchdog Timer Overview (With the Window Function Disabled)

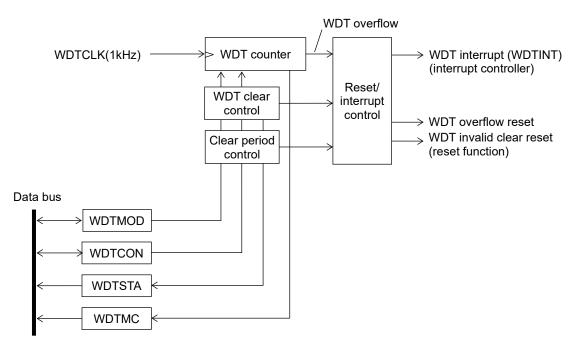
#### 10.1.1 Features

- Eight types of overflow periods can be selected (7.8ms, 15.6ms, 31.3ms, 62.5ms, 125ms, 500ms, 2s, or 8s)
- Two operation modes:
- Window function disabled mode
   The WDT counter can always be cleared. The WDT interrupt is generated when the first counter overflow occurs, and the WDT reset is generated when the second counter overflow occurs.
- Window function enabled mode

The periods during which WDT counter clear is enabled and disabled respectively can be set. The WDT reset is generated when the first counter overflow occurs, and the WDT invalid clear reset is generated when the counter is cleared in the period during which WDT counter clear is disabled.

|                               | - Matchuog Timer Ope |                         |       |
|-------------------------------|----------------------|-------------------------|-------|
| Mode                          | over                 | WDT invalid clear reset |       |
| Mode                          | First                | Second                  |       |
| Window function disabled mode | Interrupt            | Reset                   | -     |
| Window function enabled mode  | Reset                | -                       | Reset |

#### Table 10-1 Watchdog Timer Operation Modes

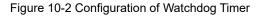

- The following items can be selected by the code option. See the Chapter 30 "Code Option" for details of the code option.
  - Enabling/disabling the WDT timer operation
  - Enabling/disabling the WDT timer operation in HALT mode

#### [Note]

 Not all the abnormal operations are detectable by the watchdog timer. Even if the CPU is runaway, the watchdog timer is undetectable to the abnormality in the operation state in which the WDT counter is cleared. As a fail-safe, it is recommended that the WDT counter is cleared at one place in the main loop of the program.

### 10.1.2 Configuration

The following diagram shows the configuration of the watchdog timer.




 $\mathsf{WDTCON} \ : \mathsf{Watchdog} \ \mathsf{timer} \ \mathsf{control} \ \mathsf{register}$ 

WDTMOD : Watchdog timer mode register

WDTMC : Watchdog timer counter register

WDTSTA : Watchdog timer status register



### 10.2 Description of Registers

### 10.2.1 List of Registers

| A data ao | Norra                           | Symbo  | l name |     | Cina | Initial |  |
|-----------|---------------------------------|--------|--------|-----|------|---------|--|
| Address   | Name                            | Byte   | Word   | R/W | Size | value   |  |
| 0xF010    | Watchdog timer control register | WDTCON | -      | R/W | 8    | 0x00    |  |
| 0xF011    | Reserved                        | -      | -      | -   | -    | -       |  |
| 0xF012    | Watchdog timer mode register    | WDTMOD | -      | R/W | 8    | 0x06    |  |
| 0xF013    | Reserved                        | -      | -      | -   | -    | -       |  |
| 0xF014    | Watchdog timer counter register | WDTMCL | WDTMC  | R   | 8/16 | 0x00    |  |
| 0xF015    |                                 | WDTMCH | WDTWC  | R   | 8    | 0x00    |  |
| 0xF016    | Watchdog timer status register  | WDTSTA | -      | R   | 8    | 0x01    |  |
| 0xF017    | Reserved                        | -      | -      | -   | -    | -       |  |

#### 10.2.2 Watchdog timer control register (WDTCON)

WDTCON is a SFR to clear the WDT counter.

|                  |                                                                                                                                                                                                                                                                | F<br>:e: 8      | 0xF010<br>R/W<br>8 bit<br>0x00 | ) (WDTC | ON) |    |   |   |    |          |    |     |     |    |    |            |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------|---------|-----|----|---|---|----|----------|----|-----|-----|----|----|------------|
|                  | 15                                                                                                                                                                                                                                                             | 14              | 13                             | 12      | 11  | 10 | 9 | 8 | 7  | 6        | 5  | 4   | 3   | 2  | 1  | 0          |
| Word             |                                                                                                                                                                                                                                                                |                 |                                |         |     |    |   |   | -  |          |    |     |     |    |    |            |
| Byte             |                                                                                                                                                                                                                                                                |                 |                                |         | -   |    |   |   |    |          |    | WDT | CON |    |    |            |
| Bit              | -                                                                                                                                                                                                                                                              | -               | -                              | -       | -   | -  | - | - | d7 | d6       | d5 | d4  | d3  | d2 | d1 | WDP/d<br>0 |
| R/W              | R                                                                                                                                                                                                                                                              | R               | R                              | R       | R   | R  | R | R | W  | W        | W  | W   | W   | W  | W  | R/W        |
| Initial<br>value | 0                                                                                                                                                                                                                                                              | 0               | 0                              | 0       | 0   | 0  | 0 | 0 | 0  | 0        | 0  | 0   | 0   | 0  | 0  | 0          |
| Bit No.          | E                                                                                                                                                                                                                                                              | Bit sym<br>name |                                |         |     |    |   |   | D  | escripti | on |     |     |    |    |            |
| 7 to 0           | <ul> <li>wDT counter is cleared by writing "0x5A" with WDP bit set to "0", then writing "0 WDP bit set to "1".</li> <li>In the window mode, WDT invalid clear reset is generated if WDT counter is clear period during which WDT clear is disabled.</li> </ul> |                 |                                |         |     |    |   |   |    |          |    |     |     |    |    |            |
| 0                | WDP       Read the value of WDT bit internal pointer. WDP bit is reset to "0" when the system is reset well as when WDT counter overflows. It is reversed when writing data to WDTCON register regardless of the data written.                                 |                 |                                |         |     |    |   |   |    |          |    |     |     |    |    |            |

#### [Note]

• In WDT interrupt routine (when the interrupt level (ELEVEL) of the CPU program status word (PSW) is "2"), WDT counter is unable to get cleared.

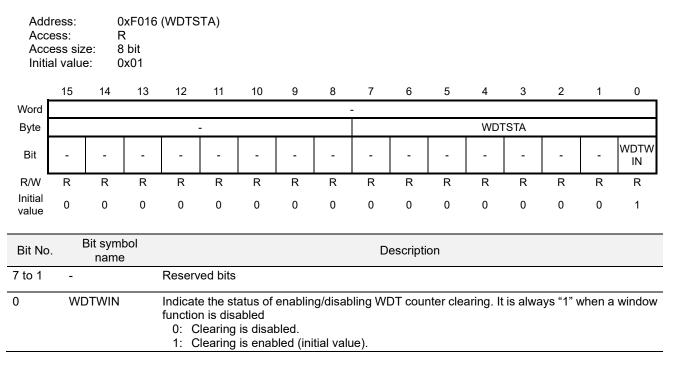
### 10.2.3 Watchdog Timer Mode Register (WDTMOD)

WDTMOD is a SFR to set the overflow period and the clear enabled period of the WDT counter.

|                         |        | F<br>:e: 8      | )xF012<br>R/W<br>3 bit<br>)x06 | 2 (WDTN                                                                                                                                                                                                                                                                                        | IOD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |        |        |        |         |           |           |        |          |          |          |
|-------------------------|--------|-----------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|---------|-----------|-----------|--------|----------|----------|----------|
| F                       | 15     | 14              | 13                             | 12                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10     | 9      | 8      | 7      | 6       | 5         | 4         | 3      | 2        | 1        | 0        |
| Word<br>Byte            |        |                 |                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        | -      |         |           | WDT       | MOD    |          |          |          |
| Bit                     | -      | -               | -                              | -                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -      | -      | -      | -      | -       | WOVF<br>1 | WOVF<br>0 | -      | WDT2     | WDT1     | WDT0     |
| R/W<br>Initial<br>value | R<br>0 | R<br>0          | R<br>0                         | R<br>0                                                                                                                                                                                                                                                                                         | R<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R<br>0 | R<br>0 | R<br>0 | R<br>0 | R<br>0  | R/W<br>0  | R/W<br>0  | R<br>0 | R/W<br>1 | R/W<br>1 | R/W<br>0 |
| Bit No.                 | E      | Bit sym<br>name |                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        | D      | escript | ion       |           |        |          |          |          |
| 7, 6                    | -      |                 | -                              | Reserv                                                                                                                                                                                                                                                                                         | ed bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |        |         |           |           |        |          |          |          |
| 5, 4                    |        | OVF1,<br>OVF0   |                                | 00: W<br>01: W<br>07<br>10: W<br>07<br>11: S                                                                                                                                                                                                                                                   | <ul> <li>Set the mode of WDT.</li> <li>00: Window function disabled (initial value)</li> <li>01: Window function enabled mode 1 (the clear enabled period is approximately 75% of the overflow period)</li> <li>10: Window function enabled mode 2 (the clear enabled period is approximately 50% of the overflow period)</li> <li>11: Setting disabled (setting of window function enabled mode 2)</li> <li>If the overflow period of the WDT counter is set to 62.5 ms or less in WDT2 to 0 bits, the window function is disabled regardless of setting values of WOVF1 and WOVF0 bits.</li> </ul> |        |        |        |        |         |           |           |        | % of the |          |          |
| 3                       | -      |                 |                                | Reserv                                                                                                                                                                                                                                                                                         | ed bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |        |         |           |           |        |          |          |          |
| 2 to 0                  |        | DT2 to<br>DT0   |                                | Set the overflow period $(T_{WOV})$ of the WDT counter.<br>000: Approx. 7.8ms<br>001: Approx. 15.6ms<br>010: Approx. 31.3ms<br>011: Approx. 62.5ms<br>100: Approx. 125ms<br>101: Approx. 500ms<br>110: Approx. 2s (initial value)<br>111: Approx. 8s<br>where frequency of WDTCLK is 1.024kHz. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        |        |         |           |           |        |          |          |          |

[Note]

• See the data sheet for frequency accuracy of RC1K.


#### 10.2.4 Watchdog Timer Counter Register (WDTMC)

WDTMC is a SFR to read the WDT counter value.

| Access:<br>Access size: |                            |      | xF014<br>2<br>/16 bit<br>x0000 | (WDTN  | ICL/WE  | DTMC),                          | 0xF015   | 5 (WDT   | MCH)  |         |         |          |        |        |          |       |
|-------------------------|----------------------------|------|--------------------------------|--------|---------|---------------------------------|----------|----------|-------|---------|---------|----------|--------|--------|----------|-------|
| _                       | 15                         | 14   | 13                             | 12     | 11      | 10                              | 9        | 8        | 7     | 6       | 5       | 4        | 3      | 2      | 1        | 0     |
| Word                    |                            |      |                                |        |         |                                 |          | WD.      | ТМС   |         |         |          |        |        |          |       |
| Byte                    |                            |      |                                | WDT    | МСН     |                                 |          |          |       |         |         | WDT      | MCL    |        |          |       |
| Bit                     | d15                        | d14  | d13                            | d12    | d11     | d10                             | d9       | d8       | d7    | d6      | d5      | d4       | d3     | d2     | d1       | d0    |
| R/W                     | R                          | R    | R                              | R      | R       | R                               | R        | R        | R     | R       | R       | R        | R      | R      | R        | R     |
| Initial<br>value        | 0                          | 0    | 0                              | 0      | 0       | 0                               | 0        | 0        | 0     | 0       | 0       | 0        | 0      | 0      | 0        | 0     |
| Bit No.                 | No. Bit symbol Description |      |                                |        |         |                                 |          |          |       |         |         |          |        |        |          |       |
| 15 to 0                 | d1:<br>d0                  | 5 to |                                | The no | rmal co | F counte<br>ounting o<br>WDT co | operatio | on of th | e WDT | counter | r can b | e confir | med If | values | periodio | cally |

#### 10.2.5 Watchdog Timer Status Register (WDTSTA)

WDTSTA is a read-only special function register (SFR) to indicate the WDT counter clearing state.



#### 10.3 Description of Operation

The WDT counter starts counting at the rising edge of the WDT counter operation clock (WDTCLK) when the system reset is released. (Enable/disable watchdog timer is set in the code options)

The WDT counter can be cleared by writing "0x5A" to WDTCON register with the WDP bit set to "0", then writing "0xA5" to WDTCON register with the WDP bit set to "1" while WDT counter clearing is enabled. The WDP bit is reset to "0" when the system is reset as well as when the WDT counter overflows. It is reversed every time data is written to WDTCON register.

Two types of use are available: window function disabled mode and window function enabled mode.

- Window function disabled mode The WDT counter can always be cleared. The WDT interrupt is generated when the counter overflows for the first time, and the WDT reset is generated when the counter overflows a second time.
- Window function enabled mode The periods during which WDT counter clear is enabled and disabled respectively can be set. The WDT reset is generated when the counter overflows for the first time, and the WDT invalid clear reset is generated when the counter is cleared in the period during which WDT counter clear is disabled.

| Table 10-2 Watchdog Timer Operation Modes |           |        |                         |  |  |  |  |  |  |  |
|-------------------------------------------|-----------|--------|-------------------------|--|--|--|--|--|--|--|
| Overflow                                  |           |        |                         |  |  |  |  |  |  |  |
| Mode                                      | First     | Second | WDT invalid clear reset |  |  |  |  |  |  |  |
| Window function disabled mode             | Interrupt | Reset  | -                       |  |  |  |  |  |  |  |
| Window function enabled mode              | Reset     | -      | Reset                   |  |  |  |  |  |  |  |

The WDT counter overflow period ( $T_{WOV}$ ) and the WDT counter clear enabled period ( $T_{WCL}$ ) can be selected through the WDTMOD register.

The following items can be selected with the code option. See Chapter 30 "Code Option" for details on how to set the code option.

- Enabling/disabling the WDT timer operation
- Enabling/disabling the WDT timer operation in the HALT mode

#### 10.3.1 How to Clear WDT Counter

The WDT counter can be cleared by writing "0x5A" to the WDTCON register with the WDP bit set to "0", then writing "0xA5" to the WDTCON register with the WDP bit set to "1" while WDT counter clearing is enabled. The WDP bit is reset to "0" when the system is reset as well as when the WDT counter overflows. It is reversed every time data is written to the WDTCON register.

The following diagram shows the WDT counter clearing timing chart.

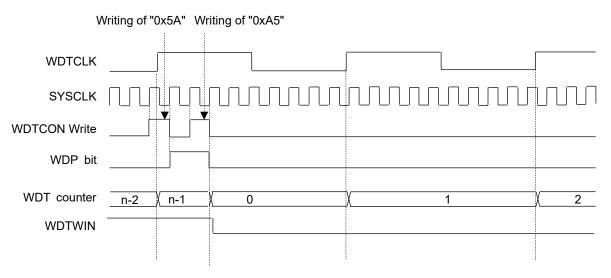
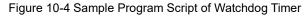




Figure 10-3 WDT Counter Clearing Timing Chart

The following description shows a sample program script of the watchdog timer.

```
void wdt clear(void)
  ł
    unsigned char pswval;
    if(WDTCLR1 == 1) {
                                      // Checking presence of pending clearing process
       return;
    };
    if(WDTCLR2== 1) {
                                      // Checking whether clearing process is pending or completed
       return;
    };
    pswval = s drvcommon getPSW(); // Saving PSW
     DI();
                                  // Interrupt disabled (clearing MIE bit)
    do {
         WDTCON = 0x5A;
                                      // WDT counter clearing
       } while (WDP != 1 );
    WDTCON = 0xA5;
    if ((pswval & 0x08) != 0) {
                                      // Confirming MIE bit
        EI();
                                    // Interrupt enabled (setting MIE bit)
    }
    static unsigned char's drvcommon getPSW(void){
       #pragma asm
       mov r0,psw
       rt
       #pragma endasm
    }
```



#### [Note]

In the STOP mode, the WDT timer is stopped.

#### 10.3.2 Window Function Disabled Mode

In the window function disabled mode, if the WDT counter is not available to clear within the WDT counter overflow period ( $T_{WOV}$ ) and the counter overflows for the first time, a WDT interrupt is generated. If the WDT counter is not cleared even by the software processing after the WDT interrupt, and overflows again, a WDT reset occurs. The WDTR bit of RSTAT register is set to "1" when the WDT reset occurs, and the state on the LSI is transferred to the system reset mode. See Chapter 3 "Reset Function" for details of RSTAT register.

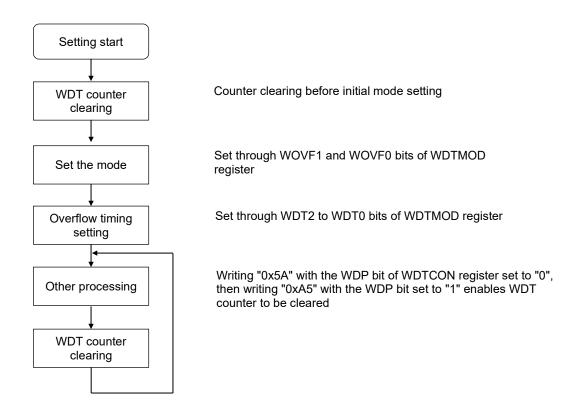
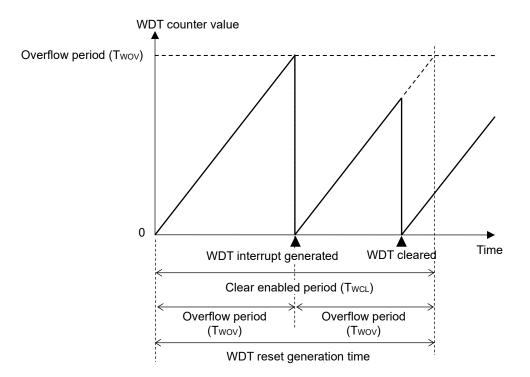
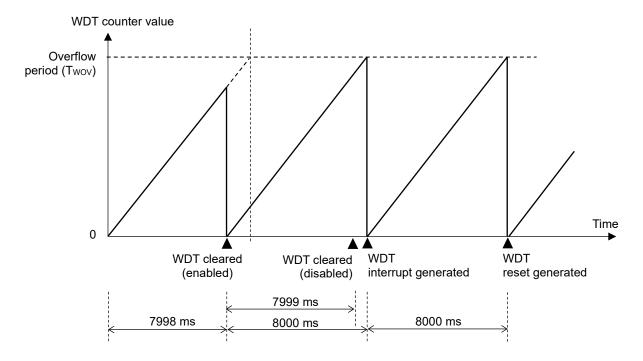



Figure 10-5 Procedure to Use WDT (in Window Function Disabled Mode)

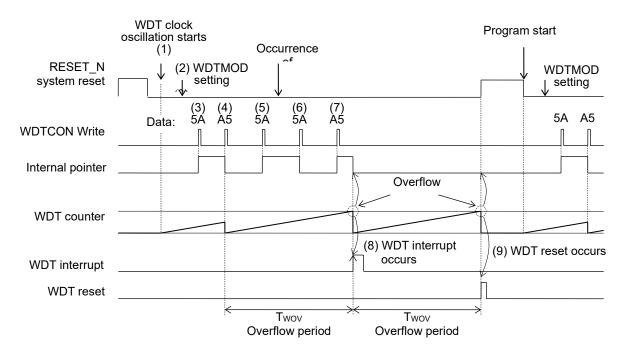
The following figure shows an operation timing overview of the window function disabled mode.



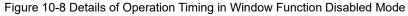


Figure 10-6 Overview of Operation Timing in Window Function Disabled Mode

The following table shows the WDT counter clear enabled period in the window function disabled mode.

| Table 10-3 WDT Counter Clear Enabled Period in Window Function Disabled Mode |      |      |                                            |                                               |                                                                    |  |  |  |  |  |
|------------------------------------------------------------------------------|------|------|--------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|
| WDT2                                                                         | WDT1 | WDT0 | Overflow<br>period<br>(Twov) <sup>*1</sup> | WDT reset<br>generation<br>time <sup>*1</sup> | WDT counter clear enabled period (T <sub>WCL</sub> ) <sup>*1</sup> |  |  |  |  |  |
| 0                                                                            | 0    | 0    | 7.8 ms                                     | 15.6 ms                                       | ≈ Overflow period                                                  |  |  |  |  |  |
| 0                                                                            | 0    | 1    | 15.6 ms                                    | 31.3 ms                                       | ≈ Overflow period                                                  |  |  |  |  |  |
| 0                                                                            | 1    | 0    | 31.3 ms                                    | 62.5 ms                                       | ≈ Overflow period                                                  |  |  |  |  |  |
| 0                                                                            | 1    | 1    | 62.5 ms                                    | 125 ms                                        | ≈ Overflow period                                                  |  |  |  |  |  |
| 1                                                                            | 0    | 0    | 125 ms                                     | 250 ms                                        | ≈ Overflow period                                                  |  |  |  |  |  |
| 1                                                                            | 0    | 1    | 500 ms                                     | 1000 ms                                       | ≈ Overflow period                                                  |  |  |  |  |  |
| 1                                                                            | 1    | 0    | 2000 ms                                    | 4000 ms                                       | ≈ Overflow period                                                  |  |  |  |  |  |
| 1                                                                            | 1    | 1    | 8000 ms                                    | 16000 ms                                      | ≈ Overflow period                                                  |  |  |  |  |  |


| Table 10-3 WDT Counter Clear Enabled Period in Window Fu | Inction Disabled Mode |
|----------------------------------------------------------|-----------------------|
|----------------------------------------------------------|-----------------------|

<sup>\*1</sup>: where the WDTCLK frequency is 1.024kHz(typ.) that is not included a significant error.




Design the WDT clear timing with time to spare.

Figure 10-7 Example of Operation Timing in Window Function Disabled mode (When Overflow Period=8000 ms)



The following figure shows details of operation timing in the window function disabled mode.



- (1) After the system reset is released, the WDT counter starts counting up.
- (2) The WDT counter overflow period (TWOV) is set to the WDTMOD register.
- (3) "0x5A" is written to the WDTCON register. (Internal pointer WDP:  $0 \rightarrow 1$ )
- (4) "0xA5" is written to the WDTCON register to clear the WDT counter. (Internal pointer WDP:  $1 \rightarrow 0$ )
- (5) "0x5A" is written to the WDTCON register. (Internal pointer WDP:  $0 \rightarrow 1$ )
- (6) When "0x5A" is written to the WDTCON register after an abnormality occurred, it is not accepted because the internal pointer WDP is "1". (Internal pointer WDP: 1 →0)
- (7) Although "0xA5" is written to the WDTCON register, the WDT counter is not cleared because the internal pointer WDP is "0" and writing of "0x5A" is not accepted in (6). (Internal pointer WDP:  $0 \rightarrow 1$ )
- (8) The WDT counter overflows and a WDT interrupt request is generated. (Internal pointer WDP:  $1 \rightarrow 0$ ) Following cleared due to the overflow, the WDT counter continues counting up.
- (9) If the WDT counter is not cleared even by the software processing after the WDT interrupt and it overflows again, a WDT reset occurs and the shift to the system reset mode takes place.

#### 10.3.3 Window Function Enabled Mode

In the window function enabled mode, if the WDT counter is not available to clear within the WDT clear enabled period and the counter overflows first time, the WDT overflow reset is generated. In addition, if the WDT counter is cleared in the period the counter clear is not enabled, the WDT invalid clear reset is generated.

WDTR bit of RSTAT register is set to "1" when the WDT overflow reset occurs, and the state on the LSI is transferred to the system reset mode.

WDTWR bit of RSTAT register is set to "1" when the WDT invalid clear reset occurs, and the state on the LSI is transferred to the system reset mode. See Chapter 3 "Reset Function" for details of RSTAT register.

In the window function enabled mode, two types of modes can be selected through WDTMOD register:

- Window function enabled mode 1 (the clear enabled period is approximately 75% of the overflow period)
- Window function enabled mode 2 (the clear enabled period is approximately 50% of the overflow period)

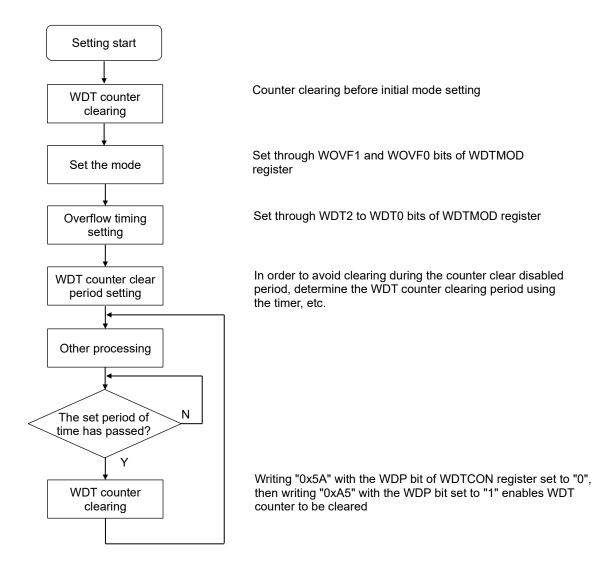



Figure 10-9 Procedure to Use WDT (in Window Function Enabled Mode)

Overviews of the operation of each mode are shown below.

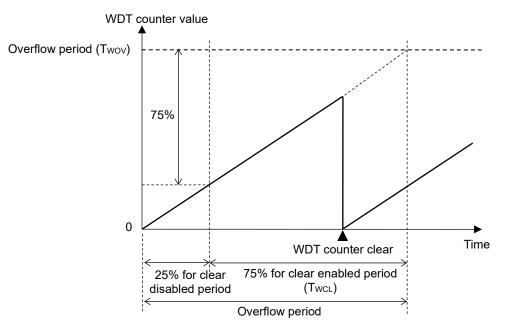



Figure 10-10 Window Function Enabled Mode 1 Operation Overview

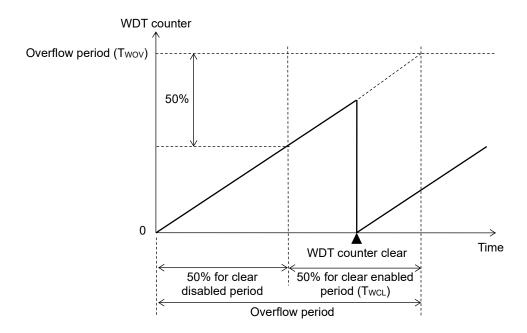



Figure 10-11 Window Function Enabled Mode 2 Operation Overview

The following table shows WDT counter clear enabled periods.

If the overflow period of the WDT counter is set to 62.5 ms or less in WDT2 to 0 bits, the window function is disabled regardless of setting values of WOVF1 and WOVF0 bits.

| WDT2 | WDT1 | WDT0 | Overflow<br>period (Twov) <sup>*1</sup> | WDT reset generation time <sup>*1</sup> | WDT clear enabled period $(T_{WCL})^{*1}$ |
|------|------|------|-----------------------------------------|-----------------------------------------|-------------------------------------------|
| 0    | 0    | 0    | Approx. 7.8 ms                          | Approx. 7.8 ms                          | ≈ Overflow period                         |
| 0    | 0    | 1    | Approx. 15.6 ms                         | Approx. 15.6 ms                         | ≈ Overflow period                         |
| 0    | 1    | 0    | Approx. 31.3 ms                         | Approx. 31.3 ms                         | ≈ Overflow period                         |
| 0    | 1    | 1    | Approx. 62.5 ms                         | Approx. 62.5 ms                         | ≈ Overflow period                         |
| 1    | 0    | 0    | Approx. 125 ms                          | Approx. 125 ms                          | ≈ 75% of overflow period                  |
| 1    | 0    | 1    | Approx. 500 ms                          | Approx. 500 ms                          | ≈ 75% of overflow period                  |
| 1    | 1    | 0    | Approx. 2000 ms                         | Approx. 2000 ms                         | ≈ 75% of overflow period                  |
| 1    | 1    | 1    | Approx. 8000 ms                         | Approx. 8000 ms                         | ≈ 75% of overflow period                  |

#### Table 10-4 WDT Clear Enabled Period in Window Function Enabled Mode 1

<sup>\*1</sup>: where the WDTCLK frequency is 1.024kHz(typ.) that is not included a significant error.

#### Table 10-5 WDT Counter Clear Enabled Period in Window Function Enabled Mode 2

| WDT2 | WDT1 | WDT0 | Overflow<br>period (Twov) <sup>*1</sup> | WDT reset generation time <sup>*1</sup> | WDT clear enabled period $(T_{WCL})^{*1*2}$ |
|------|------|------|-----------------------------------------|-----------------------------------------|---------------------------------------------|
| 0    | 0    | 0    | Approx. 7.8 ms                          | Approx. 7.8 ms                          | ≈ Overflow period                           |
| 0    | 0    | 1    | Approx. 15.6 ms                         | Approx. 15.6 ms                         | ≈ Overflow period                           |
| 0    | 1    | 0    | Approx. 31.3 ms                         | Approx. 31.3 ms                         | ≈ Overflow period                           |
| 0    | 1    | 1    | Approx. 62.5 ms                         | Approx. 62.5 ms                         | ≈ Overflow period                           |
| 1    | 0    | 0    | Approx. 125 ms                          | Approx. 125 ms                          | ≈ 50% of overflow period                    |
| 1    | 0    | 1    | Approx. 500 ms                          | Approx. 500 ms                          | ≈ 50% of overflow period                    |
| 1    | 1    | 0    | Approx. 2000 ms                         | Approx. 2000 ms                         | ≈ 50% of overflow period                    |
| 1    | 1    | 1    | Approx. 8000 ms                         | Approx. 8000 ms                         | ≈ 50% of overflow period                    |

<sup>\*1</sup>: where the WDTCLK frequency is 1.024kHz(typ.) that is not included a significant error.

#### [Note]

• When using the window function enabled mode, always define a WDT interrupt function even though no WDT interrupt occurs.

The following figure shows details of operation timing in the window function enabled mode.

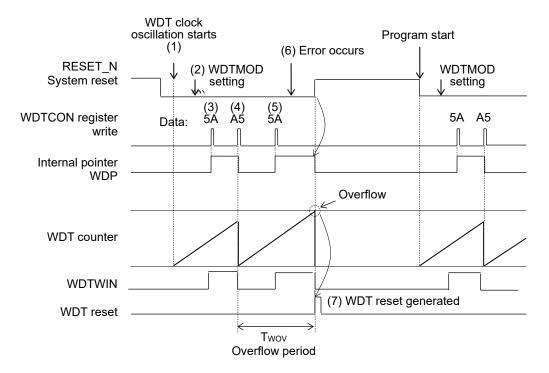



Figure 10-12 Details of Operation Timing in Window Function Enabled Mode

- (1) After the system reset is released, the WDT counter starts counting up.
- (2) The WDTMOD register is set with the WDT counter overflow period (T<sub>WOV</sub>) and WDT clear enabled period.
- (3) "0x5A" is written to WDTCON during the WDT clear enabled period. (Internal pointer WDP: "0"  $\rightarrow$  "1")
- (4) "0xA5" is written to the WDTCON register to clear the WDT counter. (Internal pointer WDP: "1"  $\rightarrow$  "0")
- (5) "0x5A" is written to WDTCON during the WDT clear enabled period. (Internal pointer WDP: "0"  $\rightarrow$  "1")
- (6) Occurrence of abnormality
- (7) The WDT counter overflows and a WDT reset occurs. (Internal pointer WDP: " $1" \rightarrow$  "0")

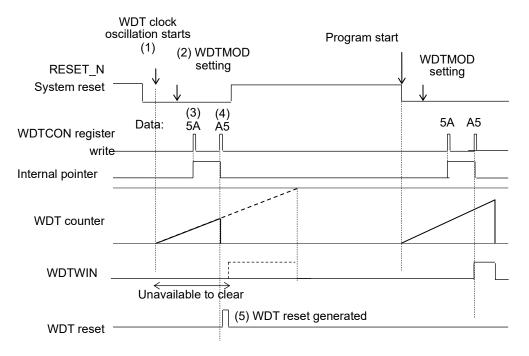



Figure 10-13 WDT invalid clear reset

- (1) After the system reset is released, the WDT counter starts counting up.
- (2) The WDTMOD register is set with the WDT counter overflow period ( $T_{WOV}$ ) and WDT clear enabled period.
- (3) "0x5A" is written to WDTCON. (Internal pointer WDP: "0"  $\rightarrow$  "1")
- (4) "0xA5" is written to the WDTCON register to clear the WDT counter. (Internal pointer WDP: "1"  $\rightarrow$  "0")
- (5) WDT invalid clear reset is occurred by clear processing during the WDT clear disabled period.

#### [Note]

In the watchdog timer (WDT) interrupt function, as the interrupt level (ELEVEL) of the CPU program status word (PSW) becomes "2", the WDT counter is unable to get cleared. Clear the WDT when the ELEVEL is "0" or "1". It is recommended that the WDT counter is cleared at one place in the main loop of the program as a fail-safe.

# Chapter 13 I<sup>2</sup>C Bus

### 13. I<sup>2</sup>C Bus

### 13.1 General Description

This LSI has one channel of  $I^2C$  bus unit that supports both master and slave function.  $I^2C$  bus unit is that either of master or slave is selected to use and both functions of master and slave are unworkable at the same time.

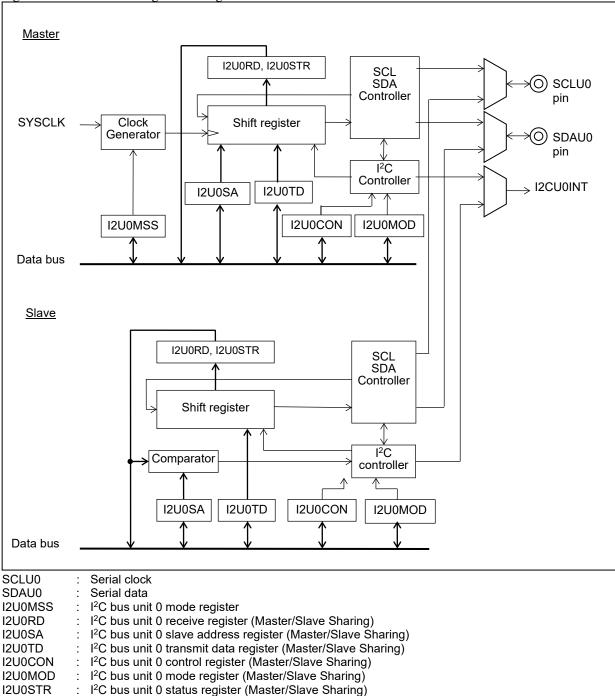

#### 13.1.1 Features

Table 13-1 shows features of I<sup>2</sup>C bus unit and I<sup>2</sup>C bus master.

| Function     | Operation<br>mode  | Features                                                                                                                                                                                                                                                                                                                           |
|--------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l²C bus unit | Master<br>function | <ul> <li>Communication speed: Standard mode (100 kbps), fast mode (400 kbps), and original standard 1 Mbps mode (1Mbps)</li> <li>Support clock stretch function for the Slave</li> <li>7 or 10-bit address format</li> <li>Self-test function by reading transmitted data onto the l<sup>2</sup>C bus (Safety function)</li> </ul> |
|              | Slave<br>function  | <ul> <li>Communication speed: Standard mode (100 kbps), fast mode (400 kbps),<br/>and original standard 1 Mbps mode (1Mbps)</li> <li>Clock stretch function</li> <li>7-bit address format</li> <li>Wake-up from STOP mode by matching slave address</li> </ul>                                                                     |

#### 13.1.2 Configuration

Figure 13-1 shows the configuration diagram of the I<sup>2</sup>C bus unit circuit.



I2U0SCLR : I<sup>2</sup>C bus unit 0 status register (Master/Slave Sharing) Figure 13-1 Configuration of I<sup>2</sup>C Bus Unit

#### 13.1.3 List of Pins

The I/O pins of the I<sup>2</sup>C bus unit are assigned to the shared function of the general ports.

| Pin name | I/O | Description                               |
|----------|-----|-------------------------------------------|
| SDAU0    | I/O | I <sup>2</sup> C bus unit 0 data I/O pin  |
| SCLU0    | I/O | I <sup>2</sup> C bus unit 0 clock I/O pin |

Table 13-2 shows port used in the I<sup>2</sup>C and the register settings.

In addition to the mode setting of the shared function, select "Enable Input, Enable Output, N-ch open drain output and without pull-up" by setting following data to the port n mode register m (PnMODm).

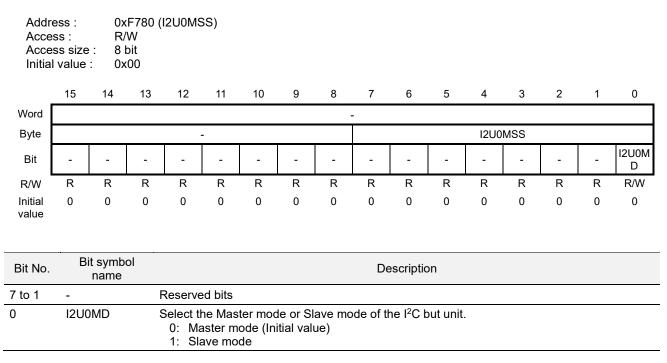
| Channel<br>No. | Pin   |     | Shared port   | Setting<br>register | Setting value | Available |
|----------------|-------|-----|---------------|---------------------|---------------|-----------|
| 110.           |       | D40 | 2nd Everetier | 5                   | 0010 4014     |           |
| 0              | SDAU0 | P12 | 3rd Function  | P1MOD2              | 0010_1011     | •         |
| 0              | SCLU0 | P13 | 3rd Function  | P1MOD3              | 0010_1011     | ٠         |

Table 13-2 Port used in the I<sup>2</sup>C and the register settings

•: Available -: Unavailable

[Note]

- Use external pull-up resistors for SDA pin and SCL pin according to the I<sup>2</sup>C bus specification. The
  internal pull-up resistors are unsatisfied the I<sup>2</sup>C bus specification. See the data sheet for each product for
  the value of internal pull-up resistors.
- If powering off this LSI in the slave mode, it disables communications of other devices on the I<sup>2</sup>C bus. Keep this LSI powered on when it works as a slave mode until the master device is powered off.
- Do not connect multiple master devices on the I<sup>2</sup>C bus when using the master function.


### 13.2 Description of Registers

### 13.2.1 List of Registers

| A daha a a | Norra                                                               | Sym       | bol      |     | 0:   | Initial |  |
|------------|---------------------------------------------------------------------|-----------|----------|-----|------|---------|--|
| Address    | Name                                                                | Byte      | Word     | R/W | Size | Value   |  |
| 0xF780     | I <sup>2</sup> C bus unit 0 mode register                           | I2U0MSS   | -        | R/W | 8    | 0x00    |  |
| 0xF781     | Reserved                                                            | -         | -        | -   | -    | -       |  |
| 0xF782     | I <sup>2</sup> C bus unit 0 receive register                        | I2U0RD    | -        | R   | 8    | 0x00    |  |
| 0xF783     | Reserved                                                            | -         | -        | -   | -    | -       |  |
| 0xF784     | I <sup>2</sup> C bus unit 0 slave address register                  | I2U0SA    | -        | R/W | 8    | 0x00    |  |
| 0xF785     | Reserved                                                            | -         | -        | -   | -    | -       |  |
| 0xF786     | I <sup>2</sup> C bus unit 0 transmit data register                  | I2U0TD    | -        | R/W | 8    | 0x00    |  |
| 0xF787     | Reserved                                                            | -         | -        | -   | -    | -       |  |
| 0xF788     | I <sup>2</sup> C bus unit 0 control register                        | I2U0CON   | -        | R/W | 8    | 0x00    |  |
| 0xF789     | Reserved                                                            | -         | -        | -   | -    | -       |  |
| 0xF78A     | 1 <sup>2</sup> C bus unit 0 mode register                           | I2U0MODL  | I2U0MOD  | R/W | 8/16 | 0x00    |  |
| 0xF78B     | <ul> <li>I<sup>2</sup>C bus unit 0 mode register</li> </ul>         | I2U0MODH  | 12001000 | R/W | 8    | 0x22    |  |
| 0xF78C     | 1 <sup>2</sup> C hus writ 0 status register                         | I2U0STAT  | I2U0STR  | R   | 8/16 | 0x00    |  |
| 0xF78D     | <ul> <li>I<sup>2</sup>C bus unit 0 status register</li> </ul>       | I2U0ISR   | 120051R  | R   | 8    | 0x00    |  |
| 0xF78E     | 12C hus unit 0 status closer register                               | I2U0SCLRL |          | W   | 8/16 | 0x00    |  |
| 0xF78F     | <ul> <li>I<sup>2</sup>C bus unit 0 status clear register</li> </ul> | I2U0SCLRH | I2U0SCLR | W   | 8    | 0x00    |  |
| 0xF790     | Reserved                                                            | -         | -        | -   | -    | -       |  |
| 0xF791     | Reserved                                                            | -         | -        | -   | -    | -       |  |

#### 13.2.2 I<sup>2</sup>C Bus Unit 0 Mode Register (I2U0MSS)

I2U0MSS is a SFR to select the Master mode or Slave mode of the I<sup>2</sup>C bus unit 0.



[Note]

- All SFRs are shared in master mode with slave mode. If switching master/slave mode, set "0" to I2U0EN bit of I2UMOD register, then switch the mode and reconfigurate each SFRs.
- Do not connect multiple master devices on the I<sup>2</sup>C bus when using the master function.
- If powering off this LSI in the slave mode, it disables communications of other devices on the I<sup>2</sup>C bus. Keep this LSI powered on when it works as a slave mode until the master device is powered off.

#### 13.3 Description of Registers for Master function

This section explains about master mode of I<sup>2</sup>C bus unit 0. In this section, both word symbol, byte symbol and bit symbol are put down with. All SFRs are shared in master mode and slave mode. Reset master mode on I2U0MSS, at the begining. When reset, the I<sup>2</sup>C bus unit is in master mode. The initial values shown below are the values when set to master mode.

### 13.3.1 I<sup>2</sup>C Bus Unit 0 Receive Register (I2U0RD)

I2U0RD is a read-only SFR to store the received data. This is initialized, in addition to reset function, by writing "0" to I2U0EN bit in I2U0MOD register.

| Address :<br>Access :<br>Access size :<br>Initial value : |    | R<br>: 81 |    | 2U0RD | )  |    |   |   |        |         |        |        |        |        |        |        |
|-----------------------------------------------------------|----|-----------|----|-------|----|----|---|---|--------|---------|--------|--------|--------|--------|--------|--------|
|                                                           | 15 | 14        | 13 | 12    | 11 | 10 | 9 | 8 | 7      | 6       | 5      | 4      | 3      | 2      | 1      | 0      |
| Word                                                      |    |           |    |       |    |    |   |   | -      |         |        |        |        |        |        |        |
| Byte                                                      |    |           |    |       | -  |    |   |   |        |         |        | 12U(   | ORD    |        |        |        |
| Bit                                                       | -  | -         | -  | -     | -  | -  | - | - | 12U0R7 | 712U0R6 | 12U0R5 | 12U0R4 | 12U0R3 | 12U0R2 | I2U0R1 | 12U0R0 |
| R/W                                                       | R  | R         | R  | R     | R  | R  | R | R | R      | R       | R      | R      | R      | R      | R      | R      |
| Initial<br>value                                          | 0  | 0         | 0  | 0     | 0  | 0  | 0 | 0 | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      |

This is updated after completion of each reception.

| Bit No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                      |
|---------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to 0  | I2U0R7 to<br>I2U0R0 | <ul> <li>Store the received data. This data is updated at coinciding slave-address and data reception.</li> <li>Reading this register enables following confirmation.</li> <li>Reading when receiving data: Can confirm the received data.</li> <li>Reading slave address or Reading when transmitting data: Can confirm the transmission data is surely transmitted.</li> </ul> |

### 13.3.2 I<sup>2</sup>C Bus Unit 0 Slave Address Register (I2U0SA)

I2U0SA is a SFR to set the address and transmission/reception mode of the slave device. This is initialized, in addition to reset function, by writing "0" to I2U0EN bit in I2U0MOD register.

|                  |                                                                                                           | R/<br>: 81 | W  | 2U0SA) | )        |      |         |          |        |           |        |        |        |        |        |            |
|------------------|-----------------------------------------------------------------------------------------------------------|------------|----|--------|----------|------|---------|----------|--------|-----------|--------|--------|--------|--------|--------|------------|
|                  | 15                                                                                                        | 14         | 13 | 12     | 11       | 10   | 9       | 8        | 7      | 6         | 5      | 4      | 3      | 2      | 1      | 0          |
| Word             |                                                                                                           |            |    |        |          |      |         |          | -      |           |        |        |        |        |        |            |
| Byte             | -                                                                                                         |            |    |        |          |      |         |          |        |           | 12U    | )SA    |        |        |        |            |
| Bit              | -                                                                                                         | -          | -  | -      | -        | -    | -       | -        | I2U0A6 | I2U0A5    | I2U0A4 | I2U0A3 | 12U0A2 | I2U0A1 | 12U0A0 | 12U0R<br>W |
| R/W              | R                                                                                                         | R          | R  | R      | R        | R    | R       | R        | R/W    | R/W       | R/W    | R/W    | R/W    | R/W    | R/W    | R/W        |
| Initial<br>value | 0                                                                                                         | 0          | 0  | 0      | 0        | 0    | 0       | 0        | 0      | 0         | 0      | 0      | 0      | 0      | 0      | 0          |
|                  |                                                                                                           |            |    |        |          |      |         |          |        |           |        |        |        |        |        |            |
| Bit No.          | Bit symbol<br>name                                                                                        |            |    |        |          |      |         |          | De     | escriptio | on     |        |        |        |        |            |
| 7 to 1           | I2U0A6 to Set the address of t<br>I2U0A0                                                                  |            |    |        | s of the | comm | unicati | on partn | ier.   |           |        |        |        |        |        |            |
| 0                | I2U0RW Select directions of the data commu<br>0: Data transmission mode (Initia<br>1: Data reception mode |            |    |        |          |      |         |          |        |           |        |        |        |        |        |            |

### 13.3.3 I<sup>2</sup>C Bus Unit 0 Transmit Data Register (I2U0TD)

2U0TD is a SFR to set the transmission data.

This is initialized, in addition to reset function, by writing "0" to I2U0EN bit in I2U0MOD register.

|                  |    | R/<br>e: 8 | W<br>W<br>bit<br>00 | 2U0TD | )  |    |   |   |        |        |        |        |        |        |        |       |
|------------------|----|------------|---------------------|-------|----|----|---|---|--------|--------|--------|--------|--------|--------|--------|-------|
|                  | 15 | 14         | 13                  | 12    | 11 | 10 | 9 | 8 | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0     |
| Word             |    |            |                     |       |    |    |   |   | -      |        |        |        |        |        |        |       |
| Byte             |    |            |                     |       | -  |    |   |   |        |        |        | I2U    | 0TD    |        |        |       |
| Bit              | -  | -          | -                   | -     | -  | -  | - | - | 12U0T7 | 12U0T6 | I2U0T5 | I2U0T4 | I2U0T3 | I2U0T2 | 12U0T1 | 12U0T |
| R/W              | R  | R          | R                   | R     | R  | R  | R | R | R/W    | R/W   |
| Initial<br>value | 0  | 0          | 0                   | 0     | 0  | 0  | 0 | 0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |

| Bit No. | name                | Description                |
|---------|---------------------|----------------------------|
| 7 to 0  | I2U0T7 to<br>I2U0T0 | Set the transmission data. |

#### 13.3.4 I<sup>2</sup>C Bus Unit 0 Control Register (I2U0CON)

I2U0CON is a SFR to control transmission and reception operations. This is initialized, in addition to reset function, by writing "0" to I2U0EN bit in I2U0MOD register.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R/<br>: 81 | :F788(I<br>W<br>bit<br>:00 | 2U0CO                                                          | N)                                                      |                                                   | 5                                            | C                                      |             |                 |         |         | C   |            |        |         |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------|-------------|-----------------|---------|---------|-----|------------|--------|---------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14         | 13                         | 12                                                             | 11                                                      | 10                                                | 9                                            | 8                                      | 7           | 6               | 5       | 4       | 3   | 2          | 1      | 0       |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                            |                                                                |                                                         |                                                   |                                              |                                        | -           |                 |         |         |     |            |        |         |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          | n                          |                                                                | -                                                       |                                                   |                                              | 1                                      |             |                 |         | 1200    | CON | 1          | 1      |         |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -          | -                          | -                                                              | -                                                       | -                                                 | -                                            | -                                      | I2U0A<br>CT | -               | -       | -       | -   | I2U0R<br>S | 12U0SF | PI2U0ST |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R          | R                          | R                                                              | R                                                       | R                                                 | R                                            | R                                      | R/W         | R               | R       | R       | R   | W          | W      | R/W     |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0          | 0                          | 0                                                              | 0                                                       | 0                                                 | 0                                            | 0                                      | 0           | 0               | 0       | 0       | 0   | 0          | 0      | 0       |
| Bit No.          | Bit symbol Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                            |                                                                |                                                         |                                                   |                                              |                                        |             |                 |         |         |     |            |        |         |
| 7                | I2U0ACT       Set the acknowledgment data to be output at completion of reception.         0:       Acknowledgment data "0" (Initial value)         1:       Acknowledgment data "1"                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                            |                                                                |                                                         |                                                   |                                              |                                        |             |                 |         |         |     |            |        |         |
| 6 to 3           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                            |                                                                |                                                         |                                                   |                                              |                                        |             |                 |         |         |     |            |        |         |
| 2                | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JRS        |                            | When "´<br>conditio<br>'1" can<br>'1" can<br>Dhis bit<br>0: Nc | l" is wri<br>n and tl<br>be writt<br>always<br>o restar | tten to<br>ne com<br>en to th<br>returns<br>reque | this bit<br>munica<br>nis bit o<br>s "0" for | during<br>ation re<br>nly wh<br>readir |             | mmuni<br>om the | slave a | address | S.  |            |        | tart    |
| 1                | 1: Restart request         I2U0SP       This bit is a write-only and request a stop condition.<br>When "1" is written to this bit, the module shifts to the stop condition and the communication stops.<br>This bit always returns "0" for reading.         0: No stop condition request (Initial value)                                                                                                                                                                                                                                                                                                     |            |                            |                                                                |                                                         |                                                   |                                              |                                        |             |                 |         |         |     |            |        |         |
| 0                | 1: Stop condition request         I2U0ST       Control the communication operation of this module.<br>When "1" is written to this bit during I2U0ST bit is "0", the communication starts.<br>When "1" is overwritten to this bit in a next data transmission/reception wait state after<br>transmission/reception of acknowledgment, the data transmission/reception restarts.<br>When "0" is written to this bit, the communication is stopped forcibly.<br>When "1" is written to this bit, the I2U0ST bit is reset to "0".         0: Stops communication (Initial value)         1: Starts communication |            |                            |                                                                |                                                         |                                                   |                                              |                                        |             |                 |         |         |     |            |        |         |

[Note]

• Update it without a bit access instruction in the control register setting wait state. See Section 13.5.1.5 "Control Register Setting Wait State" for details.

• When I2U0ST bit is "1", write other bits of I2U0CON register in the control register setting wait state.

### 13.3.5 I<sup>2</sup>C Bus Unit 0 Mode Register (I2U0MOD)

I2U0MOD is a SFR to set the operation mode.

See 13.5.4 "Operation Waveforms" for detail of communication speed.

| Addre<br>Acces<br>Acces<br>Initial | is :<br>Is size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/<br>e: 8/     | (F78A(I<br>W<br>16 bit<br>(2200 | 2U0M0                        | DDL/I2U                             | Jomoi                      | D), 0xF7                           | 78B(I2U           | OMODH    | H)     |                             |             |             |             |             |            |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------|------------------------------|-------------------------------------|----------------------------|------------------------------------|-------------------|----------|--------|-----------------------------|-------------|-------------|-------------|-------------|------------|
| _                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14              | 13                              | 12                           | 11                                  | 10                         | 9                                  | 8                 | 7        | 6      | 5                           | 4           | 3           | 2           | 1           | 0          |
| Word                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                 |                              |                                     |                            |                                    | 1200              | MOD      |        |                             |             |             |             |             |            |
| Byte                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 1                               | 1                            | NODH                                | 1                          | _                                  | 1                 |          |        |                             | 12001       | -           | 1           | 1           |            |
| Bit                                | 2U0TI<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12U0TI<br>1     | 12U0TI<br>0                     | -                            | -                                   | -                          | I2U0C<br>D1                        | 12U0C<br>D0       | -        | -      | I2U0M<br>D4                 | I2U0M<br>D3 | I2U0M<br>D2 | I2U0M<br>D1 | I2U0M<br>D0 | I2U0E<br>N |
| R/W                                | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R/W             | R/W                             | R                            | R                                   | R                          | R/W                                | R/W               | R        | R      | R/W                         | R/W         | R/W         | R/W         | R/W         | R/W        |
| Initial<br>value                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0               | 1                               | 0                            | 0                                   | 0                          | 1                                  | 0                 | 0        | 0      | 0                           | 0           | 0           | 0           | 0           | 0          |
| Bit No.                            | Bit symbol<br>name Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                 |                              |                                     |                            |                                    |                   |          |        |                             |             |             |             |             |            |
| 15 to 13                           | I2U0TI2 to       Select the timing parameter for an I <sup>2</sup> C communication rate.         I2U0TI0       See Table 13-3 of "13.5.4 Operation Waveforms" for detail.         000:       Do not use (for SYSCLK = 16MHz)         001:       a parameter for SYSCLK = 16MHz)         010:       Do not use (for SYSCLK = 16MHz)         011:       a parameter for SYSCLK = 8MHz         100:       a parameter for SYSCLK = 8MHz         100:       a parameter for SYSCLK = 1MHz         101:       a parameter for SYSCLK = 1MHz         101:       a parameter for SYSCLK = 16MHz)         111:       Do not use (for SYSCLK = 16MHz)         111:       Do not use (for SYSCLK = 16MHz) |                 |                                 |                              |                                     |                            |                                    |                   |          |        |                             |             |             |             |             |            |
| 12 to 10                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | F                               | Reserve                      | ed bits                             |                            |                                    |                   |          |        |                             |             |             |             |             |            |
| 9 to 8                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )CD1 to<br>)CD0 |                                 | 00:<br>01:<br>10:<br>11:     | SYSCI<br>1/2 SY<br>1/4 SY<br>1/8 SY | LK<br>SCLK<br>SCLK<br>SCLK | ing cloc<br>(Initial v<br>Operatic | value)            | eforms"  | about  | commu                       | nicatior    | n speed     | J.          |             |            |
| 7, 6                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | F                               | Reserve                      | ed bits                             |                            |                                    |                   |          |        |                             |             |             |             |             |            |
| 5                                  | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )MD4            |                                 | he l <sup>2</sup> C<br>0: No | bus, the<br>ot use t                | erefore<br>he clo          | e the cou<br>ck streto             | mmunic<br>h funct | ation sp | beed g | nandsha<br>jets lowe<br>ue) |             |             |             |             |            |
| 4, 3                               | 0: Not use the clock stretch function (Initial value)<br>1: Use the clock stretch function<br>I2U0MD3 to<br>I2U0MD2<br>Set the communication speed reduction rate. Specify these bits not so that the<br>communication speed exceeds 100 kbps/400kbps/1 Mbps. When parameter for LSCLK0 or<br>1MHz is selected by the I2U0TI2-0 bits, "No communication speed reduction" is selected<br>regardless this setting.<br>See Table 13-3 of "13.5.4 Operation Waveforms" for detail.<br>00: No communication speed reduction (Initial value)<br>01: Approx. 10% communication speed reduction<br>10: Approx. 17% communication speed reduction<br>11 Approx. 24% communication speed reduction        |                 |                                 |                              |                                     |                            |                                    |                   |          |        |                             |             |             |             |             |            |
| 2, 1                               | 10: Approx. 17% communication speed reduction         11: Approx. 24% communication speed reduction         12U0MD1 to         12U0MD0         00: Standard mode (Initial value) (100 kbps*)         01: Fast mode (400 kbps*)         10: 1Mbps mode (1Mbps*)         11: 1Mbps mode (1Mbps*)         * : When SYSCLK=16 MHz and I2U0CD1-0 = "00" and I2U0MD4 = "0" and I2U0TI2-0 = "000/001" and I2U0MD3-2 = "00".                                                                                                                                                                                                                                                                            |                 |                                 |                              |                                     |                            |                                    |                   |          |        |                             |             |             |             |             |            |

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0       | 12U0EN             | <ul> <li>Enable the master operation. When "1" is written to this bit, the I2U0ST bit can be set. When "0" is written to this bit, the I<sup>2</sup>C master stops operation and the I2U0RD, I2U0SA, I2U0TD, I2U0CON and I2U0STR are initialized.</li> <li>If this bit is written "0" during a communication, do initialization and re-setting.</li> <li>0: Stop the I<sup>2</sup>C master operation (Initial value)</li> <li>1: Enable the I<sup>2</sup>C master operation</li> </ul> |

### 13.3.6 I<sup>2</sup>C Bus Unit 0 Status Register (I2U0STR)

I2U0STR is a SFR to indicate the state of the I<sup>2</sup>C bus unit.

This is initialized, in addition to reset function, by writing "0" to I2U0EN bit in I2U0MOD register. Each bit is initialized by writing "1" to a corresponding bit of I2U0SCLR register.

| Address :<br>Access : | 0xF78C(I2U0STAT/I2U0STR), 0xF78D(I2U0ISR)<br>R |
|-----------------------|------------------------------------------------|
| Access size :         | 8/16 bit                                       |
| Initial value :       | 0x0000                                         |
|                       |                                                |

|                  | 15 | 14 | 13 | 12   | 11   | 10          | 9          | 8      | 7    | 6 | 5 | 4    | 3    | 2          | 1           | 0 |
|------------------|----|----|----|------|------|-------------|------------|--------|------|---|---|------|------|------------|-------------|---|
| Word             |    |    |    |      |      |             |            | I2U0   | STR  |   |   |      |      |            |             |   |
| Byte             |    |    |    | 12U( | DISR |             |            |        |      |   |   | I2U0 | STAT |            |             |   |
| Bit              | -  | -  | -  | -    | -    | I2U0SP<br>S | I2U0D<br>S | I2U0AS | rsvd | - | - | -    | -    | I2U0E<br>R | I2U0A<br>CR | - |
| R/W              | R  | R  | R  | R    | R    | R           | R          | R      | R    | R | R | R    | R    | R          | R           | R |
| Initial<br>value | 0  | 0  | 0  | 0    | 0    | 0           | 0          | 0      | 0    | 0 | 0 | 0    | 0    | 0          | 0           | 0 |

| Bit No.  | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 11 | -                  | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10       | I2U0SPS            | <ul> <li>Indicate the usage state of the I<sup>2</sup>C bus.</li> <li>This bit is set to "1" when transmitting the stop condition has been completed on the I<sup>2</sup>C bus.</li> <li>To reset this bit, write "1" to I2U0CSPS bit of I2U0SCLR register.</li> <li>0: The stop condition has not been transmitted (Initial value)</li> <li>1: The stop condition has been transmitted</li> </ul>                                                                                                                                                                                                                                                                                        |
| 9        | I2U0DS             | <ul> <li>Indicate the usage state of the I<sup>2</sup>C bus.</li> <li>This bit is set to "1" when transmitting data or receiving data has been completed on the I<sup>2</sup>C bus.</li> <li>To reset this bit, write "1" tol2U0CDS bit of I2U0SCLR register.</li> <li>0: The transmission/reception has not been completed (Initial value)</li> <li>1: The transmission/reception has been completed</li> </ul>                                                                                                                                                                                                                                                                          |
| 8        | I2U0AS             | <ul> <li>Indicate the usage state of the I<sup>2</sup>C bus.</li> <li>This bit is set to "1" when transmitting the start condition and 7 bit slave address have been completed on the I<sup>2</sup>C bus.</li> <li>To reset this bit, write "1" to I2U0CAS bit of I2U0SCLR register.</li> <li>0: The start condition and the slave address have not been transmitted (Initial value)</li> <li>1: The start condition and the slave address have been transmitted</li> </ul>                                                                                                                                                                                                               |
| 7        | rsvd               | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6 to 3   | -                  | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2        | I2U0ER             | Indicate a transmission error.<br>When a bit of transmission data and the value on the SDAU0 pin do not coincide, "1" is set to<br>this bit.<br>To reset this bit, write "1" tol2U0CER bit of I2U0SCLR register.<br>When this bit is set to "1" and the clock stretch function is used (I2U0MD4 = "1"), the SDAU0<br>pin output is disabled until the subsequent byte data communication terminates.<br>Even if this bit is set to "1", the SDAU0 pin output continues until the subsequent byte data<br>communication terminates when the clock stretch function is not used (I2U0MD4 = "0").<br>0: There was no transmission error (Initial value)<br>1: There was a transmission error |
| 1        | I2U0ACR            | Store the acknowledgment signal received.<br>Acknowledgment signals are received when the slave address is transmitted and the data<br>transmission/reception is completed.<br>To reset this bit, write "1" to I2U0CACR bit of I2U0SCLR register.<br>0: Received acknowledgment "0" (Initial value)<br>1: Received acknowledgment "1"                                                                                                                                                                                                                                                                                                                                                     |
| 0        |                    | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

### 13.3.7 I<sup>2</sup>C Bus Unit 0 Status Clear Register (I2U0SCLR)

I2U0SCLR is a SFR to clear the state of the I<sup>2</sup>C bus unit. When Each bit is written "1", a corresponding bit of I2U0STR register is initialized to "0".

| Acce<br>Acce     | dress : 0xF78E(I2U0SCLRL/I2U0SCLR), 0xF78F(I2U0SCLRH)<br>cess : W<br>cess size : 8/16 bit<br>ial value : 0x0000 |    |    |       |      |              |             |             |   |   |   |       |       |             |              |   |
|------------------|-----------------------------------------------------------------------------------------------------------------|----|----|-------|------|--------------|-------------|-------------|---|---|---|-------|-------|-------------|--------------|---|
|                  | 15                                                                                                              | 14 | 13 | 12    | 11   | 10           | 9           | 8           | 7 | 6 | 5 | 4     | 3     | 2           | 1            | 0 |
| Word             | I2U0SCLR                                                                                                        |    |    |       |      |              |             |             |   |   |   |       |       |             |              |   |
| Byte             |                                                                                                                 |    |    | 12U0S | CLRH |              |             |             |   |   |   | 12005 | SCLRL |             |              |   |
| Bit              | -                                                                                                               | -  | -  | -     | -    | I2U0C<br>SPS | I2U0C<br>DS | I2U0C<br>AS | - | - | - | -     | -     | I2U0C<br>ER | I2U0C<br>ACR | - |
| R/W              | W                                                                                                               | W  | W  | W     | W    | W            | W           | W           | W | W | W | W     | W     | W           | W            | W |
| Initial<br>value | 0                                                                                                               | 0  | 0  | 0     | 0    | 0            | 0           | 0           | 0 | 0 | 0 | 0     | 0     | 0           | 0            | 0 |

Common description of each bits :

It is used to clear a target status.

Writing "0": Invalid

Writing "1": Clear a target interrupt

| Bit No.  | Bit symbol<br>name | Description (target)            |
|----------|--------------------|---------------------------------|
| 15 to 11 | -                  | Reserved bits                   |
| 10       | I2U0CSPS           | I2U0SPS bit of I2U0STR register |
| 9        | I2U0CDS            | I2U0DS bit of I2U0STR register  |
| 8        | I2U0CAS            | I2U0AS bit of I2U0STR register  |
| 7 to 3   | -                  | Reserved bits                   |
| 2        | I2U0CER            | I2U0ER bit of I2U0STR register  |
| 1        | I2U0CACR           | I2U0ACR bit of I2U0STR register |
| 0        | -                  | Reserved bit                    |

#### 13.4 Description of Registers for Slave function

This section explains about slave mode of I<sup>2</sup>C bus unit 0. In this section, both word symbol, byte symbol and bit symbol are put down with. All SFRs are shared in master mode and slave mode. Set slave mode on I2U0MSS, at the beginning. When reset, the I<sup>2</sup>C bus unit is in master mode. The initial values shown below are the values when set to slave mode.

### 13.4.1 I<sup>2</sup>C Bus Unit 0 Receive Register (I2U0RD)

I2U0RD is a read-only SFR used to store the received data.

|                  |    | R<br>: 8 |    | 2U0RD | )  |    |   |   |        |        |        |        |        |        |        |        |
|------------------|----|----------|----|-------|----|----|---|---|--------|--------|--------|--------|--------|--------|--------|--------|
|                  | 15 | 14       | 13 | 12    | 11 | 10 | 9 | 8 | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
| Word             |    |          |    |       |    |    |   |   | -      |        |        |        |        |        |        |        |
| Byte             |    |          |    |       | -  |    |   |   |        |        |        | I2U    | 0RD    |        |        |        |
| Bit              | -  | -        | -  | -     | -  | -  | - | - | 12U0R7 | 12U0R6 | 12U0R5 | 12U0R4 | 12U0R3 | 12U0R2 | 12U0R1 | I2U0R0 |
| R/W              | R  | R        | R  | R     | R  | R  | R | R | R      | R      | R      | R      | R      | R      | R      | R      |
| Initial<br>value | 0  | 0        | 0  | 0     | 0  | 0  | 0 | 0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

| Bit No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                             |
|---------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to 0  | I2U0R7 to<br>I2U0R0 | <ul> <li>Store the received data. This data is updated at coinciding slave-address and data reception.</li> <li>Reading this register enables following confirmation.</li> <li>Reading when receiving data: Can confirm the received data.</li> <li>Reading when transmitting data: Can confirm the transmission data is surely transmitted.</li> </ul> |

### 13.4.2 I<sup>2</sup>C Bus Unit 0 Slave Address Register (I2U0SA)

I2U0SA is a SFR to set the slave address.

|                  |                | R/<br>: 81      | W<br>pit | (I2U0SA) | )       |         |   |   |        |           |        |        |        |        |        |   |
|------------------|----------------|-----------------|----------|----------|---------|---------|---|---|--------|-----------|--------|--------|--------|--------|--------|---|
|                  | 15             | 14              | 13       | 12       | 11      | 10      | 9 | 8 | 7      | 6         | 5      | 4      | 3      | 2      | 1      | 0 |
| Word             |                |                 |          |          |         |         |   |   | -      |           |        |        |        |        |        |   |
| Byte             |                |                 |          | -        |         |         |   |   |        |           |        | 12U(   | OSA    |        |        |   |
| Bit              | -              | -               | -        | -        | -       | -       | - | - | 12U0A6 | 12U0A5    | 12U0A4 | 12U0A3 | 12U0A2 | I2U0A1 | I2U0A0 | - |
| R/W              | R              | R               | R        | R        | R       | R       | R | R | R/W    | R/W       | R/W    | R/W    | R/W    | R/W    | R/W    | R |
| Initial<br>value | 0              | 0               | 0        | 0        | 0       | 0       | 0 | 0 | 0      | 0         | 0      | 0      | 0      | 0      | 0      | 0 |
| Bit No.          | Bi             | t symbo<br>name | ol       |          |         |         |   |   | De     | escriptio | on     |        |        |        |        |   |
| 7 to 1           | 12U0<br>12U0   | A6 to<br>A0     |          | Set the  | slave a | ddress. |   |   |        |           |        |        |        |        |        |   |
| 0                | - Reserved bit |                 |          |          |         |         |   |   |        |           |        |        |        |        |        |   |

### 13.4.3 I<sup>2</sup>C Bus Unit 0 Transmit Data Register (I2U0TD)

I2U0TD is a SFR to set the transmission data.

|                  |    | R/<br>: 8 | (786(12<br>/W<br>bit<br>(00 | U0TD) |    |    |   |   |        |        |        |        |        |        |        |        |
|------------------|----|-----------|-----------------------------|-------|----|----|---|---|--------|--------|--------|--------|--------|--------|--------|--------|
|                  | 15 | 14        | 13                          | 12    | 11 | 10 | 9 | 8 | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
| Word             |    |           |                             |       |    |    |   |   | -      |        |        |        |        |        |        |        |
| Byte             |    |           |                             |       | -  |    |   |   |        |        |        | 12U    | 0TD    |        |        |        |
| Bit              | -  | -         | -                           | -     | -  | -  | - | - | 12U0T7 | I2U0T6 | I2U0T5 | I2U0T4 | I2U0T3 | I2U0T2 | I2U0T1 | I2U0T0 |
| R/W              | R  | R         | R                           | R     | R  | R  | R | R | R/W    |
| Initial<br>value | 0  | 0         | 0                           | 0     | 0  | 0  | 0 | 0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

| Bit No. | Bit symbol<br>name  | Description                |  |
|---------|---------------------|----------------------------|--|
| 7 to 0  | I2U0T7 to<br>I2U0T0 | Set the transmission data. |  |

### 13.4.4 I<sup>2</sup>C Bus Unit 0 Control Register (I2U0CON)

I2U0CON is a SFR to control transmission and reception operations.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                        | R/<br>e: 81      | W<br>bit | 2U0CO   | N)      |       |          |          |                       |        |            |        |          |         |        |     |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|---------|---------|-------|----------|----------|-----------------------|--------|------------|--------|----------|---------|--------|-----|
| _                | 15                                                                                                                                                                                                                                                                                                                                                                                                                     | 14               | 13       | 12      | 11      | 10    | 9        | 8        | 7                     | 6      | 5          | 4      | 3        | 2       | 1      | 0   |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |          |         |         |       |          |          | -                     |        |            |        |          |         |        |     |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |          |         | -       |       |          |          |                       |        |            | 1200   | CON      |         |        |     |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                      | -                | I        | -       | -       | -     | -        | -        | I2U0A<br>CT           | -      | I2U0W<br>T | -      | -        | -       | -      | -   |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                      | R                | R        | R       | R       | R     | R        | R        | R/W                   | R      | W          | R      | R        | R       | R      | R   |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                | 0        | 0       | 0       | 0     | 0        | 0        | 0                     | 0      | 0          | 0      | 0        | 0       | 0      | 0   |
| Bit No.          | В                                                                                                                                                                                                                                                                                                                                                                                                                      | it symbo<br>name | ol       |         |         |       |          |          | De                    | script | ion        |        |          |         |        |     |
| 7                | 1200                                                                                                                                                                                                                                                                                                                                                                                                                   | )ACT             | ç        | 0: Ac   |         | dgmen | t data " | 0" (Init | output a<br>ial value |        | pletion o  | f rece | ption in | the sla | ve mod | le. |
| 6                | -                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | F        | Reserve | ed bit  |       |          |          |                       |        |            |        |          |         |        |     |
| 5                | I2U0WT Release the communication wait state ("L" level output on the SCLU0 pin) in the slave mode.<br>Writing "1" to this bit during the communication wait state releases the state ("L" level output<br>of the SCLU0 pin is released).<br>This bit is a write-only bit and always returns "0" for reading.<br>0: Not release the communication wait state (Initial value)<br>1: Release the communication wait state |                  |          |         |         |       |          |          |                       |        |            |        |          |         |        |     |
| 4 to 0           | _                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          | Reserve | ad hite |       |          |          |                       |        |            |        |          |         |        |     |

[Note]

- If system clock is extremely slower than the communication speed, the data transmission/reception can be failed.
- Before releasing the communication wait state, change the system clock enough speed for the communication.

### 13.4.5 I<sup>2</sup>C Bus Unit 0 Mode Register (I2U0MOD)

I2U0MOD is a SFR used to set the operation mode.

|                                |    | R/<br>: 8/* | •  |       | DL/I2U | IOMOD | ), 0xF7 | 8B(I2U | 0MOD | H),         |             |             |             |             |   |            |
|--------------------------------|----|-------------|----|-------|--------|-------|---------|--------|------|-------------|-------------|-------------|-------------|-------------|---|------------|
|                                | 15 | 14          | 13 | 12    | 11     | 10    | 9       | 8      | 7    | 6           | 5           | 4           | 3           | 2           | 1 | 0          |
| Word                           |    |             |    |       |        |       |         | I2U0   | MOD  |             |             |             |             |             |   |            |
| Byte                           |    |             |    | 12U0N | /ODH   |       |         |        |      |             |             | 12U0N       | NODL        |             |   |            |
| Bit                            | -  | -           | -  | -     | -      | -     | -       | -      | -    | I2U0M<br>D5 | I2U0M<br>D4 | I2U0M<br>D3 | I2U0M<br>D2 | I2U0M<br>D1 | - | I2U0E<br>N |
| R/W                            | R  | R           | R  | R     | R      | R     | R       | R      | R    | R/W         | R/W         | R/W         | R/W         | R/W         | R | R/W        |
| Initial<br>value <sup>*1</sup> | 0  | 0           | 0  | 0     | 0      | 0     | 0       | 0      | 0    | 0           | 0           | 0           | 0           | 0           | 0 | 0          |

\*1: This is the initial value when the I<sup>2</sup>C bus unit is set to slave mode (I2U0MSS=1).

| Bit No. | Bit symbol name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 7 | -               | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6       | I2U0MD5         | Enable or disable the start condition interrupt in the slave mode.<br>0: Disabled (Initial value)<br>1: Enabled                                                                                                                                                                                                                                                                                                                                                            |
| 5       | I2U0MD4         | Enable or disable the stop condition interrupt in the slave mode.<br>0: Disabled (Initial value)<br>1: Enabled                                                                                                                                                                                                                                                                                                                                                             |
| 4       | I2U0MD3         | Control enable or disable the slave address unmatched interrupt while communicating to the master, receiving re-start condition and another slave is selected. This function performs detecting the status of I2US0SAA bit. Do not clear the I2US0SAA bit by the software when enabling the interrupt.<br>0: Disabled (Initial value)<br>1: Enabled                                                                                                                        |
| 3       | I2U0MD2         | <ul> <li>Enable or disable the communication wait function of the l<sup>2</sup>C bus unit (output "L" level on the SCLU0 pin) when transmitting to the master and receiving the acknowledge data "1" from the master. Set this bit to "1" to use the communication wait function.</li> <li>0: Disabled (Initial value)</li> <li>1: Enabled</li> </ul>                                                                                                                      |
| 2       | I2U0MD1         | <ul> <li>Select mode when the stop condition interrupt is enabled (I2U0MD4=1).</li> <li>This function performs detecting the status of I2US0SAA bit. Do not clear I2US0SAA bit by the software when enabling the interrupt.</li> <li>0: The interrupt occur while the master is communicating with self-slave or other slaves (Initial value)</li> <li>1: The interrupt occur while the master is communicating with only self-slave</li> </ul>                            |
| 1       | -               | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0       | I2U0EN          | Enable the slave operation of the I <sup>2</sup> C bus unit. When "1" is written to this bit, the operation of the I <sup>2</sup> C bus unit 0 is enabled. When "0" is written to this bit, all the bits of the I <sup>2</sup> C bus status register (I2US0STR) are initialized to "0", and the operation of the I <sup>2</sup> C bus unit 0 is stopped.<br>0: Stop the I <sup>2</sup> C slave operation (Initial value)<br>1: Enable the I <sup>2</sup> C slave operation |

[Note]

To be disable the wake-up from standby mode by matching the slave address, Stop the operation by resetting I2U0EN bit to "0" before entering STOP mode.

### 13.4.6 I<sup>2</sup>C Bus Unit 0 Status Register (I2U0STR)

I2U0STR is a SFR to indicate the state of the I<sup>2</sup>C bus unit. Each bit is initialized, in addition to reset function, by writing "1" to a corresponding bit of I2U0SCLR register.

|      | ss :<br>ss size<br>l value | R<br>: 8/<br>: 0> | <f78c(i<br>16 bit<br/>&lt;0000</f78c(i<br> |             |             |             |            | ·      | ISR) |   |   |        |             |            |             |   |
|------|----------------------------|-------------------|--------------------------------------------|-------------|-------------|-------------|------------|--------|------|---|---|--------|-------------|------------|-------------|---|
|      | 15                         | 14                | 13                                         | 12          | 11          | 10          | 9          | 8      | 7    | 6 | 5 | 4      | 3           | 2          | 1           | 0 |
| Word |                            |                   |                                            |             |             |             |            | I2U0   | STR  |   |   |        |             |            |             |   |
| Byte |                            |                   |                                            |             | DISR        |             |            |        |      |   |   | I2U0   |             |            |             |   |
| Bit  | -                          | -                 | I2U0AS<br>NA                               | I2U0R<br>AS | I2U0ST<br>S | I2U0SP<br>S | I2U0D<br>S | I2U0AS | -    | - | - | I2U0TR | I2U0SA<br>A | I2U0E<br>R | I2U0A<br>CR | - |

R

0

R

0

R

0

R

0

R

0

R

0

R

0

R

0

R

0

R/W Initial value R

0

R

0

R

0

R

0

R

0

R

0

R

0

| Bit No.  | Bit symbol name | Description                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 14 | -               | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13       | I2U0ASNA        | Reserved bit. Fixed to "0"                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12       | I2U0RAS         | <ul> <li>Indicate status of the interrupt when enabling the start condition interrupt (I2U0MD3 bit = 1).</li> <li>To reset this bit, write "1" to I2U0CRAS bit of I2U0SCLR register.</li> <li>0: Unmatched the slave address is detected after the start condition (Initial value)</li> <li>1: Unmatched the slave address is detected after the start condition</li> </ul>                                                              |
| 11       | I2U0STS         | <ul> <li>Indicate status of transmission and reception. This bit is set to "1" when receiving the start condition. This bit is available when I2U0MD5 bit is "1".</li> <li>To reset this bit, write "1" to I2U0CSTS bit of I2U0SCLR register.</li> <li>0: The start condition has not been received (Initial value)</li> <li>1: The start condition has been received</li> </ul>                                                         |
| 10       | I2U0SPS         | <ul> <li>Indicate status of transmission and receive. This bit is set to "1" when receiving the stop condition. This bit is available when I2U0MD4 bit is "1".</li> <li>To reset this bit, write "1" to I2U0CSPS bit of I2U0SCLR register.</li> <li>0: The stop condition has not been received (Initial value)</li> <li>1: The stop condition has been received</li> </ul>                                                              |
| 9        | I2U0DS          | <ul> <li>Indicate status of transmission and reception. This bit is set to "1" when transmitting or receiving data on the condition of that slave address is matched.</li> <li>To reset this bit, write "1" to I2U0CDS bit of I2U0SCLR register.</li> <li>0: The data has not been transmitted or received (Initial value)</li> <li>1: The data has been transmitted or received</li> </ul>                                              |
| 8        | I2U0AS          | <ul> <li>Indicate status of transmission and reception. This bit is set to "1" when receiving the slave address data and it is matched.</li> <li>To reset this bit, write "1" to I2U0CAS bit of I2U0SCLR register.</li> <li>0: The slave address has not been received or it is not matched (Initial value)</li> <li>1: The slave address has been received and it is matched</li> </ul>                                                 |
| 7 to 5   | -               | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4        | I2U0TR          | Indicate the transmitting or receiving state. This bit is set to "1" when detecting the data reception mode. This bit is reset to "0" when detecting a stop condition or detecting the data transmission mode.<br>To reset this bit, write "1" to I2U0CTR bit of I2U0SCLR register.<br>0: Receiving state (Initial value)<br>1: Transmitting state                                                                                       |
| 3        | I2U0SAA         | Indicate that this device is specified as a slave address. This bit is set to "1" when the content<br>of the slave address output by the master device coincides with the contents of I2US0SA<br>register<br>This bit is reset to "0" when a stop condition is received or when "1" is written to I2U0CSAA<br>bit of I2U0SCLR register.<br>0: Not coincide with the slave address (Initial value)<br>1: Coincides with the slave address |

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2       | 12U0ER             | Indicate a transmission error. When the value of the bit transmitted and the value of the SDAU0 pin do not coincide, this bit is set to "1". When this bit is set to "1", the SDAU0 pin output is disabled until the subsequent byte data communication terminates.<br>To reset this bit, write "1" tol2U0CER bit of I2U0SCLR register.<br>0: There was no transmission error (Initial value)<br>1: There was a transmission error |
| 1       | I2U0ACR            | <ul> <li>Store an acknowledgment signal received. The acknowledgment signals are received each time the slave address is received and data transmission or reception is completed.</li> <li>To reset this bit, write "1" to I2U0CTR bit of I2U0SCLR register.</li> <li>0: Received the acknowledgment "0" (Initial value)</li> <li>1: Received the acknowledgment "1"</li> </ul>                                                   |
| 0       | -                  | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                       |

### 13.4.7 I<sup>2</sup>C Bus Unit 0 Status Clear Register (I2U0SCLR)

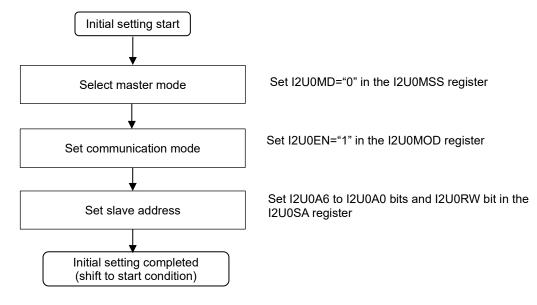
I2U0SCLR is a SFR to clear the state of the I<sup>2</sup>C bus unit. When Each bit is written "1", a corresponding bit of I2U0STR/I2M0STR register is initialized to "0".

|                  |    | W<br>: 8/ | xF78E(l:<br>/<br>/16 bit<br>x0000 | 2U0SC | LRL/I2       | UOSCL        | R), 0xF     | 78F(I2U     | JOSCL | RH) |   |             |              |             |              |   |
|------------------|----|-----------|-----------------------------------|-------|--------------|--------------|-------------|-------------|-------|-----|---|-------------|--------------|-------------|--------------|---|
|                  | 15 | 14        | 13                                | 12    | 11           | 10           | 9           | 8           | 7     | 6   | 5 | 4           | 3            | 2           | 1            | 0 |
| Word             |    |           |                                   |       |              |              |             | 12U0S       | SCLR  |     |   |             |              |             |              |   |
| Byte             |    |           |                                   | 12U0S | CLRH         |              |             |             |       |     |   | 12U0S       | CLRL         |             |              |   |
| Bit              | -  | -         | I2U0C<br>ASNA                     |       | I2U0C<br>STS | I2U0C<br>SPS | I2U0C<br>DS | I2U0C<br>AS | -     | -   | - | I2U0C<br>TR | I2U0C<br>SAA | I2U0C<br>ER | I2U0C<br>ACR | - |
| R/W              | W  | W         | W                                 | W     | W            | W            | W           | W           | W     | W   | W | W           | W            | W           | W            | W |
| Initial<br>value | 0  | 0         | 0                                 | 0     | 0            | 0            | 0           | 0           | 0     | 0   | 0 | 0           | 0            | 0           | 0            | 0 |

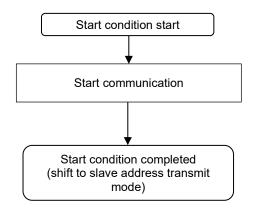
Common description of each bits :

It is used to clear a target status.

Writing "0": Invalid Writing "1": Clear a target interrupt


| Bit No.  | Bit symbol<br>name | Description (Target status)      |
|----------|--------------------|----------------------------------|
| 15 to 14 | -                  | Reserved bits                    |
| 13       | I2U0CASNA          | I2U0ASNA bit of I2U0STR register |
| 12       | I2U0CRAS           | I2U0RAS bit of I2U0STR register  |
| 11       | I2U0CSTS           | I2U0STS bit of I2U0STR register  |
| 10       | I2U0CSPS           | I2U0SPS bit of I2U0STR register  |
| 9        | I2U0CDS            | I2U0DS bit of I2U0STR register   |
| 8        | I2U0CAS            | I2U0AS bit of I2U0STR register   |
| 7 to 5   | -                  | Reserved bits                    |
| 4        | I2U0CTR            | I2U0TR bit of I2U0STR register   |
| 3        | I2U0CSAA           | I2U0SAA bit of I2U0STR register  |
| 2        | I2U0CER            | I2U0ER bit of I2U0STR register   |
| 1        | I2U0CACR           | I2U0ACR bit of I2U0STR register  |
| 0        | -                  | Reserved bit                     |

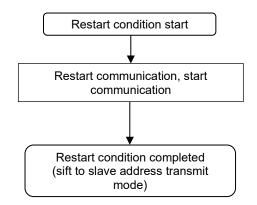
#### 13.5 Description of Operation for Master function


#### 13.5.1 Control Procedures

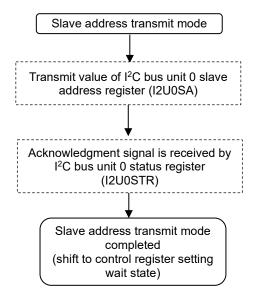
The following flow charts describe procedures of each operation in the master mode.

#### 13.5.1.1 Initial Setting of Communication Operation




#### 13.5.1.2 Start Condition




Set I2U0ST bit of I2U0CON register to "1".

Output the start condition waveforms to SDAU0 and SCLU0 pins.

#### 13.5.1.3 Restart Condition



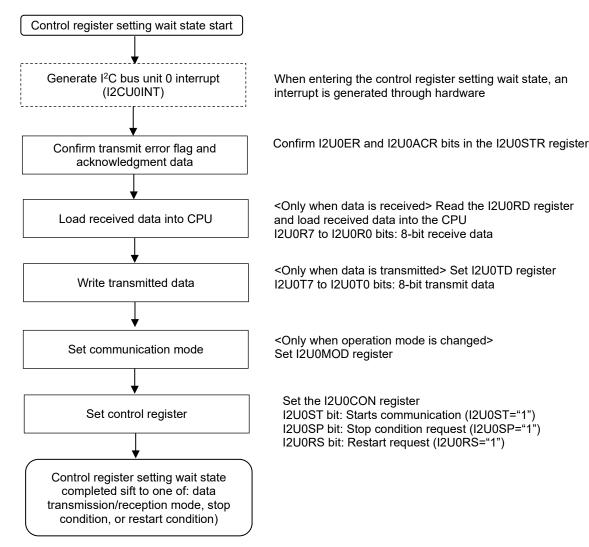
#### 13.5.1.4 Slave Address Transmission Mode



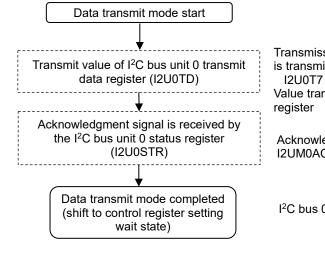
Communication in progress (I2U0ST="1")

Set I2U0RS="1" and I2U0ST="1" in the I2U0CON register

Output restart condition waveforms to SDAU0 and SCLU0 pins.


The value is transmitted from SDAU0 pin in MSB first through hardware following the start condition I2U0A6 to I2U0A0 bits: Slave address

I2U0RW: Data direction (transmission/reception) Value transmitted from the SDAU0 pin is stored in the I2U0RD register

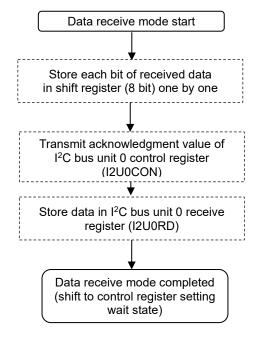

Acknowledgment signal is received through hardware I2UM0ACR bit: Acknowledgment data

I<sup>2</sup>C bus 0 control register (I2UM0CON) setting wait state

#### 13.5.1.5 Control Register Setting Wait State



#### 13.5.1.6 Data Transmission Mode



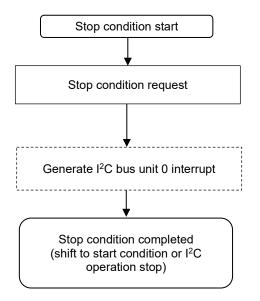

Transmission data that has been written to the I2U0TD register is transmitted from the SDAU0 pin in MSB first I2U0T7 to I2U0T0 bits: 8-bit transmit data Value transmitted from the SDAU0 pin is stored in the I2U0RD register

Acknowledgment signal is received through hardware I2UM0ACR bit: Acknowledgment data

I<sup>2</sup>C bus 0 control register (I2UM0CON) setting wait state

#### 13.5.1.7 Data Reception Mode




Value (received data) input to SDAU0 pin is stored in synchronization with rising edge of transfer clock input to SCLU0 pin in MSB first

Acknowledgment signal is transmitted through hardware I2U0ACT bit: Acknowledgment value Transmitted acknowledgment value is stored in the I2U0ACR bit of the I2U0STA register

Received data is stored from the shift register after acknowledgment signal is transmitted I2U0R7 to I2U0R0 bits: 8-bit receive data

I<sup>2</sup>C bus unit 0 control register (I2U0CON) setting wait state

#### 13.5.1.8 Stop Condition



Set I2U0SP bit of I2U0CON register to "1".

Output stop condition waveforms to SDAU0 and SCLU0 pins.

After the stop condition waveform is output, an interrupt is generated through hardware

#### 13.5.2 Communication Operation Timing

Figures 13-2 to 13-4 show the operation timing and control method for each communication mode during the master operation.

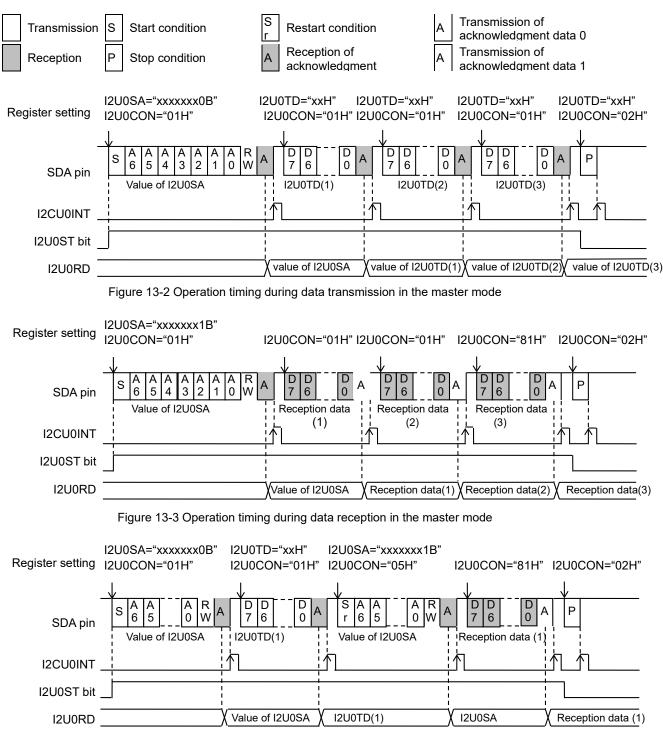



Figure 13-4 Operation timing during data transmission/ reception in the master mode

Figure 13-5 shows the operation timing and control method when an acknowledgment error occurs.

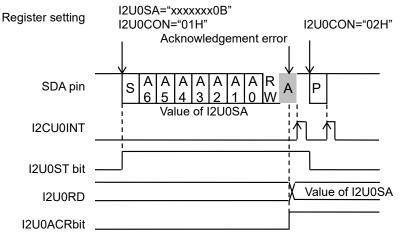



Figure 13-5 Operation suspend timing at occurrence of acknowledgment error in the master mode

When the values of the transmitted bit and the SDAU0 pin do not coincide, the I2U0ER bit of the I<sup>2</sup>C bus unit 0 status register (I2U0STR) is set to "1" and the SDAU0 pin output is disabled until termination of the subsequent byte data communication.

Figure 13-6 shows the operation timing and control method when transmission fails.

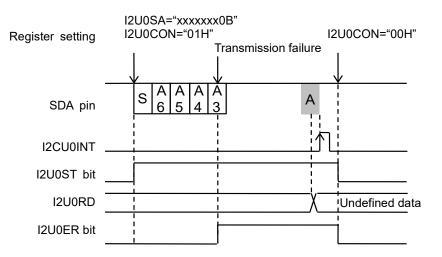



Figure 13-6 Operation timing when transmission fails in the master mode

#### 13.5.3 Interrupt

The following is interrupt causes in master operation.

| Interrupt causes                   | Timing that the interrupt is occurred                                                        |
|------------------------------------|----------------------------------------------------------------------------------------------|
| Transmission of a slave<br>address | At entry to control register setting wait state after end of slave address transmission mode |
| Data transmission                  | At entry to control register setting wait state after end of data transmission mode          |
| Data reception                     | At entry to control register setting wait state after end of data reception mode             |
| Output stop condition              | After output stop condition waveform and passing tBUF.                                       |

### 13.5.4 Operation Waveforms

Figure 13-7 shows the operation waveforms of SDAU0 and SCLU0 pins. Table 13-3 shows the relationship between communication speeds and  $I^2C$  operating clock counts.

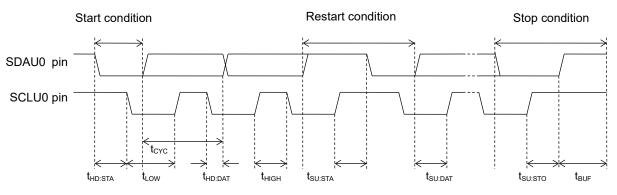



Figure 13-7 Operation Waveforms of SDAU0 and SCLU0 Pins

| Image: Problem series         Problem series |           |           |           | Tabl | e 15-5  | TCIALIOI |          | CIWCCI  | Comm     | unicati | on spc  |      |         | ing clock co |       | nunication |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|------|---------|----------|----------|---------|----------|---------|---------|------|---------|--------------|-------|------------|
| Tregister         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T         T                                                                                                                                                                                                                                                                                                                                                                                           |           |           |           |      | A       | C timin  | a [l²C c | peratir | na cloci | k count | sl      |      |         |              |       | nunication |
| N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                                                                                                                                                                                                                                                   | r         | egiste    | r         |      |         | <b>.</b> | 91.00    | -p      | .g 0.000 |         | ]       |      |         |              |       |            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12U0T12-0 | 12U0MD1-0 | 12U0MD3-2 | teve | thd:sta | tLOW     | thd:dat  | tнісн   | ts∪:s⊤A  | tsu:dat | tsu:sto | teur | 16MHz   |              |       | LSCLK0     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         | 0         | 0         | 160  | 72      | 88       | 16       | 72      | 88       | 72      | 72      | 88   | 100.0   | 50.0         | 6.3   | 0.2        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0         | 0         | 1         | 176  | 80      | 96       | 16       | 80      | 96       | 80      | 80      | 96   | 90.9    | 45.5         | 5.7   | 0.2        |
| 0         3         208         96         112         16         96         112         76.9         38.5         4.8         0.2           0         1         0         40         14         26         12         14         26         14         14         26         400.0         200.0         25.0         0.8           0         1         1         44         16         28         12         16         28         16         16         28         363.6         181.8         22.7         0.7           0         1         3         52         20         32         12         20         32         20         20         32         307.7         153.9         19.2         0.6           0         2         0         16         6         10         4         6         10         6         6         10         100.0         500.0         62.5         2.0           0         2         1         18         7         11         4         8         11         7         8         11         842.1         421.1         52.6         1.7           0         2         16 </td <td>0</td> <td>0</td> <td>2</td> <td>192</td> <td>88</td> <td>104</td> <td>16</td> <td>88</td> <td>104</td> <td>88</td> <td>88</td> <td>104</td> <td>83.3</td> <td>41.7</td> <td>5.2</td> <td>0.2</td>                                                                                                                                                                           | 0         | 0         | 2         | 192  | 88      | 104      | 16       | 88      | 104      | 88      | 88      | 104  | 83.3    | 41.7         | 5.2   | 0.2        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0         | 0         | 3         | 208  | 96      | 112      | 16       | 96      | 112      | 96      | 96      | 112  | 76.9    | 38.5         | 4.8   | 0.2        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0         | 1         | 0         | 40   | 14      | 26       | 12       | 14      | 26       | 14      | 14      | 26   | 400.0   | 200.0        | 25.0  | 0.8        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0         | 1         | 1         | 44   | 16      | 28       | 12       | 16      | 28       | 16      | 16      | 28   | 363.6   | 181.8        | 22.7  | 0.7        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0         | 1         | 2         | 48   | 18      | 30       | 12       | 18      | 30       | 18      | 18      | 30   | 333.3   | 166.7        | 20.8  | 0.7        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         | 1         | 3         | 52   | 20      | 32       | 12       | 20      | 32       | 20      | 20      | 32   | 307.7   | 153.9        | 19.2  | 0.6        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0         | 2         | 0         | 16   | 6       | 10       | 4        | 6       | 10       | 6       | 6       | 10   | 1000.0  | 500.0        | 62.5  | 2.0        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0         | 2         | 1         | 18   | 7       | 11       | 4        | 7       | 11       | 7       | 7       | 11   | 888.9   | 444.5        | 55.6  | 1.8        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0         | 2         | 2         | 19   | 8       | 11       | 4        | 8       | 11       | 7       | 8       | 11   | 842.1   |              | 52.6  | 1.7        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0         | 2         | 3         | 21   | 9       | 12       | 4        | 9       | 12       | 8       | 9       | 12   | 761.9   | 381.0        | 47.6  | 1.6        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1         | 0         | 0         | 80   | 36      | 44       | 8        | 36      | 44       | 36      | 36      | 44   | 200.0   | 100.0        | 12.5  | 0.4        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1         | 0         | 1         | 88   | 40      | 48       | 8        | 40      | 48       | 40      | 40      | 48   | 181.8   | 90.9         | 11.4  | 0.4        |
| 1       1       0       20       7       13       6       7       13       7       7       13       800.0       400.0       50.0       1.6         1       1       1       22       8       14       6       8       14       8       8       14       77.3       363.7       45.5       1.5         1       1       2       24       9       15       6       9       15       9       9       15       666.7       333.4       41.7       1.4         1       1       3       26       10       16       6       10       10       16       615.4       307.7       38.5       1.3         1       2       0       8       3       5       2       3       5       3       3       5       2000.0*       1000.0       125.0       4.1         1       2       1       9       4       5       2       4       5       3       4       5       2000.0*       1000.0       125.0       4.1         1       2       2       10       4       6       2       4       6       4777.8*       888.9       11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | 0         | 2         | 96   | 44      | 52       | 8        | 44      | 52       | 44      | 44      | 52   | 166.7   |              | 10.4  | 0.3        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1         | 0         | 3         | 104  |         | 56       | 8        | 48      | 56       | 48      | 48      | 56   | 153.8   |              | 9.6   | 0.3        |
| 1       1       2       24       9       15       6       9       15       9       9       15       666.7       333.4       41.7       1.4         1       1       3       26       10       16       6       10       16       10       10       16       615.4       307.7       38.5       1.3         1       2       0       8       3       5       2       3       5       3       3       5       2000.0*       1000.0       125.0       4.1         1       2       1       9       4       5       2       4       5       3       4       5       2000.0*       1000.0       125.0       4.1         1       2       1       9       4       6       2       4       6       1777.8*       888.9       111.1       3.6         1       2       3       11       5       6       2       5       6       4       5       5       1600.0*       800.0       100.0       3.3         2       0       **       10       5       5       1       5       5       1600.0*       800.0       100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1         | 1         | 0         | 20   | 7       | 13       | 6        | 7       | 13       | 7       | 7       | 13   | 800.0   | 400.0        | 50.0  | 1.6        |
| 1       1       3       26       10       16       6       10       16       10       10       16       615.4       307.7       38.5       1.3         1       2       0       8       3       5       2       3       5       3       3       5       2000.0*       1000.0       125.0       4.1         1       2       1       9       4       5       2       4       5       3       4       5       2000.0*       1000.0       125.0       4.1         1       2       1       9       4       5       2       4       5       3       4       5       2000.0*       1000.0       125.0       4.1         1       2       2       10       4       6       2       4       6       4       4       6       1777.8*       888.9       111.1       3.6         1       2       3       11       5       6       2       5       6       4       5       5       1600.0*       800.0       100.0       3.3         2       0       **       10       5       5       1       5       5       1600.0*<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | 1         | 1         | 22   | 8       | 14       | 6        | 8       | 14       | 8       | 8       | 14   | 727.3   | 363.7        | 45.5  | 1.5        |
| 1       2       0       8       3       5       2       3       5       3       3       5       2000.0*       1000.0       125.0       4.1         1       2       1       9       4       5       2       4       5       3       4       5       2000.0*       1000.0       125.0       4.1         1       2       1       9       4       5       2       4       5       3       4       5       2000.0*       1000.0       125.0       4.1         1       2       2       10       4       6       2       4       6       4       4       6       1777.8*       888.9       111.1       3.6         1       2       3       11       5       6       2       5       6       4       5       6       1600.0*       800.0       100.0       3.3         2       0       **       10       5       5       1       5       5       1600.0*       800.0       100.0       3.3         2       1       **       4       2       2       1       2       2       4000.0*       2000.0*       250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1         | 2         | 24   | 9       | 15       | 6        | 9       | 15       | 9       | 9       | 15   | 666.7   |              | 41.7  | 1.4        |
| 1       2       1       9       4       5       2       4       5       3       4       5       2000.0*       1000.0       125.0       4.1         1       2       2       10       4       6       2       4       6       4       4       6       1777.8*       888.9       111.1       3.6         1       2       3       11       5       6       2       5       6       4       5       6       1600.0*       800.0       100.0       3.3         2       0       **       10       5       5       1       5       5       4       5       5       1600.0*       800.0       100.0       3.3         2       0       **       10       5       5       1       5       5       4       5       5       1600.0*       800.0       100.0       3.3         2       1       **       4       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2         2       2       **       4       2       2       1       2       2       4000.0*       500.0       62.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1         | З         | 26   | 10      | 16       | 6        | 10      | 16       | 10      | 10      | 16   | 615.4   |              | 38.5  | 1.3        |
| 1       2       2       10       4       6       2       4       6       4       4       6       1777.8*       888.9       111.1       3.6         1       2       3       11       5       6       2       5       6       4       5       6       1600.0*       800.0       100.0       3.3         2       0       **       10       5       5       1       5       5       4       5       5       1600.0*       800.0       100.0       3.3         2       0       **       10       5       5       1       5       5       4       5       5       1600.0*       800.0       100.0       3.3         2       1       **       4       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2         2       2       **       4       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2         3       0       **       16       8       8       1       8       8       7       8       8       1000.0*       500.0       62.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | 2         | 0         | 8    | 3       | 5        | 2        | 3       | 5        | 3       | 3       | 5    | 2000.0* | 1000.0       | 125.0 | 4.1        |
| 1       2       3       11       5       6       2       5       6       4       5       6       1600.0*       800.0       100.0       3.3         2       0       **       10       5       5       1       5       5       4       5       5       1600.0*       800.0       100.0       3.3         2       0       **       10       5       5       1       5       5       4       5       5       1600.0*       800.0       100.0       3.3         2       1       **       4       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2         2       2       **       4       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2         3       0       **       16       8       8       1       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2         3       0       **       16       8       8       1       8       7       8       8       1000.0*       125.0       4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1         | 2         | 1         |      | 4       |          |          |         |          |         | 4       | 5    | 2000.0* |              | 125.0 | 4.1        |
| 2       0       **       10       5       5       1       5       5       4       5       5       1600.0*       800.0       100.0       3.3         2       1       **       4       2       2       1       2       2       1       2       2       100.0*       800.0       100.0       3.3         2       1       **       4       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2         2       2       **       4       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2         3       0       **       16       8       8       1       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2         3       0       **       16       8       8       1       8       8       7       8       8       1000.0*       500.0       62.5       2.0         3       1       **       8       4       4       1       4       3       4       2000.0*       1000.0       125.0       4.1 <t< td=""><td></td><td>2</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1777.8*</td><td></td><td>111.1</td><td>3.6</td></t<>                                                                                                                                                                                                                                                                                                                   |           | 2         | 2         |      |         |          |          |         |          |         |         |      | 1777.8* |              | 111.1 | 3.6        |
| 2       1       **       4       2       2       1       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2         2       2       **       4       2       2       1       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2         3       0       **       16       8       8       1       8       8       7       8       8       1000.0*       500.0       62.5       2.0         3       1       **       8       4       4       1       4       4       3       4       4       2000.0*       1000.0       125.0       4.1         3       2       **       4       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 2         | 3         |      |         |          |          |         |          |         |         |      |         |              | 100.0 | 3.3        |
| 2       2       **       4       2       2       1       2       2       1       2       2       400.0*       2000.0*       250.0       8.2         3       0       **       16       8       8       1       8       8       7       8       8       1000.0*       500.0       62.5       2.0         3       1       **       8       4       4       1       4       3       4       4       2000.0*       1000.0       125.0       4.1         3       2       **       4       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 0         | **        | 10   |         |          |          |         |          |         |         |      |         |              | 100.0 | 3.3        |
| 3       0       **       16       8       8       1       8       8       7       8       8       1000.0*       500.0       62.5       2.0         3       1       **       8       4       4       1       4       4       3       4       4       2000.0*       1000.0       125.0       4.1         3       2       **       4       2       2       1       2       2       4000.0*       2000.0*       250.0       8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 1         | **        |      |         |          |          |         |          |         |         |      |         |              | 250.0 | 8.2        |
| 3     1     **     8     4     4     1     4     4     3     4     4     2000.0*     1000.0     125.0     4.1       3     2     **     4     2     2     1     2     2     1     2     2     4000.0*     2000.0*     250.0     8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 2         | **        |      | 2       |          |          | 2       | 2        |         |         | 2    |         |              | 250.0 | 8.2        |
| 3     2     **     4     2     2     1     2     2     1     2     2     4000.0*     2000.0*     250.0     8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 0         | **        | 16   | 8       | 8        | 1        |         | 8        |         | 8       | 8    |         |              | 62.5  | 2.0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |           |           |      |         |          |          |         |          |         |         |      |         |              | 125.0 | 4.1        |
| *: The operation is not guaranteed when over 1MHz speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |           |           | •    |         |          |          |         |          |         | 2       | 2    | 4000.0* | 2000.0*      | 250.0 | 8.2        |

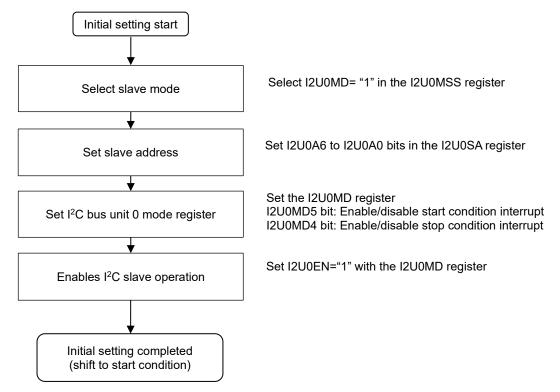
\*: The operation is not guaranteed when over 1MHz speed.

\*\*: The setting is invalid.

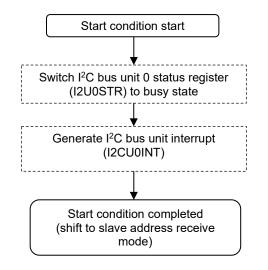
These clock counts is in case of I2U0CD1-0 bits = "00". If it is not "00", its counts increase depending on dividing rate.

#### [Note]

When the slave device uses the clock stretch function which holds SCLU0 pin at "L" level, the time t<sub>CYC</sub> and time t<sub>LOW</sub> are extended.


#### 13.6 Description of Operation for Slave function

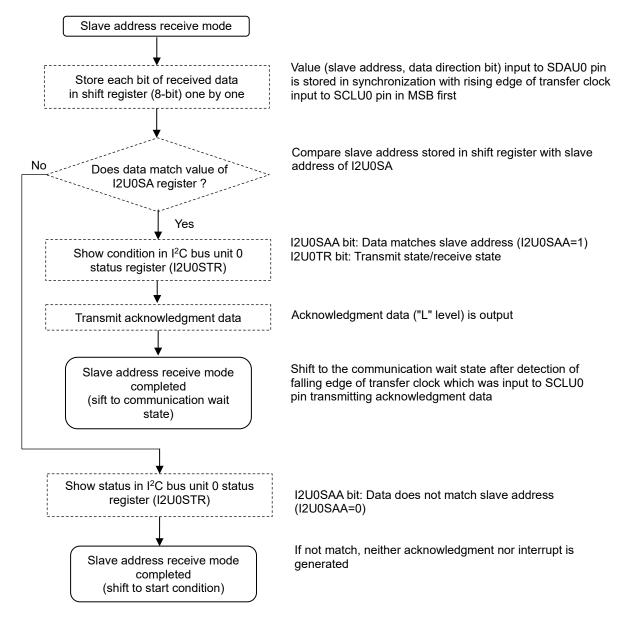
I<sup>2</sup>C bus unit 0 only have slave function.


#### 13.6.1 Procedures

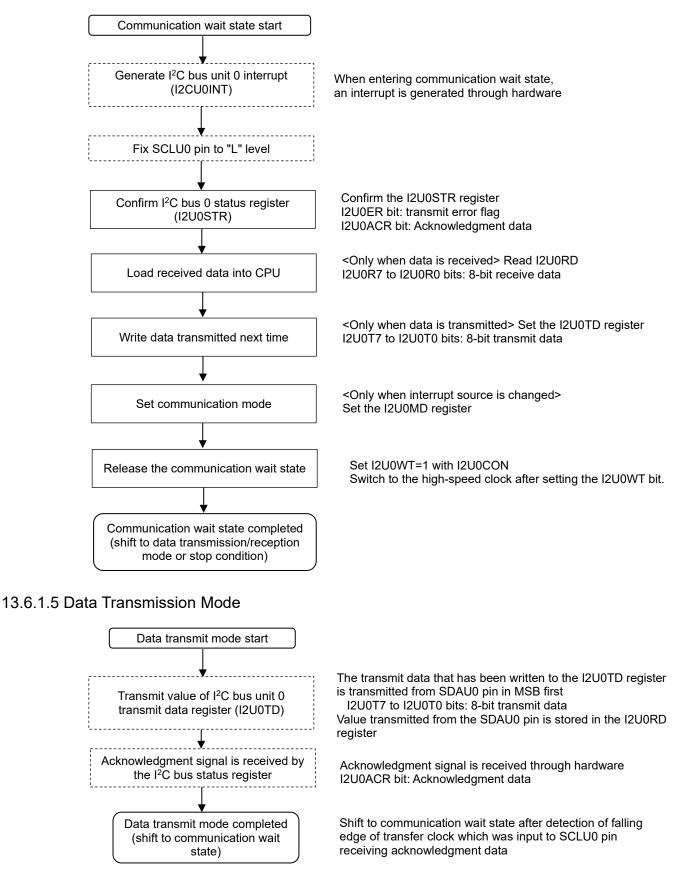
The following flow charts describe procedures of each operation in the slave mode.

#### 13.6.1.1 Initial Setting of Communication Operation

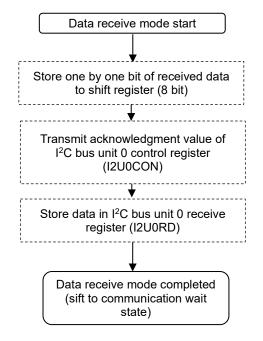



13.6.1.2 Start Condition




Value of the following bit becomes "1" when start condition waveforms are input to SDAU0 and SCLU0 pins

<Only when I2U0MD5=1> Start condition interrupt is generated


#### 13.6.1.3 Slave Address Reception Mode

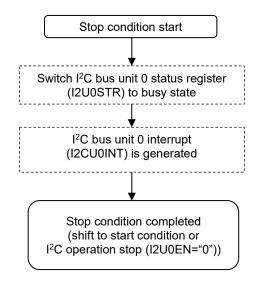


#### 13.6.1.4 Communication Wait State



#### 13.6.1.6 Data Reception Mode




Value (received data) input to SDAU0 pin is stored in synchronization with rising edge of transfer clock input to SCLU0 pin in MSB first

Acknowledgment signal is transmitted through hardware I2U0ACT bit: Acknowledgment value Transmitted acknowledgment value is stored in the I2U0ACR bit of the I2U0STR register

Received data is stored from the shift register after acknowledgment signal is transmitted I2U0R7 to I2U0R0 bits: 8-bit receive data

Shift to communication wait state after detection of falling edge of transfer clock which was input to SCLU0 pin transmitting acknowledgment data

#### 13.6.1.7 Stop Condition



Value of the following bit becomes "0" when stop condition waveforms are input to SDAU0 and SCLU0 pins.

<Only when I2U0MD4="1"> Stop condition interrupt is generated

### 13.6.2 Communication Operation Timing

Figures 13-8 to 13-10 show the operation timing and control method for each communication mode.

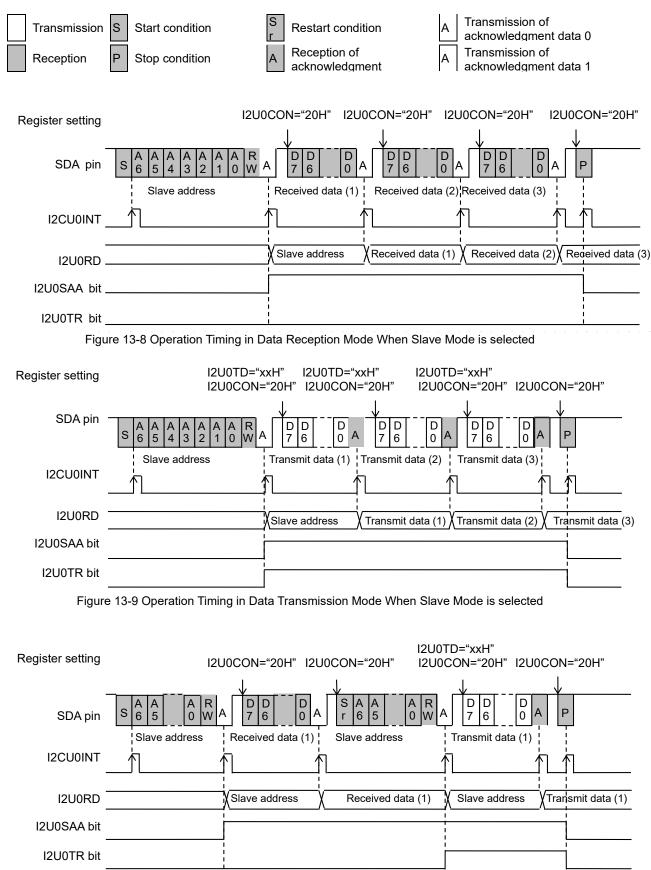
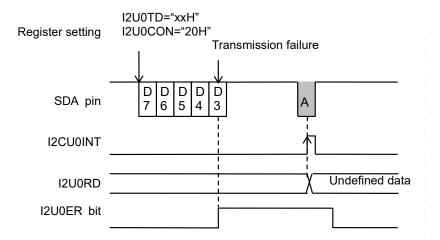
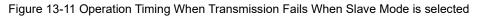





Figure 13-10 Operation Timing at Data Transmission/Reception Mode Switching When Slave Mode is selected

When the values of the transmitted bit and the SDAU0 pin do not coincide, the I2U0ER bit of the I<sup>2</sup>C bus unit 0 status register (I2U0STR) is set to "1" and the SDAU0 pin output is disabled until termination of the subsequent byte data communication.

Figure 13-11 shows the operation timing and control method when transmission fails.





#### [Note]

#### If entering to the STOP mode while the slave mode is enabled, first make sure that communication is not in progress (from coincidence of address to reception of stop condition).

#### 13.6.3 Interrupt

Table 13-4 shows interrupt causes in slave operation.

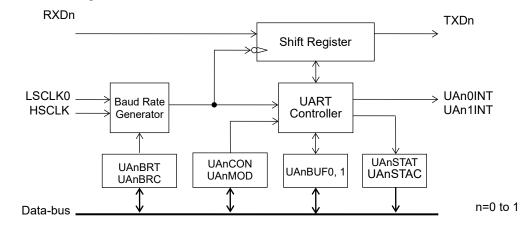
| Interrupt causes                                                           | Setting to enable             | Status flag in the I2U0STR register | Timing that the interrupt is occurred                                                                                             |
|----------------------------------------------------------------------------|-------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Start condition                                                            | I2U0MD5= "1"                  | I2U0STS= "1"                        | After output start condition waveform.                                                                                            |
| Coinciding Slave<br>Address                                                | -                             | I2U0AS= "1"                         | At entry to control register setting wait state<br>with coinciding slave-address after end of<br>slave address reception mode     |
| Data<br>transmission                                                       | -                             | I2U0DS= "1"                         | At entry to control register setting wait state after end of data transmission mode                                               |
| Data reception                                                             | -                             | I2U0DS= "1"                         | At entry to control register setting wait state after end of data reception mode                                                  |
| Stop condition                                                             | I2U0MD4= "1"                  | I2U0SPS= "1"                        | At detecting stop-condition waveform.                                                                                             |
| Re-start<br>condition, and<br>then the master<br>selects another<br>slave. | I2U0MD3= "1"                  | I2U0RAS= "1"                        | At end of slave-address reception mode<br>without coinciding slave-address after detected<br>re-start condition with I2USAA= "1". |
| Detect stop-<br>condition for<br>another slave.                            | I2U0MD4= "1",<br>I2U0MD1= "0" | I2U0SPS="1", I2U0AS= "1"            | At detecting stop-condition waveform with I2U0SAA= "1".                                                                           |

Table 13-4 List of slave interrupt

# **Chapter 14 UART**

### 14. UART

#### 14.1 General Description


This LSI has full-duplexed universal asynchronous receiver transmitter; UART.

#### 14.1.1 Features

- Data length : 5/6/7/8 bit
- Data parity : odd, even, fixed 0, fixed 1, none
- Stop bit : 1bit or 2bit
- Status flags : parity error, overrun error, framing error, transmission buffer
- Signal level : positive, negative
- Data direction : LSB first or MSB first
- Wide range of communication speed
  - 1bps to 4,800bps (Clock frequency is 32.768kHz)
  - 300bps to 2Mbps (Clock frequency is 16MHz)
- Built-in baud rate generator for each channel
- Half-duplex mode
- Self-test function using transmission and reception. See Chapter 29 "Safety Function." for the self-test functions.

#### 14.1.2 Configuration

Figure 14-1 shows configuration of the UART.



| UAnBUF0,1        | : | UARTn transmission/reception buffer                |
|------------------|---|----------------------------------------------------|
| UAnBRT           | : | UARTn baud rate register                           |
| UAnBRC           | : | UARTn baud rate adjustment register                |
| UAnCON           | : | UARTn control register                             |
| UAnMOD           | : | UARTn mode register                                |
| UAnSTAT, UAnSTAC | : | UARTn status register, UARTn status clear register |
|                  |   |                                                    |

Figure 14-1 Configuration of UART

#### 14.1.3 List of Pins

The I/O pins of the UART are assigned to the shared function of the general ports.

| Pin name | I/O | Description                        |
|----------|-----|------------------------------------|
| RXDn     | I   | Reception data input of UART n     |
| TXDn     | 0   | Transmission data output of UART n |

Table 14-1 shows the list of the general ports used for the UART and the register settings of the ports.

Table 14-1 Ports used for the UART and the register settings

|                | •. avai  |       |                          |                     |               |                   |                   |
|----------------|----------|-------|--------------------------|---------------------|---------------|-------------------|-------------------|
|                |          |       |                          |                     |               | Available/L       | Jnavailable       |
| Channel<br>no. | Pin name | Share | ed port                  | Setting<br>register | Setting value | 20 pin<br>product | 24 pin<br>product |
|                | RXD0     | P12*3 | 2 <sup>nd</sup> Function | P1MOD2              | 0001_XXXX*1   | •                 | •                 |
| 0              | TXD0     | P12*3 | 2 <sup>nd</sup> Function | P1MOD2              | 0001_XXXX*2   | •                 | •                 |
|                | TADU     | P13   | 2 <sup>nd</sup> Function | P1MOD3              | 0001_XXXX*2   | •                 | •                 |
|                | RXD1     | P10*3 | 2 <sup>nd</sup> Function | P1MOD0              | 0001_XXXX*1   | •                 | •                 |
| 1              |          | P10*3 | 2 <sup>nd</sup> Function | P1MOD0              | 0001_XXXX*2   | •                 | •                 |
|                | TXD1     | P23   | 2 <sup>nd</sup> Function | P2MOD3              | 0001_XXXX*2   | •                 | •                 |

•: Available, -: Not available

\*1 : "XXXX" determines the condition of the port input

| XXXX | Condition of the port input                  |
|------|----------------------------------------------|
| 0001 | Input (without an internal pull-up resistor) |
| 0101 | Input (with an internal pull-up resistor)    |

\*<sup>2</sup> : "XXXX" determines the condition of the port output

| XXXX | Condition of the port output                 |
|------|----------------------------------------------|
| 0010 | CMOS output                                  |
| 1010 | N-ch open drain output (without the pull-up) |
| 1111 | N-ch open drain output (with the pull-up)    |

\*<sup>3</sup>: Switching between TXDn and RXDn on P10 and P12 is set by the port function registers (P1MOD0, P1MOD2). When the port is 2nd function and output, it functions as a TXDn, and when it is 2nd function and an input, it functions as an RXDn.

### 14.2 Description of Registers

### 14.2.1 List of Registers

|                     |                                     | Sym     | bol    |     | 0.   | Initial |
|---------------------|-------------------------------------|---------|--------|-----|------|---------|
| Address             | Name                                | Byte    | Word   | R/W | Size | value   |
| 0xF600              | UART0 reception buffer              | UA0BUF0 | -      | R   | 8    | 0x00    |
| 0xF601              | UART0 transmission buffer           | UA0BUF1 | -      | R/W | 8    | 0x00    |
| 0xF602              | UART0 status register               | UA0STAT | -      | R   | 8    | 0x00    |
| 0xF603              | UART0 status clear register         | UA0STAC | -      | W   | 8    | 0x00    |
| 0xF604              | UART0 control register              | UA0CON  | -      | R/W | 8    | 0x00    |
| 0xF605              | Reserved register                   | -       | -      | -   | -    | -       |
| 0xF606              |                                     | UA0MODL |        | R/W | 8/16 | 0x01    |
| 0xF607              | UART0 mode register                 | UA0MODH | UA0MOD | R/W | 8    | 0x00    |
| 0xF608              | UART0 interrupt enable register     | UA0INTE | -      | R/W | 8    | 0x00    |
| 0xF609              | Reserved register                   | -       | -      | -   | -    | -       |
| 0xF60A              |                                     | UA0BRTL |        | R/W | 8/16 | 0xFF    |
| 0xF60B              | UART0 baud rate register            | UA0BRTH | UA0BRT | R/W | 8    | 0x0F    |
| 0xF60C              | UART0 baud rate adjustment register | UA0BRC  | -      | R/W | 8    | 0x00    |
| 0xF60D to<br>0xF60F | Reserved register                   | -       | -      | -   | -    | -       |
| 0xF610              | UART1 reception buffer              | UA1BUF0 | -      | R   | 8    | 0x00    |
| 0xF611              | UART1 transmission buffer           | UA1BUF1 | -      | R/W | 8    | 0x00    |
| 0xF612              | UART1 status register               | UA1STAT | -      | R   | 8    | 0x00    |
| 0xF613              | UART1 status clear register         | UA1STAC | -      | W   | 8    | 0x00    |
| 0xF614              | UART1 control register              | UA1CON  | -      | R/W | 8    | 0x00    |
| 0xF615              | Reserved register                   | -       | -      | -   | -    | -       |
| 0xF616              |                                     | UA1MODL |        | R/W | 8/16 | 0x01    |
| 0xF617              | UART1 mode register                 | UA1MODH | UA1MOD | R/W | 8    | 0x00    |
| 0xF618              | UART1 interrupt enable register     | UA1INTE | -      | R/W | 8    | 0x00    |
| 0xF619              | Reserved register                   | -       | -      | -   | -    | -       |
| 0xF61A              |                                     | UA1BRTL |        | R/W | 8/16 | 0xFF    |
| 0xF61B              | UART1 baud rate register            | UA1BRTH | UA1BRT | R/W | 8    | 0x0F    |
| 0xF61C              | UART1 baud rate adjustment register | UA1BRC  | -      | R/W | 8    | 0x00    |

### 14.2.2 UARTn Reception Buffer (UAnBUF0) UAnBUF0 is a SFR to store reception data.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R<br>: 8        | :F600(l<br>bit<br>:00 | JA0BUI | =0),0xF | 610(UA | 1BUF | 0) |           |           |           |           |           |           |           |           |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|--------|---------|--------|------|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14              | 13                    | 12     | 11      | 10     | 9    | 8  | 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                       |        |         |        |      |    | -         |           |           |           |           |           |           |           |
| Byte             | - UAnBUF0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                       |        |         |        |      |    |           |           |           |           |           |           |           |           |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -               | -                     | -      | -       | -      | -    | -  | UnRD<br>7 | UnRD<br>6 | UnRD<br>5 | UnRD<br>4 | UnRD<br>3 | UnRD<br>2 | UnRD<br>1 | UnRD<br>0 |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R               | R                     | R      | R       | R      | R    | R  | R         | R         | R         | R         | R         | R         | R         | R         |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0               | 0                     | 0      | 0       | 0      | 0    | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| Bit no.          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | it symb<br>name | ol                    |        |         |        |      |    | De        | escriptio | on        |           |           |           |           |           |
| 7 to 0           | UnRD7 to<br>UnRD0 This works as the reception buffer.<br>UnRD0 Data at the end of reception communication is overwritten into this register, so read out this<br>register by using the UARTn0 interrupt generated at the end of reception communication.<br>Writing to this register is invalid.<br>When choosing the 5 to 7 bit length, unused bits return "0" for reading. (See to Section<br>14.3.2 "Data Direction")<br>In the transmission mode in half-duplex communication mode, UAnBUF0 is fixed at 0x00. |                 |                       |        |         |        |      |    |           |           |           |           |           |           |           |           |

#### 14.2.3 UARTn Transmission Buffer (UAnBUF1)

UAnBUF1 is a SFR to store transmission data.

|                  |                        | R/<br>e: 8 | W  | JA0BUI | F1),0xF | 611(U/ | \1BUF′ | 1) |           |           |           |           |           |           |           |           |
|------------------|------------------------|------------|----|--------|---------|--------|--------|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                  | 15                     | 14         | 13 | 12     | 11      | 10     | 9      | 8  | 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
| Word             |                        |            |    |        |         |        |        |    | -         |           |           |           |           |           |           |           |
| Byte             | - UAnBUF1              |            |    |        |         |        |        |    |           |           |           |           |           |           |           |           |
| Bit              | -                      | -          | -  | -      | -       | -      | -      | -  | UnTD<br>7 | UnTD<br>6 | UnTD<br>5 | UnTD<br>4 | UnTD<br>3 | UnTD<br>2 | UnTD<br>1 | UnTD<br>0 |
| R/W              | R                      | R          | R  | R      | R       | R      | R      | R  | R/W       |
| Initial<br>value | 0                      | 0          | 0  | 0      | 0       | 0      | 0      | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| Bit no           | Bit symbol Description |            |    |        |         |        |        |    |           |           |           |           |           |           |           |           |

| Bit no. | name              | Description                                                                                                                                                                                                                                                                                                                                                                                |
|---------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to 0  | UnTD7 to<br>UnTD0 | This works as the transmission buffer.<br>Write transmission data to this. For continuous transmitting, write the next transmission data<br>to this register after checking UnFUL bit of UAnSTAT is "0". The written data in this register<br>can be read out.<br>When choosing the 5 to 7bit length, written data in unused bits are invalid. (See to Section<br>14.3.2 "Data Direction") |
|         |                   |                                                                                                                                                                                                                                                                                                                                                                                            |

### 14.2.4 UARTn Status Register (UAnSTAT)

UAnSTAT is a SFR to indicate states of the transmission/reception operation.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R<br>9: 8 |    | UA0STA                                    | AT),0xF                                                | 612(U                                               | A1STA                                   | T)                                                |                    |                       |                                          |           |           |           |           |           |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|-------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|---------------------------------------------------|--------------------|-----------------------|------------------------------------------|-----------|-----------|-----------|-----------|-----------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14        | 13 | 12                                        | 11                                                     | 10                                                  | 9                                       | 8                                                 | 7                  | 6                     | 5                                        | 4         | 3         | 2         | 1         | 0         |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |    |                                           |                                                        |                                                     |                                         |                                                   | -                  |                       |                                          |           |           |           |           |           |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         | 1  |                                           | -                                                      |                                                     |                                         |                                                   |                    | 1                     |                                          |           | STAT      |           |           |           |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | -  | -                                         | -                                                      | -                                                   | -                                       | -                                                 | -                  | -                     | UnRX<br>F                                | UnTX<br>F | UnFU<br>L | UnPE<br>R | UnOE<br>R | UnFE<br>R |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R         | R  | R                                         | R                                                      | R                                                   | R                                       | R                                                 | R                  | R                     | R                                        | R         | R         | R         | R         | R         |
| Initial<br>value | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |    |                                           |                                                        |                                                     |                                         |                                                   |                    |                       |                                          |           | 0         |           |           |           |
| Bit no.          | Bit symbol<br>name     Description       -     Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |    |                                           |                                                        |                                                     |                                         |                                                   |                    |                       |                                          |           |           |           |           |           |
| 7 to 6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |    |                                           |                                                        |                                                     |                                         |                                                   |                    |                       |                                          |           |           |           |           |           |
| 5                | UnRXF Indicate reception state.<br>0: Data reception is stopped (Initial value)<br>1: Data reception is in progress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |    |                                           |                                                        |                                                     |                                         |                                                   |                    |                       |                                          |           |           |           |           |           |
| 4                | UnT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ΧF        |    |                                           | ata tran                                               | smissio                                             | state.<br>on is sto<br>on is in         |                                                   |                    | alue)                 |                                          |           |           |           |           |           |
| 3                | UnF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UL        |    | the data<br>next trai<br>UnFUL(<br>0: Tra | is set to<br>a. To tra<br>nsmiss<br>C bit of<br>ansmis | o "1" by<br>nsmit o<br>on data<br>UAnST<br>sion bu  | / writing<br>data su<br>a to the        | g a data<br>ccessiv<br>UAnB<br>jister.<br>s no da | ely, che<br>UF1.Th | eck tha<br>iis bit is | and res<br>at the Un<br>s forcibly<br>e) | iFUL bi   | t is "0"  | before    | writing   | the       |
| 2                | UnF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PER       |    | do not r<br>UnPER<br>0: Th                | ity of th<br>natch, t<br>C bit of<br>ie parity         | ie recei<br>his bit<br>UAnS <sup>-</sup><br>/ error | ived da<br>become<br>TAC reg<br>has not | es "1".1<br>gister.<br>: occuri                   | his bit            | is forci              | added to<br>bly rese<br>ue)              |           |           |           |           | if they   |
| 1                | 1: The parity error has occurred.         UnOER       Indicate a reception overrun error.<br>This bit becomes "1" if the next data is received before reading the previous receive data in reception buffer (SDnBUFL). Even if reception is stopped by the UnEN bit and then receptior is re-started, this bit is set to "1" unless the previously received data is not read. Therefore, make sure that data is always read from the reception buffer even if the data is not required.<br>This is forcibly reset to "0" by writing "1" to the UnOERC bit of UAnSTAC register.         0: The overrun error has not occurred (Initial value) |           |    |                                           |                                                        |                                                     |                                         |                                                   |                    |                       |                                          |           |           |           |           |           |
| 0                | UnFER Indicate a framing error.<br>This becomes "1" when an error occurs in the start/stop bit. The Un0FER bit is forcibly reset<br>to "0" by writing "1" to the UnFERC bit of UAnSTARC register.<br>0: The framing error has not occurred (Initial value)<br>1: The framing error has occurred                                                                                                                                                                                                                                                                                                                                              |           |    |                                           |                                                        |                                                     |                                         |                                                   |                    |                       |                                          |           | / reset   |           |           |           |

### 14.2.5 UARTn Status Clear Register (UAnSTAC)

UAnSTAC is a write-only SFR to clear states of the transmission/reception operation.

|                  |                                                        | W<br>: 8        |    | JAOSTA  | AC),0xF | -613(U/                       | A1STA | C) |    |           |    |     |            |            |            |            |
|------------------|--------------------------------------------------------|-----------------|----|---------|---------|-------------------------------|-------|----|----|-----------|----|-----|------------|------------|------------|------------|
|                  | 15                                                     | 14              | 13 | 12      | 11      | 10                            | 9     | 8  | 7  | 6         | 5  | 4   | 3          | 2          | 1          | 0          |
| Word             |                                                        |                 |    |         |         |                               |       |    | -  |           |    |     |            |            |            |            |
| Byte             |                                                        |                 |    |         | -       |                               |       |    |    |           |    | UAn | STAC       |            |            |            |
| Bit              | -                                                      | -               | -  | -       | -       | -                             | -     | -  | -  | -         | -  | -   | UnFU<br>LC | UnPE<br>RC | UnOE<br>RC | UnFE<br>RC |
| R/W              | R                                                      | R               | R  | R       | R       | R                             | R     | R  | R  | R         | R  | R   | R          | W          | W          | W          |
| Initial<br>value | 0 0 0 0 0                                              |                 |    |         |         |                               | 0     | 0  | 0  | 0         | 0  | 0   | 0          | 0          | 0          | 0          |
| Bit no.          | В                                                      | it symb<br>name | ol |         |         |                               |       |    | De | escriptio | on |     |            |            |            |            |
| 7 to 4           | -                                                      |                 | l  | Reserve | ed bits |                               |       |    |    |           |    |     |            |            |            |            |
| 3                | UnF                                                    | ULC             |    |         | g "0" : | it ; tran<br>Invalid<br>Clear | 1     |    |    | flag.     |    |     |            |            |            |            |
| 2                | UnPERC Clear UnPER &<br>Writing "0" :<br>Writing "1" : |                 |    |         |         |                               | 1     |    |    |           |    |     |            |            |            |            |
| 1                | UnC                                                    | ERC             | (  |         | g "0" : | bit ; ove<br>Invalid<br>Clear | I     |    |    |           |    |     |            |            |            |            |
| 0                | UnF                                                    | ERC             | (  |         | g "0" : |                               | 1     | _  |    |           |    |     |            |            |            |            |

### 14.2.6 UARTn Control Register (UAnCON)

UAnCON is a SFR to control enable/disable communication.

|                  |                        | R/<br>: 8 | (F604)<br>W<br>bit<br>00 | JA0CO                                                                                                                                                                                                                                                              | N),0xF6 | 614(UA | 1CON) |   |   |   |   |     |     |   |   |      |
|------------------|------------------------|-----------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-------|---|---|---|---|-----|-----|---|---|------|
|                  | 15                     | 14        | 13                       | 12                                                                                                                                                                                                                                                                 | 11      | 10     | 9     | 8 | 7 | 6 | 5 | 4   | 3   | 2 | 1 | 0    |
| Word             |                        |           |                          |                                                                                                                                                                                                                                                                    |         |        |       |   | - |   |   |     |     |   |   |      |
| Byte             |                        |           |                          |                                                                                                                                                                                                                                                                    | -       |        |       |   |   |   |   | UAn | CON |   |   |      |
| Bit              | -                      | -         | -                        | -                                                                                                                                                                                                                                                                  | -       | -      | -     | - | - | - | - | -   | -   | - | - | UnEN |
| R/W              | R                      | R         | R                        | R                                                                                                                                                                                                                                                                  | R       | R      | R     | R | R | R | R | R   | R   | R | R | R/W  |
| Initial<br>value | 0                      | 0         | 0                        | 0                                                                                                                                                                                                                                                                  | 0       | 0      | 0     | 0 | 0 | 0 | 0 | 0   | 0   | 0 | 0 | 0    |
| Bit no.          | Bit symbol Description |           |                          |                                                                                                                                                                                                                                                                    |         |        |       |   |   |   |   |     |     |   |   |      |
| 7 to 1           | - Reserved bits        |           |                          |                                                                                                                                                                                                                                                                    |         |        |       |   |   |   |   |     |     |   |   |      |
| 0                | UnEN                   |           |                          | nEN Enable the UART n communication. See section 14.3.4 "Transmission Operation" for details.<br>A both of transmission and reception is enabled when UnEN = "1". Set "0" to this bit if<br>communication is stopped.<br>0: Disabled (Initial value)<br>1: Enabled |         |        |       |   |   |   |   |     |     |   |   |      |

[Note]

• Do setting for used ports and the mode/baud rate before setting "1" to UnEN bit.

### 14.2.7 UARTn Mode Register (UAnMOD)

UAnMOD is a SFR to set the transfer mode.

|                  |                                                                                                                                                                                                                                | 0x<br>R/<br>e: 8/                                                                                                                                                                                            | F616(l |                                                                                                                       |     |     |     |     | MODH<br>MODH) |           |      |   |   |   |     |     |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|---------------|-----------|------|---|---|---|-----|-----|--|
|                  | 15                                                                                                                                                                                                                             | 14                                                                                                                                                                                                           | 13     | 12                                                                                                                    | 11  | 10  | 9   | 8   | 7             | 6         | 5    | 4 | 3 | 2 | 1   | 0   |  |
| Word             | UAnMOD                                                                                                                                                                                                                         |                                                                                                                                                                                                              |        |                                                                                                                       |     |     |     |     |               |           |      |   |   |   |     |     |  |
| Byte             | UAnMODH UAnMODL                                                                                                                                                                                                                |                                                                                                                                                                                                              |        |                                                                                                                       |     |     |     |     |               |           |      |   |   |   |     |     |  |
| Bit              | UnDI UnNE UnST UnPT UnPT UnPT UnLG UnLG UnHD UnRS<br>R G P 2 1 0 1 0 UnHD S                                                                                                                                                    |                                                                                                                                                                                                              |        |                                                                                                                       |     |     |     | -   | -             | UnCK<br>0 | UnIO |   |   |   |     |     |  |
| R/W              | R/W                                                                                                                                                                                                                            | R/W                                                                                                                                                                                                          | R/W    | R/W                                                                                                                   | R/w | R/w | R/W | R/W | R/W           | R/W       | R    | R | R | R | R/W | R/W |  |
| Initial<br>value | 0                                                                                                                                                                                                                              | 0                                                                                                                                                                                                            | 0      | 0                                                                                                                     | 0   | 0   | 0   | 0   | 0             | 0         | 0    | 0 | 0 | 0 | 0   | 1   |  |
| Bit no.          | ao. Bit symbol Description                                                                                                                                                                                                     |                                                                                                                                                                                                              |        |                                                                                                                       |     |     |     |     |               |           |      |   |   |   |     |     |  |
| 15               | UnD                                                                                                                                                                                                                            | DIR                                                                                                                                                                                                          | ę      | Select the data direction.<br>0: LSB first (Initial value)<br>1: MSB first                                            |     |     |     |     |               |           |      |   |   |   |     |     |  |
| 14               | UnN                                                                                                                                                                                                                            | JnNEG Select a logic of the data input / output.<br>0: Positive logic (Initial value)<br>1: Negative logic                                                                                                   |        |                                                                                                                       |     |     |     |     |               |           |      |   |   |   |     |     |  |
| 13               | UnS                                                                                                                                                                                                                            | STP                                                                                                                                                                                                          | 5      | Select a stop bit length.<br>0: 1 stop bit (Initial value)<br>1: 2 stop bit                                           |     |     |     |     |               |           |      |   |   |   |     |     |  |
| 12 to 10         | UnF<br>UnF                                                                                                                                                                                                                     | PT2 to Select a parity bit.<br>PT0 XX0: No parity bit (Initial value)<br>001: Odd parity<br>011: Even parity<br>101: Parity bit is fixed to "1"<br>111: Parity bit is fixed to "0"<br>X: 0 or 1 (don't care) |        |                                                                                                                       |     |     |     |     |               |           |      |   |   |   |     |     |  |
| 9 to 8           | UnL<br>UnL                                                                                                                                                                                                                     | .G1 to<br>.G0                                                                                                                                                                                                | ŝ      | Select a data length.<br>00: 8-bit length (Initial value)<br>01: 7-bit length<br>10: 6-bit length<br>11: 5-bit length |     |     |     |     |               |           |      |   |   |   |     |     |  |
| 7                | UnHD Select the communication mode of the UARTn.<br>0: Full-duplex communication mode (Initial value)<br>1: Half-duplex communication mode                                                                                     |                                                                                                                                                                                                              |        |                                                                                                                       |     |     |     |     |               |           |      |   |   |   |     |     |  |
| 6                | UnRSS Select sampling timing of the reception data.<br>0: (Values set to UAn0BRTH and UAn0BRTL registers)/2 (Initial value)<br>1: {(Values set to UAn0BRTH and UAn0BRTL registers)/2} -1                                       |                                                                                                                                                                                                              |        |                                                                                                                       |     |     |     |     |               |           |      |   |   |   |     |     |  |
| 5 to 2           | -                                                                                                                                                                                                                              |                                                                                                                                                                                                              | F      | Reserved bits                                                                                                         |     |     |     |     |               |           |      |   |   |   |     |     |  |
| 1                | UnC                                                                                                                                                                                                                            | JnCK0 Select base clock baud rate generator.<br>0: LSCLK0 (Initial value)<br>1: HSCLK                                                                                                                        |        |                                                                                                                       |     |     |     |     |               |           |      |   |   |   |     |     |  |
| 0                | UnIO Select the transmission/reception in the half-duplex communication mode of UARTn.<br>When full-duplex communication mode is selected, the setting is disabled.<br>0: Transmission mode<br>1: Receive mode (Initial value) |                                                                                                                                                                                                              |        |                                                                                                                       |     |     |     |     |               |           |      |   |   |   |     |     |  |

#### [Note]

• Be sure to set the UAn0MOD register while communication is stopped (Un0EN=0).

### 14.2.8 UARTn Interrupt Enable Register (UAnINTE)

UAnINTE is a SFR to enable interrupt requests.

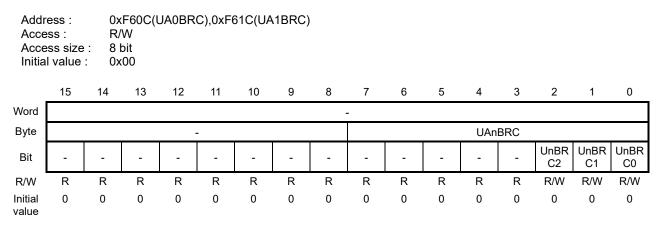
|                  |    | R/<br>e: 8 | (F608 (<br>/W<br>bit<br>(00 | UAOINT | TE), 0xl | F618 (L | JA1INT | E) |         |   |   |   |   |           |           |           |
|------------------|----|------------|-----------------------------|--------|----------|---------|--------|----|---------|---|---|---|---|-----------|-----------|-----------|
|                  | 15 | 14         | 13                          | 12     | 11       | 10      | 9      | 8  | 7       | 6 | 5 | 4 | 3 | 2         | 1         | 0         |
| Word             |    |            |                             |        |          |         |        |    | -       |   |   |   |   |           |           |           |
| Byte             |    |            |                             |        | -        |         |        |    | UAnINTE |   |   |   |   |           |           |           |
| Bit              | -  | -          | -                           | -      | -        | -       | -      | -  | -       | - | - | - | - | UnFI<br>E | UnTI<br>E | UnRI<br>E |
| R/W              | R  | R          | R                           | R      | R        | R       | R      | R  | R       | R | R | R | R | R/W       | R/W       | R/W       |
| Initial<br>value | 0  | 0          | 0                           | 0      | 0        | 0       | 0      | 0  | 0       | 0 | 0 | 0 | 0 | 0         | 0         | 0         |

Common description of each bits:

- It is configured enable/disable a target interrupt
  - 0: Disable a target interrupt (Initial value)
  - 1: Enable a target interrupt

| Bit no. | Bit symbol<br>name | Description                                                                                                                                    |
|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to 3  | -                  | Reserved bits                                                                                                                                  |
| 2       | UnFIE              | Transmission completion interrupt<br>This has occurred when transmission data is transmitted in the condition of transmission<br>buffer empty. |
| 1       | UnTIE              | Transmission buffer empty interrupt.<br>This has occurred when transmission buffer becomes empty.                                              |
| 0       | UnRIE              | Reception interrupt.<br>This has occurred at receiving a data.                                                                                 |

### 14.2.9 UARTn Baud Rate Register (UAnBRT)


UAnBRT is a SFR to set the count value of the baud rate generator in UARTn.

For details of relation between the count value of the baud rate generator and the baud rate, see Section 14.3.3 "Baud Rate".

| Addr                                                             | dress : 0xF60A (UA0BRTL/UA0BRT), 0xF60B (UA0BRTH),<br>0xF61A (UA1BRTL/UA1BRT), 0xF61B (UA1BRTH) |            |            |            |            |            |           |           |           |           |           |           |           |           |           |           |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Access : R/W<br>Access size : 8/16 bit<br>Initial value : 0x0FFF |                                                                                                 |            |            |            |            |            |           |           |           |           |           |           |           |           |           |           |
|                                                                  | 15                                                                                              | 14         | 13         | 12         | 11         | 10         | 9         | 8         | 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
| Word                                                             |                                                                                                 |            |            |            |            |            |           | UAn       | BRT       |           |           |           |           |           |           |           |
| Byte                                                             |                                                                                                 |            |            | UAnE       | BRTH       |            |           |           |           |           |           | UAnl      | BRTL      |           |           |           |
| Bit                                                              | UnBR<br>15                                                                                      | UnBR<br>14 | UnBR<br>13 | UnBR<br>12 | UnBR<br>11 | UnBR<br>10 | UnBR<br>9 | UnBR<br>8 | UnBR<br>7 | UnBR<br>6 | UnBR<br>5 | UnBR<br>4 | UnBR<br>3 | UnBR<br>2 | UnBR<br>1 | UnBR<br>0 |
| R/W                                                              | R/W                                                                                             | R/W        | R/W        | R/W        | R/W        | R/W        | R/W       | R/W       | R/W       | R/W       | R/W       | R/W       | R/W       | R/W       | R/W       | R/W       |
| Initial<br>value                                                 | 0                                                                                               | 0          | 0          | 0          | 1          | 1          | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1         |

#### 14.2.10 UARTn Baud Rate Adjustment Register (UAnBRC)

UAnBRC is a SFR to adjust the count value of the baud rate generator in UARTn. For details of relation between the value of UAnBRC and the correction value, see Section 14.3.3 "Baud Rate".



#### [Note]

Be sure to set UAnBRT and UAnBRC register while communication is stopped (UnEN=0). Do not rewrite it during communication.

#### 14.3 Description of Operation

#### 14.3.1 Frame Format

In the transfer data format, one frame contains a start bit, a data bit, a parity bit, and a stop bit. In this format, the following are choosable: 5 to 8 bits for the data bit, even/odd/ fixed to "1", or fixed to "0" for the parity bit, 1 stop bit or 2 stop bit for the stop bit, LSB first or MSB first for the transfer direction, and positive logic or negative logic for the logic of the serial input/output.

All of these are set in the UARTn mode register (UAnMOD).

Figure 14-2 shows the input/output format.

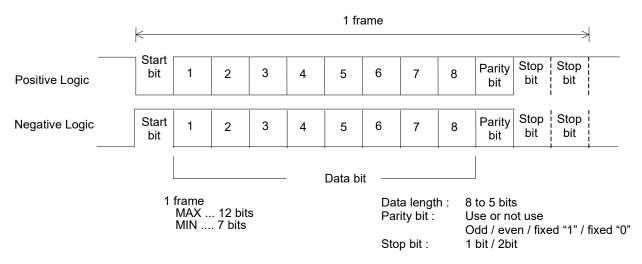



Figure 14-2 Format of Input/Output (LSB first)

MSB RX

#### 14.3.2 Data Direction

Figure 14-3 shows a relationship between the transmission/reception buffer and data.

- 8-bit length data

| • | 8-bit length data         |                  |                  |            |           |             |           |                   |               |        |  |
|---|---------------------------|------------------|------------------|------------|-----------|-------------|-----------|-------------------|---------------|--------|--|
|   | LSB RX $\rightarrow$ UnR7 | UnR6             | UnR5             | UnR4       | UnR3      | UnR2        | UnR1      | UnR0              | $\rightarrow$ | LSB TX |  |
|   | MSB TX ← UnT7             | UnT6             | UnT5             | UnT4       | UnT3      | UnT2        | UnT1      | UnT0 <sub>€</sub> | <u> </u>      | MSB RX |  |
|   | 7 bit low oth data        |                  |                  |            |           |             |           |                   |               |        |  |
| • | 7-bit length data         |                  |                  |            |           |             |           |                   |               |        |  |
|   | LSB RX $\longrightarrow$  | UnR6             | UnR5             | UnR4       | UnR3      | UnR2        | UnR1      | UnR0              | $\rightarrow$ | LSB TX |  |
|   | MSB TX                    | UnT6             | UnT5             | UnT4       | UnT3      | UnT2        | UnT1      | UnT0 🦂            | <i>←</i>      | MSB RX |  |
|   |                           | UnR              | 7 is "0" a       | t receivin | g comple  | tion        |           |                   |               |        |  |
| - | 6-bit length data         |                  |                  |            |           |             |           |                   |               |        |  |
|   | LSB                       | $RX \rightarrow$ | UnR5             | UnR4       | UnR3      | UnR2        | UnR1      | UnR0              | $\rightarrow$ | LSB TX |  |
|   | MSB                       | TX ←             | UnT5             | UnT4       | UnT3      | UnT2        | UnT1      | UnT0 <            | ←             | MSB RX |  |
|   |                           |                  | UnR7 a           | and UnR6   | are "0" a | at receivir | ng comple | etion             |               |        |  |
| - | 5-bit length data         |                  |                  |            |           |             | -         |                   |               |        |  |
|   |                           | LSB              | RX $\rightarrow$ | UnR4       | UnR3      | UnR2        | UnR1      | UnR0              | $\rightarrow$ | LSB TX |  |
|   |                           |                  | -                |            | UIRS      |             |           |                   | ,             |        |  |

MSB TX ← UnT4 UnT3 UnT2 UnT1 UnT0 ←

UnR7, UnR6 and UnR5 are "0" at receiving completion



#### 14.3.3 Baud Rate

The baud rate generator generates a baud rate using the base clock chosen in the UARTn mode register (UAnMOD). The setting values for the UARTn baud rate register (UAnBRT) and the UARTn baud rate adjustment register (UAnBRC) can be calculated by the following formulae.

UAnBRT = ROUNDDOWN (Base clock frequency (Hz) / Baud rate (bps)) – 1 + Carryover of UAnBRCUAnBRC = ROUND ((Base clock frequency (Hz) % Baud rate (bps)) × 8 / Baud rate (bps))

where is ROUNDDOWN: Rounded down, ROUND: Rounded to the nearest whole number, %:Surplus. Setting range of UAnBRC is 0 to 7. If the calculated value of UAnBRC is 8, add 1 to UAnBRT and set 0 to UAnBRC.

| Example(1) : Base clock frequency: Approx.16 MHz (16<br>16.003072MHz / 115,200bps - 1 = 138.91555 1 |                                                                      |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| (16.003072MHz % 115,200bps) × 8 / 115,200bps                                                        |                                                                      |
|                                                                                                     | = $7.32444 \cdots = 7$ (rounding to the nearest integer)<br>= $0x07$ |
| UAnBRT = 0x0089,  UAnBRC = 0x07                                                                     |                                                                      |
| Example(2) : Base clock frequency: Approx.16MHz (16                                                 | 003072MHz), Baud rate ideal value:4,800bps                           |
| 16.003072MHz / 4,800bps - $1 = 3333.97333$ ···· - 1                                                 | = 3332 (rounding down to the nearest integer)<br>= $0x0D04$          |
| $(16.003072 \mathrm{MHz} \% 4,800 \mathrm{bps}) \times 8/4,800 \mathrm{bps}$                        | $=4672 \times 8/4,800$                                               |
|                                                                                                     | $= 7.78666 \cdots = 8$ (rounding to the nearest integer)             |
|                                                                                                     | = 0x08 UAnBRC carrier over occurred                                  |
| UAnBRT = 0x0D04 + 1 = 0x0D05, UAnBRC = 0x02000000000000000000000000000000000                        | $8 = 0 \times 00$                                                    |

The actual baud rate calculated from the setting value for the baud rate can be expressed by the following formula:

Actual baud rate (bps) = [Base clock frequency] /  $\{(UAnBRT + 1) + (UAnBRC / 8)\}$ 

Example: Base clock frequency: Approx.16 MHz (16.003072 MHz), Baud rate ideal value: 1200 bps Actual baud rate (bps) = 16.003072 MHz / {(0x3416 + 1)} + (0x07 / 8)}  $\approx 1200.00$ 

Table 14-2 lists the count values for typical baud rates.

| Table 14-2 Count Values for Typical I | Baud Rates |
|---------------------------------------|------------|
|---------------------------------------|------------|

| Base clock                      | Baud rate  | UAnBRT | UAnBRC | Actual baud rate |
|---------------------------------|------------|--------|--------|------------------|
|                                 | 300bps     | 0xD05E | 0x05   | 300.00bps        |
|                                 | 1,200bps   | 0x3416 | 0x07   | 1200.00bps       |
|                                 | 2,400bps   | 0x1A0B | 0x00   | 2399.98bps       |
|                                 | 4,800bps   | 0x0D05 | 0x00   | 4799.96bps       |
| HSCLK<br>(Approx. 16.003072MHz) | 9,600bps   | 0x0682 | 0x00   | 9599.92bps       |
|                                 | 19,200bps  | 0x0340 | 0x04   | 19199.85bps      |
|                                 | 38,400bps  | 0x019F | 0x06   | 38399.69bps      |
|                                 | 57,600bps  | 0x0114 | 0x07   | 57590.90bps      |
|                                 | 115,200bps | 0x0089 | 0x07   | 115233.64bps     |
|                                 | 200bps     | 0x00A2 | 0x07   | 199.95bps        |
|                                 | 300bps     | 0x006C | 0x02   | 299.93bps        |
| LSCLK<br>(32.768kHz)            | 1,200bps   | 0x001A | 0x02   | 1202.49bps       |
|                                 | 2,400bps   | 0x000C | 0x05   | 2404.99bps       |
|                                 | 4,800bps   | 0x0005 | 0x07   | 4766.25bps       |

### 14.3.4 Transmission Operation(Common to full-duplex and half-duplex communication modes)

In full-duplex communication mode, set the UnHD bit of the UARTn mode register (UAnMOD) to "0" to select full-duplex communication mode.

Transmission is started by setting the UnEN bit of the UART n control register (UAnCON) to "1" and set transfer data to UAnBUF1. The order of UAnEN setting and UAnBUF1 setting does not matter. Figure 14-4 shows the operation timing for transmission.

When the UnEN bit is set to "1", the transmission status; UnTXF is set to "1" after 2 cycles of the system clock. (at (1)) An internal transfer clock of baud rate supplies after 2 cycles of the base clock (LSCLK0/HSCLK), and then the start bit is output the TXD pin. (at (2)) Subsequently, the transmitted data, a parity bit, and a stop bit are output. When the start bit is output, the transmission buffer status flag; UnFUL is return to "0" and the transmission interrupt is requested on the rising edge of the internal transfer clock. (at (3)) In the UARTn transmission interrupt routine, the next data to be transmitted is written to the transmission buffer (UAnBUF1). Then the UnFUL is set to "1". It is same as (2) after transmission of the stop bit (at (4)). At this time if the UART transmission interrupt routine is terminated without writing the next data to the transmit buffer; it means the stop-bit is sent when UnFUL is not set to "1", transmission is stop. Then the UnTXF bit is reset to "0", and the UART transmission interrupt is requested. (at (5))

The valid period for the next transmission data to be written to the transmission buffer is from when the UnFUL bit becomes "0" after the interrupt occurs to the termination of stop bit transmission. (at (6))

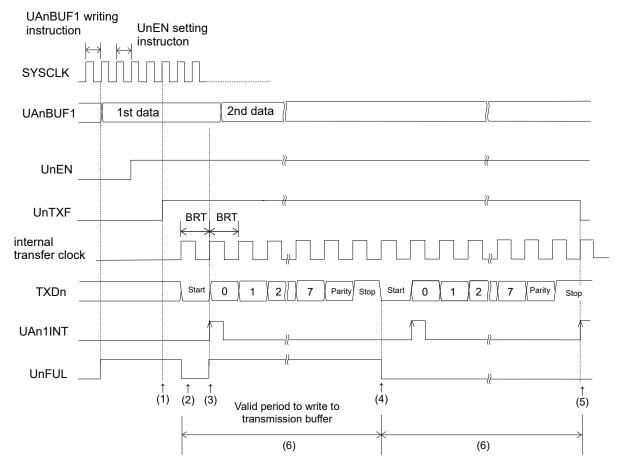



Figure 14-4 Transmission Timing in full-duplex mode

#### [Note]

• The transmission is start when setting "1" to UnEN bit of UAnCON with UnFUL bit =1. Write "1" to UnFULC bit in UAnSTAC register to reset UnFUL bit, and then set "1" to UnEN to allow transmission/reception, if the transmission data is not ready and the reception is permitted first.

#### 14.3.5 Reception Operation (Common to full-duplex and half-duplex communication modes)

In full-duplex communication mode, set the UnHD bit of the UARTn mode register (UAnMOD) to "0" to select full-duplex communication mode.

Reception is started by setting the UnEN bit of the UARTn control register (UAnCON) to "1".

In the case of half-duplex communication mode reception, set the UnHD bit of the UARTn mode register (UAnMOD) to "1" to select the half-duplex communication mode, and set the UnIO bit of the UARTn mode register (UAnMOD) to "1" to select the reception mode.

A reception is started by setting the UnEN bit of the UART n control register (UAnCON) to "1". Figure 14-5 shows the operation timing for reception.

When a reception starts, this module checks the data sent to the input pin RXD and waits for the arrival of a start bit. When detecting a start bit ((2) in Figure 14-6), It generates the internal transfer clock of the baud rate set with the start bit detect point as a reference and performs reception operation.

The shift register shifts in the data input to RXD on the rising edge of the internal transfer clock. The data and parity bit are shifted into the shift register and 5- to 8- bit received data is transferred to the reception buffer (UAnBUF0) concurrently with the falling edge of the internal transfer clock of (3) in Figure 14-6.

This module requests a UART reception interrupt on the rising edge of the internal transfer clock subsequent to the internal transfer clock by which the received data was fetched ((4) in Figure 14-6) and checks for a stop bit error and a parity bit error. When an error is detected, this module sets the corresponding bit of the UART n status register (UAnSTAT) to "1".

Parity error : UnPER ="1" Overrun error : UnOER ="1" Framing error : UnFER ="1"

As shown in Figure 14-5, the rise of the internal transfer clock is set so that it may fall into the middle of the bit interval of the received data.

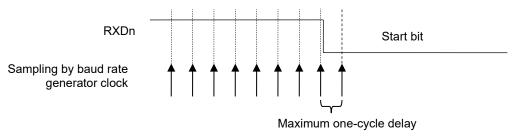
A reception continues until the UnEN bit is reset to "0" by the program. When the UnEN bit is reset to "0" during reception, the received data may be destroyed. When the UnEN bit is reset to "0" during the "UnEN reset enable period" in Figure 14-5, the received data is protected.

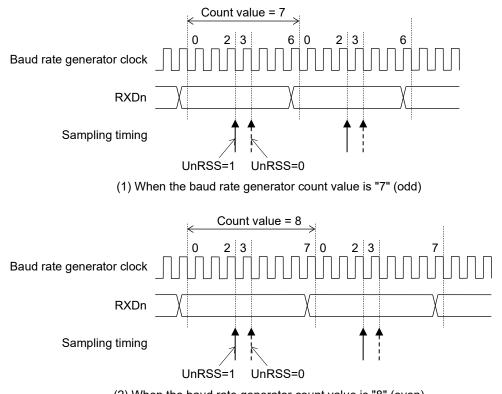
|                                    |                           |                                                           | UnEN reset     | enable period                                  |
|------------------------------------|---------------------------|-----------------------------------------------------------|----------------|------------------------------------------------|
| UnEN                               | {                         | }                                                         |                |                                                |
| RXDn                               | Start 0 1 2               | 7 Parity Stop Start 0                                     | 1 / 6 / 7 / Pa | rity Stop                                      |
| internal<br>transfer cloc <u>k</u> |                           |                                                           |                |                                                |
| shift register<br>(input stage)    | Start 0 1 2               | 7 Parity Stop Start                                       | 0 1 6 7        | )<br>Parity ∫ Stop                             |
| Reception<br>buffer                |                           | 1st data                                                  |                | 2nd data                                       |
| UAn0INT                            |                           | ↓ : parity error                                          |                |                                                |
| UnPER                              |                           |                                                           |                |                                                |
| UnOER                              |                           |                                                           |                |                                                |
| <br>(1                             | ) (2) Start bit detection | (3) (4) Parity/overrun<br>error detected<br>UARTn interru |                | (5)<br>receiving<br>use the start bit is<br>ad |

Figure 14-5 Reception Timing

#### 14.3.5.1 Detection of Start Bit

The start bit is sampled with the baud rate generator clock selected by UnCK0 bit of UAnMOD register. Therefore, the start bit detection may be delayed for one cycle of the baud rate generator clock at the maximum. Figure 14-6 shows the start bit detection timing.





Figure 14-6 Start Bit Detection Timing (with Positive Logic)

#### 14.3.5.2 Sampling Timing

When the start bit is detected, the received data that was input to RXDn is sampled almost at the center of the baud rate, and then loaded to the shift register.

This sampling timing the shift register uses to load data can be adjusted for one clock of the baud rate generator clock in UnRSS bit of the UART n mode register (UAnMOD).

Figure 14-7 shows the relationship between UnRSS bit and the sampling timing.



(2) When the baud rate generator count value is "8" (even)

Figure 14-7 Relationship between UnRSS Bit and Sampling Timing

#### 14.3.5.3 Receiving Margin

If there is an error between the sender baud rate and the receiver baud rate generated by the baud rate generator, the error accumulates until the last stop bit loading in one frame, decreasing the reception margin. Figure 14-8 shows the baud rate errors and reception margin waveforms.

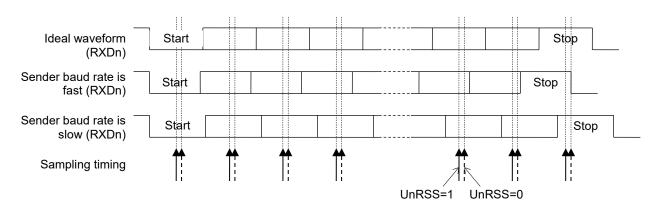



Figure 14-8 Baud Rate Errors and Reception Margin

#### [Note]

When designing the system, consider the difference of the baud rate between the transmission side and reception side, a delay of the start bit detection, signal degradation and noise influence, then adjust the baud rate and reception timing to ensure sufficient receiving margin.

#### 14.3.5.4 Reception Filter

This unit has reception data filter for a noise reduction. Figure 14-9 shows the RXD0 waveform before/after noise reduction.

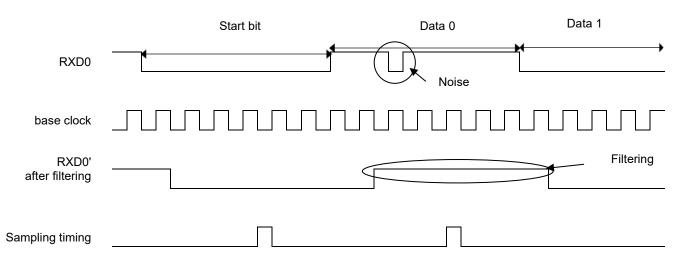



Figure 14-9 Noise reduction

#### 14.3.6 Interrupt

Figure 14-10 shows the interrupt timing.

The transmission empty interrupt is generated as UAn1INT at the end of start-bit after a transmission buffer becomes empty. At this time, UnFUL=0 and UnTXF=1.

The transmission completion interrupt is generated as UAn1INT when a transmission is completed in condition of that the transmission buffer is empty. At this time, UnFUL=0, UnTXF=0.

The reception interrupt is generated as UAn0INT when reception data is stacked the buffer.

| Transmission<br>state  | UnTXF   |        |        | Data A |        |        | Data B       |        |       |
|------------------------|---------|--------|--------|--------|--------|--------|--------------|--------|-------|
| Buffer state           | UnFUL   | Data A |        |        | Data B |        |              |        |       |
| Transmission interrupt | UAn1INT |        |        | ↑      |        |        | 1            |        | 1     |
|                        |         |        |        | Buffer | empty  |        | Buffer empty | Comp   | leted |
|                        |         |        |        |        |        |        |              |        |       |
| Reception state        | UnRXF   |        | Data C |        |        | Data D |              |        |       |
|                        |         |        |        |        |        | Data C |              | Data D |       |
| Reception<br>interrupt | UAn0INT |        |        |        |        | ſ      |              | 1      |       |
| Overrun error          | UnOER   |        |        |        |        |        |              | 1      |       |
|                        |         |        |        |        |        |        |              |        |       |

Figure 14-10 Interrupt Timing

### 14.3.7 Example of Setting

Figure 14-11 shows the example of the setting transmission operation in full-duplex communication mode using UART.

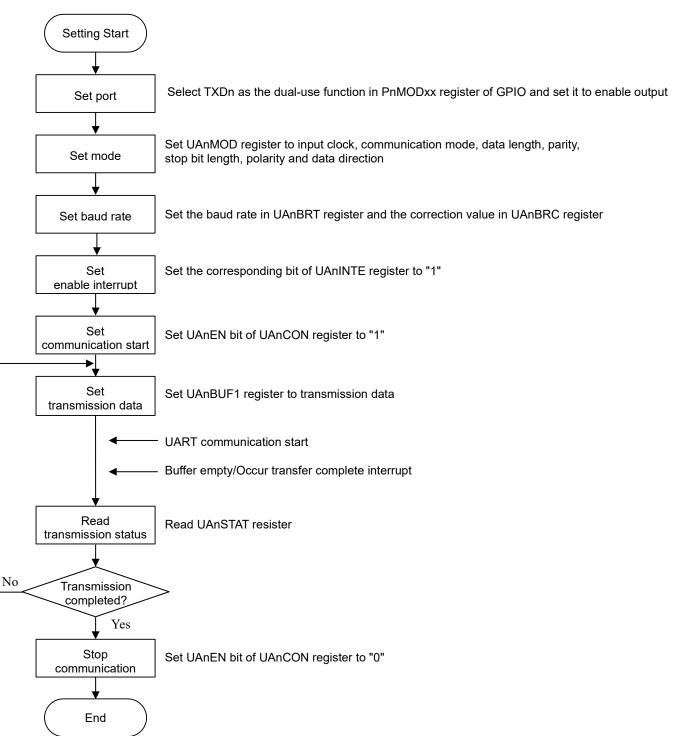



Figure 14-11 Example of transmission operation in full-duplex communication mode using UART

Figure 14-12 shows an example of the receive operation in full-duplex communication mode using UART.

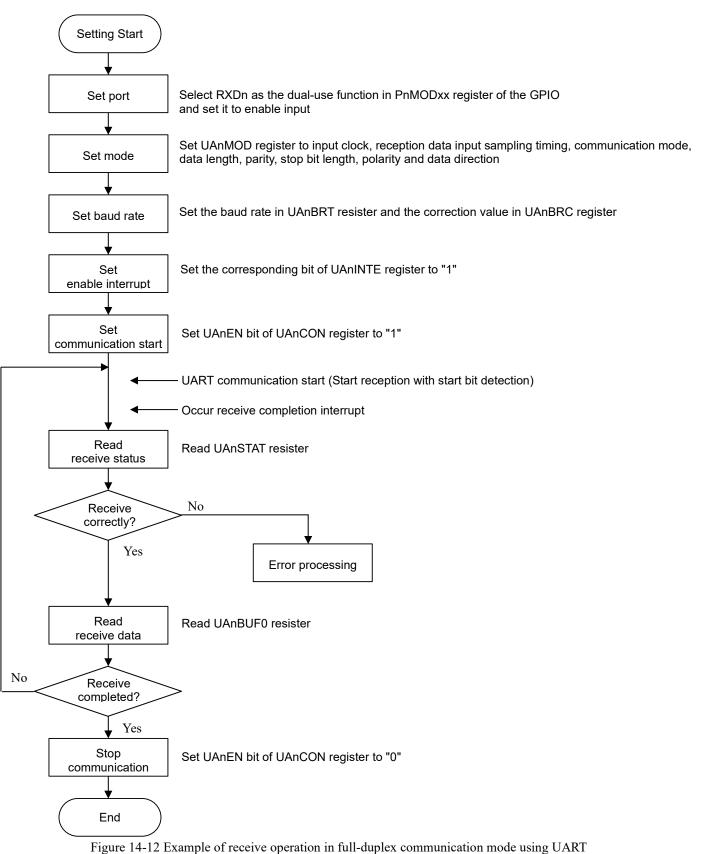
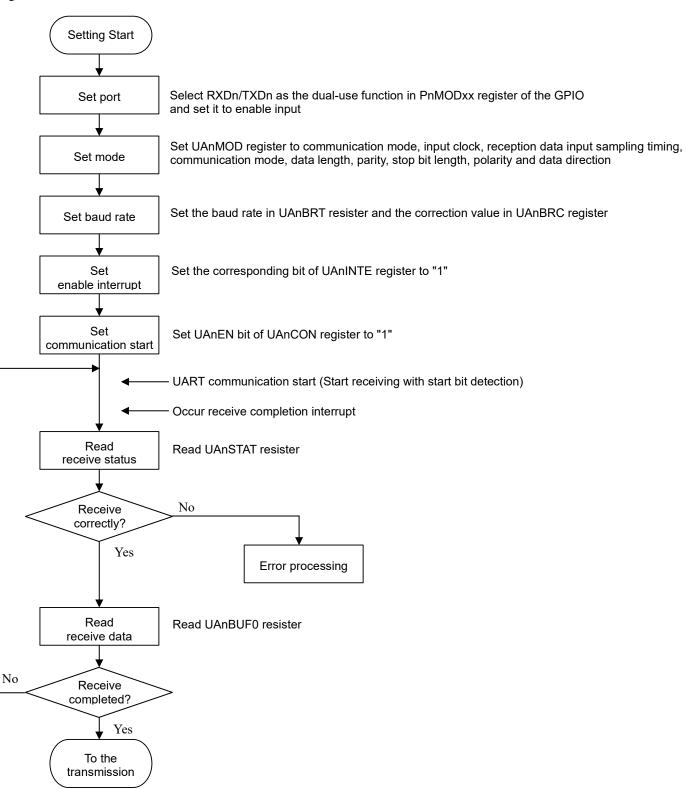




Figure 14-13 shows an example of setting for half-duplex communication mode (receive operation  $\rightarrow$  transmission operation) using UART.



(a) Example of setting receive during (receive operation  $\rightarrow$  transmission operation)

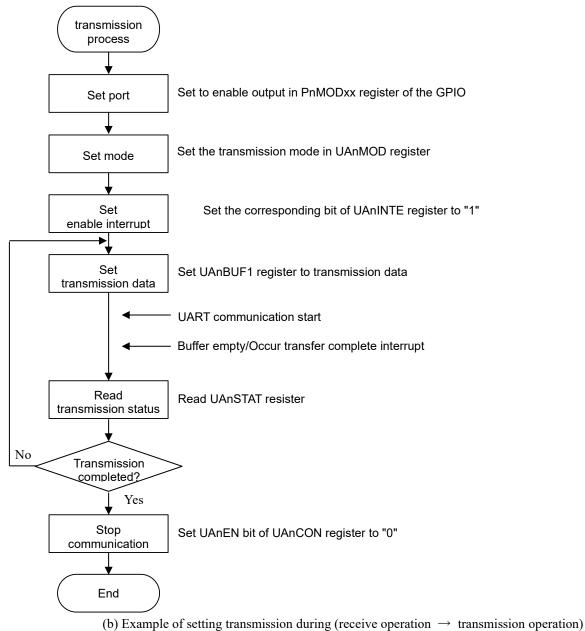
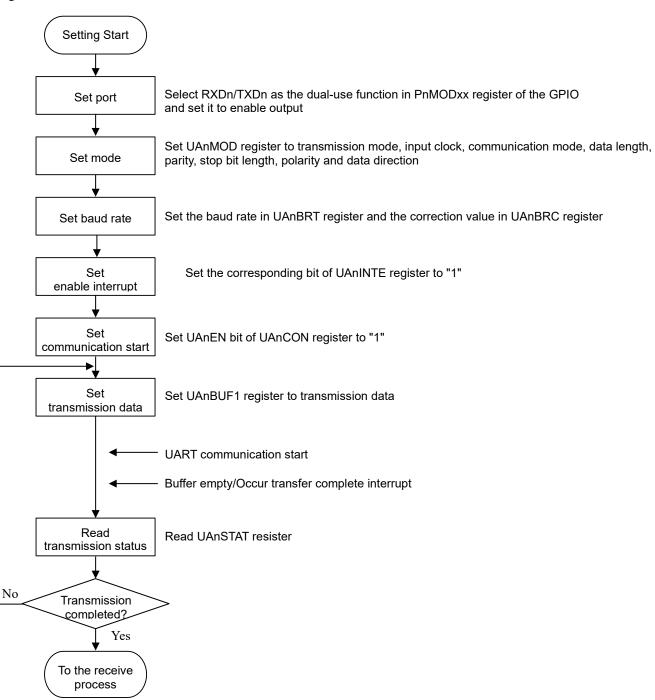




Figure 14-13 Example of half-duplex communication mode (receive operation  $\rightarrow$  transmission operation) using UART

Figure 14-14 shows an example of setting for half-duplex communication mode (transmission operation  $\rightarrow$  receive operation) using UART.



(a)Example of setting transmission during (receive operation  $\rightarrow$  transmission operation)

# ROHM Co., Ltd. ML62Q

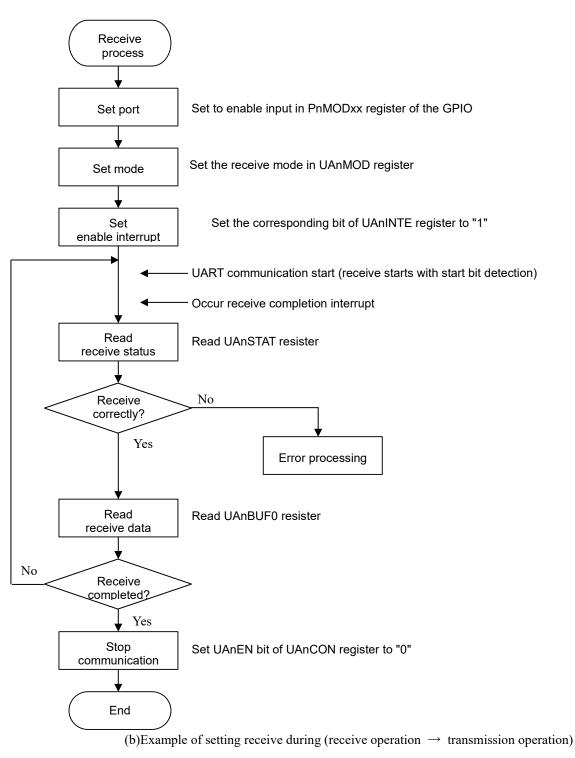


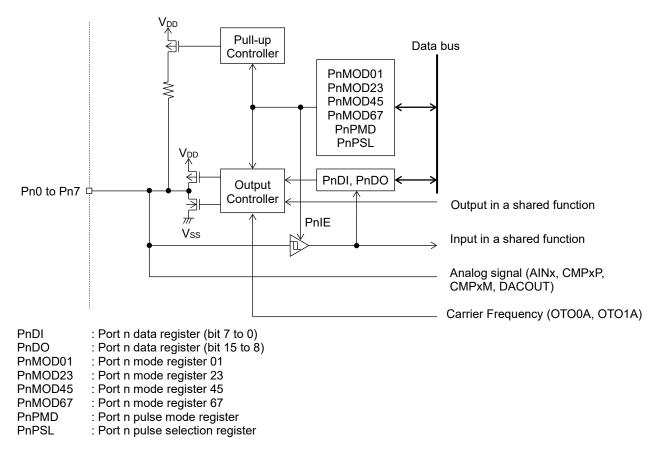

Figure 14-14 Example of half-duplex communication mode (transmission operation  $\rightarrow$  receive operation) using UART

# **Chapter 17 GPIO**

### 17. GPIO

#### 17.1 General Description

The input and output of a GPI/O is switchable on each pin. Max. 8 pins are available to read or to change the level of output in the same time. A general input port or output port shares a number of functions. See to Section 1.3.2 " List of Pins" or 1.3.3 "Description of Pins" for more detail.


The number of general port is dependent of each product. See Table 17-1 "List of Pins".

#### 17.1.1 Features

- Selectable input/output function in each pin
- Selectable with or without Pull-up resistor in each pin
- Selectable CMOS output or N-channel open drain output or P-channel open drain output in each pin
- Direct driving LEDs when the N-channel open drain output is selected
- Carrier frequency output function
- Port output level test function

### 17.1.2 Configuration

Figure 17-1 shows the configuration of the general purpose port. See to Section 17.2.1 "List of registers" for available pins and registers.





### 17.1.3 List of Pins

Table 17-1 List of Pins (• is available)

| Pin Name  | Primary  | Available/L       | Inavailable       |
|-----------|----------|-------------------|-------------------|
|           | Function | 20 pin<br>product | 24 pin<br>product |
| P00/TEST0 | GPI/O    | •                 | •                 |
| P01       | GPI/O    | •                 | •                 |
| P02       | GPI/O    | •                 | •                 |
| P03       | GPI/O    | •                 | •                 |
| P04       | GPI/O    | •                 | •                 |
| P05       | GPI/O    | •                 | •                 |
| P06       | GPI/O    | •                 | •                 |
| P07       | GPI/O    | -                 | •                 |
| P10       | GPI/O    | •                 | •                 |
| P11       | GPI/O    | •                 | •                 |
| P12       | GPI/O    | •                 | •                 |
| P13       | GPI/O    | •                 | •                 |
| P14       | GPI/O    | •                 | •                 |
| P15       | GPI/O    | •                 | •                 |
| P16       | GPI/O    | •                 | •                 |
| P17       | GPI/O    | •                 | •                 |
| P20       | GPI/O    | -                 | •                 |
| P21       | GPI/O    | -                 | •                 |
| P22       | GPI/O    | -                 | •                 |
| P23       | GPI/O    | •                 | •                 |

### 17.2 Description of Registers

#### 17.2.1 List of Registers

Writing to SFRs of unequipped port is not available. PnDI return 0xFF for reading. Other SFRs return 0x0000/0x00 for reading.

| reading. |                                 |             |              |            |      |                  |
|----------|---------------------------------|-------------|--------------|------------|------|------------------|
| Address  | Name                            | Syr<br>Byte | nbol<br>Word | R/W        | Size | Initial<br>Value |
| 0xF200   |                                 | P0DI        |              | R          | 8/16 | 0xFF             |
| 0xF201   | Port 0 data register            | P0D0        | P0D          | R/W        | 8    | 0x00             |
| 0xF202   |                                 | P0MOD0      |              | R/W        | 8/16 | 0x05             |
| 0xF203   | Port 0 mode register 01         | P0MOD1      | P0MOD01      | R/W        | 8    | 0x00             |
| 0xF204   |                                 | P0MOD2      |              | R/W        | 8/16 | 0x00             |
| 0xF205   | Port 0 mode register 23         | P0MOD3      | P0MOD23      | R/W        | 8    | 0x00             |
| 0xF206   |                                 | P0MOD4      |              | R/W        | 8/16 | 0x00             |
| 0xF207   | Port 0 mode register 45         | P0MOD5      | P0MOD45      | R/W        | 8    | 0x00             |
| 0xF208   |                                 | P0MOD6      |              | R/W        | 8/16 | 0x00             |
| 0xF209   | Port 0 mode register 67         | P0MOD7      | P0MOD67      | R/W        | 8    | 0x00             |
| 0xF20A   |                                 |             |              |            |      |                  |
| 0xF20B   | Reserved register               | -           | -            | -          | -    | -                |
| 0xF20C   |                                 |             |              |            |      |                  |
| 0xF20D   | Reserved register               | -           | -            | -          | -    | -                |
| 0xF20E   |                                 |             |              |            |      |                  |
| 0xF20F   | Reserved register               | -           | -            | -          | -    | -                |
| 0xF210   |                                 | P1DI        |              | R          | 8/16 | 0xFF             |
| 0xF211   | Port 1 data register            |             | P1D0 P1D     |            | 8    | 0x00             |
| 0xF212   |                                 | P1MOD0      |              | R/W<br>R/W | 8/16 | 0x00             |
| 0xF213   | Port 1 mode register 01         | P1MOD1      | P1MOD01      | R/W        | 8    | 0x00             |
| 0xF214   |                                 | P1MOD2      |              | R/W        | 8/16 | 0x00             |
| 0xF215   | Port 1 mode register 23         | P1MOD3      | P1MOD23      | R/W        | 8    | 0x00             |
| 0xF216   |                                 | P1MOD4      |              | R/W        | 8/16 | 0x00             |
| 0xF217   | Port 1 mode register 45         | P1MOD5      | P1MOD45      | R/W        | 8    | 0x00             |
| 0xF218   |                                 | P1MOD6      |              | R/W        | 8/16 | 0x00             |
| 0xF219   | Port 1 mode register 67         | P1MOD7      | P1MOD67      | R/W        | 8    | 0x00             |
| 0xF21A   |                                 | P1PMDL      |              | R/W        | 8/16 | 0x00             |
| 0xF21B   | Port 1 pulse mode register      | P1PMDH      | P1PMD        | R/W        | 8    | 0x00             |
| 0xF21C   |                                 | P1PSLL      |              | R/W        | 8/16 | 0x00             |
| 0xF21D   | Port 1 pulse selection register | P1PSLH      | P1PSL        | R/W        | 8    | 0x00             |
| 0xF21E   |                                 |             |              |            |      |                  |
| 0xF21F   | Reserved register               | -           | -            | -          | -    | -                |
| 0xF220   |                                 | P2DI        |              | R          | 8/16 | 0xFF             |
| 0xF221   | Port 2 data register            | P2DO        | P2D          | R/W        | 8    | 0x00             |
| 0xF222   |                                 | P2MOD0      | DOLLOSS      | R/W        | 8/16 | 0x00             |
| 0xF223   | Port 2 mode register 01         | P2MOD1      | P2MOD01      | R/W        | 8    | 0x00             |
| 0xF224   |                                 | P2MOD2      |              | R/W        | 8/16 | 0x00             |
| 0xF225   | Port 2 mode register 23         | P2MOD3      | P2MOD23      | R/W        | 8    | 0x00             |
|          |                                 |             | 1            |            |      |                  |
| 0xF226   | Reserved register               |             |              |            |      |                  |

#### ML62Q2033/2035/2043/2045 User's Manual Chapter 17 GPIO

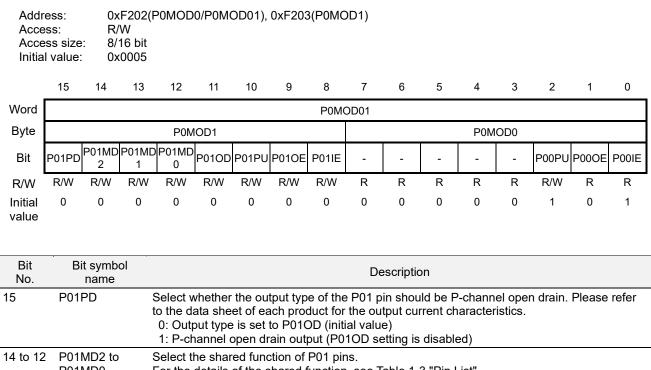
| Address | Name                            | Syn    | nbol  | R/W  | Size | Initial |
|---------|---------------------------------|--------|-------|------|------|---------|
| Address | Name                            | Byte   | Word  | r/// | SIZE | Value   |
| 0xF228  | Reserved register               |        |       |      |      |         |
| 0xF229  | Reserved register               | -      | -     | -    | -    | -       |
| 0xF22A  | Port 2 pulse mode register      | P2PMDL | P2PMD | R/W  | 8/16 | 0x00    |
| 0xF22B  | For 2 puise mode register       | P2PMDH |       | R/W  | 8    | 0x00    |
| 0xF22C  | Port 2 pulse selection register | P2PSLL | P2PSL | R/W  | 8/16 | 0x00    |
| 0xF22D  | Port 2 pulse selection register | P2PSLH | FZFOL | R/W  | 8    | 0x00    |

# Table 17-2 List of Registers / Bits (•:available/-:unavailable)

|           |             |       |                    | Control re                            | egister / bit |                                       |        | Avail<br>Unava    |                   |
|-----------|-------------|-------|--------------------|---------------------------------------|---------------|---------------------------------------|--------|-------------------|-------------------|
| Port Name | Pin<br>Name |       | ta register<br>าD) | Port n mode<br>register m<br>(PnMODm) |               | Port n pulse mode<br>register (PnPMD) |        | 20 pin<br>product | 24 pin<br>product |
|           | P00         | P00DO | P00DI              | P0MOD0                                | -             | -                                     | -      | •                 | •                 |
|           | P01         | P01DO | P01DI              | P0MOD1                                | -             | -                                     | -      | •                 | •                 |
|           | P02         | P02DO | P02DI              | P0MOD2                                | -             | -                                     | -      | •                 | •                 |
| Port 0    | P03         | P03DO | P03DI              | P0MOD3                                | -             | -                                     | -      | •                 | •                 |
| Poil 0    | P04         | P04DO | P04DI              | P0MOD4                                |               |                                       | -      | •                 | •                 |
|           | P05         | P05DO | P05DI              | P0MOD5                                |               |                                       | -      | •                 | •                 |
|           | P06         | P06DO | P06DI              | P0MOD6                                |               |                                       | -      | •                 | •                 |
|           | P07         | P07DO | P07DI              | P0MOD7                                | -             | -                                     | -      | -                 | •                 |
|           | P10         | P10DO | P10DI              | P1MOD0                                | -             | -                                     | -      | •                 | •                 |
|           | P11         | P11DO | P11DI              | P1MOD1                                | -             | -                                     | -      | •                 | •                 |
|           | P12         | P12DO | P12DI              | P1MOD2                                | -             | -                                     | -      | •                 | •                 |
| Port 1    | P13         | P13DO | P13DI              | P1MOD3                                | P13PLVL       | P13PEN                                | P13PSL | •                 | •                 |
| Port I    | P14         | P14DO | P14DI              | P1MOD4                                | -             | -                                     | -      | •                 | •                 |
|           | P15         | P15DO | P15DI              | P1MOD5                                | -             | -                                     | -      | •                 | •                 |
|           | P16         | P16DO | P16DI              | P1MOD6                                | -             | -                                     | -      | •                 | •                 |
|           | P17         | P17DO | P17DI              | P1MOD7                                | -             | -                                     | -      | •                 | •                 |
|           | P20         | P20DO | P20DI              | P2MOD0                                | -             | -                                     | -      | -                 | •                 |
| Dorf 2    | P21         | P21DO | P21DI              | P2MOD1                                | -             | -                                     | -      | -                 | •                 |
| Port 2    | P22         | P22DO | P22DI              | P2MOD2                                | -             | -                                     | -      | -                 | •                 |
|           | P23         | P23DO | P23DI              | P2MOD3                                | P23PLVL       | P23PEN                                | P23PSL | •                 | •                 |

### 17.2.2 Port n Data Register (PnD:n=0 to 2)

PnD is a SFR to read the level of the port n pin and write output data.


The input level of the port n pins can be read by reading PnDI in the input mode. Data written to PnDO in the output mode are output to the port n pins. The data written to PnDO is readable. The bit can be set when output is enabled or disabled. Enable or disable the input or output by using the port n mode register. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnDO that have no corresponding pin.

| Addr       |               |            |            |            | =201(P0<br>=221(P2 |       | )xF210( | (P1DI/F | P1D), 0 | xF211(I | P1DO), |        |       |       |       |       |
|------------|---------------|------------|------------|------------|--------------------|-------|---------|---------|---------|---------|--------|--------|-------|-------|-------|-------|
| Acce       | ess:          |            | R/W        |            |                    |       |         |         |         |         |        |        |       |       |       |       |
|            | ess size      |            | l6 bit     |            |                    |       |         |         |         |         |        |        |       |       |       |       |
| Initia     | l value:      | 0x         | 00FF       |            |                    |       |         |         |         |         |        |        |       |       |       |       |
|            |               |            |            |            |                    |       |         |         |         |         |        |        |       |       |       |       |
|            | 15            | 14         | 13         | 12         | 11                 | 10    | 9       | 8       | 7       | 6       | 5      | 4      | 3     | 2     | 1     | 0     |
| Word       |               |            |            |            |                    |       |         | Pr      | ۱D      |         |        |        |       |       |       |       |
| Byte       |               |            |            |            | DO                 |       |         |         |         |         |        | Pn     |       |       |       |       |
| Bit        | Pn7DO<br>*    | Pn6DO<br>* | Pn5DO<br>* | Pn4DO<br>* | Pn3DO              | Pn2DO | Pn1DO   | Pn0DO   | Pn7DI*  | Pn6DI*  | Pn5DI* | Pn4DI* | Pn3DI | Pn2DI | Pn1DI | Pn0DI |
| R/W        | R/W           | R/W        | R/W        | R/W        | R/W                | R/W   | R/W     | R/W     | R       | R       | R      | R      | R     | R     | R     | R     |
| Initial    | 0             | 0          | 0          | 0          | 0                  | 0     | 0       | 0       | 1       | 1       | 1      | 1      | 1     | 1     | 1     | 1     |
| value      |               |            |            |            |                    |       |         |         |         |         |        |        |       |       |       |       |
| *: n=      | ≡2 (port      | 2) is n    | ot avai    | lable.     |                    |       |         |         |         |         |        |        |       |       |       |       |
|            |               |            |            |            |                    |       |         |         |         |         |        |        |       |       |       |       |
| Bit<br>No. | ) A scription |            |            |            |                    |       |         |         |         |         |        |        |       |       |       |       |

| No.     | name              | Description                                                                                                                                                |
|---------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 8 | Pn7DO to<br>Pn0DO | Set the output level of port n pins.<br>0: Output "L" (Initial value)<br>1: Output "H"<br>* P27DO to P24DO bits return 0 when read.                        |
| 7 to 0  | Pn7DI to<br>Pn0DI | Set the input level of port n pins.<br>0: The input level is "L"<br>1: The input level is "H" (Initial value)<br>* P27DO to P24DO bits return 0 when read. |

### 17.2.3 Port 0 Mode Register 01 (P0MOD01)

P0MOD01 is a SFR to select the input/output mode, input/output status, and shared function of P00 pin and P01 pin.



|          |                     | 0: Output type is set to P01OD (initial value)                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                     | 1: P-channel open drain output (P01OD setting is disabled)                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14 to 12 | P01MD2 to<br>P01MD0 | Select the shared function of P01 pins.For the details of the shared function, see Table 1-3 "Pin List"000:Primary function (Initial value)001:2nd function010:3rd function011:4th function100:5th function101:6th function110:7th function111:8th function                                                                                                                                                                                                              |
| 11       | P01OD               | Select the output type of P01 pins.<br>An LED is directly drive-able by enlarging the current when the N-channel open drain output<br>mode is selected.<br>See the data sheet for details about the current drive ability.<br>0: CMOS output (Initial value)<br>1: N-channel open drain output                                                                                                                                                                           |
| 10       | P01PU               | <ul> <li>Select the internal pull-up resistor of P01 pins.</li> <li>0: Without a pull-up resistor (Initial value)</li> <li>1: With a pull-up resistor</li> <li>The settings of P01PD, P01OD, P01OE, and P01IE bits determine whether the contents of the P01PU bits are reflected.</li> <li>0X01: Valid (can be pulled up)</li> <li>0111: Valid (can be pulled up)</li> <li>Other than the above: Invalid (cannot be pulled up)</li> <li>X: 0/1 can be either</li> </ul> |
| 9        | P01OE               | Enable the output of P01 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                                                                                                                                                          |
| 8        | P01IE               | Enable the input of P01 pins.<br>0: Disable the input (Initial value)<br>1: Enable the input                                                                                                                                                                                                                                                                                                                                                                             |
| 7 to 3   | -                   | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2        | P00PU               | Enable the internal pull-up resistor of P00 pin.<br>0: Without a pull-up resistor (Initial value)<br>1: With a pull-up resistor                                                                                                                                                                                                                                                                                                                                          |
| 1        | P00OE               | Enable the output of P00 pin<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                                                                                                                                                            |

| Bit<br>No. | Bit symbol<br>name | Description                                                                                |
|------------|--------------------|--------------------------------------------------------------------------------------------|
| 0          | P00IE              | Enable the input of P00 pin<br>0: Disable the input (Initial value)<br>1: Enable the input |

[Note]

- P00 pin is initially configured as the input with pull-up resistor. If input "L" level at an initial setting, the input current flows.
- Be sure to set P0MOD01 registers before setting EICON0, EIMOD0 and IE1 registers. If setting the P0MOD01 register when the interrupt is enabled, unexpected interrupts may happen.
- It is recommended to enable the output after setting a peripheral and shared function to prevent the unexpected output.
- Don't set un-assigned shared functions on the P01MD3-0 bits.

### 17.2.4 Port n Mode Register 01 (PnMOD01: n=1, 2)

PnMOD01 is a SFR to select the input/output mode, input/output status, and shared function of Pn0 pin and Pn1 pin. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnMOD01 register that have no corresponding pins.

| Addr<br>Acce<br>Acce |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |            |                             |                                          |                                           |                                              |                          |                                             |               |            |            |         |         |           |        |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|-----------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------|---------------------------------------------|---------------|------------|------------|---------|---------|-----------|--------|
|                      | l value:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | 0000       |                             |                                          |                                           |                                              |                          |                                             |               |            |            |         |         |           |        |
|                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                     | 13         | 12                          | 11                                       | 10                                        | 9                                            | 8                        | 7                                           | 6             | 5          | 4          | 3       | 2       | 1         | 0      |
| Word                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |            |                             |                                          |                                           |                                              | PnM                      | OD01                                        |               |            |            |         |         |           |        |
| Byte                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |            | PnM                         |                                          |                                           |                                              |                          |                                             |               |            | -          | IOD0    |         | 1         |        |
| Bit                  | Pn1PD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pn1MD<br>2             | Pn1MD<br>1 | Pn1MD<br>0                  | Pn10D                                    | Pn1PU                                     | Pn10E                                        | Pn1IE                    | Pn0PD                                       | Pn0MD<br>2    | Pn0MD<br>1 | Pn0MD<br>0 | Pn0OD   | Pn0PU   | Pn0OE     | Pn0IE  |
| R/W                  | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/W                    | R/W        | R/W                         | R/W                                      | R/W                                       | R/W                                          | R/W                      | R/W                                         | R/W           | R/W        | R/W        | R/W     | R/W     | R/W       | R/W    |
| Initial<br>value     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                      | 0          | 0                           | 0                                        | 0                                         | 0                                            | 0                        | 0                                           | 0             | 0          | 0          | 0       | 0       | 0         | 0      |
| Bit<br>No.           | Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bit symbol Description |            |                             |                                          |                                           |                                              |                          |                                             |               |            |            |         |         |           |        |
| 15                   | Pn1PD Select whether the output type of the Pn1 pin should be P-channel open drain.<br>Please refer to the data sheet of each product for the output current characteristics.<br>0: Output type is set to Pn1OD (initial value)<br>1: P-channel open drain output (Pn1OD setting is disabled)                                                                                                                                                                                                        |                        |            |                             |                                          |                                           |                                              |                          |                                             |               |            |            |         |         |           |        |
| 14 to 12             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |            |                             |                                          |                                           |                                              |                          |                                             |               |            |            |         |         |           |        |
| 11                   | Pn10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC                     | /<br>r     | node is<br>See the<br>0: CN | is dire<br>selecte<br>data si<br>/IOS ou | ctly driv<br>ed.<br>heet for<br>itput (Ir | re-able<br><sup>r</sup> details<br>nitial va | by enla<br>about<br>lue) | arging th<br>the curr                       |               |            |            | I-chanr | el oper | n drain ( | output |
| 10                   | 1: N-channel open drain output         Pn1PU       Enable the internal pull-up resistor of Pn1 pins.         0: Without a pull-up resistor (Initial value)         1: With a pull-up resistor         The settings of the Pn1PD, Pn1OD, Pn1OE, and Pn1IE bits determine whether the contents of the Pn1PU bits are reflected.         0X01: Valid (can be pulled up)         0111: Valid (can be pulled up)         0ther than the above: Invalid (cannot be pulled up)         X: 0/1 can be either |                        |            |                             |                                          |                                           |                                              |                          |                                             |               |            | ntents     |         |         |           |        |
| 9                    | Pn10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ЭE                     | E          |                             | sable th                                 | put of F<br>ne outp<br>le outpu           | ut (İnitia                                   |                          | e)                                          |               |            |            |         |         |           |        |
| 8                    | Pn1I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                      | E          |                             | sable th                                 | ut of Pn<br>ne input<br>le input          | t (Initial                                   |                          |                                             |               |            |            |         |         |           |        |
| 7                    | Pn0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PD                     |            | o the da<br>0: Outp         | ata she<br>out type                      | et of ea<br>e is set                      | to Pn0                                       | duct foi<br>OD (init     | e Pn0 p<br>r the out<br>ial value<br>00D se | tput cu<br>e) | rrent ch   | aracte     |         | drain.  | Please    | refer  |

| Bit<br>No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 to 4     | Pn0MD2 to<br>Pn0MD0 | Select the shared function of Pn0 pins.         For the details of the shared function, see Table 1-3 "Pin List"         000:       Primary function (Initial value)         001:       2nd function         010:       3rd function         011:       4th function         100:       5th function         101:       6th function         110:       7th function         111:       8th function              |
| 3          | Pn0OD               | Select the output type of Pn0 pins.<br>An LED is directly drive-able by enlarging the current when the N-channel open drain output<br>mode is selected.<br>See the data sheet for details about the current drive ability.<br>0: CMOS output (Initial value)<br>1: N-channel open drain output                                                                                                                    |
| 2          | Pn0PU               | Select the internal pull-up resistor of Pn0 pins.<br>0: Without a pull-up resistor (Initial value)<br>1: With a pull-up resistor<br>The settings of the Pn0PD, Pn0OD, Pn0OE, and Pn0IE bits determine whether the contents<br>of the Pn0PU bits are reflected.<br>0X01: Valid (can be pulled up)<br>0111: Valid (can be pulled up)<br>Other than the above: Invalid (cannot be pulled up)<br>X: 0/1 can be either |
| 1          | Pn0OE               | Select the output of Pn0 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                                                                                                   |
| 0          | Pn0IE               | Select the input of Pn0 pins.<br>0: Disable the input (Initial value)<br>1: Enable the input                                                                                                                                                                                                                                                                                                                      |

[Note]

- Be sure to set the PnMOD01 registers before setting EICON0, EIMOD0 and IE1 registers. If setting the PnMOD01 register when the interrupt is enabled, unexpected interrupts may happen.
- It is recommended to enable the output after setting a peripheral and shared function to prevent the unexpected output.
- Don't set un-assigned shared functions on the PnmMD3-0 bits.

### 17.2.5 Port n Mode Register 23 (PnMOD23:n=0 to 2)

PnMOD23 is a SFR to select the input/output mode, input/output status, and shared function of Pn2 pin and Pn3 pin. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnMOD23 register that have no corresponding pins.

|                  | dress: 0xF204(P0MOD2/P0MOD23), 0xF205(P0MOD3), 0xF214(P1MOD2/P1MOD23), 0xF215(P1MOD3),<br>0xF224(P2MOD2/P2MOD23), 0xF225(P2MOD3)<br>cess: R/W |                                                                                                              |              |                       |                     |                    |                      |          |                      |            |                 |            | OD3),  |          |          |        |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------|-----------------------|---------------------|--------------------|----------------------|----------|----------------------|------------|-----------------|------------|--------|----------|----------|--------|
|                  | ess:<br>ess size                                                                                                                              |                                                                                                              | vv<br>16 bit |                       |                     |                    |                      |          |                      |            |                 |            |        |          |          |        |
| Initia           | al value:                                                                                                                                     | 0x                                                                                                           | 0000         |                       |                     |                    |                      |          |                      |            |                 |            |        |          |          |        |
|                  | 15                                                                                                                                            | 14                                                                                                           | 13           | 12                    | 11                  | 10                 | 9                    | 8        | 7                    | 6          | 5               | 4          | 3      | 2        | 1        | 0      |
| Word             |                                                                                                                                               |                                                                                                              |              |                       |                     |                    |                      | PnM      | OD23                 |            |                 |            |        |          |          |        |
| Byte             |                                                                                                                                               |                                                                                                              |              | PnM                   |                     |                    |                      |          |                      |            |                 |            | IOD2   |          |          |        |
| Bit              | Pn3PD                                                                                                                                         | Pn3MD<br>2                                                                                                   | Pn3MD<br>1   | Pn3MD<br>0            | Pn3OD               | Pn3PU              | Pn3OE                | Pn3IE    | Pn2PD                | Pn2MD<br>2 | Pn2MD<br>1      | Pn2MD<br>0 | Pn2OD  | Pn2PU    | Pn2OE    | Pn2IE  |
| R/W              | R/W                                                                                                                                           | R/W                                                                                                          | R/W          | R/W                   | R/W                 | R/W                | R/W                  | R/W      | R/W                  | R/W        | R/W             | R/W        | R/W    | R/W      | R/W      | R/W    |
| Initial<br>value | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                               |                                                                                                              |              |                       |                     |                    |                      |          |                      |            |                 |            |        | 0        |          |        |
| Bit<br>No.       | Bi                                                                                                                                            | t symb                                                                                                       | ol           |                       |                     |                    |                      |          | De                   | escriptio  | on              |            |        |          |          |        |
| 15               | Pn3                                                                                                                                           | Pn3PD Select whether the output type of the Pn3 pin should be P-channel open drain. Please refer             |              |                       |                     |                    |                      |          |                      |            |                 |            |        |          | refer    |        |
|                  |                                                                                                                                               | to the data sheet of each product for the output current characteristics.                                    |              |                       |                     |                    |                      |          |                      |            |                 |            |        |          |          |        |
|                  |                                                                                                                                               | 0: Output type is set to Pn3OD (initial value)<br>1: P-channel open drain output (Pn3OD setting is disabled) |              |                       |                     |                    |                      |          |                      |            |                 |            |        |          |          |        |
| 14 to 12         | -                                                                                                                                             | Pn3MD2 to Select the shared function of Pn3 pins.                                                            |              |                       |                     |                    |                      |          |                      |            |                 |            |        |          |          |        |
|                  | Pn3l                                                                                                                                          | MD0                                                                                                          | F            | or the 000:           |                     |                    | shared t<br>ction (I |          | n, see Ta<br>alue)   | able 1-    | 3 "Pin l        | _ist"      |        |          |          |        |
|                  |                                                                                                                                               |                                                                                                              |              | 001:                  | 2nd                 | functio            | n                    |          |                      |            |                 |            |        |          |          |        |
|                  |                                                                                                                                               |                                                                                                              |              | 010:<br>011:          |                     | unctior<br>unction |                      |          |                      |            |                 |            |        |          |          |        |
|                  |                                                                                                                                               |                                                                                                              |              | 100:                  |                     | unction            |                      |          |                      |            |                 |            |        |          |          |        |
|                  |                                                                                                                                               |                                                                                                              |              | 101:<br>110:          |                     | unction<br>unction |                      |          |                      |            |                 |            |        |          |          |        |
|                  |                                                                                                                                               |                                                                                                              |              | 111:                  | -                   | unction            |                      |          |                      |            |                 |            |        |          |          |        |
| 11               | Pn30                                                                                                                                          | OD                                                                                                           |              | Select tl<br>A LED is |                     |                    |                      |          | ging the             | currer     | nt when         | the N-     | channe | l open d | drain ou | utput  |
|                  |                                                                                                                                               |                                                                                                              | r            | node is               | selecte             | ed.                |                      | -        |                      |            |                 |            |        | •        |          | •      |
|                  |                                                                                                                                               |                                                                                                              | i            | 0: CN                 | /IOS ou             | tput (Ir           | nitial va            | lue)     | the cur              | rent un    | ve abili        | ty.        |        |          |          |        |
|                  |                                                                                                                                               |                                                                                                              |              |                       |                     | •                  | drain o              | · ·      | (                    |            |                 |            |        |          |          |        |
| 10               | Pn3l                                                                                                                                          | -0                                                                                                           | E            |                       |                     |                    |                      |          | f Pn3 p<br>al value) |            |                 |            |        |          |          |        |
|                  |                                                                                                                                               |                                                                                                              | -            | 1: Wi                 | th a pu             | ll-up re           | sistor               |          |                      | -          | <b>F</b> hite e |            |        |          |          |        |
|                  |                                                                                                                                               |                                                                                                              |              | he Pn3                |                     |                    |                      | D, Pha   | BOE, an              | a Ph3i     |                 | letermir   | he whe | iner ine | conter   | ILS OI |
|                  |                                                                                                                                               |                                                                                                              |              |                       |                     |                    | pulled<br>pulled ι   |          |                      |            |                 |            |        |          |          |        |
|                  |                                                                                                                                               |                                                                                                              |              |                       |                     |                    |                      |          | not be               | pulled     | up)             |            |        |          |          |        |
|                  |                                                                                                                                               | 05                                                                                                           |              |                       | can be              |                    |                      |          |                      |            |                 |            |        |          |          |        |
| 9                | Pn30                                                                                                                                          | JE                                                                                                           | t            |                       |                     | ne outp            | ut (İnitia           |          | e)                   |            |                 |            |        |          |          |        |
| 8                | Pn3I                                                                                                                                          | E                                                                                                            | E            | Enable                |                     |                    |                      |          |                      |            |                 |            |        |          |          |        |
|                  |                                                                                                                                               |                                                                                                              |              |                       | sable th<br>able th |                    | t (Initial           | value)   |                      |            |                 |            |        |          |          |        |
| 7                | Pn2l                                                                                                                                          | PD                                                                                                           |              |                       |                     |                    |                      |          | e Pn2 p<br>the out   |            |                 |            |        | n drain. | Please   | refer  |
|                  |                                                                                                                                               |                                                                                                              | L            | 0: Outp               | out type            | is set             | to Pn20              | DD (init | ial value            | e)         |                 |            | າວແບວ. |          |          |        |
|                  |                                                                                                                                               |                                                                                                              |              | 1: P-ch               | annel o             | open dr            | ain out              | put (Pn  | 20D se               | etting is  | disable         | ed)        |        |          |          |        |

| Bit<br>No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 to 4     | Pn2MD2 to<br>Pn2MD0 | Select the shared function of Pn2 pins.For the details of the shared function, see Table 1-3 "Pin List"000:Primary function (Initial value)001:2nd function010:3rd function011:4th function100:5th function101:6th function110:7th function111:8th function                                                                                                                                                                                                                  |
| 3          | Pn2OD               | Select the output type of Pn2 pins.<br>A LED is directly drive-able by enlarging the current when the N-channel open drain output<br>mode is selected.<br>See the data sheet for details about the current drive ability.<br>0: CMOS output (Initial value)<br>1: N-channel open drain output                                                                                                                                                                                |
| 2          | Pn2PU               | <ul> <li>Enable the internal pull-up resistor of Pn2 pins.</li> <li>0: Without a pull-up resistor (Initial value)</li> <li>1: With a pull-up resistor</li> <li>The settings of the Pn2PD, Pn2OD, Pn2OE, and Pn2IE bits determine whether the contents of the Pn2PU bits are reflected.</li> <li>0X01: Valid (can be pulled up)</li> <li>0111: Valid (can be pulled up)</li> <li>Other than the above: Invalid (cannot be pulled up)</li> <li>X: 0/1 can be either</li> </ul> |
| 1          | Pn2OE               | Enable the output of Pn2 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                                                                                                                                                              |
| 0          | Pn2IE               | Enable the input of Pn2 pins.<br>0: Disable the input (Initial value)<br>1: Enable the input                                                                                                                                                                                                                                                                                                                                                                                 |

[Note]

- Be sure to set PnMOD23 registers before setting EICON0, EIMOD0 and IE1 registers. If setting PnMOD23 register when the interrupt is enabled, unexpected interrupts may happen.
- It is recommended to enable the output after setting a peripheral and shared function to prevent the unexpected output.
- Don't set un-assigned shared functions on PnmMD3-0 bits.

### 17.2.6 Port n Mode Register 45 (PnMOD45: n=0, 1)

PnMOD45 is a SFR to select the input/output mode, input/output status, and shared function of Pn4 pin and Pn5 pin. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnMOD45 register that have no corresponding pins.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/<br>e: 8/ | (F206)<br>W<br>16 bit<br>(0000 | POMOE       | 04/P0M                                      | OD45),                                   | 0xF20                             | 7(P0M0                       | JD5), 0 | xF216(        | ΡΊΜΟΙ      | D4/P1N     | 10D45  | ), 0xF2′ | 17(P1M  | IOD5)   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|-------------|---------------------------------------------|------------------------------------------|-----------------------------------|------------------------------|---------|---------------|------------|------------|--------|----------|---------|---------|
| F                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14          | 13                             | 12          | 11                                          | 10                                       | 9                                 | 8                            | 7       | 6             | 5          | 4          | 3      | 2        | 1       | 0       |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                |             |                                             |                                          |                                   | PnM                          | OD45    |               |            |            |        |          |         |         |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | D 514                          |             | AOD5                                        | 1                                        | 1                                 | 1                            |         | D (110        |            | 1          | 10D4   |          | 1       | 1       |
| Bit              | Pn5PD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pn5MD<br>2  | Pn5MI<br>1                     | DPn5ME<br>0 | Pn5OD                                       | Pn5PU                                    | Pn5OE                             | Pn5IE                        | Pn4PD   | Pn4MD<br>2    | Pn4MD<br>1 | Pn4ML<br>0 | Pn4OE  | Pn4PU    | J Pn4OE | Pn4IE   |
| R/W              | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R/W         | R/W                            | R/W         | R/W                                         | R/W                                      | R/W                               | R/W                          | R/W     | R/W           | R/W        | R/W        | R/W    | R/W      | R/W     | R/W     |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0           | 0                              | 0           | 0                                           | 0                                        | 0                                 | 0                            | 0       | 0             | 0          | 0          | 0      | 0        | 0       | 0       |
| Bit<br>No.       | Bit symbol Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                |             |                                             |                                          |                                   |                              |         |               |            |            |        |          |         |         |
| 15               | Pn5PD       Select whether the output type of the Pn5 pin should be P-channel open drain. Please refer         to the data sheet of each product for the output current characteristics.       0: Output type is set to Pn5OD (initial value)         1: P-channel open drain output (Pn5OD setting is disabled)       1: P-channel open drain                                                                                                                                                   |             |                                |             |                                             |                                          |                                   |                              |         |               |            |            |        |          |         |         |
| 14 to 12         | Pn5MD2 to       Select the shared function of Pn5 pins.         Pn5MD0       For the details of the shared function, see Table 1-3 "Pin List"         000:       Primary function (Initial value)         001:       2nd function         010:       3rd function         011:       4th function         100:       5th function         101:       6th function         111:       8th function                                                                                                |             |                                |             |                                             |                                          |                                   |                              |         |               |            |            |        |          |         |         |
| 11               | Pn5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OD          |                                |             | is direct<br>s select<br>e data s<br>MOS ou | ly drive<br>ed.<br>heet foi<br>utput (Ir | -able b<br>r details<br>nitial va | oy enlar<br>s about<br>llue) |         |               |            |            | channe | el open  | drain o | utput   |
| 10               | 1: N-channel open drain output         Pn5PU       Enable the internal pull-up resistor of Pn5 pins.         0: Without a pull-up resistor (Initial value)         1: With a pull-up resistor         The settings of Pn5PD, Pn5OD, Pn5OE, and Pn5IE bits determine whether the contents of the Pn5PU bits are reflected.         0X01: Valid (can be pulled up)         0111: Valid (can be pulled up)         Other than the above: Invalid (cannot be pulled up)         X: 0/1 can be either |             |                                |             |                                             |                                          |                                   |                              |         |               |            |            |        |          |         |         |
| 9                | Pn5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OE          |                                |             | the out<br>isable ti<br>nable th            | he outp                                  | ut (İniti                         |                              | e)      |               |            |            |        |          |         |         |
| 8                | Pn5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IE          |                                |             | the inp<br>isable ti<br>nable th            | he inpu                                  | t (İnitial                        |                              |         |               |            |            |        |          |         |         |
| 7                | Pn4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PD          |                                |             | lata she<br>put type                        | et of ea<br>e is set                     | to Pn4                            | duct fo<br>OD (ini           |         | tput cu<br>e) | rrent cl   | naracte    |        | n drain. | Please  | e refer |

| Bit<br>No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 to 4     | Pn4MD2 to<br>Pn4MD0 | Select the shared function of Pn4 pins.         For the details of the shared function, see Table 1-3 "Pin List"         000:       Primary function (Initial value)         001:       2nd function         010:       3rd function         011:       4th function         100:       5th function         101:       6th function         110:       7th function         111:       8th function                                                                     |
| 3          | Pn4OD               | Select the output type of Pn4 pins.<br>An LED is directly drive-able by enlarging the current when the N-channel open drain output<br>mode is selected.<br>See the data sheet for details about the current drive ability.<br>0: CMOS output (Initial value)<br>1: N-channel open drain output                                                                                                                                                                           |
| 2          | Pn4PU               | <ul> <li>Enable the internal pull-up resistor of Pn4 pins.</li> <li>0: Without a pull-up resistor (Initial value)</li> <li>1: With a pull-up resistor</li> <li>The settings of Pn4PD, Pn4OD, Pn4OE, and Pn4IE bits determine whether the contents of the Pn4PU bits are reflected.</li> <li>0X01: Valid (can be pulled up)</li> <li>0111: Valid (can be pulled up)</li> <li>Other than the above: Invalid (cannot be pulled up)</li> <li>X: 0/1 can be either</li> </ul> |
| 1          | Pn4OE               | Enable the output of Pn4 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                                                                                                                                                          |
| 0          | Pn4IE               | Enable the input of Pn4 pins.<br>0: Disable the input (Initial value)<br>1: Enable the input                                                                                                                                                                                                                                                                                                                                                                             |

[Note]

- Be sure to set PnMOD45 registers before setting EICON0, EIMOD0 and IE1 registers. If setting PnMOD45 register when the interrupt is enabled, unexpected interrupts may happen.
- It is recommended to enable the output after setting a peripheral and shared function to prevent the unexpected output.
- Don't set un-assigned shared functions on PnmMD3-0 bits.

### 17.2.7 Port n Mode Register 67 (PnMOD67:n=0, 1)

PnMOD67 is a SFR to select the input/output mode, input/output status, and shared function of Pn6 pin and Pn7 pin. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnMOD67 register that have no corresponding pins.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R/<br>e: 8/* |     | P0MOD       | 6/P0M0                                  | OD67),                                   | 0xF20                             | 9(P0M0                   | )D7), 0 | xF218(        | P1MO     | D6/P1M   | IOD67) | , 0xF21  | 19(P1M   | OD7)  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-------------|-----------------------------------------|------------------------------------------|-----------------------------------|--------------------------|---------|---------------|----------|----------|--------|----------|----------|-------|
| г                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14           | 13  | 12          | 11                                      | 10                                       | 9                                 | 8                        | 7       | 6             | 5        | 4        | 3      | 2        | 1        | 0     |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |     |             |                                         |                                          |                                   | PnM                      | OD67    |               |          |          | 0.00   |          |          |       |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |     |             | IOD7                                    |                                          |                                   |                          |         | Pn6MD         | Pn6MD    |          | OD6    |          |          |       |
| Bit              | Pn7PD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2            | 1   | DPn7MD<br>0 | Pn7OD                                   | Pn7PU                                    | Pn70E                             | Pn7IE                    | Pn6PD   | 2             | 1        | 0        | Pn6OD  | Pn6PU    | Pn6OE    | Pn6IE |
| R/W              | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R/W          | R/W | R/W         | R/W                                     | R/W                                      | R/W                               | R/W                      | R/W     | R/W           | R/W      | R/W      | R/W    | R/W      | R/W      | R/W   |
| Initial<br>value | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |     |             |                                         |                                          |                                   |                          |         |               |          |          |        |          |          |       |
| Bit<br>No.       | Bit symbol<br>name Description<br>Pn7PD Select whether the output type of the Pn7 pin should be P-channel open drain. Please refer                                                                                                                                                                                                                                                                                                                                                      |              |     |             |                                         |                                          |                                   |                          |         |               |          |          |        |          |          |       |
| 15               | Pn7PDSelect whether the output type of the Pn7 pin should be P-channel open drain. Please refer<br>to the data sheet of each product for the output current characteristics.<br>0: Output type is set to Pn7OD (initial value)<br>1: P-channel open drain output (Pn7OD setting is disabled)                                                                                                                                                                                            |              |     |             |                                         |                                          |                                   |                          |         |               |          |          |        |          |          |       |
|                  | 12       Pn7MD2 to<br>Pn7MD0       Select the shared function of Pn7 pins.         For the details of the shared function, see Table 1-3 "Pin List"         000:       Primary function (Initial value)         001:       2nd function         010:       3rd function         011:       4th function         100:       5th function         101:       6th function         101:       7th function         111:       8th function                                                 |              |     |             |                                         |                                          |                                   |                          |         |               |          |          |        |          |          |       |
| 11               | Pn7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OD           |     |             | s direct<br>selecte<br>data s<br>MOS ou | ly drive<br>ed.<br>heet for<br>utput (Ir | -able b<br>r details<br>nitial va | y enlar<br>about<br>lue) |         |               |          |          | channe | l open   | drain ou | utput |
| 10               | 0: CMOS output (Initial value)<br>1: N-channel open drain output<br>Pn7PU Enable the internal pull-up resistor of Pn7 pins.<br>0: Without a pull-up resistor (Initial value)<br>1: With a pull-up resistor<br>The settings of Pn7PD, Pn7OD, Pn7OE, and Pn7IE bits determine whether the contents of<br>the Pn7PU bits are reflected.<br>0X01: Valid (can be pulled up)<br>0111: Valid (can be pulled up)<br>0ther than the above: Invalid (cannot be pulled up)<br>X: 0/1 can be either |              |     |             |                                         |                                          |                                   |                          |         |               |          |          | its of |          |          |       |
| 9                | Pn7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OE           |     |             | the out<br>sable th<br>nable th         | ne outp                                  | ut (İnitia                        |                          | :)      |               |          |          |        |          |          |       |
| 8                | Pn7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IE           |     |             | the inp<br>sable th<br>able th          | ne inpu                                  | t (Initial                        |                          |         |               |          |          |        |          |          |       |
| 7                | Pn6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PD           |     |             | ata she<br>out type                     | et of ea<br>e is set                     | to Pn6                            | duct for<br>OD (init     |         | tput cu<br>e) | rrent ch | naracter |        | n drain. | Please   | refer |

| Bit<br>No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 to 4     | Pn6MD2 to<br>Pn6MD0 | Select the shared function of Pn6 pins.         For the details of the shared function, see Table 1-3 "Pin List"         000:       Primary function (Initial value)         001:       2nd function         010:       3rd function         011:       4th function         100:       5th function         101:       6th function         110:       7th function         111:       8th function              |
| 3          | Pn6OD               | Select the output type of Pn6 pins.<br>A LED is directly drive-able by enlarging the current when the N-channel open drain output<br>mode is selected.<br>See the data sheet for details about the current drive ability.<br>0: CMOS output (Initial value)<br>1: N-channel open drain output                                                                                                                     |
| 2          | Pn6PU               | Enable the internal pull-up resistor of Pn6 pins.<br>0: Without a pull-up resistor (Initial value)<br>1: With a pull-up resistor<br>The settings of Pn6PD, Pn6OD, Pn6OE, and Pn6IE bits determine whether the contents of<br>the Pn6PU bits are reflected.<br>0X01: Valid (can be pulled up)<br>0111: Valid (can be pulled up)<br>Other than the above: Not invalid (cannot be pulled up)<br>X: 0/1 can be either |
| 1          | Pn6OE               | Enable the output of Pn6 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                                                                                                   |
| 0          | Pn6IE               | Enable the input of Pn6 pins.<br>0: Disable the input (Initial value)<br>1: Enable the input                                                                                                                                                                                                                                                                                                                      |

[Note]

- Be sure to set PnMOD67 registers before setting EICON0, EIMOD0 and IE1 registers. If setting PnMOD67 register when the interrupt is enabled, unexpected interrupts may happen.
- It is recommended to enable the output after setting a peripheral and shared function to prevent the unexpected output.
- Don't set un-assigned shared functions on PnmMD3-0 bits.

### 17.2.8 Port n Pulse Mode Register (PnPMD:n=1, 2)

PnPMD is a SFR used when outputting a carrier frequency (pulse output) to the port n. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnPMD register that have no corresponding pin.

| Acce<br>Acce     | ress:<br>ess:<br>ess size<br>al value                                                                                                                                                                                                                                                                                                                                              | R/<br>e: 8/     | (F21A(I<br>/W<br>16 bit<br>(0000 | P1PMD       | IL/P1PN     | ИD), 0×     | F21B(F      | P1PMD                          | H), 0xF    | 22A(P2     | 2PMDL/     | P2PMI      | D), 0xF    | 22B(P2     | PMDH       | )          |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------|-------------|-------------|-------------|-------------|--------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                 | 14              | 13                               | 12          | 11          | 10          | 9           | 8                              | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                  |             |             |             |             | PnF                            | PMD        |            |            |            |            |            |            |            |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                    | PnPMDH PnPMDL   |                                  |             |             |             |             |                                |            |            |            |            |            |            |            |            |
| Bit              | Pn7PL<br>VL                                                                                                                                                                                                                                                                                                                                                                        | Pn6PL<br>VL     | Pn5PL<br>VL                      | Pn4PL<br>VL | Pn3PL<br>VL | Pn2PL<br>VL | Pn1PL<br>VL | Pn0PL<br>VL                    | Pn7PE<br>N | Pn6PE<br>N | Pn5PE<br>N | Pn4PE<br>N | Pn3PE<br>N | Pn2PE<br>N | Pn1PE<br>N | Pn0PE<br>N |
| R/W              | R/W                                                                                                                                                                                                                                                                                                                                                                                | R/W             | R/W                              | R/W         | R/W         | R/W         | R/W         | R/W                            | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                  | 0               | 0                                | 0           | 0           | 0           | 0           | 0                              | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Bit<br>No.       | В                                                                                                                                                                                                                                                                                                                                                                                  | it symb<br>name | ol                               |             |             |             |             |                                | De         | escriptio  | on         |            |            |            |            |            |
| 15 to 8          |                                                                                                                                                                                                                                                                                                                                                                                    | PLVL to<br>PLVL | D (                              | 0: O        | utput th    | e carrie    | er frequ    | ronizing<br>ency to<br>ency to | the pir    | ns wher    | n the ou   | tput lev   | ′el is "⊦  | ł" (initia |            |            |
| 7 to 0           | 1: Output the carrier frequency to the pins when the output level is "L"         Pn7PEN to         Pn0PEN         Enable or disable the pulse output of Pn7 to Pn0.         These bits are valid when the Pn7 to Pn0 pins are configured as the output is enabled (Pn7OE to Pn0OE are "0").         0: Disable the pulse output (initial value)         1: Enable the pulse output |                 |                                  |             |             |             |             |                                |            |            |            |            |            |            |            |            |

### 17.2.9 Port n Pulse Selection Register (PnPSL:n=1, 2)

PnPSL is a SFR used to select the timer for generating the carrier frequency to the port n. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnPSL register that have no corresponding pin.

|                  |        | R/<br>: 8/     | •          | P1PSLI                                                                                                                                                                                                                                                                                                                       | _/P1PS  | iL), 0xF | 21D(P <sup>-</sup> | IPSLH  | ), 0xF22   | 2C(P2F     | PSLL/P2    | 2PSL),     | 0xF22[     | D(P2PS     | LH)        |            |  |
|------------------|--------|----------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------------------|--------|------------|------------|------------|------------|------------|------------|------------|------------|--|
| _                | 15     | 14             | 13         | 12                                                                                                                                                                                                                                                                                                                           | 11      | 10       | 9                  | 8      | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |  |
| Word             |        |                |            |                                                                                                                                                                                                                                                                                                                              |         |          |                    | Pn     | PSL        |            |            |            |            |            |            |            |  |
| Byte             | PnPSLH |                |            |                                                                                                                                                                                                                                                                                                                              |         |          |                    | PnPSLL |            |            |            |            |            |            |            |            |  |
| Bit              | -      | -              | -          | -                                                                                                                                                                                                                                                                                                                            | -       | -        | -                  | -      | Pn7PS<br>L | Pn6PS<br>L | Pn5PS<br>L | Pn4PS<br>L | Pn3PS<br>L | Pn2PS<br>L | Pn1PS<br>L | Pn0PS<br>L |  |
| R/W              | R      | R              | R          | R                                                                                                                                                                                                                                                                                                                            | R       | R        | R                  | R      | R/W        |  |
| Initial<br>value | 0      | 0              | 0          | 0                                                                                                                                                                                                                                                                                                                            | 0       | 0        | 0                  | 0      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |  |
| Bit<br>No.       | Bi     | t symb<br>name | ol         | Description                                                                                                                                                                                                                                                                                                                  |         |          |                    |        |            |            |            |            |            |            |            |            |  |
| 15 to 8          | -      |                |            | Reserve                                                                                                                                                                                                                                                                                                                      | ed bits |          |                    |        |            |            |            |            |            |            |            |            |  |
| 7 to 0           | Pnm    | PSL            | -<br>;<br> | Select the timer for generating the carrier frequency to the port nm.<br>These bits are valid when the Pnm pins are configured as the output is enabled (PnmOE bits<br>are "0").<br>n: port No.: 1,2<br>m: bit No.: 0 to 7<br>0: Operational timer 0 output (OTO0A) (Initial value)<br>1: Operational timer 1 output (OTO1A) |         |          |                    |        |            |            |            |            |            |            |            |            |  |



#### 17.3 Description of Operation

The following shows description of port functions, where "n" is port number 0 to 2, and "m" is bit number 0 to 7.

#### 17.3.1 Input

Each pin of port n sets PnmIE bit of PnMODm register to enter the state where input is enabled. In the state with input enabled, the pin level can be read using PnDI. In addition, pull-up can be enabled by setting PnmPU bit of PnMODm register.

At a system reset, input disabled and no pull-up are selected as the initial status of pins except for the P00. As one of the P00, input, input enabled and pull-up are selected.

#### 17.3.2 Output

Each pin of port n sets PnmOD bit of PnMODm register to select the output type of CMOS output or N-channel open drain or P-channel open drain and sets PnmOE bit of PnMODm register to enter the state where output is enabled. In the state with output enabled, "L" or "H" level is output to each pin of the general-purpose port according to the value set in PnDO.

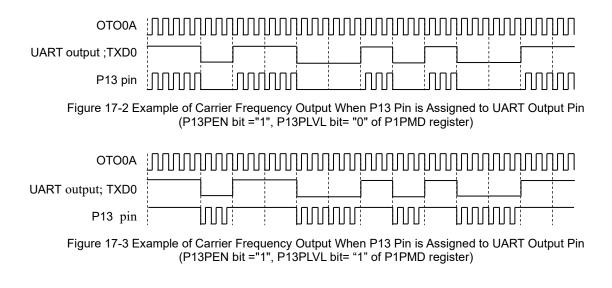
At a system reset, output disabled and CMOS output are selected as the initial status. n: Port number 0 to 9, A, B m: Bit number 0 to 7

#### 17.3.3 Primary Functions Other than Input/Output Function

External input (EXI0 to EXI3) can be used as the primary function other than the input/output function. When using EXI0 to EXI3 as external interrupt input and the clock inputs of the 16-bit timer or trigger/clock input of the operational timer, set PnMODm register of the applicable port to input enabled (PnmIE bit="1").

See Chapter 18 "External Interrupt Control" for external interrupts, Chapter 8 "16-Bit Timer" for clock input of the 16-bit timer, and Chapter 9 "Operational Timer" for external trigger/clock input of the Operational timer.

#### 17.3.4 Shared Function


Each pin of port n can use 2nd to 8th functions as the shared function. Set PnmMD2 to PnmMD0 bits of PnMODm register to select each of the 2nd to 8th functions.

### 17.3.5 Carrier Frequency Output

#### 17.3.5.1 Carrier Frequency Output Operation

A carrier frequency signal can be output from port n by setting PnPMD Register. See Table 17-2 "List of Registers/Bits" for pins supporting the carrier frequency output function. For the carrier frequency output, either of operational timer 0 output (OTO0A) or operational timer 1 output(OTO1A) can be used through setting PnPSL register. See Chapter 9 "Operational Timer" for functional timer 0, 1.

Figures 17-2 and 17-3 show an example of use of the carrier frequency output function.



#### 17.3.5.2 Carrier Frequency Output Function Setting Procedure

Figure 17-4 shows an example of the carrier frequency output function setting procedure (with P13 pin used, TXD0 shared function, operational timer 0 output (OTO0A) used as a timer, carrier frequency output at "L" level).

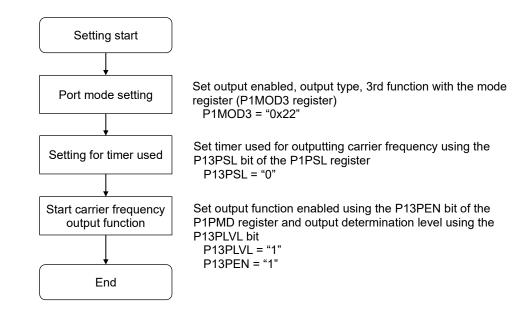



Figure 17-4 Example of Carrier Frequency Output Function Setting Procedure

#### 17.3.6 Port Output Level Test

The level specified in PnDO can be read from PnDI by setting PnmOE bit of PnMODm register to "1" and PnmIE bit to "1". Use of this function allows confirmation that the level set in PnDO is being normally output to the port.

#### 17.3.7 Port Setting Example

Figure 17-5 shows an example for setting port registers to output 0x55 to a port 1. It is also available to set output level before outputting.

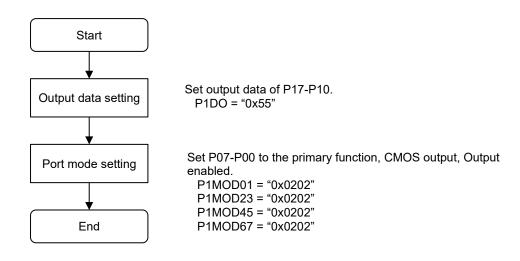



Figure 17-6 Setting example to output data to port 2

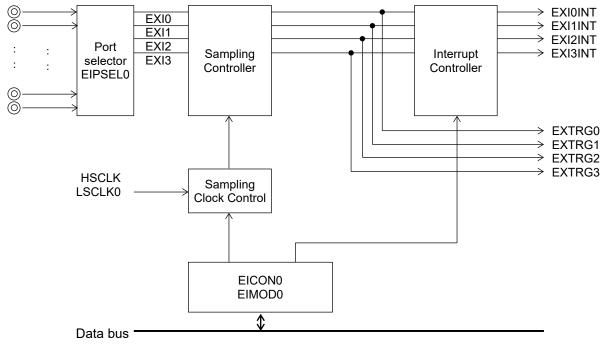
#### 17.3.8 Notes for using P00/TEST0 pin

P00/TEST0 pin is used for the general port, the on-chip debug function or ISP function. When using the on-chip debug function or ISP function, P00/TEST0 is unavailable to use as the general purpose port. When using the general port, P00/TEST0 is unavailable to use for the on-chip debug function or ISP function.

# **Chapter 18 External Interrupt Function**

### 18. External Interrupt Function

#### 18.1 General Description


The external interrupt function generates interrupts by signals input to the general ports. The interrupt channel has each dedicated interrupt vector. See Chapter 5 "Interrupt" for details of the interrupt vector.

#### 18.1.1 Features

- Maskable 8 interrupts
- Each interrupt is assigned from max. 3 pins
- Selectable interrupt modes: interrupt disabled mode, falling-edge interrupt mode, rising-edge interrupt mode or both-edge interrupt mode
- Selectable "with sampling" or "without sampling" for the input signal (the sampling clock is LSCLK0 or HSCLK)

#### 18.1.2 Configuration

Figure 18-1 shows the configuration of the external interrupt function (EXI0 to EXI3)



- EICON0: External interrupt control register 0
- EIMOD0: External interrupt mode register 0

EIPSEL0: External interrupt port select register 0

Figure 18-1 Configuration of External Interrupt Function

#### 18.1.3 List of Pins

The external interrupt is assigned to the primary function of the general port.

| Pin name | I/O | Function                   |  |  |
|----------|-----|----------------------------|--|--|
| EXI0     | I   | External interrupt input 0 |  |  |
| EXI1     | I   | xternal interrupt input 1  |  |  |
| EXI2     | I   | External interrupt input 2 |  |  |
| EXI3     | I   | External interrupt input 3 |  |  |

Table 18-1 shows the list of the general ports used for the external interrupt and the register settings of the ports.

|                              |              |                     | Catting             |               | Avai              | lable             |
|------------------------------|--------------|---------------------|---------------------|---------------|-------------------|-------------------|
| Pin name                     | Shared       | d port              | Setting<br>register | Setting Value | 20 pin<br>product | 24 pin<br>product |
| EXI0                         | P03          | primary<br>function | P0MOD3              | 0000_0X01*1   | •                 | •                 |
|                              | P17          | primary<br>function | P1MOD7              | 0000_0X01*1   | •                 | •                 |
| EXI1                         | P04          | primary<br>function | P0MOD4              | 0000_0X01*1   | •                 | •                 |
|                              | P05          | primary<br>function | P0MOD5              | 0000_0001*1   | •                 | •                 |
| EXI2                         | P06          | primary<br>function | P0MOD6              | 0000_0X01*1   | •                 | •                 |
|                              | P13          | primary<br>function | P1MOD3              | 0000_0X01*1   | •                 | •                 |
| EXI3                         | P00          | primary<br>function | P0MOD0              | 0000_0X01*1   | •                 | •                 |
| EAIJ                         | P10          | primary<br>function | P1MOD0              | 0000_0X01*1   | •                 | •                 |
| <ul> <li>Avilable</li> </ul> | -:Not avilab | le                  |                     |               |                   |                   |

Table 18-1 Ports used for the external interrupt and the register settings

#### Avilable -: Not avilable

|                                             | *1: "X" determines the condition of the port input |                                              |  |  |  |  |  |  |
|---------------------------------------------|----------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
|                                             | Х                                                  | Condition of port input                      |  |  |  |  |  |  |
|                                             | 0                                                  | Input (without an internal pull-up resistor) |  |  |  |  |  |  |
| 1 Input (with an internal pull-up resistor) |                                                    |                                              |  |  |  |  |  |  |

#### 18.2 Description of Registers

#### 18.2.1 List of Registers

| Address | Name                                         | Sym      | bol     | R/W  | Size | Initial |  |
|---------|----------------------------------------------|----------|---------|------|------|---------|--|
| Address | Name                                         | Byte     | Word    | R/VV | Size | Value   |  |
| 0xF044  | External interrupt control register 0        | EICON0L  | EICON0  | R/W  | 8/16 | 0x00    |  |
| 0xF045  |                                              | EICON0H  | EICONU  | R/W  | 8    | 0x00    |  |
| 0xF046  | Reserved                                     | -        | -       | -    | -    | -       |  |
| 0xF047  | Reserved                                     | -        | -       | -    | -    | -       |  |
| 0xF048  | External interrupt mode register 0           | EIMOD0L  | EIMOD0  | R/W  | 8/16 | 0x00    |  |
| 0xF049  | External interrupt mode register o           | EIMOD0H  | EIWODU  | R/W  | 8    | 0x00    |  |
| 0xF04A  | Reserved                                     | -        | -       | -    | -    | -       |  |
| 0xF04B  | Reserved                                     | -        | -       | -    | -    | -       |  |
| 0xF04C  | External interrupt port selection register 0 | EIPSEL0L | EIPSEL0 | R/W  | 8/16 | 0x00    |  |
| 0xF04D  | External interrupt port selection register 0 | EIPSEL0H | EIF3ELU | R/W  | 8    | 0x00    |  |

#### 18.2.2 External Interrupt Control Register 0 (EICON0)

EICON0 is a SFR to select the detection edge of the external interrupt input (EXI0 to EXI3). Detecting the edge can generate the external interrupt (EXI0INT to EXI3INT).

| Acce<br>Acce | ress : 0xF044(EICON0L/EICON0), 0xF045(EICON0H)<br>ess : R/W<br>ess size : 8/16 bit<br>Il value : 0x0000                                                                                                                                                                                       |                |     |          |         |         |          |         |          |           |           |       |       |       |       |       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|----------|---------|---------|----------|---------|----------|-----------|-----------|-------|-------|-------|-------|-------|
|              | 15                                                                                                                                                                                                                                                                                            | 14             | 13  | 12       | 11      | 10      | 9        | 8       | 7        | 6         | 5         | 4     | 3     | 2     | 1     | 0     |
| Word         |                                                                                                                                                                                                                                                                                               |                |     |          |         |         |          | EIC     | ONC      |           |           |       |       |       |       |       |
| Byte         |                                                                                                                                                                                                                                                                                               |                |     | EICO     | DN0H    |         |          |         |          |           |           | EIC   | ON0L  |       |       |       |
| Bit          | -                                                                                                                                                                                                                                                                                             | -              | -   | -        | PI3E1   | PI2E1   | PI1E1    | PI0E1   | -        | -         | -         | -     | PI3E0 | PI2E0 | PI1E0 | PI0E0 |
| R/W          | R/W                                                                                                                                                                                                                                                                                           | R/W            | R/W | R/W      | R/W     | R/W     | R/W      | R/W     | R/W      | R/W       | R/W       | R/W   | R/W   | R/W   | R/W   | R/W   |
| Initial      | 0                                                                                                                                                                                                                                                                                             | 0              | 0   | 0        | 0       | 0       | 0        | 0       | 0        | 0         | 0         | 0     | 0     | 0     | 0     | 0     |
| value        |                                                                                                                                                                                                                                                                                               |                |     |          |         |         |          |         |          |           |           |       |       |       |       |       |
| Bit No.      | Bi                                                                                                                                                                                                                                                                                            | t symb<br>name | ol  |          |         |         |          |         | De       | escriptio | on        |       |       |       |       |       |
| 15 to 8      | PI3E                                                                                                                                                                                                                                                                                          |                | 5   | Select t | he dete | ction e | dge of t | he exte | rnal int | errupt    | (EXI0 to  | EXI7) |       |       |       |       |
|              | PI0E1<br>00 : Interrupt disabled (Initial value)<br>01 : Falling-edge interrupt<br>10 : Rising-edge interrupt<br>11 : Both-edge interrupt                                                                                                                                                     |                |     |          |         |         |          |         |          |           |           |       |       |       |       |       |
|              |                                                                                                                                                                                                                                                                                               |                | ٦   |          |         |         |          |         |          |           | nal inter | rupt: |       |       |       |       |
| 7 to 0       | Bit 11, 3         (PI3E1, PI3E0) : EXI3INT Interrupt           7 to 0         PI3E0 to         Bit 10, 2         (PI2E1, PI2E0) : EXI2INT Interrupt           PI0E0         Bit 9, 1         (PI1E1, PI1E0) : EXI1INT Interrupt           Bit 8, 0         (PI0E1, PI0E0) : EXI0INT Interrupt |                |     |          |         |         |          |         |          |           |           |       |       |       |       |       |

#### 18.2.3 External Interrupt Mode Register 0 (EIMOD0)

EIMOD0 is a SFR to select the sampling clock and with/without sampling for the external interrupt (EXI0 to EXI3). Only one sampling clock can be chosen and it is shared for all the interrupt EXI0 to EXI3.

|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                         | 13          | 12          | 11     | 10         | 9 | 8   | 7   | 6       | 5 | 4 | 3     | 2     | 1     | 0     |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--------|------------|---|-----|-----|---------|---|---|-------|-------|-------|-------|
| Word             | -                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            |             |             |        | -          | - | EIM | OD0 | -       | - |   | -     |       |       | -     |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            |             | EIMO        | D0H    |            |   |     |     | EIMOD0L |   |   |       |       |       |       |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                          | PG0DI<br>V1 | PG0DI<br>V0 | -      | PG0CS<br>0 | - | -   | -   | -       | - | - | PI3SM | PI2SM | PI1SM | PIOSM |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                 | R                                                                                                                                                                                                                                                          | R/W         | R/W         | R      | R/W        | R | R   | R   | R       | R | R | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                          | 0           | 0           | 0      | 0          | 0 | 0   | 0   | 0       | 0 | 0 | 0     | 0     | 0     | 0     |
| Bit No.          | Bit symbol Description                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |             |             |        |            |   |     |     |         |   |   |       |       |       |       |
| 15 to 14         | - Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            |             |             |        |            |   |     |     |         |   |   |       |       |       |       |
| 13 to 12         |                                                                                                                                                                                                                                                                                                                                                                                                                                   | G0DIV1 to<br>G0DIV0 Select frequency dividing ratio for the sampling clock in the EXI0 to EXI3.<br>00: No dividing (Initial value)<br>01: 1/2 of the sampling clock source<br>10: 1/4 of the sampling clock source<br>11: 1/8 of the sampling clock source |             |             |        |            |   |     |     |         |   |   |       |       |       |       |
| 11               | -                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            |             | Reserve     | d bits |            |   |     |     |         |   |   |       |       |       |       |
| 10               | PG0CS0 Select the sampling clock source in the EXI0 to EXI3.<br>0: LSCLK0 (Initial value)<br>1: HSCLK                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                            |             |             |        |            |   |     |     |         |   |   |       |       |       |       |
| 9 to 4           | -                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            | I           | Reserve     | d bits |            |   |     |     |         |   |   |       |       |       |       |
| 3 to 0           | PI3SM to       Select whether the input signals of EXI0 to EXI3 are detected with the sampling clock.         0:       Detected without the sampling clock (Initial value)         1:       Detected with the sampling clock except in STOP/STOP-D mode         The relation of the bit number and the target external interrupt:         Bit 3 (PI3SM)       : EXI3INT Interrupt         Bit 2 (PI2SM)       : EXI2INT Interrupt |                                                                                                                                                                                                                                                            |             |             |        |            |   |     |     |         |   |   |       |       |       |       |

[Note]

- If high-speed clock is selected as sampling clock source, it works without sampling when the high-speed clock does not supply; it includes stop by entry to standby mode. Set to LSCLK0 as sampling clock if needed.
- In the STOP mode, it works without sampling.

#### 18.2.4 External Interrupt Port Selection Register 0 (EIPSEL0)

EIPSEL0 is a SFR to select a port assigned to EXI0 to EXI3.

| Acce<br>Acce     | ldress : 0xF04C(EIPSEL0L/EIPSEL0), 0xF04D(EIPSEL0H),<br>ccess : R/W<br>ccess size : 8/16 bit<br>tial value : 0x0000 |     |     |     |          |     |     |     |     |        |     |        |     |        |     |        |
|------------------|---------------------------------------------------------------------------------------------------------------------|-----|-----|-----|----------|-----|-----|-----|-----|--------|-----|--------|-----|--------|-----|--------|
|                  | 15                                                                                                                  | 14  | 13  | 12  | 11       | 10  | 9   | 8   | 7   | 6      | 5   | 4      | 3   | 2      | 1   | 0      |
| Word             | EIPSEL0                                                                                                             |     |     |     |          |     |     |     |     |        |     |        |     |        |     |        |
| Byte EIPSEL0H    |                                                                                                                     |     |     |     | EIPSEL0L |     |     |     |     |        |     |        |     |        |     |        |
| Bit              | -                                                                                                                   | -   | -   | -   | -        | -   | -   | -   | -   | EI3PS0 | -   | EI2PS0 | -   | EI1PS0 | -   | EI0PS0 |
| R/W              | R/W                                                                                                                 | R/W | R/W | R/W | R/W      | R/W | R/W | R/W | R/W | R/W    | R/W | R/W    | R/W | R/W    | R/W | R/W    |
| Initial<br>value | 0                                                                                                                   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0      | 0   | 0      | 0   | 0      | 0   | 0      |
| Bit No.          | Bit symbol Description                                                                                              |     |     |     |          |     |     |     |     |        |     |        |     |        |     |        |

| 2    | name   |                                                                                                                        |
|------|--------|------------------------------------------------------------------------------------------------------------------------|
| 15-0 | EInPS0 | Select a port assigned to EXI0 to EXI3. See Table 18-2 for detail.<br>0: Selection 0 (Initial value)<br>1: Selection 1 |
|      |        |                                                                                                                        |

#### Table 18-2 assignment port to each EXI

| EInPS0 | EXI3 | EXI2 | EXI1 | EXI0 |
|--------|------|------|------|------|
| 0      | P10  | P06  | P05  | P03  |
| 1      | P00  | P13  | P04  | P17  |

#### 18.3 Description of Operation

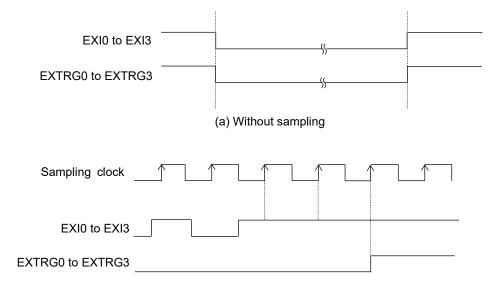
#### 18.3.1 Interrupt Request Timing

Figure 18-2 shows the interrupt generation timing without sampling (when the rising-edge/falling-edge/both-edge interrupt mode is chosen). Figure 18-3 shows the interrupt generation timing with sampling (when the rising-edge interrupt mode is chosen).

Table 18-3 shows the difference between the external interrupt generation timings with or without sampling after detection of the edge.



| Sampling                                                             | Generation timing                                                                                                        |  |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| No                                                                   | Generated in synchronization with SYSCLK                                                                                 |  |  |  |  |  |
| Yes                                                                  | Generated in synchronization with SYSCLK, when no transition for three periods with sampling clock after detecting edge. |  |  |  |  |  |
| SYSC<br>EXI0 to E<br>EXI0INT to EXI7<br>Interrupt requ               |                                                                                                                          |  |  |  |  |  |
|                                                                      | (a) When falling-edge interrupt mode is chosen                                                                           |  |  |  |  |  |
| SYSCLI<br>EXI0 to EXI<br>EXI0INT to EXI3IN                           | 3                                                                                                                        |  |  |  |  |  |
| Interrupt reques                                                     | st                                                                                                                       |  |  |  |  |  |
|                                                                      | (b) When rising-edge interrupt mode is chosen                                                                            |  |  |  |  |  |
| SYSC<br>EXI0 to E<br>EXI0INT to EXI3<br>Interrupt requ               |                                                                                                                          |  |  |  |  |  |
|                                                                      | (c) When both-edge interrupt mode is chosen                                                                              |  |  |  |  |  |
| Figu                                                                 | re 18-2 External Interrupt Generation Timing (without Sampling)                                                          |  |  |  |  |  |
| Sampling clock                                                       |                                                                                                                          |  |  |  |  |  |
| EXI0 to EXI<br>Coincidence determined<br>3 time<br>EXI0INT to EXI3IN | s                                                                                                                        |  |  |  |  |  |
| Interrupt reques                                                     | t                                                                                                                        |  |  |  |  |  |

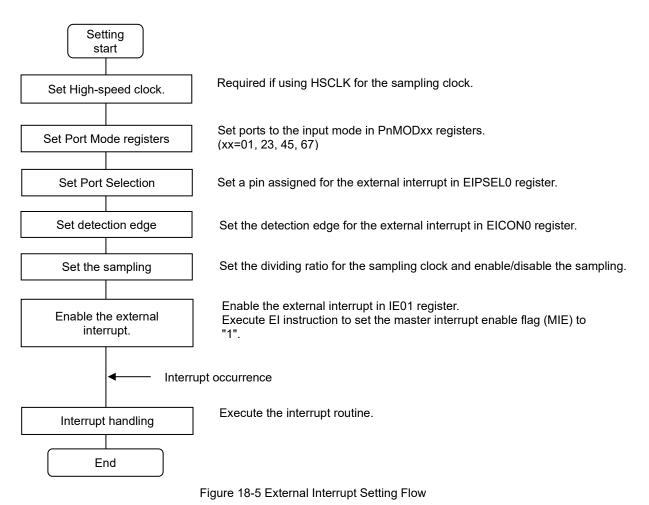

Figure 18-3 External Interrupt Generation Timing (with Sampling, with Rising-edge Interrupt Mode Chosen)

#### 18.3.2 External Trigger Signal

Pins assigned with external interrupt can be used as external trigger signals (EXTRG0 to EXTRG3) for the 16-bit timer and function timer.

In addition, the sampling function contained in the external interrupt function can be used.

Figure 18-4 shows the external trigger signal timing.




(b) With sampling

Figure 18-4 Operational Timer Trigger Signal

#### 18.3.3 External Interrupt Setting Flow

Figure 18-5 shows the external interrupt setting flow.



# **Chapter 20 Analog Comparator**

### 20. Analog Comparator

#### 20.1 General Description

The Analog Comparator enables to use following functions.

- Compare voltages input to the two pins
- Compare a voltage input to the one pin with the internal reference voltage (CMP internal reference voltage (0.8V)/DAC0OUT/DAC1OUT).

Table 20-1 shows the number of channels.

Table 20-2 shows available internal reference voltage for each channel.

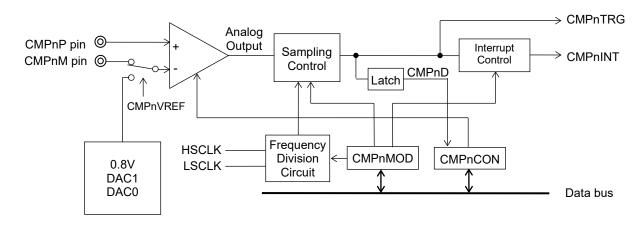
| number of   | Available/Unavailable |                   |  |  |  |  |
|-------------|-----------------------|-------------------|--|--|--|--|
| channels(n) | 20 pin<br>product     | 24 pin<br>product |  |  |  |  |
| 0           | ٠                     | •                 |  |  |  |  |
| 1           | ٠                     | ٠                 |  |  |  |  |
| 2           | ٠                     | ٠                 |  |  |  |  |

•: Available -: Not available

Table 20-2 Available internally generated voltages for each channel

| number of channels(n) | CMP internal<br>reference<br>voltage(0.8V) | DAC0OUT | DAC1OUT |
|-----------------------|--------------------------------------------|---------|---------|
| 0                     | -                                          | •       | •       |
| 1                     | •                                          | •       | •       |
| 2                     | •                                          | -       | •       |

•: Available -: Not available


FEUL62Q2045

#### 20.1.1 Features

- Comparable with external 2 voltage inputs.
- Comparable with external voltage input and internal reference voltage (CMP internal reference voltage (0.8V)/DAC0OUT/DAC1OUT).
- Three types of interrupt timing generated by the voltage comparison are available.
  - Rising edge of the comparison result
  - Falling edge of the comparison result
  - Rising edge and Falling edge of the comparison result
  - The sampling with a clock is optional for the comparison result
    - HSCLK
    - LSCLK
    - 1/2 HSCLK to 1/8 HSCLK
    - 1/2 LSCLK to 1/8 HSCLK
- The analog comparator result output can be used as a trigger event source for operational timers and as a force stop trigger source.
- Same shared pin can be assigned to up to two different input channels of the analog comparator at the same time.
- Same shared pin can be assigned to the Analog comparator input and the AD converter input (AINn).
- Configurable the hysteresis Enable/disable setting of the analog comparator..

#### 20.1.2 Configuration

Figure 20-1 shows the configuration of the analog comparator. (n=0 to 2)



| CMPnCON  | : Comparator n control register    |
|----------|------------------------------------|
| CMPnMOD  | : Comparator n mode register       |
| CMPnD    | : Analog Comparator n result       |
| CMPnINT  | : Analog Comparator n Interrupt    |
| CMPnVREF | : Reference voltage select setting |
| CMPnTRG  | : Analog Comparator n output       |
|          |                                    |



#### 20.1.3 List of Pins

The I/O pins of the Analog Comparator are assigned to the shared function of the general ports.

| Pin name | I/O | Function                                |  |  |  |  |  |
|----------|-----|-----------------------------------------|--|--|--|--|--|
| CMPnP    | I   | Analog comparator n non-inverting input |  |  |  |  |  |
| CMPnM    | I   | Analog comparator n inverting input     |  |  |  |  |  |
|          |     |                                         |  |  |  |  |  |

(n=0 to 2)

Table 20-3 shows the list of the general ports used for the Analog Comparator and the register settings of the ports.

|       |          |          |                      |                                                    | og Comparator                 | Ster Settings |                       |                   |                   |  |
|-------|----------|----------|----------------------|----------------------------------------------------|-------------------------------|---------------|-----------------------|-------------------|-------------------|--|
|       | Pin n    | name     |                      |                                                    |                               | Setting       | Setting               | Available         |                   |  |
| CMP0  | CMP1     | CMP2     | ADC                  | Sha                                                | ared port                     | register      | Values                | 20 pin<br>product | 24 pin<br>product |  |
| CMP0P | -        | -        |                      | P01                                                | 5th function/<br>8th function | P0MOD1        | 0x40/<br>0x70         | •                 | •                 |  |
|       | CMP1P    | -        | -                    |                                                    | 7th function                  |               | 0x60                  | ٠                 | ٠                 |  |
| -     |          | -        | -                    |                                                    | 5th function                  |               | 0x40                  | •                 | •                 |  |
| -     | CMP1P *1 | -        | AIN0                 | P14                                                | 8th function                  | P1MOD4        | 0x70                  | ٠                 | ٠                 |  |
| -     |          | CMP2P    | -                    |                                                    | 7th function                  |               | 0x60                  | ٠                 | ٠                 |  |
| -     | -        | CMP2P *3 | -                    | 5th function/<br>P11 7th function/<br>8th function |                               | P1MOD1        | 0x40/<br>0x60<br>0x70 | ٠                 | •                 |  |
| CMP0M | -        | -        | -                    | P02                                                | 5th function/<br>8th function | P0MOD2        | 0x40/<br>0x70         | •                 | •                 |  |
|       | CMP1M    | -        | -                    |                                                    | 7th function                  |               | 0x60                  | ٠                 | •                 |  |
| -     |          | -        | -                    |                                                    | 5th function                  |               | 0x40                  | •                 | •                 |  |
| -     | CMP1M *2 | -        | AIN1                 | P15                                                | 8th function                  | P1MOD5        | 0x70                  | ٠                 | ٠                 |  |
| -     |          | CMP2M    | CMP2M - 7th function |                                                    |                               | 0x60          | ٠                     | •                 |                   |  |
| -     | -        | CMP2M *4 | -                    | P16                                                | 7th function                  | P1MOD6        | 0x40/<br>0x60         | •                 | •                 |  |
| -     | -        |          | AIN2                 |                                                    | 8th function                  |               | 0x70                  | •                 | •                 |  |

Table 20-3 Ports used in the Analog Comparator and the register settings

•: Available -: Not available

#### [Note]

- When using the analog comparator, write "0" to the target PnmIE bit and PnmOE bit of port n mode registers to set the general port to Hi-impedance, otherwise a shoot-through current may flow.
- An influence of the noise is reducible by preventing the switching of neighboring pins when the comparator enables.
- \*1: If P01 is set to a 7th function, P14 cannot be used as CMP1P. (The setting will be disenabled)
- \*2: If P02 is set to a 7th function, P15 cannot be used as CMP1M. (The setting will be disenabled)
- \*3: If P14 is set to a 7th function, P11 cannot be used as CMP2P. (The setting will be disenabled)
- \*4: If P15 is set to a 7th function, P16 cannot be used as CMP2M. (The setting will be disenabled)

### 20.2 Description of Registers

### 20.2.1 List of Registers

| Address | Name                        | Syml     | loc         | R/W | Size | Initial |
|---------|-----------------------------|----------|-------------|-----|------|---------|
| Address | Name                        | Byte     | Word        | r/w | Size | value   |
| 0xF880  | Comparator control register | CMPCONL  | CMPCON      | R/W | 8/16 | 0x00    |
| 0xF881  | Comparator control register | CMPCONH  | CIMPCON     | R/W | 8    | 0x00    |
| 0xF882  | Comportor O modo registor   | CMP0MODL | CMD0MOD     | R/W | 8/16 | 0x00    |
| 0xF883  | Comparator 0 mode register  | CMP0MODH | CMP0MOD     | R/W | 8    | 0x00    |
| 0xF884  | Componenter 1 mode register | CMP1MODL |             | R/W | 8/16 | 0x00    |
| 0xF885  | Comparator 1 mode register  | CMP1MODH | CMP1MOD     | R/W | 8    | 0x00    |
| 0xF886  | Comportor 2 modo registor   | CMP2MODL | CMP2MOD     | R/W | 8/16 | 0x00    |
| 0xF887  | Comparator 2 mode register  | CMP2MODH | CIVIPZIVIOD | R/W | 8    | 0x00    |
| 0xF888  | Comparator status register  | CMPSTA   |             | R   | 8    | 0x00    |
| 0xF889  | Reserved register           | _        | -           | R   | 8    | 0x00    |

#### 20.2.2 Comparator Control Register (CMPCON)

CMPnCON is a SFR to control the analog comparator.

|         |    | : ; | 0xF880<br>R/W<br>8bit/16 I<br>0x00 |     | ONL/C | MPCOI     | N), 0xF   | 881(CM    | IPCON | H) |   |     |      |            |            |            |
|---------|----|-----|------------------------------------|-----|-------|-----------|-----------|-----------|-------|----|---|-----|------|------------|------------|------------|
|         | 15 | 14  | 13                                 | 12  | 11    | 10        | 9         | 8         | 7     | 6  | 5 | 4   | 3    | 2          | 1          | 0          |
| Word    |    |     |                                    |     |       |           |           | CMP       | CON   |    |   |     |      |            |            |            |
| Byte    |    |     |                                    | CMP | CONH  |           |           |           |       |    |   | CMP | CONL |            |            |            |
| Bit     | -  | -   | -                                  | -   | -     | CMP2<br>D | CMP1<br>D | CMP0<br>D | -     | -  | - | -   | -    | CMP2<br>EN | CMP1<br>EN | CMP0<br>EN |
| R/W     | R  | R   | R                                  | R   | R     | R         | R         | R         | R     | R  | R | R   | R    | R/W        | R/W        | R/W        |
| Initial | 0  | 0   | 0                                  | 0   | 0     | 0         | 0         | 0         | 0     | 0  | 0 | 0   | 0    | 0          | 0          | 0          |

Varue

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 15 to 11   | -                  | Reserved bits                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 10         | CMP2D              | <ul> <li>Indicate the comparison result of the analog comparator 2.</li> <li>Indicate "0" when the analog comparator 2 is stopped.</li> <li>0: CMP2P &lt; CMP2M or internal reference voltage (initial value)</li> <li>1: CMP2P &gt; CMP2M or internal reference voltage</li> </ul> |  |  |  |  |  |  |
| 9          | CMP1D              | Indicate the comparison result of the analog comparator 1.<br>Indicate "0" when the analog comparator 1 is stopped.<br>0: CMP1P < CMP1M or internal reference voltage (initial value)<br>1: CMP1P > CMP1M or internal reference voltage                                             |  |  |  |  |  |  |
| 8          | CMP0D              | Indicate the comparison result of the analog comparator 0.<br>Indicate "0" when the analog comparator 0 is stopped.<br>0: CMP0P < CMP0M or internal reference voltage (initial value)<br>1: CMP0P > CMP0M or internal reference voltage                                             |  |  |  |  |  |  |
| 7 to 3     | -                  | Reserved bits                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 2          | CMP2EN             | <ul> <li>Control enable or disable the operation of the comparator 2.</li> <li>0: Disables operating the comparator 2 (initial value)</li> <li>1: Enables operating the comparator 2</li> </ul>                                                                                     |  |  |  |  |  |  |
| 1          | CMP1EN             | Control enable or disable the operation of the comparator 1.<br>0: Disables operating the comparator 1 (initial value)<br>1: Enables operating the comparator 1                                                                                                                     |  |  |  |  |  |  |
| 0          | CMP0EN             | <ul><li>Control enable or disable the operation of the comparator 0.</li><li>0: Disables operating the comparator 0 (initial value)</li><li>1: Enables operating the comparator 0</li></ul>                                                                                         |  |  |  |  |  |  |

[Note]

- When using the analog comparator, write "0" to the target PnmIE bit and PnmOE bit of port n mode registers ()n=0 to 2, m=0 to 7) to set the general port to Hi-impedance, otherwise a shoot-through current may flow.
- An influence of the noise is reducible by preventing the switching of neighboring pins when the comparator enables.
- After CMPnEN bit is set to "1", it takes 100µs to stabilize the operation of the analog comparator.

#### 20.2.3 Comparator n Mode Register (CMPnMOD: n=0,1,2)

CMPnMOD is a SFR to set the operation mode of the analog comparator.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )<br>(<br> <br> <br> | 0xF884(       | CMP1              | MODL/C             | CMP1   | MOD), (<br>MOD), (<br>MOD), (  | xF885(        | CMP1     | NODH                     | ),           |              |             |             |            |            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|-------------------|--------------------|--------|--------------------------------|---------------|----------|--------------------------|--------------|--------------|-------------|-------------|------------|------------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                   | 13            | 12                | 11                 | 10     | 9                              | 8             | 7        | 6                        | 5            | 4            | 3           | 2           | 1          | 0          |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |               |                   |                    |        |                                | CMPr          | MOD      |                          |              |              |             |             |            |            |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |               | -                 | MODH               |        |                                |               |          |                          |              | CMPn         | MODL        |             |            |            |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                    | CMPn<br>HYSEN | CMPn<br>OMAS<br>K | CMPn<br>OMAS<br>KV | -      | CMPn<br>VREF1                  | CMPn<br>VREF0 | -        | -                        | CMPn<br>DIV1 | CMPn<br>DIV0 | CMPn<br>CS1 | CMPn<br>CS0 | CMPn<br>E1 | CMPn<br>E0 |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R                    | R/W           | R/W               | R/W                | R      | R/W                            | R/W           | R        | R                        | R/W          | R/W          | R/W         | R/W         | R/W        | R/W        |
| Initial<br>Varue | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                    | 0             | 0                 | 0                  | 0      | 0                              | 0             | 0        | 0                        | 0            | 0            | 0           | 0           | 0          | 0          |
| Bit<br>No.       | Bit symbol Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |               |                   |                    |        |                                |               |          |                          |              |              |             |             |            |            |
| 15, 14           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reserved bits        |               |                   |                    |        |                                |               |          |                          |              |              |             |             |            |            |
| 13               | CMF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PnHYS                |               | 0: ⊢              |                    | is dis | able the<br>abled (ir<br>abled | -             |          | ne hyst                  | eresis       |              |             |             |            |            |
| 12               | <ul> <li>When the analog comparator input is shared with the A/D converter input by setting 8 function as shown in Table1-3 Pin list, the output result of the analog comparator may due to the influence of sampling in the AD conversion.</li> <li>By enabling this bit, the output of the analog comparator can be masked only while the conversion.</li> <li>CMPnOMASK</li> <li>The output of the analog comparator is fixed to 0 or 1 by CMPnOMASKV bit when the setting is enabled.</li> <li>This masking function is enabled when 8th function is selected. It is disabled when of functions are selected.</li> <li>0: Comparator output mask disabled (Initial value)</li> </ul> |                      |               |                   |                    |        |                                |               | hile the | iluctuate<br>A/D<br>mask |              |              |             |             |            |            |
| 11               | 1: Comparator output mask enabled         CMPnOMASKV         CMPnOMASKV         0: Fix the comparator output at "0" during the mask         1: Fix the comparator output at "1" during the mask                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |               |                   |                    |        |                                |               |          |                          |              |              |             |             |            |            |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |               | 1: F              | ix the c           | ompa   | rator ou                       | tput at "     | 1" duri  | -                        |              |              |             |             |            |            |

#### ML62Q2033/2035/2043/2045 User's Manual Chapter 20 Analog Comparator

| Bit<br>No. | Bit symbol<br>name | Description                                                                      |
|------------|--------------------|----------------------------------------------------------------------------------|
| 9,8        | CMPnVREF1,         | Select the inverting input of the analog comparator.CH0                          |
|            | CMPnVREF0          | 00: Voltage input from the CMPnM pin (initial value)                             |
|            |                    | 01: Do not use(CMPnM)                                                            |
|            |                    | 10: DACOOUT                                                                      |
|            |                    | 11: DAC1OUT                                                                      |
|            |                    | CH1                                                                              |
|            |                    | 00: Voltage input from the CMPnM pin (initial value)                             |
|            |                    | 01: CMP Internal reference voltage(0.8V)                                         |
|            |                    | 10: DACOOUT                                                                      |
|            |                    | 11: DAC1OUT                                                                      |
|            |                    | CH2                                                                              |
|            |                    | 00: Voltage input from the CMPnM pin (initial value)                             |
|            |                    | 01: CMP Internal reference voltage (0.8V)10: Disable setting(DAC1OUT)            |
|            |                    | 11: DAC1OUT                                                                      |
| 7, 6       | -                  | Reserved bits                                                                    |
| 5,4        | CMPnDIV1,          | Select frequency dividing ratio for the sampling clock in the analog comparator. |
|            | CMPnDIV0           | 00: No dividing (Initial value)                                                  |
|            |                    | 01: 1/2 of the sampling clock source                                             |
|            |                    | 10: 1/4 of the sampling clock source                                             |
|            |                    | 11: 1/8 of the sampling clock source                                             |
| 3, 2       | CMPnCS1,           | Select the sampling clock source in the analog comparator.                       |
|            | CMPnCS0            | 00: No sampling (Initial value)                                                  |
|            |                    | 01: Sampling with HSCLK                                                          |
|            |                    | 10: Sampling with LSCLK0                                                         |
|            |                    | 11: Do not use (No sampling)                                                     |
| 1,0        | CMPnE1,            | Select the timing of interrupt request generation.                               |
|            | CMPnE0             | 00: Disable the interrupt request generation (initial value)                     |
|            |                    | 01: Falling-Edge                                                                 |
|            |                    | 10: Rising-Edge                                                                  |
|            |                    | 11: Both-Edge                                                                    |

#### [Note]

In the STOP mode, the sampling clock stops and the VLS works without sampling regardless the setting in CMPnCS1 bit and CMPnCS0 bit. When selecting "with sampling" and entering those mode, there is a time period<sup>(\*1)</sup> in which interrupts gets disabled.

<sup>\*1</sup> Time period to entering the STOP/STOP-D mode: Max.30µs. When returning from those modes, the interrupts are disabled until the sampling clock starts being supplied. The delay time depends on the configuration of clock and registers. See Table 4-5 "Wake-up Time from Standby Mode" in the Chapter 4 "Power Management".

- When the HSCLK is selected for the sampling clock and the high-speed clock is not oscillating, the sampling circuit does not work. When using analog comparator in this case, select "No sampling" or "Sampling with LSCLK0" for sampling condition. For how to enable the high-speed clock oscillation, see Chapter 6 "Clock Generation Circuit".
- Write CMPnMOD register when the Analog comparator stops (CMPnEN bit of CMPCON register is "0"), The analog comparator output is not guaranteed CMPnMOD register is changed while the analog comparator is activated.
- When the CMPnOMASK bit is set to "1", set to interrupt inhibition at CMPnE1/CMPnE0 bit. If interrupts are enabled, interrupts may occur unintentionally during mask processing at the start of A/D conversion.
- When the output of the D/A converter is selected as CMPnM pin and the DAC internal reference voltage (0.8V) is selected as the reference voltage of the D/A converter (DACMODE.DAMDn bit = "1"), enable sampling function of the analog comparator.

#### 20.2.4 Comparator Status Register(CMPSTA)

CMPSTA is a SFR to indicate the status of the analog comparator.

|                  |    | F<br>: 8 | )xF888<br>R<br>3 bit<br>)x00 | (CMPS | TA) |    |   |   |        |   |   |   |   |             |             |             |
|------------------|----|----------|------------------------------|-------|-----|----|---|---|--------|---|---|---|---|-------------|-------------|-------------|
|                  | 15 | 14       | 13                           | 12    | 11  | 10 | 9 | 8 | 7      | 6 | 5 | 4 | 3 | 2           | 1           | 0           |
| Word             |    |          |                              |       |     |    |   |   | -      |   |   |   |   |             |             |             |
| Byte             |    |          |                              |       | -   |    |   |   | CMPSTA |   |   |   |   |             |             |             |
| Bit              | -  | -        | -                            | -     | -   | -  | - | - | -      | - | - | - | - | CMP2<br>STA | CMP1<br>STA | CMP0<br>STA |
| R/W              | R  | R        | R                            | R     | R   | R  | R | R | R      | R | R | R | R | R           | R           | R           |
| Initial<br>Varue | 0  | 0        | 0                            | 0     | 0   | 0  | 0 | 0 | 0      | 0 | 0 | 0 | 0 | 0           | 0           | 0           |

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 7~3        | -                  | Reserved bits                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 2          | CMP2STA            | <ul> <li>Indicate the operation history of analog comparator 2.</li> <li>After the analog comparator 2 is allowed to operate, the output of the analog comparator 2 changes to "1". It is cleared to "0" on the CMPSTA read.</li> <li>0: No output change of analog comparator 2 (initial value)</li> <li>1: Output change of analog comparator 2</li> </ul> |  |  |  |  |  |
| 1          | CMP1STA            | Indicate the operation history of analog comparator 1.<br>After the analog comparator 1 is allowed to operate, the output of the analog comparator 1<br>changes to "1". It is cleared to "0" on the CMPSTA read.<br>0: No output change of analog comparator 1 (initial value)<br>1: Output change of analog comparator 1                                    |  |  |  |  |  |
| 0          | CMP0STA            | <ul> <li>Indicate the operation history of analog comparator 0.</li> <li>After the analog comparator 0 is allowed to operate, the output of the analog comparator 0 changes to "1". It is cleared to "0" on the CMPSTA read.</li> <li>0: No output change of analog comparator 0 (initial value)</li> <li>1: Output change of analog comparator 0</li> </ul> |  |  |  |  |  |

[Note]

After the analog comparator is started, CMPnSTA bit may be set to "1" until the operation stabilizes. After the operation is stable, read CMPnSTA register once and initialize the value.

#### 20.3 Description of Operation

#### 20.3.1 Analog Comparator Operation

Figure 20-2 shows an analog comparator operation overview.

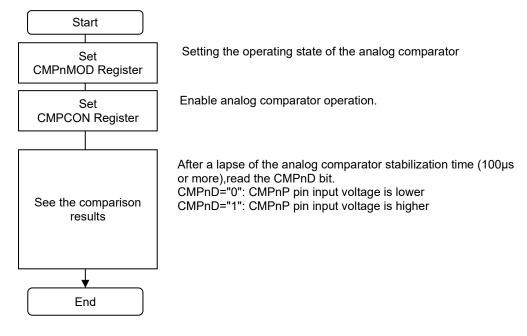



Figure 20-2 Analog Comparator Operation Overview

Figure 20-3 shows an example of the analog comparator operation timing.

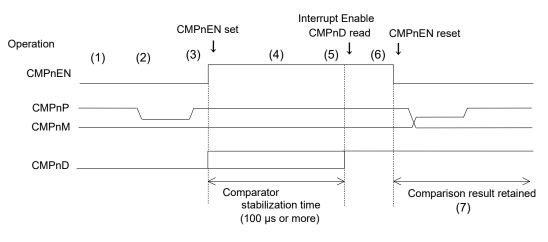



Figure 20-3 Example of Analog Comparator Operation Timing

Operation shown in Figure 20-3 above is described below.

- (1) To operate the analog comparator, first set the following configuration:
  - Set the general-purpose port used for the analog comparator to high-impedance that both input and output is disabled, by writing "0" to PnmIE bit and PnmOE bit (m: bit number 0 to 7).
     Also, set the shared function of GPIO to the 5th, 7th, or 8th.
  - If using the HSCLK for the sampling clock, write "1" to the ENOSC bit of the frequency control register (FCON).
- (2) Select the interrupt mode, sampling conditions, reference voltage, and hysteresis setting using the CMPnMOD register.
- (3) Write "1" to the CMPnEN bit to enable the analog comparator operation.
- (4) Wait for the stabilization time (100  $\mu$ s or more) of the analog comparator.

- (5) Read the comparison result from CMPnD bit. If using interrupt, write "1" to the ECMPn bit of the interrupt enable register 45 (IE45), after clearing QCMPn bit of the interrupt reguest register 45 (IRQ45).
- (6) Write "0" to CMPnEN bit to prohibit the operation of the analog comparator.

#### 20.3.2 Interrupt Request

If the interrupt edge is selected in the CMPnE0 and CMPnE1 bits of the CMPnMOD register is detected, the analog comparator n interrupt (CMPnINT) is generated.

Figure 20-4 shows the interrupt generation timing without sampling (when the falling-edge/rising-edge/both-edge interrupt mode is selected).

Figure 20-5 shows the interrupt generation timing with sampling (when the rising-edge interrupt mode is selected). Figure 20-6 shows the interrupt generation timing in the STOP mode.

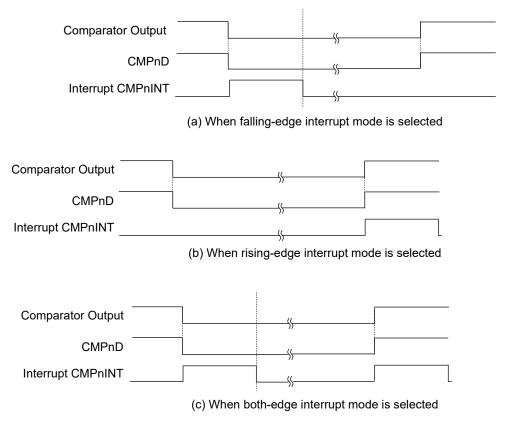



Figure 20-4 Analog Comparator Interrupt Generation Timing (without Sampling)

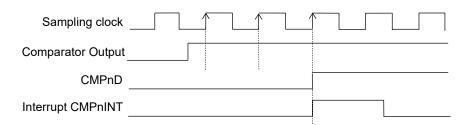
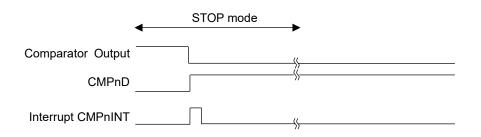
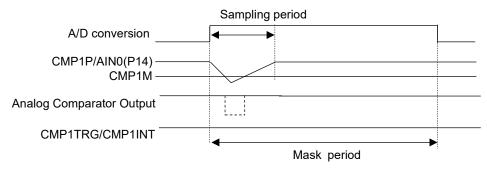
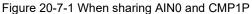



Figure 20-5 Analog Comparator Interrupt Generation Timing (with Sampling, When Rising-edge Interrupt Mode is selected)



Figure 20-6 Analog Comparator Interrupt Generation Timing in STOP Mode (When Falling-edge Interrupt Mode is selected)

#### 20.3.3 Operation when sharing AINn pin and pin

By setting P14 to 8th function, the AIN0 pin and the CMP1P pin can be set to a shared pin. By setting P15 to 8th function, the AIN1 pin and the CMP1M pin can be set to be a shared pin. By setting P16 to 8th function, the AIN2 pin and the CMP2M pin can be set to a shared pin. When the AINn and CMPnP/M pins are in the shared pin state, the analog comparator may respond unintentionally due to voltage fluctuations on the pins when A/D conversion is performed. To prevent unintended output of the analog comparator during A/D conversion, use the CMPnOMASK and CMPnMASKV bits of the CMPnMOD register to mask the output of the analog comparator during A/D conversion.

Figure 20-7-1 shows the operation waveform when AIN0 and CMP1P are used in the shared pin state, and the output of CMP1 is fixed to "H" during A/D conversion by the CMP1MOD register





XSolid line is masked output waveform, dashed line is non-masked output waveform.

Figure 20-7-2 shows the operation waveforms when A/D conversion starts as soon as the analog comparator output goes "L". As shown in the figure, if the analog comparator output before A/D conversion and the output after the analog comparator mask set by the CMPnMASKV bit in the CMPnMOD register are different, the comparator output may propagate as an extremely short pulse waveform. If a pulse waveform is generated, the analog comparator output may not be correctly transmitted inside the LSI.

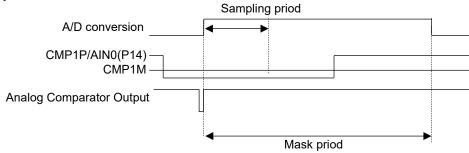



Figure 20-7-2 When sharing AIN0 and CMP1P

#### 20.3.4 To output the analog comparator result from GPIO

Figure 20-8 shows the setting for outputting the output of the analog comparator from the pin.

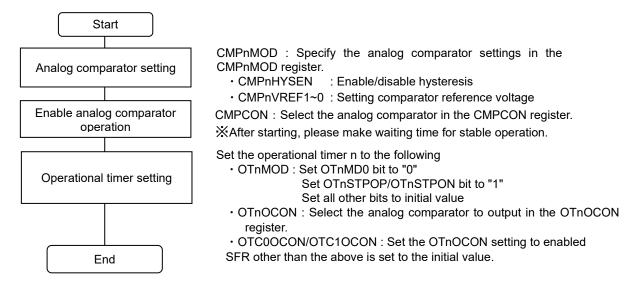


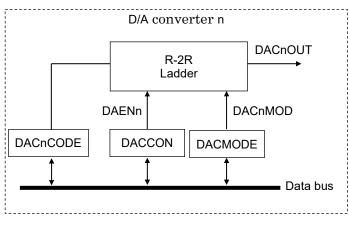

Figure 20-8 Setting to output analog comparator results from GPIO

# **Chapter 21 D/A Converter**

#### 21. D/A Converter

#### 21.1 General Description

This LSI have one channel 8-bit resolution D/A converter that converts digital input signals to analog signals. The number of D/A converter channels is dependent of the product specification. Table 21-1 shows the number of channels.


| Table 21-1                    | Table 21-1 Number of D/A converter channels |                  |  |  |  |  |  |  |  |  |  |
|-------------------------------|---------------------------------------------|------------------|--|--|--|--|--|--|--|--|--|
| Channel                       | Avai                                        | lable            |  |  |  |  |  |  |  |  |  |
| no.                           | 20pin<br>product                            | 24pin<br>product |  |  |  |  |  |  |  |  |  |
| 0                             | •                                           | •                |  |  |  |  |  |  |  |  |  |
| 1                             | •                                           | •                |  |  |  |  |  |  |  |  |  |
| •: Available -: Not available |                                             |                  |  |  |  |  |  |  |  |  |  |

#### 21.1.1 Features

- Number of channels : 2 channels
- 8-bit resolution
- R-2R ladder method
- Reference voltage (VDACREF0/VDACREF1) is selectable from V<sub>DD</sub> or internal reference voltage (0.8V).
- Analog output (DAC0OUT)
  - Output voltage :  $V_{DACREFn} \times (Setting value in SFR)/256 (n=0,1)$
  - Output impedance :  $10k\Omega(Typ.)$

#### 21.1.2 Configuration

Figure 21-1 shows the configuration of the D/A converter.



DACCON : D/A converter control register DACnCODE : D/A converter n code register

DACMODE : D/A converter mode register

CINODE . DIA Converter mode register

\*DAC0OUT is connected to the output pin and the input of the analog comparator. DAC1OUT is connected only to the input of the analog comparator.

Figure 21-1 Configuration of D/A Converter Circuit

#### 21.1.3 List of Pins

The I/O pin (DAC0OUT) of the D/A converter 0 is assigned to the shared function of the general port. The output pin (DAC1OUT) of the D/A converter 1 can only be used as an input of the analog comparator.

| Pin name | I/O | Function               |
|----------|-----|------------------------|
| DAC0OUT  | 0   | D/A converter 0 output |

Table 21-2 shows the list of the general ports used for the D/A converter and the register settings of the ports.

| _ |             | Table 21-2 Ports used in the D/A converter and the register settings |      |              |                     |                  |                  |                  |  |  |  |  |  |  |  |  |
|---|-------------|----------------------------------------------------------------------|------|--------------|---------------------|------------------|------------------|------------------|--|--|--|--|--|--|--|--|
| ľ |             |                                                                      |      |              | Catting             | Satting          | ML62Q20          | )45 group        |  |  |  |  |  |  |  |  |
|   | Channel No. | Pin name                                                             | Shar | ed port      | Setting<br>Register | Setting<br>value | 20pin<br>product | 24pin<br>product |  |  |  |  |  |  |  |  |
| ľ | 0           | DAC0OUT                                                              | P23  | 5th function | P2MOD3              | 0100_0000        | •                | •                |  |  |  |  |  |  |  |  |
|   |             | NI-A                                                                 |      |              |                     |                  |                  |                  |  |  |  |  |  |  |  |  |

Table 21-2 Ports used in the D/A converter and the register settings

•: Available -: Not available

#### [Note]

For GPIO that outputs D/A converter, set the PnmMD2 to 0 bits (m: bit number 0 to 7) of the corresponding port n-mode register m to the 5th function, write "0" to the PnmIE bit and the PnmOE bit, and set it to high impedance (input disabled, output disabled). In other settings, the D/A converter is not output.

### 21.2 Description of Registers

### 21.2.1 List of Registers

| Address | Name                           | Syn      | nbol      | R/W | Size | Initial |
|---------|--------------------------------|----------|-----------|-----|------|---------|
|         | Name                           | Byte     | Byte Word |     | Size | Value   |
| 0xF8A0  | D/A converter control register | DACCON   | -         | R/W | 8    | 0x00    |
| 0xF8A1  | Reserved                       | -        | -         | -   | -    | -       |
| 0xF8A2  | D/A converter mode register    | DACMODE  | -         | R/W | 8    | 0x00    |
| 0xF8A3  | Reserved                       | -        | -         | -   | -    | -       |
| 0xF8A4  | D/A converter 0 code register  | DAC0CODE | -         | R/W | 8    | 0x00    |
| 0xF8A5  | Reserved                       | -        | -         | -   | -    | -       |
| 0xF8A6  | D/A converter 1 code register  | DAC1CODE | -         | R/W | 8    | 0x00    |
| 0xF8A7  | Reserved                       | -        | _         | -   | -    | -       |

#### 21.2.2 D/A Converter Control Register (DACCON)

DACCON is a SFR to control the D/A converter.

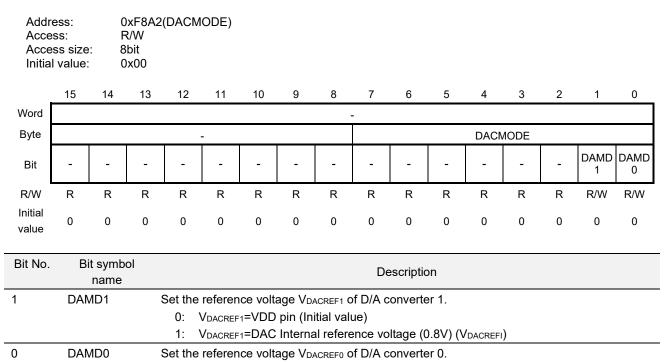
| Addre<br>Acce<br>Acce<br>Initial | H<br>: 8 | )xF8A(<br>R/W<br>3bit<br>)x00 | ) (DACC | ON)     |         |           |         |          |         |           |           |     |     |   |       |       |
|----------------------------------|----------|-------------------------------|---------|---------|---------|-----------|---------|----------|---------|-----------|-----------|-----|-----|---|-------|-------|
| _                                | 15       | 14                            | 13      | 12      | 11      | 10        | 9       | 8        | 7       | 6         | 5         | 4   | 3   | 2 | 1     | 0     |
| Word                             |          |                               |         |         |         |           |         |          | -       |           |           |     |     |   |       |       |
| Byte                             | -        |                               |         |         |         |           |         |          |         |           |           | DAC | CON |   |       |       |
| Bit                              | -        | -                             | -       | -       | -       | -         | -       | -        | -       | -         | -         | -   | -   | - | DAEN1 | DAEN0 |
| R/W                              | R        | R                             | R       | R       | R       | R         | R       | R        | R       | R         | R         | R   | R   | R | R/W   | R/W   |
| Initial<br>value                 | 0        | 0                             | 0       | 0       | 0       | 0         | 0       | 0        | 0       | 0         | 0         | 0   | 0   | 0 | 0     | 0     |
| Bit No.                          |          | t symb<br>name                | ol      |         |         |           |         |          | De      | escriptio | on        |     |     |   |       |       |
| 7 to 2                           | -        |                               |         | Reserve | ed bits |           |         |          |         |           |           |     |     |   |       |       |
| 1                                | DAE      | N1                            |         | Enable  | or disa | ble the   | operati | on of th | e D/A o | convert   | er 1.     |     |     |   |       |       |
|                                  |          |                               |         | 0: Disa |         |           |         |          |         | er 1 (Ini | tial valu | le) |     |   |       |       |
|                                  |          |                               |         | 1: Ena  | ble ope | erating t | he D/A  | conver   | ter 1   |           |           |     |     |   |       |       |
| 0                                | DAE      | N0                            |         | Enable  |         |           | -       |          |         |           |           |     |     |   |       |       |
|                                  |          |                               |         |         |         |           | -       |          |         | er 0 (Ini | tial valu | le) |     |   |       |       |
|                                  |          |                               |         | 1: Ena  | ble ope | erating t | he D/A  | conver   | ter 0   |           |           |     |     |   |       |       |

#### [Note]

For GPIO that outputs D/A converter, set the PnmMD2 to 0 bits (m: bit number 0 to 7) of the corresponding port n-mode register m to the 5th function, write "0" to the PnmIE bit and the PnmOE bit, and set it to high impedance (input disabled, output disabled). In other settings, the converted result of D/A converter does not output.

#### 21.2.3 D/A Converter 0 Code Register (DACCODE) (n=0,1)

DACCODE is a SFR to set the conversion value of the D/A converter 0.


| Address:<br>Access:<br>Access size:<br>Initial value: |                                                                                                                                                                                                                                                                                                                                                    | ا<br>٤ :       | DxF8A<br>R/W<br>3bit<br>Dx00 | 4(DAC00     | CODE), | 0xF8A   | 6(DAC  | 1CODE  | Ξ)      |     |     |      |      |     |         |     |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------|-------------|--------|---------|--------|--------|---------|-----|-----|------|------|-----|---------|-----|
|                                                       | 15                                                                                                                                                                                                                                                                                                                                                 | 14             | 13                           | 12          | 11     | 10      | 9      | 8      | 7       | 6   | 5   | 4    | 3    | 2   | 1       | 0   |
| Word                                                  |                                                                                                                                                                                                                                                                                                                                                    |                |                              |             |        |         |        |        | -       |     |     |      |      |     |         |     |
| Byte                                                  |                                                                                                                                                                                                                                                                                                                                                    |                |                              |             | -      |         |        |        |         |     |     | DACn | CODE |     |         |     |
| Bit                                                   | -                                                                                                                                                                                                                                                                                                                                                  | -              | -                            | -           | -      | -       | -      | -      | d7      | d6  | d5  | d4   | d3   | d2  | d1      | d0  |
| R/W                                                   | R                                                                                                                                                                                                                                                                                                                                                  | R              | R                            | R           | R      | R       | R      | R      | R/W     | R/W | R/W | R/W  | R/W  | R/W | R/W     | R/W |
| Initial<br>value                                      | 0                                                                                                                                                                                                                                                                                                                                                  | 0              | 0                            | 0           | 0      | 0       | 0      | 0      | 0       | 0   | 0   | 0    | 0    | 0   | 0       | 0   |
| Bit No.                                               |                                                                                                                                                                                                                                                                                                                                                    | t symb<br>name | ol                           | Description |        |         |        |        |         |     |     |      |      |     |         |     |
| 7 to 0                                                | d7 to                                                                                                                                                                                                                                                                                                                                              | o d0           |                              | Set the     | output | voltage | of the | D/A co | nverter | n.  |     |      |      |     |         |     |
|                                                       | According to the reference voltage VDACREFn selected in the D/A converter mode re<br>output the voltage according to the calculation formula below.<br>A voltage of V <sub>DACREFn</sub> x DACCODE / 256 is output.<br>0x00: Output Vss (Initial value)<br>0x01 to 0xFF: Output a voltage = V <sub>DACREFn</sub> x (decimal code of DACCODE / 256) |                |                              |             |        |         |        |        |         |     |     |      |      |     | gister, |     |

#### 21.2.4 D/A Converter Mode Register (DACMODE)

0:

1:

DACMODE is a SFR to set the reference voltage  $V_{DACREF0}/V_{DACREF1}$  of the D/A converter.



VDACREF0=DAC Internal reference voltage (0.8V) (VDACREFI)

VDACREF0=VDD pin (Initial value)

#### 21.3 Description of Operation

#### 21.3.1 D/A Converter Operation

Figure 21-2 shows the flow chart to control process of the D/A converter n. Figure 21-3 shows the operation timing chart.

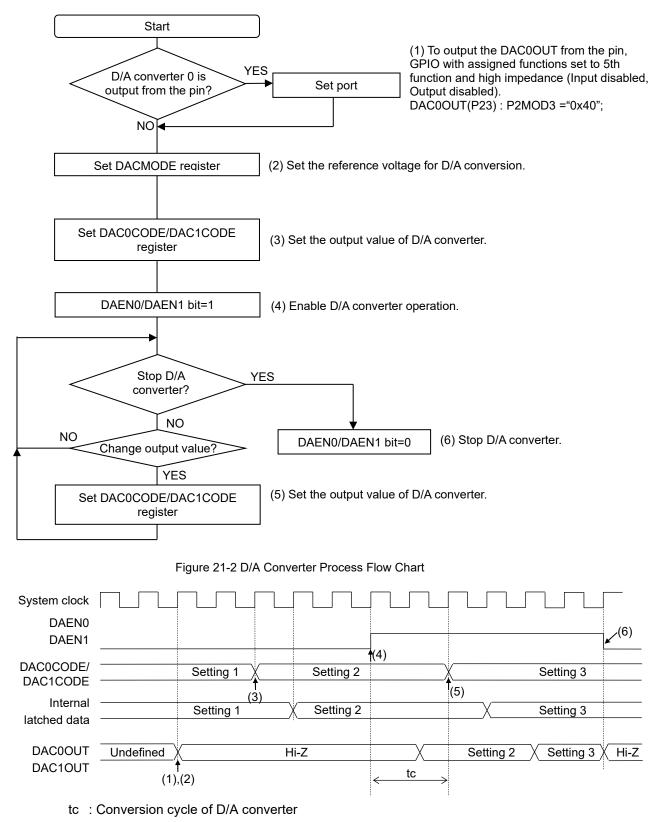
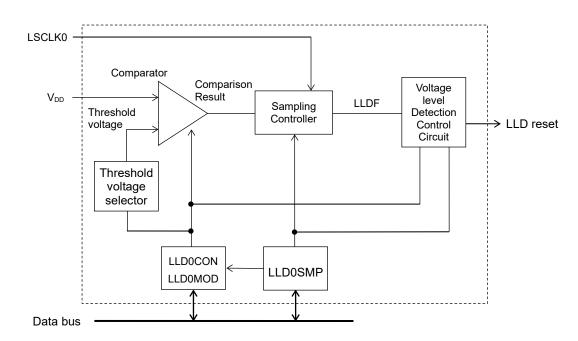



Figure 21-3 D/A Conversion Operation Timing Chart

# Chapter 22 LOW Level Detector

### 22. Low Level Detector

#### 22.1 General Description


This LSI has Low Level Detector (LLD). LLD generates a reset signal when the voltage level of  $V_{DD}$  is lower than threshold voltage.

#### 22.1.1 Features

- ▲ Determine the voltage level of V<sub>DD</sub> and cause reset when low voltage V<sub>DD</sub> is detected
- Initialize by the power-on reset (POR) or pin reset

#### 22.1.2 Configuration

Figure 22-1 shows the configuration of the LLD.



- LLD0CON : Low Level Detector control register
- LLD0MOD : Low Level Detector mode register
- LLD0SMP : Low Level Detector sampling register

Figure 22-1 Configuration of Low Level Detector

### 22.2 Description of Registers

### 22.2.1 List of Registers

| Address | Name                                 | Sym       | bol | R/W    | Size | Initial |  |
|---------|--------------------------------------|-----------|-----|--------|------|---------|--|
| Address | Name                                 | Byte Word |     | FK/ VV | Size | Value   |  |
| 0xF890  | Low Level Detector control register  | LLD0CON   | -   | R/W    | 8    | 0x00    |  |
| 0xF891  | Reserved                             | -         | -   | -      | -    | -       |  |
| 0xF892  | Low Level Detector mode register     | LLD0MOD   | -   | R/W    | 8    | 0x00    |  |
| 0xF893  | Reserved                             | -         | -   | -      | -    | -       |  |
| 0xF894  | Reserved                             | -         | -   | -      | -    | -       |  |
| 0xF895  | Reserved                             | -         | -   | -      | -    | -       |  |
| 0xF896  | Low Level Detector sampling register | LLD0SMP   | -   | R/W    | 8    | 0x00    |  |
| 0xF897  | Reserved                             | _         | -   | -      | -    | -       |  |

#### 22.2.2 Low Level Detector control register (LLD0CON)

LLD0CON is a SFR to control the LLD.

This register is unresetable by anything other than the Power On Reset(POR) and RESETN pin reset.

| Addre<br>Acces<br>Acces<br>Initial | s:<br>s size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F<br>: 8 | )xF890<br>R/W<br>Bbit<br>)x00                                                                                                                                                                                                                                                                                       | (LLD00  | CON)    |         |            |         |   |   |           |           |         |            |       |            |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|------------|---------|---|---|-----------|-----------|---------|------------|-------|------------|
|                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14       | 13                                                                                                                                                                                                                                                                                                                  | 12      | 11      | 10      | 9          | 8       | 7 | 6 | 5         | 4         | 3       | 2          | 1     | 0          |
| Word                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                                                                                                                                                                                                                                                                     |         |         |         |            |         | - |   |           |           |         |            |       |            |
| Byte                               | - LLD0CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                     |         |         |         |            |         |   |   |           |           |         |            |       |            |
| Bit                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -        | -                                                                                                                                                                                                                                                                                                                   | -       | -       | -       | -          | -       | - | - | -         | -         | -       | LLD0R<br>F | LLD0F | LLD0E<br>N |
| R/W                                | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R        | R                                                                                                                                                                                                                                                                                                                   | R       | R       | R       | R          | R       | R | R | R         | R         | R       | R          | R/W   | R/W        |
| Initial<br>value                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0        | 0                                                                                                                                                                                                                                                                                                                   | 0       | 0       | 0       | 0          | 0       | 0 | 0 | 0         | 0         | 0       | 0          | 0     | 0          |
| Bit No.                            | Bit symbol Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                                                                                                                                                                                                                     |         |         |         |            |         |   |   |           |           |         |            |       |            |
| 7 to 3                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                                                                                                                                                                                                                                                                     | Reserve | ed bits |         |            |         |   |   |           |           |         |            |       |            |
| 2                                  | LLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0RF      |                                                                                                                                                                                                                                                                                                                     |         | The LLI | D circu | it is stop | oped or |   | • | stabilize | ed (initi | al valu | ıe)        |       |            |
| 1                                  | LLD0F       Indicate whether the voltage level of VDD is lower than threshold voltage.         When the reset function is enabled by setting LLD0SEL0 bit of LLD0MOD register, a low level detector reset occurs when LLD0F bit becomes "1".         This bit is cleared to "0" by writing "1" to this bit, but not cleared by writing "0".         Also, this bit is cleared to "0" when the LLD starts operating.         0:       The voltage level of VDD is more than threshold voltage or the operation is stopped (initial value) |          |                                                                                                                                                                                                                                                                                                                     |         |         |         |            |         |   |   |           |           |         |            |       |            |
| 0                                  | LLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0EN      | 1: The power voltage (V <sub>DD</sub> ) is lower than the threshold voltage         LLD0EN       Control the LLD operation.         When writing "1" to LLD0EN bit, write "1" to LLD0SEL0 bit of LLD0MOD register as well.         0: Disable operating the LLD (Initial value)         1: Enable operating the LLD |         |         |         |            |         |   |   |           |           |         |            |       | ell.       |

[Note]

• When the LLD is in enable operating (LLD0EN=1) and shift to STOP, make sure that the LLD is in stable operation (LLD0RF bit = 1) before transitioning.

• If a reset other than Power On Reset and pin reset occurs during LLD operation, the LLD maintains its operating state.

#### 22.2.3 Low Level Detector mode register (LLD0MOD)

LLD0MOD is a SFR to controls the operation mode of the LLD. Set this register only when the LLD is stopped (LLD0EN bit of LLD0CON register is "0"). This register is unresetable by anything other than the Power On Reset(POR) and RESETN pin reset.

|                  |           | F<br>: 8        | 0xF892<br>R/W<br>bit<br>0x00 | 2 (LLDON          | MOD)    |         |          |         |    |           |          |         |          |          |          |              |
|------------------|-----------|-----------------|------------------------------|-------------------|---------|---------|----------|---------|----|-----------|----------|---------|----------|----------|----------|--------------|
|                  | 15        | 14              | 13                           | 12                | 11      | 10      | 9        | 8       | 7  | 6         | 5        | 4       | 3        | 2        | 1        | 0            |
| Word             |           |                 |                              |                   |         |         |          |         | -  |           |          |         |          |          |          |              |
| Byte             | - LLD0MOD |                 |                              |                   |         |         |          |         |    |           |          |         |          |          |          |              |
| Bit              | -         | -               | -                            | -                 | -       | -       | -        | -       | -  | -         | -        | -       | -        | -        | rsvd     | LLD0S<br>EL0 |
| R/W              | R         | R               | R                            | R                 | R       | R       | R        | R       | R  | R         | R        | R       | R        | R        | R/W      | R/W          |
| Initial<br>value | 0         | 0               | 0                            | 0                 | 0       | 0       | 0        | 0       | 0  | 0         | 0        | 0       | 0        | 0        | 0        | 0            |
| Bit No.          | Bi        | it symb<br>name | ol                           |                   |         |         |          |         | De | escriptio | on       |         |          |          |          |              |
| 7 to 2           | -         |                 |                              | Reserve           | ed bits |         |          |         |    |           |          |         |          |          |          |              |
| 1                | rsvd      | l               |                              | Reserve<br>Always |         | )".     |          |         |    |           |          |         |          |          |          |              |
| 0                | LLD       | 0SEL0           |                              | Control           | s Disab | le / En | able LL  | D reset |    |           |          |         |          |          |          |              |
|                  |           |                 |                              |                   | on".    | eset fu | nction ( |         |    | reset o   | ccurs, s | see Seo | ction 22 | 2.3 "De: | scriptio | n of         |

#### [Note]

When the LLD is in the enabled state (LLD0EN=1) and the STOP mode is shifted, make sure that the LLD is in stable operation (LLD0RF bit = 1) before shifting.

### 22.2.4 Low Level Detector sampling register (LLD0SMP)

LLD0SMP is a SFR to execute the sampling of judgment result. Set this register only when the LLD is stopped (LLD0EN bit of LLD0CON register is "0"). This register is unresetable by anything other than the Power On Reset(POR) and RESETN pin reset.

| Acce<br>Acce | ddress: 0xF896 (LLD0SMP)<br>ccess: R/W<br>ccess size: 8bit<br>itial value: 0x00 |        |        |    |    |        |        |        |        |        |              |       |       |        |        |        |  |  |
|--------------|---------------------------------------------------------------------------------|--------|--------|----|----|--------|--------|--------|--------|--------|--------------|-------|-------|--------|--------|--------|--|--|
|              | 15                                                                              | 14     | 13     | 12 | 11 | 10     | 9      | 8      | 7      | 6      | 5            | 4     | 3     | 2      | 1      | 0      |  |  |
| Word         |                                                                                 |        |        |    |    |        |        |        | -      |        |              |       |       |        |        |        |  |  |
| Byte         |                                                                                 |        |        |    |    |        |        |        |        |        | LLD0SMP      |       |       |        |        |        |  |  |
|              |                                                                                 |        |        |    |    |        |        |        |        |        |              | LLDC  | SMP   |        |        |        |  |  |
| Bit          | -                                                                               | -      | -      | -  | -  | -      | -      | -      | -      | -      | LLD0D<br>IV1 |       |       | -      | -      | -      |  |  |
| Bit<br>R/W   | -<br>R                                                                          | -<br>R | -<br>R |    |    | -<br>R | -<br>R | -<br>R | -<br>R | -<br>R |              | LLD0D | LLD0S | -<br>R | -<br>R | -<br>R |  |  |

| Bit No | Bit symbol<br>name | Description                                                       |
|--------|--------------------|-------------------------------------------------------------------|
| 7 to 6 | -                  | Reserved bits                                                     |
| 5 to 4 | LLD0DIV1 to        | Select frequency dividing ratio for the sampling clock.           |
|        | LLD0DIV0           | 00: No dividing (Initial value)                                   |
|        |                    | 01: 1/2 of the sampling clock source                              |
|        |                    | 00: 1/4 of the sampling clock source                              |
|        |                    | 01: 1/8 of the sampling clock source                              |
| 3      | LLD0SM1            | Select the sampling clock source for detecting the voltage level. |
|        |                    | 0: No sampling (Initial value)                                    |
|        |                    | 1: Sampling with LSCLK0                                           |
| 2 to 0 | -                  | Reserved bits                                                     |

#### [Note]

• During STOP, this register is set "no sampling" regardless of LLD0SM1 bit setting.

#### 22.3 Description of Operation

LLD monitors the voltage level of  $V_{DD}$  and generates an LLD reset when  $V_{DD}$  falls below the threshold voltage. Refer to the data sheet for the characteristics of the threshold voltage when the power supply voltage is falling or rising.

#### 22.3.1 Operation setting procedure

During LLD operation, the voltage level of  $V_{DD}$  is constantly monitored and outputs a reset when a low voltage is detected.

Figure 22-2 shows the flow chart for starting the LLD.

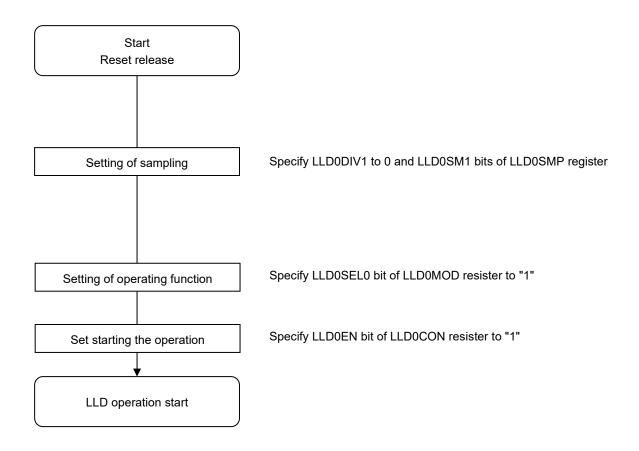



Figure 22-2 Flow chart for starting the LLD and enabling reset

### 22.3.1.1 Reset Output

Figure 22-3 shows the operating time chart when set to no sampling.

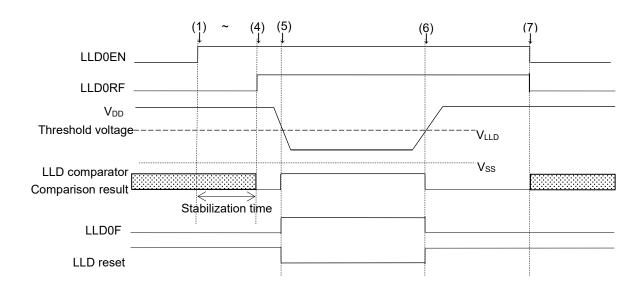



Figure 22-3 Operation Timing Chart When the LLD Reset Output without Sampling is specified

The operation shown in Figure 22-3 is described below:

- (1) Choose "No sampling" by the LLD0SM1 bit of LLD0SMP register.
- (2) Write "0x1" to LLD0SEL0 bit of the LLD0MOD register in order to enable the LLD reset.
- (3) Set the LLD0EN bit of the LLD0CON register to "1".
- (4) After approximately 300µs passed, the detection result of LLD becomes stabilized and the LLD0RF bit of the LLD0CON register is set to "1" (value of the voltage level supervisor bit (LLD0F) is read in software) (\*1).
- (5) When the power voltage (V<sub>DD</sub>) becomes below the threshold voltage V<sub>LLD</sub>, the LLD0F bit is set to "1" to generate the LLD reset.
- (6) If V<sub>DD</sub> becomes equal to or above the threshold voltage (V<sub>LLD</sub>), the LLD0F bit is cleared to "0" to release the LLD reset.
- (7) Write "0" to the LLD0EN bit to disable LLD operation.
  - \*1: The LLD0F bit/reset is masked until the LLD0RF bit becomes "1".

Figure 22-4 shows the operation timing chart when the LLD reset output with sampling is specified.

Figure 22-4 Operation Timing Chart When the LLD Reset Output with Sampling is specified

The operation shown in Figure 22-4 is described below:

- (1) Select "Sampling with LLD0SM1" by the LLD0SM1 bit of LLD0SMP register. And specify sampling clock dividing ratio by the LLD0DIV1 to LLD0DIV0 bits of the LLD0SMP register.
- (2) Write "0x1" to LLD0SEL0 bit of the LLD0MOD register in order to enable the LLD reset.
- (3) Write "1" to the LLD0EN bit to enable LLD operation.
- (4) Wait until the comparison result of the LLD comparator is stabilized (approx. 300µs).
- (5)  $V_{DD}$  becomes below the threshold voltage ( $V_{LLD}$ ).
- (6) Once the comparison result of the LLD comparator is stabilized, the LLD0RF bit is set to "1" after three cycles of the sampling clock.
- (7) If the comparison result of the LLD comparator is below the threshold voltage (V<sub>LLDF</sub>) and this condition continues for the duration of three cycles or more of the sampling clock, the LLD0F bit is set to "1" and the LLD reset is generated.
- (8) If the comparison result of the LDD comparator is equal to or above the threshold voltage (V<sub>LLD</sub>) and this condition continues for the duration of three cycles or more of the sampling clock, the LLD0F bit is cleared to "0" and the LLD reset is canceled.
- (9) Write "0" to the LLD0EN bit to disable LLD operation.

#### [Note]

It is impossible to change to STOP mode during the LLD stabilization time. When changing to STOP mode after LLD starting, make sure that the LLD0RF bit is set to "1" before changing STOP mode.

# Chapter 23 Successive Approximation Type A/D Converter

### 23. Successive Approximation Type A/D Converter

#### 23.1 General Description

This LSI has the Successive Approximation type A/D Converter (SA-ADC), converts an analog input level to a digital value.

The number of A/D Converter channels is dependent of the product specification. Table 23-1 shows the number of channels.

| la      | Table 23-1 Number of A/D Converter channels |       |  |  |  |  |  |  |  |  |  |  |  |
|---------|---------------------------------------------|-------|--|--|--|--|--|--|--|--|--|--|--|
| Channel | Avai                                        | lable |  |  |  |  |  |  |  |  |  |  |  |
| no.     | 20pin                                       | 24pin |  |  |  |  |  |  |  |  |  |  |  |
| 0       | •                                           | •     |  |  |  |  |  |  |  |  |  |  |  |
| 1       | •                                           | •     |  |  |  |  |  |  |  |  |  |  |  |
| 2       | •                                           | •     |  |  |  |  |  |  |  |  |  |  |  |
| 3       | •                                           | •     |  |  |  |  |  |  |  |  |  |  |  |
| 4       | •                                           | •     |  |  |  |  |  |  |  |  |  |  |  |

•: Available -: Not available

#### 23.1.1 Features

- Resolution : 12bit
- Conversion time : Channel 0 to 4 : Min. 1.375µs/channel (conversion clock is 16MHz)
- Channel 16 (Temperature sensor) : Min. 10.5µs
- Channel 17(PGA) : Min. 8.000µs
- Number of input channel : Pin 5 channels + Internal 2 channels
- Available temperature conversion function
- AIN input voltage can be amplified in PGA and can be A/D conversion.
- Reference voltage : Voltage input from the VDD pin, Internal reference voltage (approx. 2.5V)
- Sampling time can be chosen
- Consecutive scan conversion function for target channels
- Consecutive scan conversion with a specific interval time
- One conversion result register for each channel
- A built-in temperature sensor usable for the low-speed RC oscillation adjustment
- A/D converter self test function (full scale, zero scale, A/D conversion function of ADC internal reference voltage(2.5V))
- Following triggers is available to start the A/D conversion
  - 16 bit timer 0 interrupt (TM0INT),
  - Operational timer n trigger (OTM0TRG~OTM5TRG)

### 23.1.2 Configuration

Figure 23-1 shows the configuration of SA-ADC.

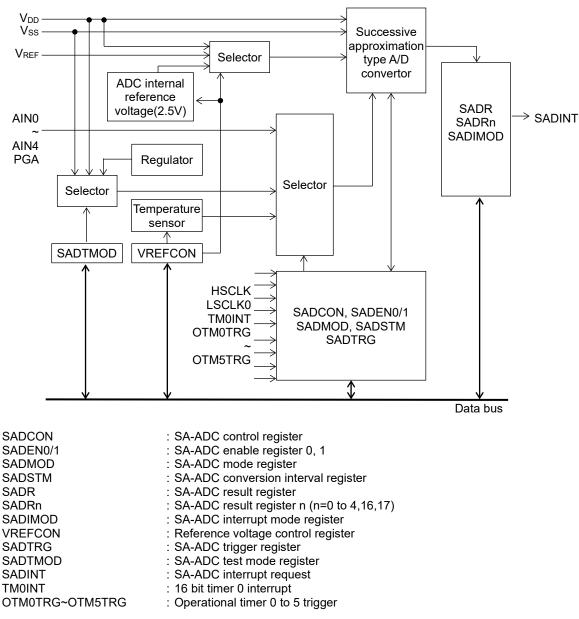



Figure 23-1 Configuration of successive approximation type A/D Converter

### 23.1.3 List of Pins

The I/O pins of the Successive Approximation type A/D converter are assigned to the shared function of the general ports.

| Pin name | I/O | Description                      |
|----------|-----|----------------------------------|
| VDD      | -   | Positive power supply for SA-ADC |
| VSS      | -   | Negative power supply for SA-ADC |
| AIN0     | Ι   | SA-ADC channel 0 analog input    |
| AIN1     | Ι   | SA-ADC channel 1 analog input    |
| AIN2     | Ι   | SA-ADC channel 2 analog input    |
| AIN3     | I   | SA-ADC channel 3 analog input    |
| AIN4     | I   | SA-ADC channel 4 analog input    |

Table 23-2 shows the list of the general ports used for the A/D Converter and the register settings of the ports.

| Channel no. | Pin name |                    | Shared port    | Setting Register | Setting value           | Available/<br>unavailable |                    |  |  |  |  |  |
|-------------|----------|--------------------|----------------|------------------|-------------------------|---------------------------|--------------------|--|--|--|--|--|
| ondimorno.  |          |                    | charoa port    |                  | •                       | ML62Q2033<br>/2035        | ML62Q2043<br>/2045 |  |  |  |  |  |
| 0           | AIN0     | P14                | 6/8th function | P1MOD4           | 0101_0000<br>/0111_0000 | •                         | •                  |  |  |  |  |  |
| 1           | AIN1     | P15                | 6/8th function | P1MOD5           | 0101_0000<br>/0111_0000 | •                         | •                  |  |  |  |  |  |
| 2           | AIN2     | P16                | 6/8th function | P1MOD6           | 0101_0000<br>/0111_0000 | •                         | •                  |  |  |  |  |  |
| 3           | AIN3     | P17 6/8th function |                | P1MOD7           | 0101_0000<br>/0111_0000 | •                         | •                  |  |  |  |  |  |
| 4           | AIN4     | P13                | 6/8th function | P1MOD3           | 0101_0000<br>/0111_0000 | •                         | •                  |  |  |  |  |  |
| 4           | AIN4     | P20                | 6/8th function | P2MOD0           | 0101_0000<br>/0111_0000 | -                         | •                  |  |  |  |  |  |

Table 23-2 Ports used in the A/D Converter and the register settings

#### [Note]

 When using the SA-ADC, set PnmMD2 to 0 bit to the 6th or 8th function of port n mode register 01/23/45/67 (n: port number 1, 2 m: bit number 0 to 7) and set PnmIE bit and PnmOE bit to "0" as "Disable input" and "Disable output", otherwise a shoot-through current may flow.

 While the A/D converter is operating, an influence of the noise is reducible by preventing the switching of neighboring pins or A/D converting in the HALT mode.

• When using AIN4, if both P13 and P20 are set to the 6th or 8th function, the input from P13 becomes AIN4 input. Input from P20 will be disabled.

### 23.2 Description of Registers

### 23.2.1 List of Registers

| Address          | Nama                                                    | Syn              | nbol   | R/W | Size | Initial |
|------------------|---------------------------------------------------------|------------------|--------|-----|------|---------|
| Address          | Name                                                    | Byte             | Word   |     | Size | value   |
| 0xF800           |                                                         | SADMODL          | CADMOD | R/W | 8/16 | 0x30    |
| 0xF801           | SA-ADC mode register                                    | SADMODH          | SADMOD | R/W | 8    | 0x00    |
| 0xF802           |                                                         | SADCONL          |        | R/W | 8/16 | 0x00    |
| 0xF803           | <ul> <li>SA-ADC control register</li> </ul>             | SADCONH          | SADCON | R/W | 8    | 0x00    |
| 0xF804           |                                                         | SADSTML          | CADOTM | R/W | 8/16 | 0x00    |
| 0xF805           | <ul> <li>SA-ADC conversion interval register</li> </ul> | SADSTMH          | SADSTM | R/W | 8    | 0x00    |
| 0xF806           | Reference voltage control register                      | VREFCON          | -      | R/W | 8    | 0x00    |
| 0xF807           | Reserved                                                | -                | -      | -   | -    | -       |
| 0xF808           | SA-ADC interrupt mode register                          | SADIMOD          | -      | R/W | 8    | 0x00    |
| 0xF809           | Reserved                                                | -                | -      | -   | -    | -       |
| 0xF80A           | SA-ADC trigger register                                 | SADTRG           | -      | R/W | 8    | 0x00    |
| 0xF80B           | Reserved                                                | -                | -      | -   | -    | -       |
| 0xF80C           |                                                         | SADEN0L          |        | R/W | 8/16 | 0x00    |
| 0xF80D           | <ul> <li>SA-ADC enable register 0</li> </ul>            | SADEN0H          | SADEN0 | R/W | 8    | 0x00    |
| 0xF80E           |                                                         | SADEN1L          |        | R/W | 8/16 | 0x00    |
| 0xF80F           | SA-ADC enable register 1                                | SADEN1H          | SADEN1 | R/W | 8    | 0x00    |
| 0xF810           |                                                         |                  |        |     |      |         |
| ~<br>0xF82F      | Reserved                                                | -                | -      | -   | -    | -       |
| 0xF830           | SA-ADC test mode register                               | SADTMOD          | -      | R/W | 8    | 0x00    |
| 0xF831           |                                                         |                  |        |     |      |         |
| ~<br>0xF83D      | Reserved                                                | -                | -      | -   | -    | -       |
| 0xF83D<br>0xF83E |                                                         | SADRL            |        | R   | 8/16 | 0x00    |
| 0xF83F           | SA-ADC result register                                  | SADRH            | SADR   | R   | 8    | 0x00    |
| 0xF840           |                                                         | SADROL           |        | R   | 8/16 | 0x00    |
| 0xF841           | SA-ADC result register 0                                | SADROL           | SADR0  | R   | 8    | 0x00    |
| 0xF842           |                                                         | SADR1L           |        | R   | 8/16 | 0x00    |
| 0xF843           | SA-ADC result register 1                                | SADR1H           | SADR1  | R   | 8    | 0x00    |
| 0xF844           |                                                         | SADR11           |        | R   | 8/16 | 0x00    |
| 0xF845           | SA-ADC result register 2                                | SADR2H           | SADR2  | R   | 8    | 0x00    |
| 0xF846           |                                                         | SADR211          |        | R   | 8/16 | 0x00    |
| 0xF847           | SA-ADC result register 3                                | SADR3L<br>SADR3H | SADR3  | R   | 8    | 0x00    |
| 0xF848           |                                                         | SADR3H<br>SADR4L |        | R   | 8/16 | 0x00    |
| 0xF849           | SA-ADC result register 4                                | SADR4L<br>SADR4H | SADR4  | R   | 8    | 0x00    |
| 0xF84A           |                                                         |                  |        |     | 0    | 0,00    |
| 0xF85F           | Reserved                                                | -                | -      | -   | -    | -       |
| 0xF85F           |                                                         | SADR16L          |        | R   | 8/16 | 0x00    |
| 0xF861           | SA-ADC result register 16                               | SADR16H          | SADR16 | R   | 8    | 0x00    |
| 0xF862           |                                                         | SADR1011         |        | R   | 8/16 | 0x00    |
| 0xF863           | - SA-ADC result register 17                             | SADR17E          | SADR17 | R   | 8    | 0x00    |
|                  |                                                         | JADRITI          |        | 11  | 0    | 0,00    |

### 23.2.2 SA-ADC Mode Register (SADMOD)

SADMOD is a SFR to set an operation mode and operating clock frequency for SA-ADC.

|                  |                        | R/<br>e: 8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (F800 (<br>/W<br>16 bit<br>(0030 | SADMO                                  | ODL/SA                                                             | DMOD                                       | 9), 0xF8                                | 301 (SA                                       | DMOD                                    | H)                           |                       |                    |        |         |       |      |
|------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------|------------------------------|-----------------------|--------------------|--------|---------|-------|------|
| _                | 15                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                               | 12                                     | 11                                                                 | 10                                         | 9                                       | 8                                             | 7                                       | 6                            | 5                     | 4                  | 3      | 2       | 1     | 0    |
| Word             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                        |                                                                    |                                            |                                         | SAE                                           | MOD                                     |                              |                       |                    |        |         |       |      |
| Byte             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                        | NODH                                                               |                                            |                                         |                                               |                                         |                              |                       | SAD                | MODL   |         | -     |      |
| Bit              | SAINIT<br>T3           | SAINIT<br>T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAINIT<br>T1                     | SAINIT<br>T0                           | SAINIT                                                             | -                                          | -                                       | -                                             | SASHT<br>3                              | SASHT<br>2                   | SASHT                 | SASHT<br>0         | SACK2  | SACK1   | SACK0 | SALP |
| R/W              | R/W                    | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R/W                              | R/W                                    | R/W                                                                | R                                          | R                                       | R                                             | R/W                                     | R/W                          | R/W                   | R/W                | R/W    | R/W     | R/W   | R/W  |
| Initial<br>value | 0                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                | 0                                      | 0                                                                  | 0                                          | 0                                       | 0                                             | 0                                       | 0                            | 1                     | 1                  | 0      | 0       | 0     | 0    |
| Bit No.          | Bit symbol Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                        |                                                                    |                                            |                                         |                                               |                                         |                              |                       |                    |        |         |       |      |
| 15 to 12         |                        | SAINITT3 to       Configures amplifier stability time at conversion starting.         SAINITT0       wait time for stability [s] = setting value / SAD_CLK frequency         This time should be equal or more than 0.5[µs]       When SAINIT="1", it is included discharge time for sample hold capacitor.         In this case, this time should be equal or more than 0.65[µs]. Make decision on the value wit         external impedance of input pin.         Table 23-3 shows example for typical setting.                                                                                                                                                         |                                  |                                        |                                                                    |                                            |                                         |                                               |                                         |                              |                       |                    |        |         |       |      |
| 11               | SAI                    | NIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | capacito<br>0: W                       | whethe<br>or on the<br>ithout d<br>ith disch                       | e previ<br>scharg                          | ous A/[<br>ging (In                     | D conve                                       | ersion, b                               |                              |                       |                    |        |         |       | I.   |
| 10 to 8          | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | Reserve                                | ed bits                                                            |                                            |                                         |                                               |                                         |                              |                       |                    |        |         |       |      |
| 7 to 4           |                        | SHT3 to<br>SHT0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | samp<br>Set the<br>When A<br>samplin   |                                                                    | e [s] = (<br>g time<br>/ersior<br>s set to | (setting<br>to mor<br>of PG<br>oless t  | e than<br>A Input<br>han 7[µ                  | 0.5[µs],<br>and ter<br>s], the s        | and th<br>mperatu<br>samplin | e settin<br>ure con   | g value<br>version | are pe | erforme |       |      |
| 3 to 1           |                        | sampling time is set to less than 7[µs], the sampling time is fixed to 7[µs].<br>Table 23-4 shows example for typical setting.         SACK2 to       Select the frequency of the A/D conversion operating clock (SAD_CLK).<br>If 1/1 x HSCLK is set in the SAD_CLK, it will automatically switch to 1/2 x HSCLK only whet<br>temperature conversion is in progress.<br>000: 1/1 x HSCLK (Initial value)<br>001: 1/2 x HSCLK<br>010: 1/4 x HSCLK<br>010: 1/4 x HSCLK<br>011: 1/8 x HSCLK<br>100: 1/16 x HSCLK<br>101: Do not use<br>110: Do not use<br>111: 1/1 x LSCLK0<br>The following formula is calculated A/D conversion time without discharge/amp. stability tim |                                  |                                        |                                                                    |                                            |                                         |                                               |                                         |                              |                       |                    |        |         |       |      |
| 0                | SAL                    | .P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                | Select v<br>channe<br>convers<br>0: Si | version<br>vhether<br>l or cons<br>sion moo<br>ngle A/E<br>onsecut | the A/I<br>secutiv<br>le is sp<br>) conve  | D conv<br>ely. Th<br>becified<br>ersion | ersion i<br>e conve<br>l in the<br>(Initial \ | s perfor<br>ersion ir<br>SADST<br>alue) | med or<br>nterval f          | nce only<br>time in t | / for ea           | h      |         |       |      |

#### ML62Q2033/2035/2043/2045 User's Manual Chapter 23 Successive Approximation Type A/D Converter

#### Table 23-3 Example for SAINITT3 to 0 setting

| Table 23-3 Example for SAIN     | T I S to U setting                                                                               |
|---------------------------------|--------------------------------------------------------------------------------------------------|
| SAINITT3 to 0                   | SAINITT3 to 0                                                                                    |
| SAINIT=1                        | SAINIT=0                                                                                         |
| (Discharge time/Amp. stability) | (Amp. stability)                                                                                 |
|                                 |                                                                                                  |
| > 0.65µs                        | > 0.5µs                                                                                          |
| 1010                            | 1000                                                                                             |
| 0101                            | 0100                                                                                             |
| 0011                            | 0010                                                                                             |
| 0010                            | 0010                                                                                             |
|                                 | SAINITT3 to 0<br>SAINIT=1<br>(Discharge time/Amp. stability)<br>> 0.65µs<br>1010<br>0101<br>0011 |

#### Table 23-4 Example for SASHT3 to 0 setting

|             | SASHT3 to 0                                |                           |  |  |  |  |  |  |  |  |  |  |
|-------------|--------------------------------------------|---------------------------|--|--|--|--|--|--|--|--|--|--|
|             | (Sampling time)                            |                           |  |  |  |  |  |  |  |  |  |  |
| SAD_CLK     | ADC internal<br>reference<br>voltage(2.5V) | V <sub>DD</sub> reference |  |  |  |  |  |  |  |  |  |  |
| 16 MHz      | _*1                                        | 0111                      |  |  |  |  |  |  |  |  |  |  |
| Up to 8 MHz | 0011                                       | 0011                      |  |  |  |  |  |  |  |  |  |  |

\*1: When the ADC internal reference voltage (2.5V) is selected as the reference voltage to be used for ADC conversion (VREFP0 bit in the VREFCON register = 1),16 MHz is not allowed to be set to SAD\_CLK. If set, the conversion result cannot be guaranteed.

### 23.2.3 SA-ADC Control Register (SADCON)

SADCON is a SFR to control the operation of the A/D converter.

|                  |     | R/<br>: 8/      |    | SADCC                                     | ONL/SA                                                                   | DCON)                                                   | ), 0xF8(                         | 03 (SAI                                                 | DCONH                         | 1)                              |          |          |      |   |            |           |
|------------------|-----|-----------------|----|-------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|---------------------------------------------------------|-------------------------------|---------------------------------|----------|----------|------|---|------------|-----------|
|                  | 15  | 14              | 13 | 12                                        | 11                                                                       | 10                                                      | 9                                | 8                                                       | 7                             | 6                               | 5        | 4        | 3    | 2 | 1          | 0         |
| Word             |     |                 |    |                                           |                                                                          |                                                         |                                  | SAD                                                     | CON                           |                                 |          |          |      |   |            |           |
| Byte             |     |                 |    | SADO                                      | CONH                                                                     |                                                         |                                  |                                                         |                               |                                 |          | SAD      | CONL |   |            |           |
| Bit              | -   | -               | -  | -                                         | -                                                                        | -                                                       | -                                | -                                                       | -                             | -                               | -        | -        | -    | - | SATGE<br>N | SARU<br>N |
| R/W              | R   | R               | R  | R                                         | R                                                                        | R                                                       | R                                | R                                                       | R                             | R                               | R        | R        | R    | R | R/W        | R/W       |
| Initial<br>value | 0   | 0               | 0  | 0                                         | 0                                                                        | 0                                                       | 0                                | 0                                                       | 0                             | 0                               | 0        | 0        | 0    | 0 | 0          | 0         |
| Bit No.          | Bi  | it symb<br>name | ol |                                           |                                                                          |                                                         |                                  |                                                         | De                            | escriptio                       | on       |          |      |   |            |           |
| 15 to 2          | -   |                 | F  | Reserve                                   | ed bits                                                                  |                                                         |                                  |                                                         |                               |                                 |          |          |      |   |            |           |
| 1                | SAT | GEN             | E  |                                           | sable tł                                                                 | ne trigg                                                | D conve<br>er opera<br>er opera  | ation (I                                                |                               |                                 | vents.   |          |      |   |            |           |
| 0                | SAR | RUN             |    | ended, t<br>When "'<br>he softw<br>0: Ste | " to this<br>)" is wr<br>this SA<br>1" is wr<br>ware.<br>op the <i>i</i> | s bit to s<br>itten to<br>RUN bi<br>itten to<br>A/D cor | start the<br>SALP b<br>t is auto | e A/D co<br>pit and<br>comatica<br>the A/D<br>n (Initia | the A/D<br>ally rese<br>conve | conver<br>et to "0"<br>rsion re | rsion or | n the la | -    |   | of chan    |           |

[Note]

• Start the A/D conversion with one or more channels chosen by the SA-ADC enable registers (SADEN0 and SADEN1). If no channel is chosen, the operation does not start.

 Enter STOP mode after checking SARUN bit is "0". It does not enter the STOP mode when SARUN bit is "1".

• When SACK2 to 0 bits are set to 0x7, it takes max. 3 clocks of the low-speed clock (LSCLK0) to start or stop the A/D conversion after setting or resetting SARUN bit.

### 23.2.4 SA-ADC Conversion Interval Register (SADSTM)

SADSTM is a SFR to set the interval time in the consecutive scan A/D conversion mode.

| Address :0xF804 (SADSTML/SADSTM), 0xF805 (SADSTMH)Access :R/WAccess size :8/16 bitInitial value :0x0000 |              |              |              |              |              |              |             |             |             |             |             |             |             |             |             |             |
|---------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                                                                                         | 15           | 14           | 13           | 12           | 11           | 10           | 9           | 8           | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
| Word                                                                                                    |              | SADSTM       |              |              |              |              |             |             |             |             |             |             |             |             |             |             |
| Byte                                                                                                    |              |              |              | SADS         | бтмн         |              |             |             |             |             |             | SADS        | STML        |             |             |             |
| Bit                                                                                                     | SADST<br>M15 | SADST<br>M14 | SADST<br>M13 | SADST<br>M12 | SADST<br>M11 | SADST<br>M10 | SADST<br>M9 | SADST<br>M8 | SADST<br>M7 | SADST<br>M6 | SADST<br>M5 | SADST<br>M4 | SADST<br>M3 | SADST<br>M2 | SADST<br>M1 | SADST<br>M0 |
| R/W                                                                                                     | R/W          | R/W          | R/W          | R/W          | R/W          | R/W          | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         |
| Initial<br>value                                                                                        | 0            | 0            | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |

The interval time is determined by the following formula.

A/D conversion interval time = HSCLK cycle x SADSTM setting value

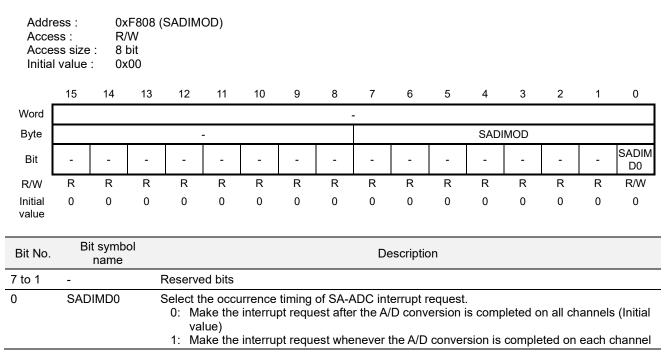
For an example, supposing to A/D convert channel 2 and channel 5, the A/D conversion interval time means the time after the channel 2 and channel 5 are A/D converted consecutively and before the A/D conversion of channel 2 is started. The next A/D conversion starts at the timing that the value set in this register has been counted with SAD CLK.

#### [Note]

## If only temperature conversion is enabled and the SAD\_CLK is set to 1/1 x HSCLK, the SAD\_CLK period used for the conversion interval for A/D conversion will be 1/2 x HSCLK.

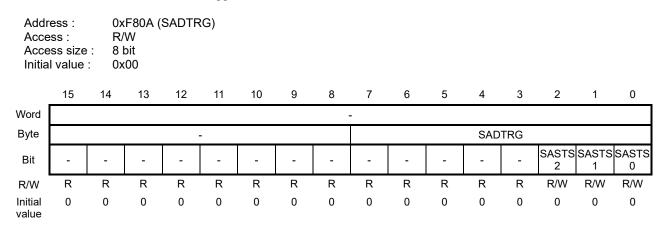
### 23.2.5 Reference Voltage Control Register (VREFCON)

VREFCON is a SFR to select reference voltage for the SA-ADC.


|                  |                                                                                                                                                                                                                                                                                                                                                                                                                              | R/<br>e: 81     | Ŵ. | VREFC                       | ON)       |    |   |                  |         |           |    |            |   |   |   |            |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|-----------------------------|-----------|----|---|------------------|---------|-----------|----|------------|---|---|---|------------|--|--|
| _                | 15                                                                                                                                                                                                                                                                                                                                                                                                                           | 14              | 13 | 12                          | 11        | 10 | 9 | 8                | 7       | 6         | 5  | 4          | 3 | 2 | 1 | 0          |  |  |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |    |                             |           |    |   |                  | -       |           |    |            |   |   |   |            |  |  |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |    |                             | -         |    |   |                  | VREFCON |           |    |            |   |   |   |            |  |  |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                            | -               | -  | -                           | -         | -  | - | -                | -       | -         | -  | VREFP<br>0 | - | - | - | VREFE<br>N |  |  |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                            | R               | R  | R                           | R         | R  | R | R                | R       | R         | R  | R/W        | R | R | R | R/W        |  |  |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                            | 0               | 0  | 0                           | 0         | 0  | 0 | 0                | 0       | 0         | 0  | 0          | 0 | 0 | 0 | 0          |  |  |
| Bit No.          | В                                                                                                                                                                                                                                                                                                                                                                                                                            | it symb<br>name | ol |                             |           |    |   |                  | De      | escriptio | on |            |   |   |   |            |  |  |
| 7 to 5           | -                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | F  | Reserve                     | ed bits   |    |   |                  |         |           |    |            |   |   |   |            |  |  |
| 4                | VRE                                                                                                                                                                                                                                                                                                                                                                                                                          | EFP0            | ŝ  | Select tl<br>0: Vd<br>1: VR | d pin (Ir |    |   | for the <i>i</i> | A/D cor | nversior  | า. |            |   |   |   |            |  |  |
| 3 to 1           | -                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | F  | Reserve                     | ed bits   |    |   |                  |         |           |    |            |   |   |   |            |  |  |
| 0                | VREFEN       Enable the operation of the ADC internal reference voltage (2.5 V) and temperature sensor When using the ADC internal reference voltage (2.5 V) and using the temperature sensor circuit, set the VREFEN bit to "1".         0: Disable the operation of internal reference voltage and temperature sensor (Initial value)         1: Enable the operation of internal reverence voltage and temperature sensor |                 |    |                             |           |    |   |                  |         |           |    | nsor       |   |   |   |            |  |  |

[Note]

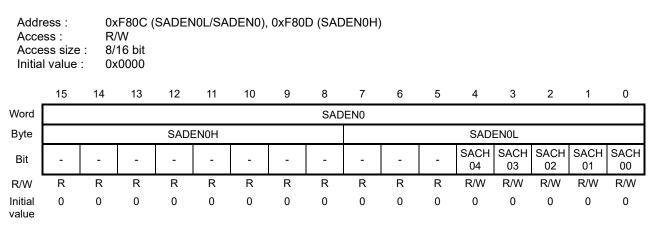
 After VREFEN bit is set to "1", it takes 200µs (Max.) for the ADC internal reference voltage (2.5 V) to stabilize. A/D conversion should be started after this stabilization time has elapsed.
 VREFEN bit is set to "1" and remains stable after 200µs until it is disabled. Therefore, there is no need to wait for 200µs (Max.) again when A/D conversion.


### 23.2.6 SA-ADC Interrupt Mode Register (SADIMOD)

SADIMOD is a SFR to select the interrupt mode of the SA-ADC.



### 23.2.7 SA-ADC Trigger Register (SADTRG)


SADTRG is a SFR to control the trigger event for the SA-ADC.



| Bit No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|---------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 7 to 3  | -                   | Reserved bits                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 2 to 0  | SASTS2 to<br>SASTS0 | Select the source of the A/D conversion start trigger.000:16 bit timer 0 interrupt (TM0INT) (initial value)001:Operational timer 0 trigger (OTM0TRG)010:Operational timer 1 trigger (OTM1TRG)011:Operational timer 2 trigger (OTM2TRG)100:Operational timer 3 trigger (OTM3TRG)101:Operational timer 4 trigger (OTM4TRG)110:Operational timer 5 trigger (OTM5TRG)111:Do not use |  |  |  |  |

### 23.2.8 SA-ADC Enable Register 0 (SADEN0)

SADEN0 is a SFR to select channels of the A/D converter and enable/disable the conversion.



Common description of each bits :

This bit is used to control enable/disable the conversion on a target channel.

- 0: Disabled (Initial value)
- 1: Enabled

When multiple bits of SACHn (n=00 to 18) are set to "1", the A/D conversion starts in the order of smaller channel number.

| Bit No. | Bit symbol name | Description (target channel) |
|---------|-----------------|------------------------------|
| 15 to 5 | -               | Reserved bits                |
| 4       | SACH04          | Channel 4                    |
| 3       | SACH03          | Channel 3                    |
| 2       | SACH02          | Channel 2                    |
| 1       | SACH01          | Channel 1                    |
| 0       | SACH00          | Channel 0                    |

#### [Note]

Do not start the A/D conversion when the all bits of SACHn (n=00 to 18) are "0". In that case SARUN bit of SADCON register does not get to "1".

### 23.2.9 SA-ADC Enable Register 1 (SADEN1)

SADEN1 is a SFR to select channels of the A/D converter and enable/disable the conversion.

|                  |     | R/<br>: 8/*                                                                                                                                                                                                                       |         | (SADEN  | J1L/SA   | DEN1), | 0xF80  | F (SAD  | EN1H)     |                    |         |        |         |            |            |            |
|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|--------|--------|---------|-----------|--------------------|---------|--------|---------|------------|------------|------------|
|                  | 15  | 14                                                                                                                                                                                                                                | 13      | 12      | 11       | 10     | 9      | 8       | 7         | 6                  | 5       | 4      | 3       | 2          | 1          | 0          |
| Word             |     |                                                                                                                                                                                                                                   |         |         |          |        |        | SAD     | EN1       |                    |         |        |         |            |            |            |
| Byte             |     |                                                                                                                                                                                                                                   | SADEN1H |         |          |        |        |         |           |                    |         | SAD    | EN1L    |            |            |            |
| Bit              | -   | -                                                                                                                                                                                                                                 | -       | -       | -        | -      | -      | -       | -         | -                  | -       | -      | ·       | SACH<br>18 | SACH<br>17 | SACH<br>16 |
| R/W              | R   | R                                                                                                                                                                                                                                 | R       | R       | R        | R      | R      | R       | R         | R                  | R       | R      | R       | R/W        | R/W        | R/W        |
| Initial<br>value | 0   | 0                                                                                                                                                                                                                                 | 0       | 0       | 0        | 0      | 0      | 0       | 0         | 0                  | 0       | 0      | 0       | 0          | 0          | 0          |
| Bit No.          |     | t symbo<br>name                                                                                                                                                                                                                   | ol      |         |          |        |        | Des     | scription | n (targe           | t chanr | nel)   |         |            |            |            |
| 15 to 3          | -   |                                                                                                                                                                                                                                   |         | Reserve | ed bits  |        |        |         |           |                    |         |        |         |            |            |            |
| 2                | SAC | <ul> <li>SACH18 Control the enable/disable of conversion of Channel 18 (A/D converter test function).</li> <li>0: Disable the conversion on channel 18 (initial value)</li> <li>1: Enable the conversion on channel 18</li> </ul> |         |         |          |        |        |         |           |                    |         |        |         |            |            |            |
| 1                | SAC | SACH17       Control the enable/disable of conversion of Channel 17 (PGA input).         0:       Disable the conversion on channel 17 (initial value)         1:       Enable the conversion on channel 17                       |         |         |          |        |        |         |           |                    |         |        |         |            |            |            |
| 0                | SAC | H16                                                                                                                                                                                                                               |         |         | sable tł |        | ersion | on chai | nnel 16   | Channe<br>(initial |         | mperat | ure sei | nsors).    |            |            |

[Note]

- Do not start the A/D conversion when the all bits of SACHn (n=00 to 18) are "0". In that case SARUN bit of SADCON register does not get to "1".
- When using channel 16 (SACH16), permit the temperature sensor operation by VREFCON register.
- When using channel 18 (SACH18), enable the A/D converter test function by SADTMOD register (set to something other than "00").

### 23.2.10 SA-ADC Result Register (SADR)

SADR is a read-only SFR to store A/D conversion results of channel 0 to 4 and channel 16 (temperature sensor), channel 17 (PGA), and channel 18 (A/D converter test function).

|                  |      | R<br>: 8/ | :F83E(<br>16 bit<br>:0000 | SADRL | /SADF | R), 0xF8 | 3F (SA | DRH) |       |    |    |    |   |   |   |   |
|------------------|------|-----------|---------------------------|-------|-------|----------|--------|------|-------|----|----|----|---|---|---|---|
|                  | 15   | 14        | 13                        | 12    | 11    | 10       | 9      | 8    | 7     | 6  | 5  | 4  | 3 | 2 | 1 | 0 |
| Word             | SADR |           |                           |       |       |          |        |      |       |    |    |    |   |   |   |   |
| Byte             |      |           |                           | SAE   | DRH   |          |        |      | SADRL |    |    |    |   |   |   |   |
| Bit              | d15  | d14       | d13                       | d12   | d11   | d10      | d9     | d8   | d7    | d6 | d5 | d4 | - | - | - | - |
| R/W              | R    | R         | R                         | R     | R     | R        | R      | R    | R     | R  | R  | R  | R | R | R | R |
| Initial<br>value | 0    | 0         | 0                         | 0     | 0     | 0        | 0      | 0    | 0     | 0  | 0  | 0  | 0 | 0 | 0 | 0 |

The A/D conversion results of all channels are stored to this register. The result of each channel is overwritten. The A/D conversion test result on channel 17 is stored to this register only.

| Symbol name | Channel                                               |  |  |  |  |  |
|-------------|-------------------------------------------------------|--|--|--|--|--|
| SADR        | Latest conversion result of channels 0 to 4 ,16 to 18 |  |  |  |  |  |

[Note]

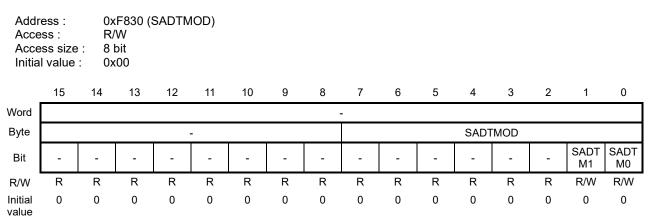
When different clocks for the source clocks of the SAD\_CLK and the system clock are selected, wrong
value might be readout during the update. Make sure that SARUN bit of SADCON register is "0" before
reading. Also, during continuous A/D conversion (SALP=1), read the SADR register twice and make sure
that the first and second values match.

### 23.2.11 SA-ADC Result Register n (SADRn : n=0 to 4, 16,17)

SADRn is a read-only SFR to store A/D conversion results of channel 0 to 4 and channel 16 (temperature sensor) and channel 17 (PGA).

| Addr             | ess :                 | 0xF842 (SADR1L/SADR1), 0xF843 (SADR1H),<br>0xF844 (SADR2L/SADR2), 0xF845 (SADR2H),<br>0xF846 (SADR3L/SADR3), 0xF847 (SADR3H),<br>0xF848 (SADR4L/SADR4), 0xF849 (SADR4H),<br>0xF860 (SADR16L/SADR16), 0xF861 (SADR16H),<br>0xF862 (SADR17L/SADR17), 0xF863 (SADR17H)<br>ss : R |      |     |     |     |    |     |     |    |    |     |     |   |   |   |
|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|-----|----|-----|-----|----|----|-----|-----|---|---|---|
| Acce             | ccess size : 8/16 bit |                                                                                                                                                                                                                                                                               |      |     |     |     |    |     |     |    |    |     |     |   |   |   |
| Initia           | l value               | : 0×                                                                                                                                                                                                                                                                          | 0000 |     |     |     |    |     |     |    |    |     |     |   |   |   |
|                  | 15                    | 14                                                                                                                                                                                                                                                                            | 13   | 12  | 11  | 10  | 9  | 8   | 7   | 6  | 5  | 4   | 3   | 2 | 1 | 0 |
| Word             |                       |                                                                                                                                                                                                                                                                               |      |     |     |     |    | SAI | DRn |    |    |     |     |   |   |   |
| Byte             |                       |                                                                                                                                                                                                                                                                               |      | SAD | RnH |     |    |     |     |    |    | SAD | RnL |   |   |   |
| Bit              | d15                   | d14                                                                                                                                                                                                                                                                           | d13  | d12 | d11 | d10 | d9 | d8  | d7  | d6 | d5 | d4  | -   | - | - | - |
| R/W              | R                     | R                                                                                                                                                                                                                                                                             | R    | R   | R   | R   | R  | R   | R   | R  | R  | R   | R   | R | R | R |
| Initial<br>value | 0                     | 0                                                                                                                                                                                                                                                                             | 0    | 0   | 0   | 0   | 0  | 0   | 0   | 0  | 0  | 0   | 0   | 0 | 0 | 0 |

The A/D conversion result of each channel can be read from SADRn.


| Symbol name | Channel                         |  |  |  |  |  |
|-------------|---------------------------------|--|--|--|--|--|
| SADR0       | Channel 0 (AIN0)                |  |  |  |  |  |
| SADR1       | Channel 1 (AIN1)                |  |  |  |  |  |
| SADR2       | Channel 2 (AIN2)                |  |  |  |  |  |
| SADR3       | Channel 3 (AIN3)                |  |  |  |  |  |
| SADR4       | Channel 4 (AIN4)                |  |  |  |  |  |
| SADR16      | Channel 16 (Temperature sensor) |  |  |  |  |  |
| SADR17      | Channel 17(PGA)                 |  |  |  |  |  |

#### [Note]

If the source clock (HSCLK/LSCLK0) setting of the SAD\_CLK differs from the source clock (HSCLK/LSCLK0) setting of the system clock, uncertain data during the A/D conversion result update may be read when SADRn register is read. When the source clock settings of the SAD\_CLK and the system clock are different, make sure that SARUN bit of SADCON register is "0" before reading. During continuous A/D conversion (SADP bit of SADMOD register is "1"), read SADRn register twice and make sure that the values are the same.

### 23.2.12 SA-ADC Test Mode Register (SADTMOD)

SADTMOD is a SFR to control the SA-ADC test function.



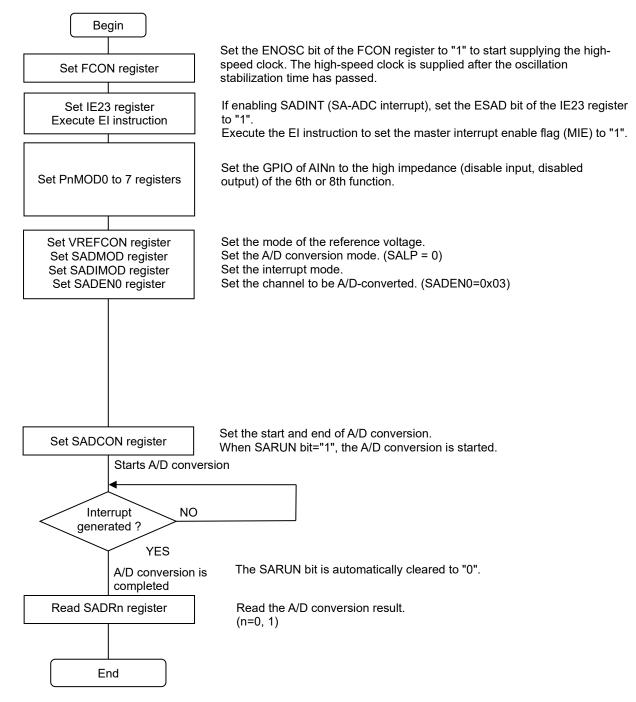
This function enables to check if the successive approximation type A/D converter and the analog switch work correctly, by performing the A/D conversion for the full scale, zero scale and the internal reference voltage (2.5 V). The A/D conversion result is stored in the SA-ADC result register (SADR).

Also, the AIN0-4 input level is measured by using a measurement value of internal reference voltage. For example:

1: Convert at V<sub>ADCREF</sub> = V<sub>DD</sub>, SACH18=1, SADTM1,0=3, where the result is "a"

2: Convert at  $V_{ADCREF} = V_{DD}$ , SACHn=1, where the result is ="b"

"a" is the result of the conversion of the ADC internal reference voltage (2.5 V), and AIN selected in SACHn is b/a [V].


The seriality measurement can be by setting the SACHn and SACH18 at once. Read the results from SADRn and SADR.


| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                    |
|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to 2  | -                  | Reserved bits                                                                                                                                                                                                                                                  |
| 1 to 0  | SADTM1,<br>SADTM0  | Set the successive approximation type A/D converter test function.<br>00: Do not use the A/D converter test function (Initial value)<br>01: Full scale A/D conversion<br>10: Zero scale A/D conversion<br>11: Internal reference voltage (2.5V) A/D conversion |

#### 23.3 Description of Operation

### 23.3.1 Operation of Successive Approximation Type A/D Converter

Figure 23-2 shows a setting example when one-time A/D conversion is performed using channel 1 and 0.





#### ML62Q2033/2035/2043/2045 User's Manual Chapter 23 Successive Approximation Type A/D Converter

Figure 23-3 shows a setting example when one-time A/D conversion is performed in HALT mode using channel 1 and 0.

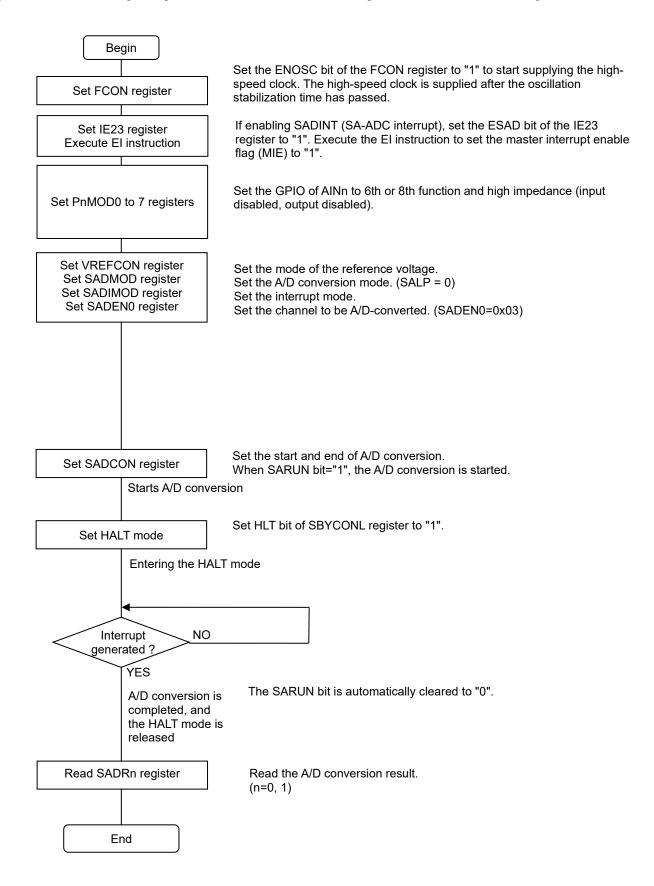



Figure 23-3 Example of A/D Conversion Setting (Converting in HALT mode)

Figure 23-4 shows a setting example when one-time A/D conversion is performed using channel 1 and 0 starting by a trigger event.

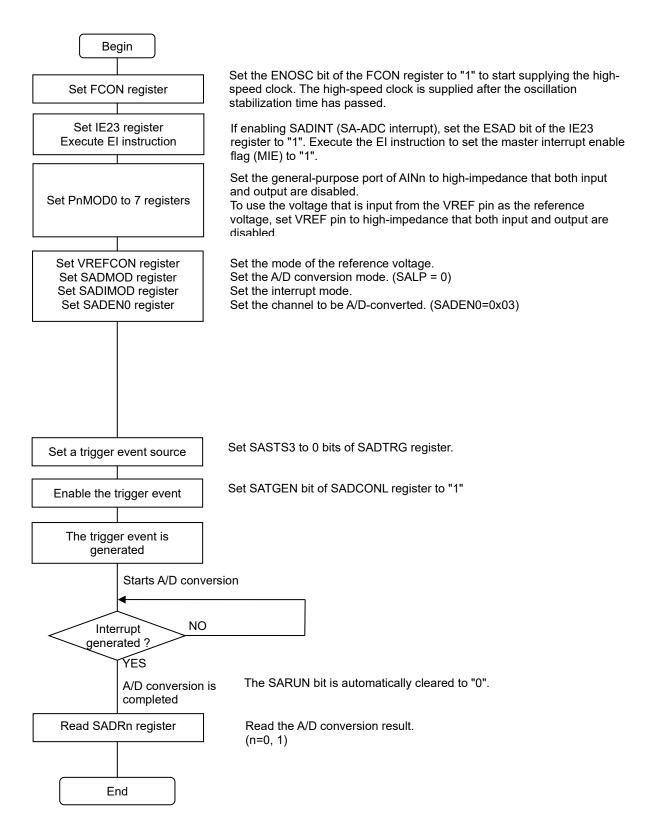


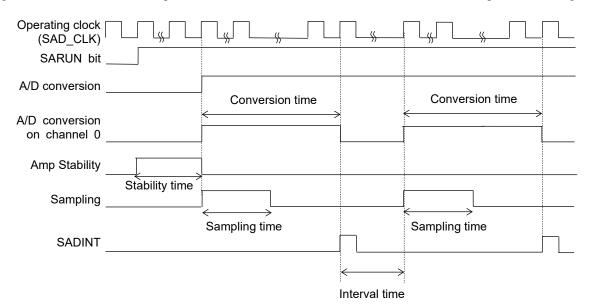

Figure 23-4 Example of A/D Conversion Setting (Start converting by a trigger event)

Figure 23-5 and 23-6 show operation waveforms when one-time A/D conversion is performed using channel 1 and 0.

| Operating clock<br>(SAD_CLK)     |                |                 |                 |  |
|----------------------------------|----------------|-----------------|-----------------|--|
| SARUN bit_                       |                |                 |                 |  |
| A/D conversion _                 |                | Conversion time | Conversion time |  |
| A/D conversion<br>on channel 0 _ |                | <>              | <><br>          |  |
| A/D conversion<br>on channel 1 _ |                |                 |                 |  |
| Amp Stability                    | ;              |                 |                 |  |
| Sampling _                       | Stability time |                 | →               |  |
| SADINT<br>(SADIMD0=0)            |                | Sampling time   | Sampling time   |  |
| (SADIMD0=1) -                    |                |                 | <br>            |  |

Operating clock (SAD\_CLK) is configured by SACK2-0 bits of SADMOD register. Amp stability time is configured by SAINITT3-0 bits of SADMOD register. Sampling time is configured by SASHT3-0 bits of SADMOD register. Interrupt mode is configured by SADIMOD register.

Figure 23-5 Operation Waveforms of A/D Conversion (One-time Conversion, Without Discharge)


| Operating clock<br>(SAD_CLK)   |                | <u>%</u>      |       | П <sub>ж</sub> Л_ |                  | "         |  |
|--------------------------------|----------------|---------------|-------|-------------------|------------------|-----------|--|
| SARUN bit                      |                |               |       |                   |                  |           |  |
| A/D conversion                 |                | Conversion    | timo  |                   | Convor           | sion time |  |
|                                |                | Conversion    |       |                   | Convers          |           |  |
| A/D conversion                 |                | <             | >     |                   | <                |           |  |
| on channel 0                   |                |               |       |                   |                  |           |  |
| A/D conversion<br>on channel 1 |                |               |       |                   |                  |           |  |
|                                |                |               |       |                   |                  | L         |  |
| Discharge                      | >              |               |       | <>                |                  |           |  |
| Sampling                       | Discharge time |               | Discl | harge time        |                  |           |  |
|                                | ç              | Sampling time |       | ¢,                | ← → Ampling time |           |  |
| SADINT<br>(SADIMD0=0)          |                | bamping time  |       | 0                 | amping time      |           |  |
|                                |                |               |       |                   |                  |           |  |
| (SADIMD0=1)                    |                |               |       |                   |                  |           |  |

Operating clock (SAD\_CLK) is configured by SACK2-0 bits of SADMOD register. Discharge enabling and time are configured by SAINIT bit and SAINITT3-0 bits of SADMOD register. Sampling time is configured by SASHT3-0 bits of SADMOD register. Interrupt mode is configured by SADIMOD register.

Figure 23-6 Operation Waveforms of A/D Conversion (One-time Conversion, With Discharge)

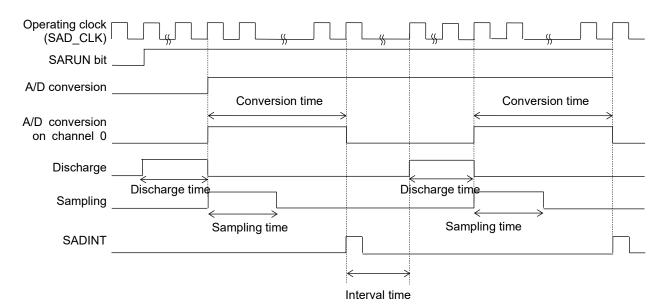

#### ML62Q2033/2035/2043/2045 User's Manual Chapter 23 Successive Approximation Type A/D Converter

Figure 23-7 and 23-8 show the operation waveforms when the continuous A/D conversion is performed using channel 0.



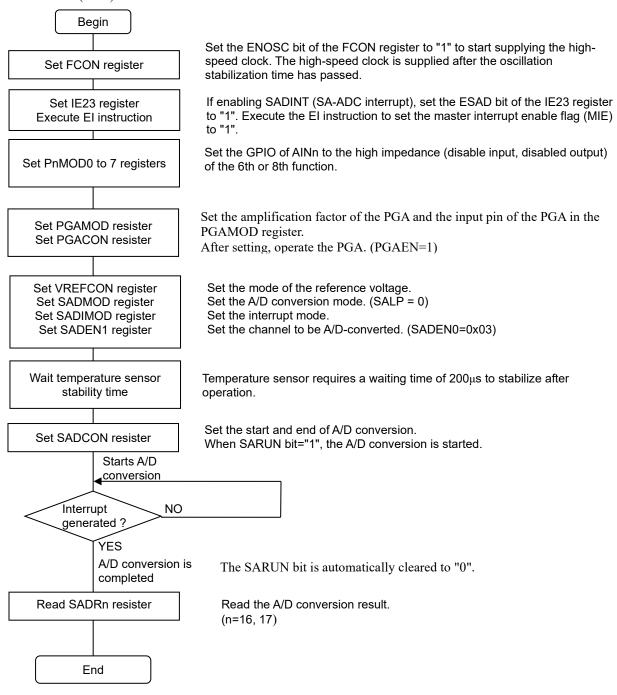
Operating clock (SAD\_CLK) is configured by SACK2-0 bits of SADMOD register. Amp stability time is configured by SAINITT3-0 bits of SADMOD register. Sampling time is configured by SASHT3-0 bits of SADMOD register. A/D conversion interval is configured by SADSTM register.

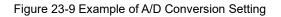
Figure 23-7 Operation Waveforms of A/D Conversion (Continuous Conversion, Without Discharge)



Operating clock (SAD\_CLK) is configured by SACK2-0 bits of SADMOD register. Discharge enabling and time are configured by SAINIT bit and SAINITT3-0 bits of SADMOD register. Sampling time is configured by SASHT3-0 bits of SADMOD register. A/D conversion interval is configured by SADSTM register.

Figure 23-8 Operation Waveforms of A/D Conversion (Continuous Conversion, With Discharge)


#### 23.3.2 How to test the Successive Approximation Type A/D Converter


Full-scale, zero-scale, and ADC internal reference voltage (2.5 V) can be A/D converted for self-testing. Follow this procedure to check if the successive approximation type A/D converter works correctly. (n=0 to 4)

- (1) A/D convert AINn pin. (conversion result 1)
- (2) A/D convert AIN=full scale by setting the SADTMOD register (SADTMOD=0x01).
- (3) A/D convert the AINn pin. (conversion result 2)
- (4) A/D convert AIN=zero scale by setting the SADTMOD register (SADTMOD=0x02).
- (5) A/D convert the AINn pin. (conversion result 3)
- (6) A/D convert AIN=internal reference voltage(2.5V) by setting the SADTMOD register (SADTMOD=0x03).
- (7) A/D convert the AINn pin. (conversion result 4)
- (8) Confirm conversion result 1 = conversion result 2 = conversion result 3 = conversion result 4.
- Use the same AINn pin for the A/D conversion in (1), (3), (4) and (7).
  (9) Confirm the conversion result in (2), (4) and (6) is different each other and also different from the result in (1), (3), (5) and (7).

### 23.3.3 PGA in Successive Approximation A/D Converter/Temperature Conversion Function

Figure 23-9 shows a setting example when one-time A/D conversion is performed using channel 16(temperature sensor) and channel 17(PGA).





#### 23.4 Notes on SA-ADC

### 23.4.1 Sampling Time Setting

Sampling time of the SA-ADC should satisfy the following formula:

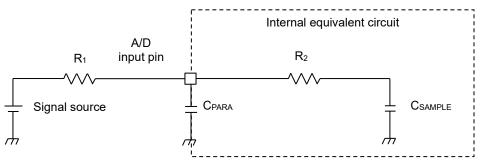
Sampling time > 
$$9(C_{SAMPLE} + C_{PARA})(R_1 + R_2)$$

To calculate sampling time more precisely, use the following formula:

Sampling time = 
$$\left\{ log_e(2^n) + log_e\left(\frac{C_{SAMPLE}}{C_{SAMPLE} + C_{PARA}}\right) \right\} (C_{SAMPLE} + C_{PARA})(R_1 + R_2)$$

 $C_{PARA}$  varies depending on board-layout and connected parts. Please check the accuracy of SA-ADC with the actual board.

R<sub>1</sub> : Input impedance of external resistor


R<sub>2</sub> : Internal resistor value which is the sum of the internal resistor and the ON register of the switch

C<sub>SAMPLE</sub> : Sample hold capacitor

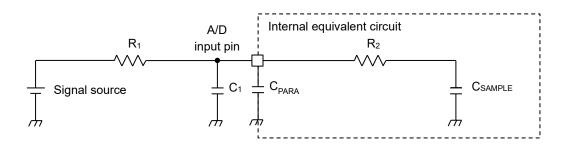
C<sub>PARA</sub>: Parasitic capacitance of the A/D input line. (Measure the capacitance between the A/D input line and V<sub>SS</sub>.)

n : Resolution of SA-ADC

The following diagram shows the equivalent circuit in this case:



| VADCREF                                          | R₂[kΩ] | C <sub>SAMPLE</sub> [pF] |
|--------------------------------------------------|--------|--------------------------|
| VADCREF=VREFI                                    | 20     | 5                        |
| 4.5V≦V <sub>ADCREF</sub> ≦5.5V<br>*VDD reference | 10     | 5                        |


The values above are reference values.

Set the sampling time for  $V_{REF}$  condition that includes the lowest voltage of the usage range of  $V_{REF}$ . If the sampling time above is unsatisfied, connect the external capacitor near by A/D input pin to satisfy the following formula.

$$(C_1 + C_{PARA}) > 2^n C_{SAMPLE}$$
  
Sampling time >  $9C_{SAMPLE}R_2$ 

#### C<sub>1</sub> : External capacitor

The equivalent circuit when the external capacitor C<sub>1</sub> is connected is as follows:



Note that the voltage at the A/D input pin transitionally changes due to the external capacitor  $C_1$  and the external resistor  $R_1$ . Therefore, when sampling data, wait until the voltage is stabilized. If the stabilization timing is unknown, perform A/D conversion once, then wait for time constant  $\tau$  (= $R_1C_1$ ) to  $4\tau$  or so and perform A/D conversion again. Confirm that the difference between values is small, and then sample data.

### 23.4.2 Noise Suppression

In order to prevent deterioration in accuracy of A/D conversion, operate the A/D converter in the environment with little noise.

The following processes are recommended for noise reduction:

- Perform A/D conversion in the HALT mode.
- Do not have clock input/output to and from a pin located in the vicinity of the pin in which A/D conversion is in progress.
- Do not have clock input/output to and from the pin in which A/D conversion is in progress and other A/D conversion pins.

In addition, the capacitor for noise suppression should be connected between VREF and VSS, as well as between VDD and VSS. When connecting, place the capacitor in the immediate vicinity of LSI using short wiring.

# Chapter 24 PGA

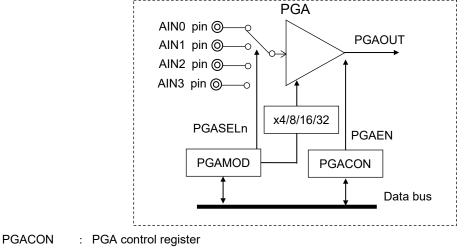
### 24. PGA

#### 24.1 General description

This LSI has the PGA (Programable Gain Amplifer) which amplify the input of successive approximation A/D converters.

Table 24-1 shows PGA channel of each package products.

| Channel                                | Availability      |                  |  |  |  |  |  |  |
|----------------------------------------|-------------------|------------------|--|--|--|--|--|--|
| No.(n)                                 | 20 pin<br>Product | 24pin<br>Product |  |  |  |  |  |  |
| 0                                      | ٠                 | •                |  |  |  |  |  |  |
| ● : Available          : No avaailable |                   |                  |  |  |  |  |  |  |


| Table 24-1 | PGA  | channels |
|------------|------|----------|
|            | 10/1 | onannoio |

### 24.1.1 Features

- Amplification factor is selectable from x4, x8, x16, and x32.
- PGA input pin is selectable from AIN0 to AIN3 pin.

### 24.1.2 Configuration

Fig. 24-1 shows PGA configuration



PGAMOD : PGA mode register

Fig. 24-1 PGA circuit configuration

### 24.1.3 Pin list

PGA input pins are shared with AINn pins.

| Pin name | I/O | Function              |
|----------|-----|-----------------------|
| AlNn     | I   | PGA input (AIN input) |

Table 24-2 shows General ports and register setteing used for PGA function. PGA

| Table 24-2 | General ports and register setteing used for PGA function |
|------------|-----------------------------------------------------------|
|            |                                                           |

| Pin name |     | Shared port                                 | Setting<br>Register | Setting<br>Value | 20pin<br>Product | 24pin<br>Product |
|----------|-----|---------------------------------------------|---------------------|------------------|------------------|------------------|
| AIN0     | P14 | 6 <sup>th</sup> , 8 <sup>th</sup> functions | P1MOD4              |                  | •                | •                |
| AIN1     | P15 |                                             | P1MOD5              | 0,40,40,40       | •                | •                |
| AIN2     | P16 |                                             | P1MOD6              | 0x50 / 0x70      | •                | •                |
| AIN3     | P17 |                                             | P1MOD7              |                  | •                | •                |

•: Available -: Not available

#### [Note]

When PGA is used, following the setting below.

[1] Set PnmMD2 to 0bit of the corresponding port n-mode register m (n: 0 to 2, m: 0 to 7) to the 6th or 8th function,

[2] Write "0" to the corresponding bits of input permission (PnmIE) and output permission (PnmOE).[3] set the general-purpose port to high impedance.

- In other settings, through current may occurs.
- During PGA is in operation, the influence of the PGA output voltage fluctuates due to the noise can be reduced by not switching adjacent pins on AINn.

### 24.2 Register description

### 24.2.1 List of register

|  | Address | Name                 | Syn    | nbol | R/W | Sice | Initial |  |
|--|---------|----------------------|--------|------|-----|------|---------|--|
|  |         | Name                 | Byte   | Word | R/W | Sice | value   |  |
|  | 0xF8B0  | PGA control register | PGACON | -    | R/W | 8    | 0x00    |  |
|  | 0xF8B1  | Reserved register    | -      | -    | -   | -    | -       |  |
|  | 0xF8B2  | PGA mode register    | PGAMOD | -    | R/W | 8    | 0x00    |  |
|  | 0xF8B3  | Reserved register    | -      | -    | -   | -    | -       |  |

### 24.2.2 PGA Control Register (PGACON)

PGACON is a SFR to control PGA.

|                  |                                                                                                                                | l<br>: 8 | 0xF8B0<br>R/W<br>3bit<br>0x00 | (PGAC | ON) |    |   |   |   |   |   |     |     |   |   |           |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|-------|-----|----|---|---|---|---|---|-----|-----|---|---|-----------|
|                  | 15                                                                                                                             | 14       | 13                            | 12    | 11  | 10 | 9 | 8 | 7 | 6 | 5 | 4   | 3   | 2 | 1 | 0         |
| Word             |                                                                                                                                |          |                               |       |     |    |   |   | - |   |   |     |     |   |   |           |
| Byte             | -                                                                                                                              |          |                               |       |     |    |   |   |   |   |   | PGA | CON |   |   |           |
| Bit              | -                                                                                                                              | -        | -                             | -     | -   | -  | - | - | - | - | - | -   | -   | - | - | PGAE<br>N |
| R/W              | R                                                                                                                              | R        | R                             | R     | R   | R  | R | R | R | R | R | R   | R   | R | R | R/W       |
| Initial<br>value | 0                                                                                                                              | 0        | 0                             | 0     | 0   | 0  | 0 | 0 | 0 | 0 | 0 | 0   | 0   | 0 | 0 | 0         |
| Bit No.          | Bit symbol<br>No. name Desription                                                                                              |          |                               |       |     |    |   |   |   |   |   |     |     |   |   |           |
| 7 to 1           | - Reserved bit                                                                                                                 |          |                               |       |     |    |   |   |   |   |   |     |     |   |   |           |
| 0                | PGAEN       Control PGA operation permition/stop         0: Stop PGA operation (Initial value)         1: Permit PGA operation |          |                               |       |     |    |   |   |   |   |   |     |     |   |   |           |

#### [Note]

• When PGA is used, following the setting below.

[1] Set PnmMD2 to 0bit of the corresponding port n-mode register m (n: 0 to 2, m: 0 to 7) to the 6th or 8th function,

[2] Write "0" to the corresponding bits of input permission (PnmIE) and output permission (PnmOE).[3] set the general-purpose port to high impedance.

In other settings, through current may occurs.

• After setting the PGAEN bit to "1", it takes 200µs for PGA to stabilize. A/D conversion should be started after this stabilization time has elapsed.

After the stabilization time ( $200\mu$ s) has elapsed, PGA remains stable until the operation stops, so there is no need to wait for 200µs again for each A/D conversions.

### 24.2.3 PGA Mode register (PGAMOD)

PGAMOD is a SFR to set PGA amplification factor and input pin. Write to PGAMOD register while PGA operation is stopped (PGAEN bit = "0" in PGACON register).

|                  |                                                                                                     | F<br>: 8        | )xF8B<br>R/W<br>Bbit<br>)x00 | 2(PGAN   | IOD)    |           |      |   |   |          |             |             |     |   |              |              |
|------------------|-----------------------------------------------------------------------------------------------------|-----------------|------------------------------|----------|---------|-----------|------|---|---|----------|-------------|-------------|-----|---|--------------|--------------|
|                  | 15                                                                                                  | 14              | 13                           | 12       | 11      | 10        | 9    | 8 | 7 | 6        | 5           | 4           | 3   | 2 | 1            | 0            |
| Word             |                                                                                                     |                 |                              |          |         |           |      | - | _ |          |             |             |     |   |              |              |
| Byte             |                                                                                                     |                 |                              | -        | _       |           |      |   |   |          |             | PGAN        | NOD |   |              |              |
| Bit              | -                                                                                                   | -               | -                            | -        | -       | -         | -    | - | - | -        | PGASE<br>L1 | PGASE<br>L0 | -   | - | PGAG<br>AIN1 | PGAG<br>AIN0 |
| R/W              | R                                                                                                   | R               | R                            | R        | R       | R         | R    | R | R | R        | R/W         | R/W         | R   | R | R/W          | R/W          |
| Initial<br>value | 0                                                                                                   | 0               | 0                            | 0        | 0       | 0         | 0    | 0 | 0 | 0        | 0           | 0           | 0   | 0 | 0            | 0            |
| Bit No.          | Bi                                                                                                  | it symb<br>name | ol                           |          |         |           |      |   | D | esriptio | on          |             |     |   |              |              |
| 7 to 6           | -                                                                                                   |                 |                              | Reserve  | ed bit  |           |      |   |   |          |             |             |     |   |              |              |
| 5 to 4           | PGA                                                                                                 | ASEL1           | to                           | Select F | PGA in  | put pin   |      |   |   |          |             |             |     |   |              |              |
|                  | PGA                                                                                                 | ASEL0           |                              | 00: /    | AINO (I | nitial va | ule) |   |   |          |             |             |     |   |              |              |
|                  |                                                                                                     |                 |                              | 01: /    |         |           |      |   |   |          |             |             |     |   |              |              |
|                  |                                                                                                     |                 |                              | 10: /    |         |           |      |   |   |          |             |             |     |   |              |              |
|                  |                                                                                                     |                 |                              | 11: /    |         |           |      |   |   |          |             |             |     |   |              |              |
| 3 to 2           | -                                                                                                   |                 |                              | Reserve  | ed bit  |           |      |   |   |          |             |             |     |   |              |              |
| 1 to 0           | PGAGAIN1 to<br>PGAGAIN0 Set PGA Amplification factor<br>00: x4 (Initial value)<br>01: x8<br>10: x16 |                 |                              |          |         |           |      |   |   |          |             |             |     |   |              |              |

[Note]

• Writing to the PGAMOD register while PGA operation is permited, the operation is not guaranteed.

11: x32

### 24.3 Features

### 24.3.1 PGA Operation

Fig. 24-2 shows the flowchart of A/D convert by using PGA operation.

This example is shown when A/D conversion is performed only once using channel 17 (PGA output) and the amplification factor is set to x16.

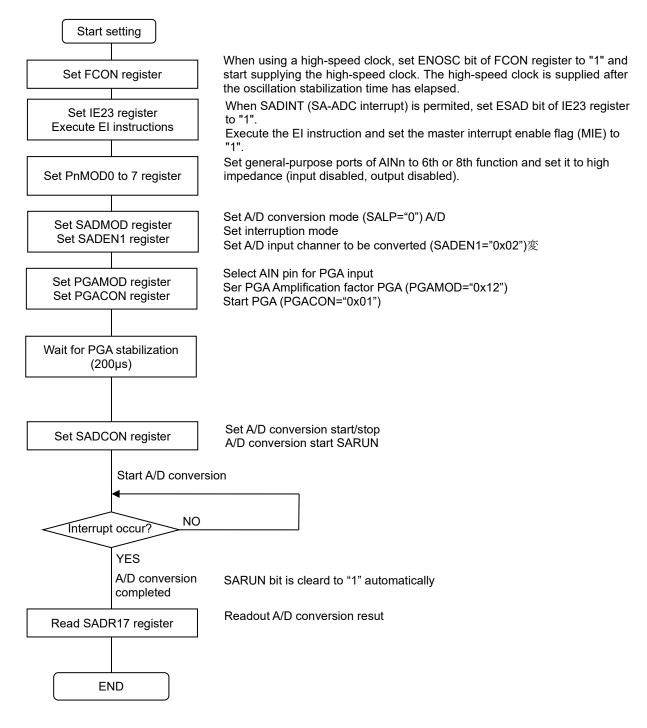



Fig. 24-2 Flowchart of A/D Conversion using PGA

# **Chapter 26 Flash Memory**

### 26. Flash Memory

#### 26.1 General Description

This LSI has the flash memory in the program memory space and data flash area. For details of the program memory space and data flash area, see Chapter 2 "CPU and Memory Space". The flash memory is programmable by following three ways.

|  | • | The ways | of programn | ning the | flash memory |
|--|---|----------|-------------|----------|--------------|
|--|---|----------|-------------|----------|--------------|

| Programming method                                            | Tool/Register/Communication                                                             | Reference Chapter                                   |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|
| Programming by the on-chip debug function                     | On-chip debug emulator or other flash programmers                                       | Chapter 28 "On chip<br>Debug function"              |
| Self-Programming by using the special function register (SFR) | Special Function Registers (SFRs) for programming the flash memory                      | Section 26.3<br>"Self-programming"                  |
| Programming by the ISP (In-<br>System Programming) function   | UART communication with an external device 3 <sup>rd</sup> Party Flash programmers (*1) | Section 26.4<br>"In-System Programming<br>function" |

\*1: Contact the 3<sup>rd</sup> party makers for details about the Flash programmer.

The specification of the program memory space and data flash are is dependent of the product.

• Program memory space and Data flash area Overview (Size and Address)

| Part name      | Program r | nemory space            | Data flash area         |                 |  |  |
|----------------|-----------|-------------------------|-------------------------|-----------------|--|--|
| Faithanie      | Size      | Size Address            |                         | Address         |  |  |
| ML62Q2033/2043 | 16KByte   | 0x0:0000 to<br>0x0:3FFF | 4KByte                  | 0x1F:0000       |  |  |
| ML62Q2035/2045 | 32KByte   | 0x0:0000 to<br>0x0:7FFF | (128Byte x<br>32sector) | to<br>0x1F:0FFF |  |  |

Program memory space and Data flash area Overview (Functions and Characteristics)

| Iter                         | n                          | Program memory space                     | Data flash area |  |  |
|------------------------------|----------------------------|------------------------------------------|-----------------|--|--|
|                              | Chip erasing<br>(ISP only) | All area                                 | All area        |  |  |
| Erasing and programming unit | Block erasing              | 16K byte                                 | all area        |  |  |
|                              | Sector erasing             | 1K byte                                  | 128 byte        |  |  |
|                              | Programming                | SFR:2 byte (16bit)<br>ISP:4 byte (32bit) | 1 byte (8bit)   |  |  |
|                              | Chip erasing<br>(ISP only) |                                          |                 |  |  |
| Erasing and                  | Block erasing              | Max. 50ms                                | Max. 50ms       |  |  |
| programming time             | Sector erasing             |                                          |                 |  |  |
|                              | Programming                | SFR:max 60µs<br>ISP:max 160µs            | Max. 40µs       |  |  |
| Programm                     | ing cycle                  | 100 times                                | 10,000 times    |  |  |
| Erasing and program          | nming temperature          | 0°C to +40°C                             | -40°C to +85°C  |  |  |
| Background operati           | on(BGO) function           | -                                        | Yes             |  |  |
| Erasing and programmir       | g completion Interrupt     | No                                       | Yes             |  |  |

### 26.1.1 List of Pins

Programming by the ISP function uses the following pins.

| Pin name | I/O | Function                                            |
|----------|-----|-----------------------------------------------------|
| RESET_N  | I   | Signal input for ISP                                |
| TEST0    | I/O | Signal input for ISP and data input/output for UART |

### 26.2 Register Description

### 26.2.1 List of Registers

| A d due e e | Norma                  | Syn      | nbol    |     | 0:   | Initial |
|-------------|------------------------|----------|---------|-----|------|---------|
| Address     | Name                   | Byte     | Word    | R/W | Size | Value   |
| 0xF090      | Flack address register | FLASHAL  | FLASHA  | R/W | 8/16 | 0xFF    |
| 0xF091      | Flash address register | FLASHAH  | FLASHA  | R/W | 8    | 0xFF    |
| 0xF092      | Flack data register 0  | FLASHD0L | FLASHD0 | R/W | 8/16 | 0xFF    |
| 0xF093      | Flash data register 0  | FLASHD0H | FLASHDU | R/W | 8    | 0xFF    |
| 0xF094      | Reserved register      | -        | -       | -   | -    | -       |
| 0xF095      | Reserved register      | -        | -       | -   | -    | -       |
| 0xF096      | Flash control register | FLASHCON | -       | W   | 8    | 0x00    |
| 0xF097      | Reserved register      | -        | -       | -   | -    | -       |
| 0xF098      | Flash acceptor         | FLASHACP | -       | W   | 8    | 0x00    |
| 0xF099      | Reserved register      | -        | -       | -   | -    | -       |
| 0xF09A      | Flash segment register | FLASHSEG | -       | R/W | 8    | 0x10    |
| 0xF09B      | Reserved register      | -        | -       | -   | -    | -       |
| 0xF09C      | Flash self register    | FLASHSLF | -       | R/W | 8    | 0x00    |
| 0xF09D      | Reserved register      | -        | -       | -   | -    | -       |
| 0xF09E      | Flash status register  | FLASHSTA | -       | R   | 8    | 0x00    |
| 0xF09F      | Reserved register      | -        | -       | _   | -    | _       |

### 26.2.2 Flash Address Register (FLASHA)

FLASHA is a SFR to set the erasing and programming address.

| Acce<br>Acce     | ress : 0xF090 (FLASHAL/FLASHA), 0xF091 (FLASHAH)<br>ess : R/W<br>ess size : 8/16 bit<br>al value : 0xFFFF |                           |      |             |         |          |         |         |         |     |     |     |     |     |     |     |
|------------------|-----------------------------------------------------------------------------------------------------------|---------------------------|------|-------------|---------|----------|---------|---------|---------|-----|-----|-----|-----|-----|-----|-----|
|                  | 15                                                                                                        | 14                        | 13   | 12          | 11      | 10       | 9       | 8       | 7       | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| Word             |                                                                                                           | FLASHA                    |      |             |         |          |         |         |         |     |     |     |     |     |     |     |
| Byte             |                                                                                                           |                           |      | FLAS        | SHAH    |          |         |         | FLASHAL |     |     |     |     |     |     |     |
| Bit              | FA15                                                                                                      | FA14                      | FA13 | FA12        | FA11    | FA10     | FA9     | FA8     | FA7     | FA6 | FA5 | FA4 | FA3 | FA2 | FA1 | FA0 |
| R/W              | R/W                                                                                                       | R/W                       | R/W  | R/W         | R/W     | R/W      | R/W     | R/W     | R/W     | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| Initial<br>value | 1                                                                                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 |      |             |         |          |         |         |         |     |     | 1   | 1   |     |     |     |
| Bit No.          | -                                                                                                         | Bit sym<br>name           |      | Description |         |          |         |         |         |     |     |     |     |     |     |     |
| 15 to 0          | FA1                                                                                                       | 5 to FA                   | 0    | Set th      | ne eras | ing or p | orogram | nming a | ddress  |     |     |     |     |     |     |     |

#### [Note]

Note that programming for the program memory space is performed by the unit of 2 bytes. Because of this, the setting values in the FA0 bit are ignored.

### 26.2.3 Flash Segment Register (FLASHSEG)

FLASHSEG is a SFR used to set the segment for erasing and programming the flash memory.

|                  |     | R/<br>: 81      |      | FLASH  | SEG)          |      |         |         |          |   |   |     |     |       |       |     |
|------------------|-----|-----------------|------|--------|---------------|------|---------|---------|----------|---|---|-----|-----|-------|-------|-----|
| _                | 15  | 14              | 13   | 12     | 11            | 10   | 9       | 8       | 7        | 6 | 5 | 4   | 3   | 2     | 1     | 0   |
| Word             |     |                 |      |        |               |      |         |         |          |   |   |     |     |       |       |     |
| Byte             |     |                 |      |        | -             |      |         |         | FLASHSEG |   |   |     |     |       |       |     |
| Bit              | -   | -               | -    | -      | FSEG4         |      |         |         |          |   |   |     |     | FSEG1 | FSEG0 |     |
| R/W              | R   | R               | R    | R      | R             | R    | R       | R       | R        | R | R | R/W | R/W | R/W   | R/W   | R/W |
| Initial<br>value | 0   | 0               | 0    | 0      | 0             | 0    | 0       | 0       | 0        | 0 | 0 | 1   | 0   | 0     | 0     | 0   |
| Bit No.          | E   | Bit sym<br>name |      |        | Description   |      |         |         |          |   |   |     |     |       |       |     |
| 15 to 5          | -   |                 |      | Rese   | Reserved bits |      |         |         |          |   |   |     |     |       |       |     |
| 4 to 0           | FSE | G4 to F         | SEG0 | Set th | ne flash      | memo | ry segr | nent ad | dress.   |   |   |     |     |       |       |     |

Table 26-1 shows the address setting value for block erasing and Table 26-2 shows the address setting value for sector erasing.

| Segment    | Block   | Address          | Size    | FLASHSEG<br>register | FLASHA<br>register |
|------------|---------|------------------|---------|----------------------|--------------------|
| Sogmant 0  | Block 0 | 0x0000 to 0x3FFF | 16KByte | 0x00                 | 0x0000             |
| Segment 0  | Block 1 | 0x4000 to 0x7FFF | 16KByte | 0x00                 | 0x4000             |
| Segment 31 | Block 0 | 0x0000 to 0x0FFF | 4KByte  | 0x1F                 | 0x0000             |

#### Table 26-1 Address Setting Values for Block Erasing

| Table 26-2 Address Setting | g Values for Sector Erasing |
|----------------------------|-----------------------------|
|                            |                             |

| Segment    | Block    | Address Setting Value | Size    | FLASHSEG<br>register | FLASHA<br>register |
|------------|----------|-----------------------|---------|----------------------|--------------------|
|            | Sector0  | 0x0000 to 0x03FF      | 1KByte  |                      | 0x0000             |
|            | Sector1  | 0x0400 to 0x07FF      | 1KByte  |                      | 0x0400             |
| Segment 0  | :        | :                     | :       | 0x00                 | :                  |
|            | Sector30 | 0x7800 to 0x7BFF      | 1KByte  |                      | 0x7800             |
|            | Sector31 | 0x7C00 to 0x7FFF      | 1KByte  |                      | 0x7C00             |
|            | Sector0  | 0x0000 to 0x007F      | 128Byte |                      | 0x0000             |
|            | Sector1  | 0x0080 to 0x00FF      | 128Byte |                      | 0x0080             |
|            | Sector2  | 0x0100 to 0x017F      | 128Byte |                      | 0x0100             |
|            | Sector3  | 0x0180 to 0x01FF      | 128Byte |                      | 0x0180             |
|            | :        | :                     | :       |                      | :                  |
|            | Sector12 | 0x0600 to 0x067F      | 128Byte |                      | 0x0600             |
| Segment 31 | Sector13 | 0x0680 to 0x06FF      | 128Byte | 0x1F                 | 0x0680             |
| Segment ST | Sector14 | 0x0700 to 0x077F      | 128Byte | UXIF                 | 0x0700             |
|            | Sector15 | 0x0780 to 0x07FF      | 128Byte |                      | 0x0780             |
|            | :        | :                     | :       |                      | :                  |
|            | Sector28 | 0x0E00 to 0x0E7F      | 128Byte |                      | 0x0E00             |
|            | Sector29 | 0x0E80 to 0x0EFF      | 128Byte |                      | 0x0E80             |
|            | Sector30 | 0x0F00 to 0x0F7F      | 128Byte |                      | 0x0F00             |
|            | Sector31 | 0x0F80 to 0x0FFF      | 128Byte |                      | 0x0F80             |

### 26.2.4 Flash Data Register 0 (FLASHD0)

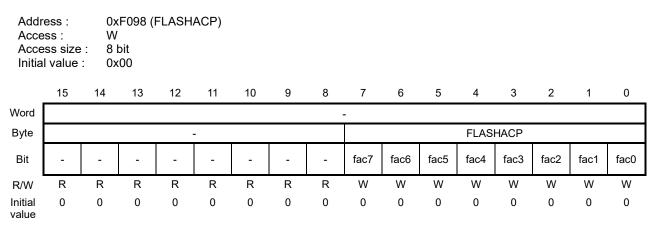
FLASHD0 is a SFR used to set programming data.

| Acce<br>Acce     | ess size : 8/16 bit<br>al value : 0xFFFF |         |      |                                                                                                                                            |                      |         |     |     |     |     |     |     |     |     |     |     |
|------------------|------------------------------------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                  | 15                                       | 14      | 13   | 12                                                                                                                                         | 11                   | 10      | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| Word             | FLASHD0                                  |         |      |                                                                                                                                            |                      |         |     |     |     |     |     |     |     |     |     |     |
| Byte             | FLASHD0H FLASHD0L                        |         |      |                                                                                                                                            |                      |         |     |     |     |     |     |     |     |     |     |     |
| Bit              | FD15                                     | FD14    | FD13 | FD12         FD11         FD10         FD9         FD8         FD7         FD6         FD5         FD4         FD3         FD2         FD1 |                      |         |     |     |     |     |     | FD0 |     |     |     |     |
| R/W              | R/W                                      | R/W     | R/W  | R/W                                                                                                                                        | R/W                  | R/W     | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| Initial<br>value | 1                                        | 1       | 1    | 1                                                                                                                                          | 1                    | 1       | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| Bit No.          | o. Bit symbol Description                |         |      |                                                                                                                                            |                      |         |     |     |     |     |     |     |     |     |     |     |
| 15 to 8          | FD1                                      | 5 to FD | 8    | Set the 2 <sup>nd</sup> byte data.                                                                                                         |                      |         |     |     |     |     |     |     |     |     |     |     |
| 7 to 0           | FD7                                      | to FD0  | )    | Set the                                                                                                                                    | 1 <sup>st</sup> byte | e data. |     |     |     |     |     |     |     |     |     |     |

There are some differences for programming the program memory space and the data flash area.

| Programming<br>target   | Register                                               | How to start<br>programming to flash  | Description                                                 |  |
|-------------------------|--------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|--|
| Program<br>memory space | 2 bytes specified in FLASHD0 register                  | Writing data into<br>FLASHD0/FLASHD0H |                                                             |  |
| Data flash area         | FLASHD0L register only (1<br>byte) in FLASHD0 register | Writing data into<br>FLASHD0/FLASHD0L | Data written into FLASHD0H of FLASHD0 resister are invalid. |  |

- Specify a segment address to FLASHSEG at first, because it determines whether the programming is for program memory space or data flash memory.
- During programming data-flash, a CPU can execute instruction by the background operation function; BGO. Confirm FDPRSTA bit of FLASHSTA register for complition of programming.
- Erase data in the addresses in advance. Programmed data without erase is unguaranteed.
- Do not read or program unused areas to prevent the CPU works incorrectly.


### 26.2.5 Flash Control Register (FLASHCON)

FLASHCON is a write-only SFR used to control the block erasing and sector erasing for the flash memory. This register always returns 0x00 for reading.

|                  |                                                                                                                                                                                                                                                                                                                                                                                    | W<br>: 8        |    | FLASH | CON)    |    |   |   |   |          |      |      |      |   |       |      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|-------|---------|----|---|---|---|----------|------|------|------|---|-------|------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                 | 14              | 13 | 12    | 11      | 10 | 9 | 8 | 7 | 6        | 5    | 4    | 3    | 2 | 1     | 0    |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                    |                 |    |       |         |    |   |   | - |          |      |      |      |   |       |      |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                    |                 |    |       | -       |    |   |   |   |          |      | FLAS | HCON |   |       |      |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                  | -               | -  | -     | -       | -  | - | - | - | -        | -    | -    | -    | - | FSERS | FERS |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                  | R               | R  | R     | R       | R  | R | R | R | R        | R    | R    | R    | R | W     | W    |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                  | 0               | 0  | 0     | 0       | 0  | 0 | 0 | 0 | 0        | 0    | 0    | 0    | 0 | 0     | 0    |
| Bit No.          | E                                                                                                                                                                                                                                                                                                                                                                                  | Bit sym<br>name |    | ·     |         |    |   |   | C | Descript | tion |      |      |   |       |      |
| 7 to 2           | -                                                                                                                                                                                                                                                                                                                                                                                  |                 |    | Rese  | rved bi | ts |   |   |   |          |      |      |      |   |       |      |
| 1, 0             | FSERS, FERS       Start the sector erasing or block erasing.         Setting the FSERS bit to "1" starts erasing the sector and setting the FERS bit to "1" starts erasing the block specified by the FLASHSEG and FLASHAH register.         00: No function (Initial value)         01: Start block erasing         10: Start sector erasing         11: Do not use (No function) |                 |    |       |         |    |   |   |   |          |      |      |      |   |       |      |

### 26.2.6 Flash Acceptor (FLASHACP)

FLASHACP is a write-only SFR used to accept for erasing/programming the flash memory.



These bits are used to accept for erasing/programming the flash memory in order to prevent an unintended erasing/programming operation.

When "0xFA" and "0xF5" are written to the FLASHACP in this order, the erasing or programming function is enabled only once. For subsequent erasing or programming, "0xFA" and "0xF5" must be written to FLASHACP each time.

Even if other instructions are executed between the instruction that writes "0xFA" and "0xF5" to the FLASHACP, the erasing or programming function is still valid.

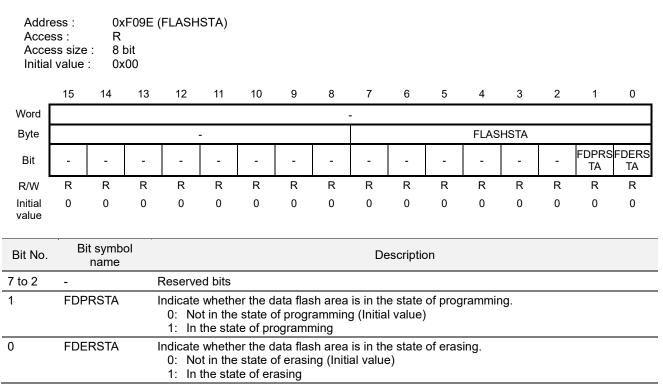
If data other than "0xF5" is written to the FLASHACP after "0xFA" is written, "0xFA" becomes invalid. In this case, it needs to write "0xFA" again.

#### [Note]

 A flash memory data in processing to program is not guaranteed, if this register is written any data when FLASHSTA is not 0x0.

### 26.2.7 Flash Self Register (FLASHSLF)

FLASHSLF is a SFR used to enable erasing and programming the flash memory. When system clock is the low-speed clock, it is not writable.


| Acce<br>Acce     | ess :<br>ess :<br>ess size<br>l value                                                                                                                     | R/<br>: 81      | W              | (FLASH        | SLF) |    |   |   |   |   |   |      |      |   |   |       |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------|------|----|---|---|---|---|---|------|------|---|---|-------|
|                  | 15                                                                                                                                                        | 14              | 13             | 12            | 11   | 10 | 9 | 8 | 7 | 6 | 5 | 4    | 3    | 2 | 1 | 0     |
| Word             |                                                                                                                                                           |                 |                |               |      |    |   |   | - |   |   |      |      |   |   |       |
| Byte             |                                                                                                                                                           |                 |                |               |      |    |   |   |   |   |   | FLAS | HSLF |   |   |       |
| Bit              | -                                                                                                                                                         | -               | -              | -             | -    | -  | - | - | - | - | - | -    | -    | - | - | FSELF |
| R/W              | R                                                                                                                                                         | R               | R              | R             | R    | R  | R | R | R | R | R | R    | R    | R | R | R/W   |
| Initial<br>value | 0                                                                                                                                                         | 0               | 0              | 0             | 0    | 0  | 0 | 0 | 0 | 0 | 0 | 0    | 0    | 0 | 0 | 0     |
| Bit No.          | Bi                                                                                                                                                        | t symbo<br>name | ol Description |               |      |    |   |   |   |   |   |      |      |   |   |       |
| 7 to 1           | -                                                                                                                                                         |                 |                | Reserved bits |      |    |   |   |   |   |   |      |      |   |   |       |
| 0                | FSELF Enable erasing and programming the flash memory. This bit is kept after completed erasing/programming.<br>0: Disabled (Initial value)<br>1: Enabled |                 |                |               |      |    |   |   |   |   |   |      |      |   |   |       |

[Note]

A flash memory data in processing to program is not guaranteed, if this register is written any data when FLASHSTA is not 0x0.

### 26.2.8 Flash Status Register (FLASHSTA)

FLASHSTA is a read-only SFR used to check status of the flash memory.



This register is used when erasing or programming the data flash memory.

| Erasing/Programming<br>target | Availability to read<br>this register while<br>erasing/programming | Description                                                  |
|-------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| Program memory space          | Not available                                                      | Do not use the FLASHSTA register.                            |
| Data flash area               | Available                                                          | Start erasing/programming the flash checking the bit is "0". |

The CPU stops running the program codes while erasing or programming the program flash memory, therefore FLASHSTA is not readable in that case.

As the Back Ground Operation (BGO) function allows the CPU continue running the program codes, make a process for the next erasing and programming by checking the FDERSTA bit or FDPRSTA bit to see if the erasing or programming the data flash memory is completed.

#### [Note]

 Perform the erasing or programming after checking FDERSTA bit or FDPRSTA bit are "0". Do not perform the erasing or programming when either FDERSTA bit or FDPRSTA bit is "1".

#### 26.3 Self-programming

The self-programming is the function to program (erase and program) the program memory space and data flash area using SFRs.

Table 26-3 shows the self-programming specifications for each of the program memory space and data flash area.

|                                     |                                         | Program memory space                                                                                                                           | Data flash area                                                                   |  |  |  |
|-------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
|                                     |                                         | (Segment 0)                                                                                                                                    | (segment 31)                                                                      |  |  |  |
| Erasing block                       |                                         | 16 Kbyte                                                                                                                                       | all area                                                                          |  |  |  |
| Programming<br>unit                 | Erasing sector                          | 1 Kbyte                                                                                                                                        | 128 byte                                                                          |  |  |  |
| unit                                | Programming                             | 2 byte                                                                                                                                         | 1 byte                                                                            |  |  |  |
|                                     | ation during<br>rase or program         | Stop program processing (after<br>completion of erasing/programming,<br>resume program processing)                                             | Continue program processing through<br>the background operation (BGO)<br>function |  |  |  |
| block/secto<br>progra               | on of end of<br>or erasing or<br>amming | Confirmation not required (as program run<br>is stopped during erasing/programming)                                                            | Confirmation can be made through<br>FLASHSTA register                             |  |  |  |
| block/sector er                     | rea where<br>rasing has been<br>blied   | Every bit becomes "1" (the bit written with "0" by writing becomes "0" from "1")                                                               |                                                                                   |  |  |  |
| Note on data                        | programming                             | Erase the area to be reprogrammed (data programmed without erasing is<br>unguaranteed)                                                         |                                                                                   |  |  |  |
| unint                               | to prevent<br>ended<br>ogramming        | Flash self-register (FLASHSLF) and flash acceptor (FLASHACP) incorporated (*1)                                                                 |                                                                                   |  |  |  |
|                                     | nemory<br>ogramming                     | Supported only when system clock is the high-speed clock (*2)                                                                                  |                                                                                   |  |  |  |
| Note on user program<br>programming |                                         | Before programming the user program,<br>prepare a program for self-programming<br>in the program code area which is not<br>erased/reprogrammed | -                                                                                 |  |  |  |
| Remapping function                  |                                         | User program update, etc. can be<br>performed by simultaneously using<br>remapping function                                                    | -                                                                                 |  |  |  |

Table 26-3 Self-programming of Program Memory Space and Data Flash Area

\*1: After the programming is enabled by the FLASHSLF register, if "0xFA" and "0xF5" are written to the flash acceptor (FLASHACP), block/sector erase or reprogram is enabled only once.

\*2: See Chapter 6 "Clock Generation Circuit" for enabling oscillation of the high-speed oscillation circuit and switching the system clock.

### 26.3.1 Notes on Debugging Self-programming Code

When debugging the area within the scope of program for self-programming (from setting the flash acceptor to writing the flash data register 0) using U16 development environment (debugger), use the debugger according to the precautions described in Table 26-4.

| Table 26-4 Notes on Debugging Self-programming |
|------------------------------------------------|
|------------------------------------------------|

| Limited<br>function | Notes                                                                                                                                                                                                                                                                                                                  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Breakpoint setting  | Do not perform the real time execution with break points set in the scope of program for self-<br>programming (from setting the flash acceptor to setting the flash data register0).<br>Otherwise, the flash memory may not be reprogrammed if break points occur within the scope of<br>program for self-programming. |
| Step<br>execution   | Do not perform the step execution within the scope of program for self-programming.<br>Otherwise, the flash memory may not be reprogrammed if the step execution is performed within the<br>scope of program for self-programming.                                                                                     |

#### 26.3.2 Programming Program Memory Space

In the program memory space (flash memory), block erase in units of 16 Kbytes, sector erase in units of 1 Kbyte, and reprogram in units of 2 bytes can be executed.

Figure 26-1 shows the flow diagram for erasing the program memory space.

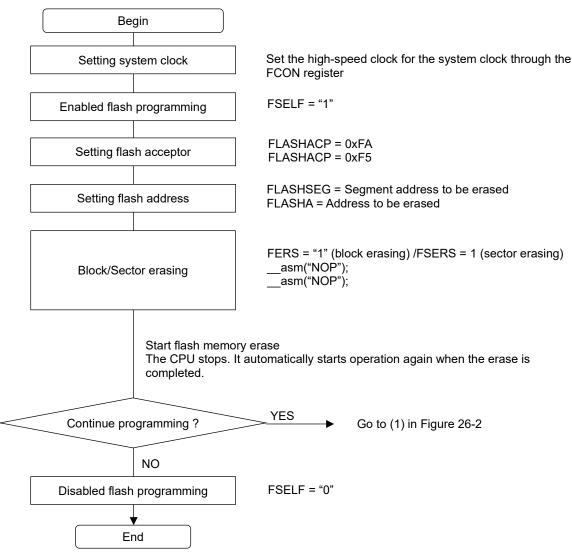
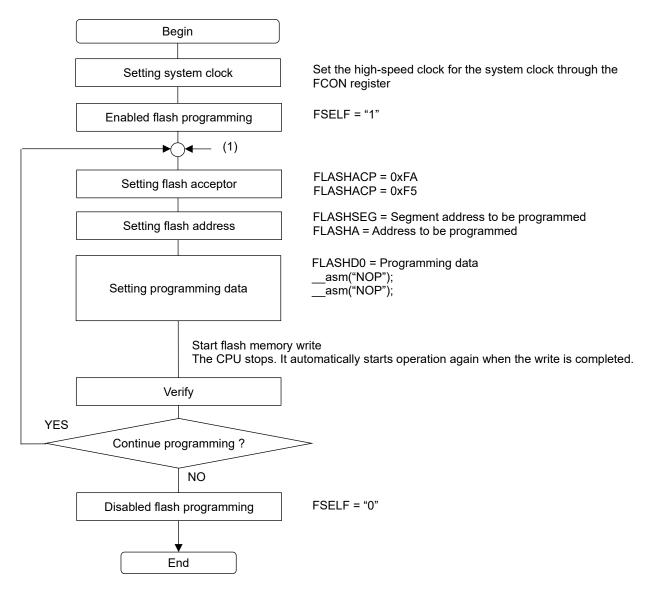
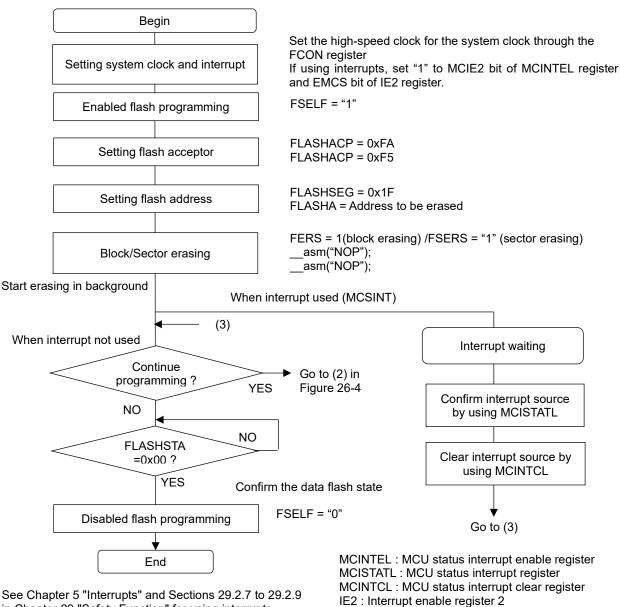



Figure 26-1 Flow Diagram for Erasing Program Memory Space

- Only erase areas irrelevant to program processing. If erasing the area where program processing is in progress, the LSI works incorrectly.
- During block/sector erasing, the CPU stops the operation for maximum 50 ms whereas peripheral circuits continue operation. Therefore, clear the WDT counter accordingly.
- For block/sector erasing, place two NOP instructions following the instruction used to set FERS/FSERS bits of FLASHCON register to "1".

Figure 26-2 shows the flow diagram for programming the program memory space.





Figure 26-2 Flow Diagram for Programming Program Memory Space

- Only write areas irrelevant to program processing. If programming the area where program processing is in progress, the LSI works incorrectly.
- During the programming, the CPU stops the operation for maximum 40 µs whereas peripheral circuits continue operation. Therefore, clear the WDT counter accordingly.
- For data programming setting, place two NOP instructions following the instruction used to set the programming data in FLASHD0 register.

### 26.3.3 Programming Data Flash Area

In the data flash area (flash memory), block erase in all area, sector erase in units of 128 bytes, and programming in units of 1 byte can be executed. During block/sector erase or program in the data flash area, the CPU continues program processing using the background operation (BGO) function.

Figure 26-3 shows the flow diagram for erasing the data flash area.



in Chapter 29 "Safety Function" for using interrupts.

Figure 26-3 Flow Diagram for Erasing Data Flash Area

- The CPU continues program processing even while data flash erasing is in progress. An entering to the STOP mode is not available during the erasing. In addition, set FSELF bit of FLASHSLF register to "0" after the erasing is completed.
- The data flash area is unreadable during erasing.
- For block/sector erasing, place two NOP instructions following the instruction used to set FERS/FSERS bits of the FLASHCON register to "1".

Figure 26-4 shows the flow diagram for programming the data flash area.

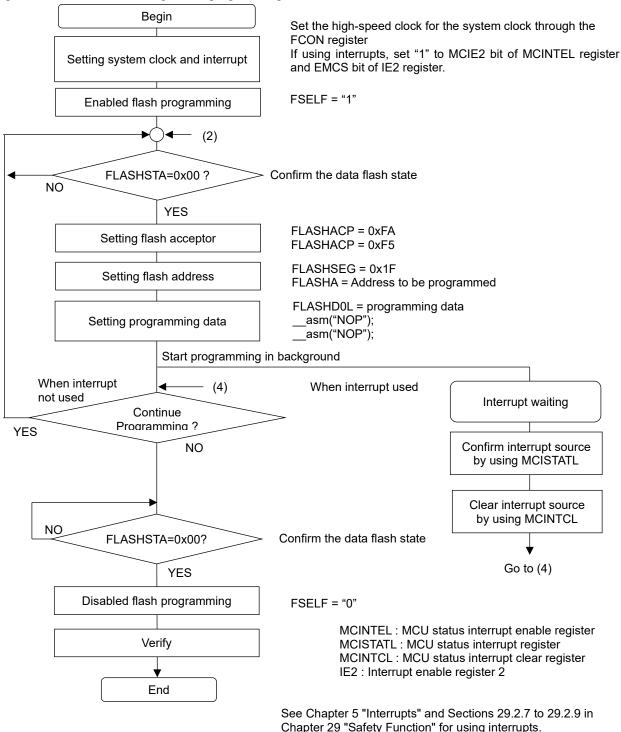



Figure 26-4 Flow Diagram for Programming Data Flash Area

- The CPU continues program processing even while data flash programming is in progress. An entering
  to the STOP mode is not available during the programming. In addition, set FSELF bit of FLASHSLF
  register to "0" (erase/program disabled) after the programming ended.
- The data flash area is unreadable during programming.
- For data programming setting, place two NOP instructions following the instruction used to set the programming data in FLASHD0L register.

### 26.3.4 Notes on use of self-programming

Table 26-5 shows the notes on the use of self-programming (block erasing/sector erasing/programming).

| Item                                  | Notes                                                                      |
|---------------------------------------|----------------------------------------------------------------------------|
| System clock during use of            | Set to high-speed clock.                                                   |
| self-programming                      | See Chapter "6 Clock Generation Circuit" for enabling the high-speed clock |
|                                       | oscillation and switching the system clock.                                |
| If power outage or forced termination | Data in flash memory is not guaranteed.                                    |
| due to a reset occurs                 | Perform block/sector erase again then program data.                        |
| If LSI does not start up due to       | Program the program again using on-chip debug emulator or ISP function.    |
| occurrence of power outage or forced  |                                                                            |
| termination during programming (*1)   |                                                                            |
| Access to SFRs related flash control. | Do not perform to write to the FLASHACP/FLASHSLF register during self-     |
|                                       | programming; when FLASHSTA is not 0x0.                                     |

#### Table 26-5 Notes on Use of Self-programming

\*1: While programming the block or sector including address 0:0000 of the program area is in progress.

#### 26.4 In-System Programming Function

The In-System Programming (ISP) function is used to program a program memory space and data flash area through UART communication with an external device.

#### 26.4.1 Programming Procedure

Figure 26-5 shows the flow diagram for programming the flash memory using the ISP function.

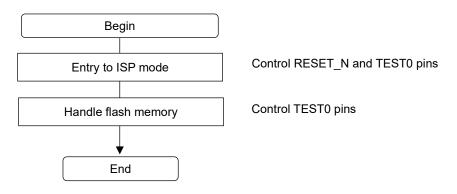



Figure 26-5 Flow Diagram for Programming Flash Memory Using ISP Function

#### 26.4.2 Communication Method

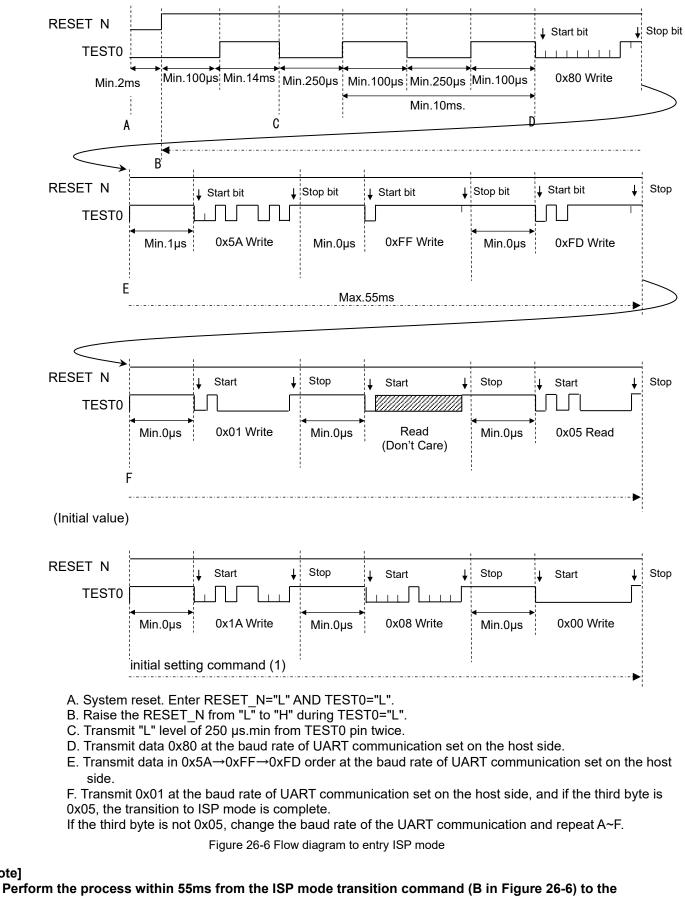
Table 26-6 describes the communication method of the ISP function.

| Item                             | Description                                       |  |  |  |  |
|----------------------------------|---------------------------------------------------|--|--|--|--|
| Pins for ISP function            |                                                   |  |  |  |  |
| Pins used when entering ISP mode | RESET_N pin and TEST0 pin                         |  |  |  |  |
| Communication method             | Half-duplex UART                                  |  |  |  |  |
| Pin used for UART communication  | TEST0 pin                                         |  |  |  |  |
| UART Communication Format        | 8-bit length, LSB fast, 1 stop bit, no parity bit |  |  |  |  |
| Baud rate                        | Auto-detection between 4800bps to 2.0Mbps         |  |  |  |  |

### 26.4.3 Control Command

3-byte commands are used to make the communication in the ISP function. Table 26-7 shows the ISP mode commands. Table 26-7 ISP Mode Command List

| Table 26-7 ISP Mode Command List |                                                                    |                      |                              |                                  |  |  |  |
|----------------------------------|--------------------------------------------------------------------|----------------------|------------------------------|----------------------------------|--|--|--|
|                                  | Command                                                            | 1 <sup>st</sup> byte | 2 <sup>nd</sup> byte         | 3 <sup>rd</sup> byte             |  |  |  |
|                                  | Sending initial setting command (1)                                | 0x1A                 | 0x08                         | 0x00                             |  |  |  |
|                                  | Sending initial setting command (2)                                | 0x1A                 | 0x00                         | 0x00                             |  |  |  |
|                                  | Sending initial setting command (3)                                | 0xC0                 | 0x01                         | 0x00                             |  |  |  |
|                                  | Sending initial setting command (4)                                | 0xC0                 | 0x05                         | 0x00                             |  |  |  |
|                                  | Sending initial setting command (5)                                | 0xC0                 | 0x03                         | 0x00                             |  |  |  |
|                                  | Sending initial setting command<br>(6)                             | 0xCE                 | 0x01                         | 0x00                             |  |  |  |
| Initial                          | Sending initial setting command (7)                                | 0xCE                 | 0x00                         | 0x00                             |  |  |  |
| setting                          | Sending initial setting command (8)                                | 0x96                 | 0xFF                         | 0xFF                             |  |  |  |
|                                  | Sending initial setting command<br>(9)                             | 0x98                 | 0xFF                         | 0xFF                             |  |  |  |
|                                  | Sending initial setting command (10)                               | 0x9A                 | 0xFF                         | 0xFF                             |  |  |  |
|                                  | Sending initial setting command (11)                               | 0x9C                 | 0xFF                         | 0xFF                             |  |  |  |
|                                  | Sending initial setting command (12)                               | 0x9E                 | 0xFF                         | 0xFF                             |  |  |  |
|                                  | Confirming command<br>transmission completion(1)                   | 0x01                 | (Read)<br>0xC0 or 0x80       | (Read)<br>0x05                   |  |  |  |
|                                  | Confirming command transmission completion(2)                      | 0x91                 | (Read)<br>0x00               | (Read)<br>0x00                   |  |  |  |
|                                  | Segment setting command                                            | 0xC6                 | 0x00~0x1F<br>(segment value) | 0x00                             |  |  |  |
| Common                           | Address setting command                                            | 0xC8                 | Lower 8 bits                 | Higher 8 bits                    |  |  |  |
| setting                          | BUSY confirmation command                                          | 0xC5                 | (Read)<br>0x1F               | (Read)<br>0x01:BUSY<br>0x00:IDLE |  |  |  |
| Block<br>erasing                 | Block erasing command                                              | 0xC2                 | 0x05                         | 0x00                             |  |  |  |
| Chip<br>erasing                  | Chip erasing command                                               | 0xC2                 | 0x06                         | 0x00                             |  |  |  |
| -                                | Data setting command H                                             |                      |                              |                                  |  |  |  |
|                                  | ; in program code area (higher<br>2bytes)                          | 0xD2                 | Lower Byte                   | Higher Byte                      |  |  |  |
| For<br>programing<br>data        | Data setting command L<br>; in program code area (lower<br>2bytes) | 0xCA                 | Lower Byte                   | Higher Byte                      |  |  |  |
|                                  | Data setting command D<br>; in data flash area                     | 0xCA                 | 1Byte data                   | 0xFF                             |  |  |  |
|                                  | Programming command                                                | 0xC2                 | 0x04                         | 0x00                             |  |  |  |


|            | Command                                                                         | 1 <sup>st</sup> byte | 2 <sup>nd</sup> byte                                                                                        | 3 <sup>rd</sup> byte |
|------------|---------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------|----------------------|
|            | Expected data setting<br>command H<br>; in program code area (higher<br>2bytes) | 0xE4                 | Lower Byte                                                                                                  | Higher Byte          |
|            | Expected data setting<br>command L<br>; in program code area (lower<br>2bytes)  | 0xE2                 | Lower Byte                                                                                                  | Higher Byte          |
| For verify | Expected data setting<br>command D<br>; in data flash area                      | 0xE4                 | 1Byte data                                                                                                  | 0x00                 |
|            | Verify command                                                                  | 0xC2                 | 0x02                                                                                                        | 0x00                 |
|            | Verify confirmation command<br>; collation result of expected<br>data           | 0xE7                 | (Read)<br>0x03:OK<br>0x01:OK at current cycle,<br>but has been NG in the<br>past cycles.<br>0x02 or 0x00:NG | (Read)<br>0x00       |

[Note]

 Accessing to the program code area is performed in units of four bytes. Set four byte boundaries (0H/4H/8H/CH) for lower four bits of the address. Accessing to the data flash area is performed in units of one byte.

#### 26.4.4 How to Entry ISP Mode

Figure 26-6 shows timing diagram to entry ISP mode.



#### completion of the initial setting command transmission (1).

#### 26.4.5 Handling the Flash Memory

Figure 26-7 shows the flow diagram for erasing/programming the flash memory after transition to the ISP mode.

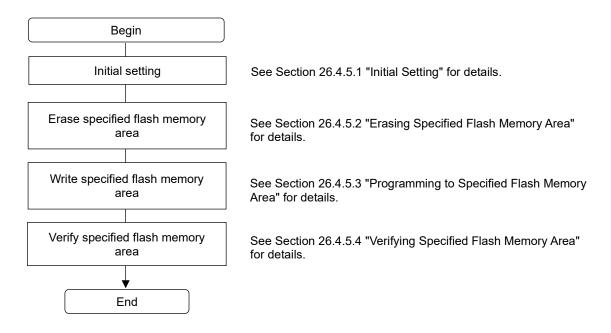
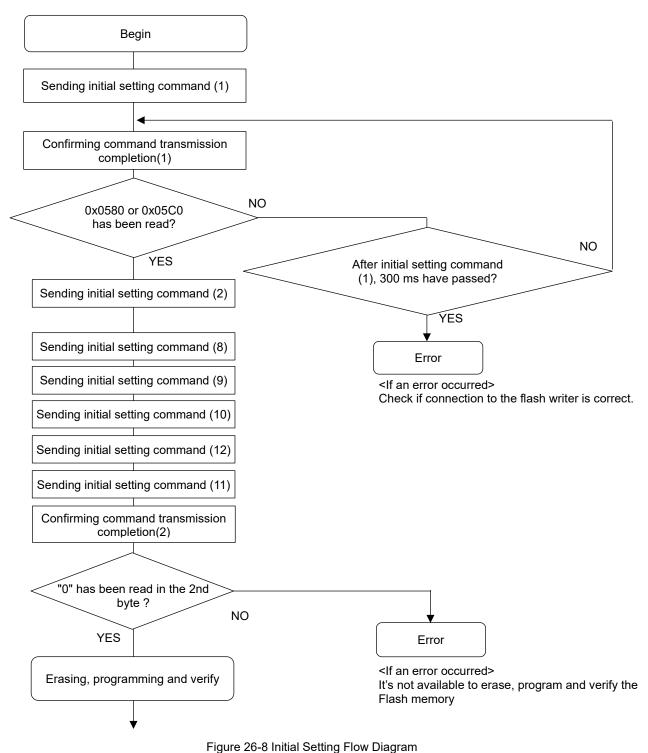
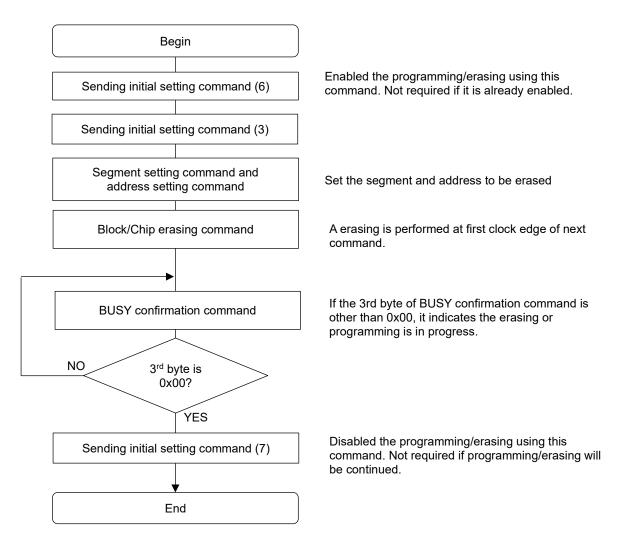




Figure 26-7 Flow Diagram for Erasing/Programming Flash Memory (Overview)



#### 26.4.5.1 Initial Setting

Figure 26-8 shows the initial setting flow.




#### [Note]

Initial setting process should be processed within 1000 ms.

#### 26.4.5.2 Erasing Data in Specified Flash Memory Area

Figure 26-9 shows the flow diagram for erasing data in specified flash memory area.



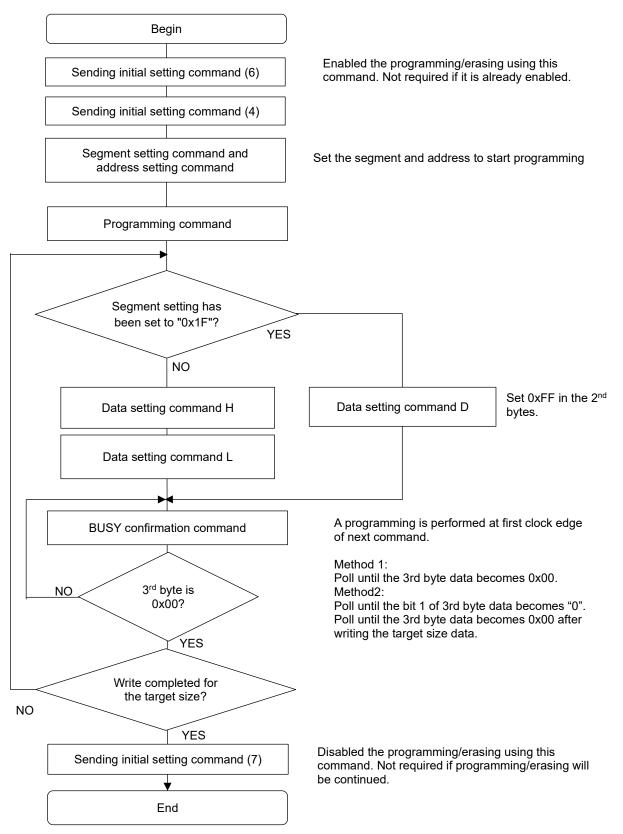


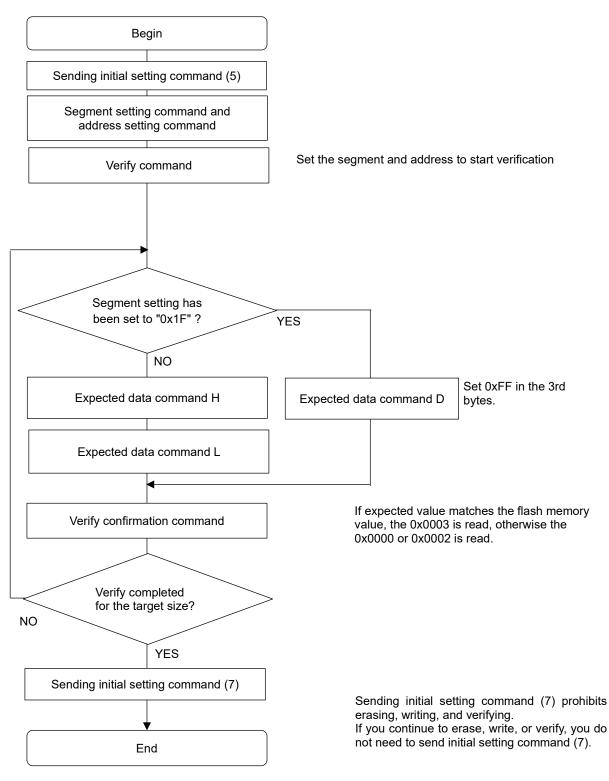
#### [Note]

• Erasure should be processed within 500ms.

#### 26.4.5.3 Programming to Specified Flash Memory Area

Figure 26-10 shows the flow diagram for programming to the specified flash memory area.





Figure 26-10 Flow Diagram for Programming to Specified Flash Memory Area

[Note]

Writing should be processed within 500ms. When writing multiple addresses, process from data setting to data setting of the next address or completion of sending initial setting command (7) within 500ms.

#### 26.4.5.4 Verifying data in Specified Flash Memory Area

Figure 26-11 shows the flow diagram for verifying data in the specified flash memory area.





#### [Note]

 Verify should be processed within 500ms. When verifying multiple addresses, process from data setting to data setting of the next address or completion of sending initial setting command (7) within 500ms.

### 26.4.6 Advanced Control of Flash Memory Erasing/Programming

This section describes how to implement shorter Flash memory erasing/programing/verify time.

In Sections 26.4.5.2 and 26.4.5.3, after sending erase command or write data, the BUSY signal is confirmed and the next command is transferred considering the time until the BUSY signal is released ( $t_{busy}$ ), it is possible to shorten the processing time by sending the following command.

#### 26.4.6.1 Timing to transmit command of Advanced Control

When the LSI receives erasing or writing communication command, it issues an erasing/writing order to the flash memory. It requires the Busy time ( $t_{busy}$ ) as an interval time to accept the next communication command. Therefore, transmit the communication commands for erasing/programming the Flash memory with an interval of longer than  $t_{busy}$ .

The timing of command transmit is calculated as follows. Command transfer time :  $t_{cmd} = (10 \text{ [bit]} / \text{transfer rate[bps]})$ Wait time :  $t_{wait} = \text{Busy time : } t_{busy} - (t_{cmd} \times \text{number of commands})$ 

(1) When the transfer rate is 1Mbps and programming data in program memory space: Send the command so that the interval between receiving the "Writing data of program code (lower 2 bytes)" command is more than or equal to t<sub>busy</sub>.

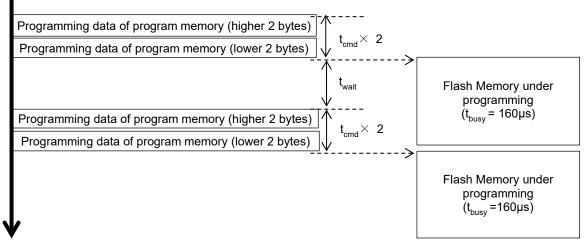



Figure 26-12 Advanced control #1 of programming the program code area

Figure 26-13 shows an example of using "data command H" instead of "BUSY confirmation command".

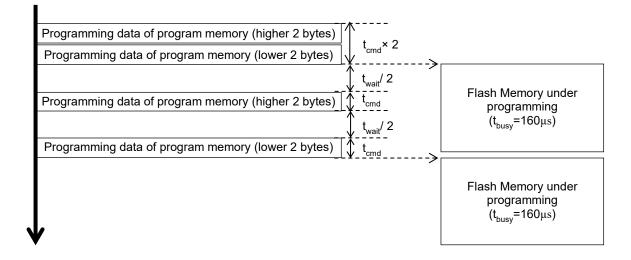



Figure 26-13 Advanced control #2 of programming the program code area

Figure 26-14 shows an example for programming to data flash area. When the transfer rate is 1Mbps and programming data in data flash area: Send the command "Data command D" so that the command acceptance interval is t<sub>busy</sub> or more.

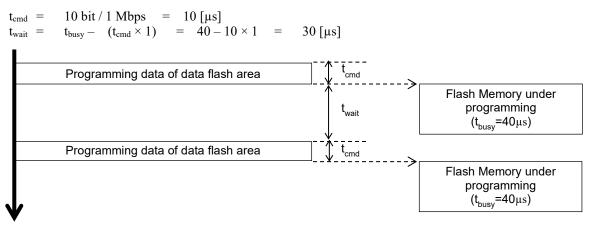



Figure 26-14 Advanced control of programming to the data flash

#### 26.4.6.2 Timeout during advanced control

In ISP mode, there is a function to judge that it will time out after a certain period of time has elapsed and exit from ISP mode. After changing to ISP mode, issue one of the following commands at intervals of 2800 ms or less.

- •Confirming command transmission completion(1)
- •Confirming BUSY signal
- ·Confirming the result of matching the expected value

### 26.4.6.3 Erasing Data in Specified Flash Memory Area (Advanced control)

Figure 26-15 shows the flow diagram for erasing the specified flash memory area by the advanced control.

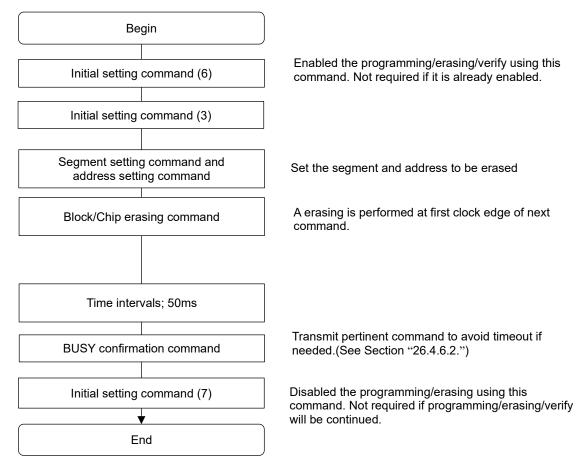



Figure 26-15 Flow Diagram for Erasing Specified Flash Memory Area (Advanced Control)

#### 26.4.6.4 Programming to Specified Flash Memory Area (Advanced control)

Figure 26-16 shows the flow diagram for programming to the specified flash memory area by the advanced control.

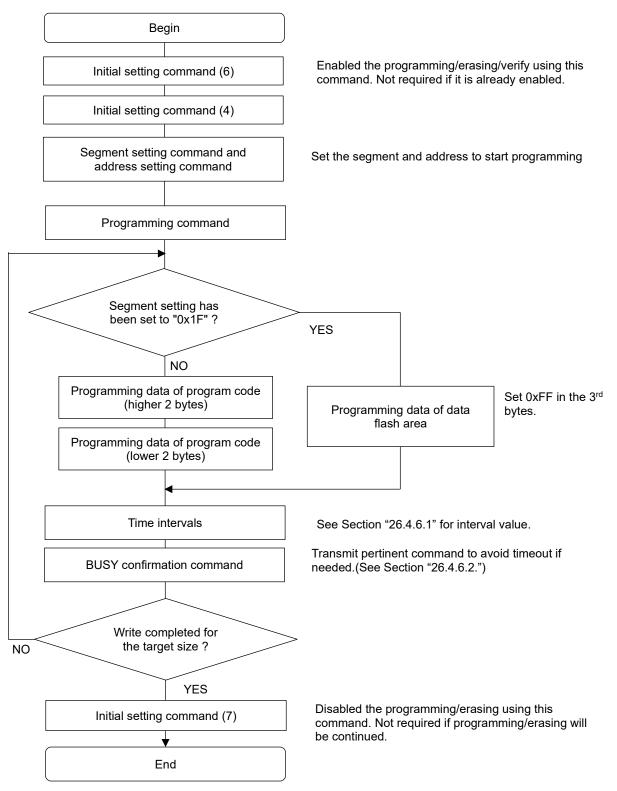



Figure 26-16 Flow Diagram for Programming Specified Flash Memory Area (Advanced Control)

# **Chapter 28 On-Chip Debug Function**

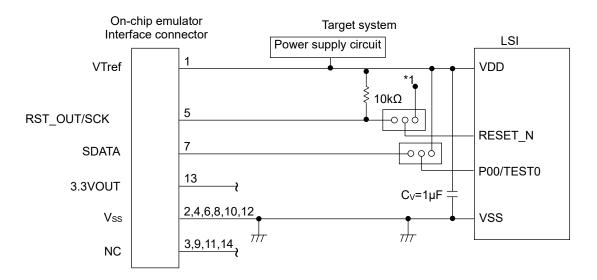
### 28. On-Chip Debug Function

#### 28.1 General Description

This function is used by connecting the host PC and LSI through the on-chip debug emulator (hereafter referred to as "On-chip emulator").

On-board debugging or programming is available by using the program development environment software (debugger) installed on the host PC.

#### 28.1.1 Features


- The following debug functions are provided using the debugger by connecting LSI and On-chip emulator
  - Emulation
    - Real time emulation
    - Single step emulation
  - Trace
    - Branch trace (select Enable or Disable by code option)
  - Break
    - Hardware break point break (four points)
    - RAM data matching break
    - Sequential break
    - Trace overflow break(It is available if enabling branch trace function.)
    - Stack overflow/underflow break
    - Unused ROM area access break
    - RAM parity error break
  - Real time watch
  - CPU resource display/change
    - Program memory reference/disassembly
    - RAM and SFR display/change
    - Register display/change in the CPU
  - Program download
    - Program download/read/erase to/from flash memory
    - Data write/read/erase to/from data flash
  - Peripheral circuit operation continue/stop control
    - Target peripheral circuits
    - External interrupt
    - 16-bit timer
    - Operational timer
    - UART
    - I<sup>2</sup>C bus unit (master/slave)
    - Analog module (Analog comparator, Successive approximation type A/D converter, Low Level Detector)
- The following program download function is provided using the flash multi-writer by connecting LSI and On-chip emulator.
  - Program download
    - Erasing/Programming the program memory space
    - Erasing/Programming the data flash memory area

#### 28.1.2 Configuration

When using the on-chip debug function, use the power supply of the target system (VDD= $4.5V \sim 5.5V$ ) to supply power to the LSI.

#### 28.1.2.1 Using Power Supply of Target System (V<sub>DD</sub>=4.5V to 5.5V)

Figure 28-1 shows a connection example when using the power supply ( $V_{DD}$ =4.5 V to 5.5 V) of On-chip emulator.



\*1) Normal operation (reset IC, V<sub>DD</sub>, etc.)

#### Figure 28-1 Connection Example

#### 28.1.3 List of Pins

The following pins are used for the on-chip debug function.

| Signal name | I/O | Function                                   |
|-------------|-----|--------------------------------------------|
| RESET_N     | I   | On-chip debug function input signal        |
| P00/TEST0   | I/O | On-chip debug function input/output signal |



#### 28.2 How to Use On-chip Debug Function

See manual of the debugger for how to use the on-chip debug function using On-chip emulator and the debugger. See manual of the flash multi-writer for how to download a program using On-chip emulator and flash multi-writer.

#### 28.3 Precautions

[Note] on usage of the on-chip debug function.

- Make RESET\_N pin able to be connected to V<sub>DD</sub> with a jumper or something when not using the on-chip debug function.
- Make P00/TEST0 pin able to be connected to V<sub>DD</sub> with a jumper or something when not using the on-chip debug function.
- Do not program instruction codes into the LSI that set the P00/TEST0 pin to the output mode. If P00/TEST0 is set to the output mode before On-chip emulator performs read/write to/from the target chip, communication with On-chip emulator after that will be disabled. Also note that the input/output mode of P00/TEST0 is uninitialized by On-chip emulator.
- Validate the ROM code on user production board without the On-chip emulator.
- Disconnect On-chip emulator when measuring the current consumption of the target system. If On-chip emulator remains connected, the current consumption increases as the on-chip debug circuit inside the LSI works for the communication.
- LSI used to debug a program is not covered by the product warranty. Do not use the LSI for mass-production.
- A reset due to unused ROM area access does not occur in the on-chip debug mode regardless of code option settings.
- A RAM parity error reset does not occur in the on-chip debug mode and the break operation occurs instead.
- If the contents of the data memory are displayed in the debugger in a state where a RAM parity error may occur (including when the RAM is not initialized), a RAM parity error may occur even if the RAM area is not displayed.
- The all interrupts and watchdog timer operation always stop while the debugger is in the break state.
- If the LSI cannot be connected to the debugger, check that the LSI is supplied with a power supply (V<sub>DD</sub>=4.5V~5.5V).

#### 28.4 Operation of Peripheral Circuits during breaks in the on-chip debug mode

The debugger allows users to choose whether to continue or stop operating the peripheral circuits during the break state on the debugger.

Table 28-1 shows the optional items, the target peripherals and how the operation is controlled. Each optional item is displayed with a check box on the debugger. See manual of the debugger for more details on how to use the function.

 Table 28-1
 Peripheral controls during the break on the debugger

| Optional item                               | Peripheral Circuit                          | Description                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| External Interrupt                          | External Interrupt                          | If the item is checked on, the target LSI accepts the external input during the break.<br>If the item checked off, the target LSI does not accept the external input during the break.                                                                                                                                                     |
| General Timer                               | 16-bit Timer                                | If the item is checked on, operation of the peripheral<br>operation continues during the break.<br>If the item checked off, operation of the peripheral stops<br>during the break.                                                                                                                                                         |
| Operational Timer                           | Operational Timer                           | If the item is checked on, operation of the peripheral<br>operation continues during the break.<br>If the item checked off, operation of the peripheral stops<br>during the break.<br>Operational Timer can be controlled for each channels,<br>refer to "9.2.25 OTM Common Break Control Registers"<br>in "Chapter 9 Operational Timers". |
| l <sup>2</sup> C Bus Unit<br>(Master/Slave) | l <sup>2</sup> C Bus Unit<br>(Master/Slave) | If the item is checked on, operation of the peripheral<br>operation continues during the break.<br>If the item checked off, operation of the peripheral stops<br>during the break.                                                                                                                                                         |
| Analog Module<br>(CMP/ADC/LLD)              | SA-ADC and Analog comparator and LLD        | If the item is checked on, operation of the peripheral<br>operation continues during the break.<br>If the item checked off, operation of the peripheral stops<br>during the break.                                                                                                                                                         |

#### 28.5 Reset in the On-Chip Debug Tool

By executing reset from the debug tool, RSTAT register POR bit is set to "1". However, LLD function is not reset. If it is necessary to start them from initial state, set these pertinent SFRs to initial value. Then execute reset from debug tools.

# **Chapter 29 Safety Function**

### 29. Safety Function

### 29.1 General Description

The purpose of the safety function is to detect a fault by self-diagnosing the LSI and to stop the LSI safely.

#### 29.1.1 Features

• Safety Functions on the LSI

| Function Name                                          | Description                                                                                                                               | Control by SFR |  |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|
| RAM guard                                              | Protect from the miss-writing to the specified RAM area                                                                                   | Available      |  |  |  |  |
| SFR guard                                              | Protect from the miss-writing to the specified SFR                                                                                        | Available      |  |  |  |  |
| Successive<br>approximation type A/D<br>converter test | Successive approximation type AD converter test function                                                                                  | Available      |  |  |  |  |
| RAM parity error<br>detection                          | RAM parity error check and generates a reset on error (enable/disable reset<br>by SFR, with reset status flag and parity error flag)      | Available      |  |  |  |  |
| ROM unused area<br>access reset                        | Make a reset in case the CPU executes an instruction in the unused area (enable/disable reset by the code option, with reset status flag) | -              |  |  |  |  |
| Clock mutual monitoring                                | Monitor to check whether the oscillation of the high-speed and low-speed<br>clocks are normal                                             | Available      |  |  |  |  |
| UART self-test function                                | Make the UART self-test                                                                                                                   | Available      |  |  |  |  |
| I <sup>2</sup> C self-test function                    | Make the I <sup>2</sup> C self-test function                                                                                              | Available      |  |  |  |  |
| WDT counter read                                       | WDT counter read function                                                                                                                 | Available      |  |  |  |  |
| Port output level self-test<br>function                |                                                                                                                                           |                |  |  |  |  |
| MCU status interrupt                                   | Control interrupts generated by RAM parity error, automatic CRC calculation completion, and data flash erase/program completion.          | Available      |  |  |  |  |

### 29.2 Description of Registers

### 29.2.1 List of Registers

| A daha aa              | Nama                                        | Sym      | bol    | R/W | Cine | Initial |
|------------------------|---------------------------------------------|----------|--------|-----|------|---------|
| Address                | Name                                        | Byte     | Word   | R/W | Size | Value   |
| 0xF0B0                 | RAM Guard Setting Register 0                | RAMGD    | -      | R/W | 8    | 0x00    |
| 0xF0B1<br>to<br>0xF0B3 | Reserved                                    | -        | -      | -   | -    | -       |
| 0xF0B4                 | CED Quard Satting Deviator 0                | SFRGD0L  |        | R/W | 8/16 | 0x00    |
| 0xF0B5                 | SFR Guard Setting Register 0                | SFRGD0H  | SFRGD0 | R/W | 8    | 0x00    |
| 0xF0B6                 | SED Quard Satting Deviator 1                | SFRGD1L  | SFRGD1 | R/W | 8/16 | 0x00    |
| 0xF0B7                 | SFR Guard Setting Register 1                | SFRGD1H  | SFRGDI | R/W | 8    | 0x00    |
| 0xF0B8<br>to<br>0xFBB  | Reserved                                    | -        | -      | -   | -    | -       |
| 0xF0BC                 | RAM Parity Setting Register                 | RASFMOD  | -      | R/W | 8    | 0x00    |
| 0xF0BD                 | Reserved                                    | -        | -      | -   | -    | -       |
| 0xF0BE                 | Communication Test Setting Desister 0       | COMFT0L  | COMFT0 | R/W | 8/16 | 0x00    |
| 0xF0BF                 | Communication Test Setting Register 0       | COMFT0H  | COMPTU | R/W | 8    | 0x00    |
| 0xF050                 | MCU Status Interrupt Enable Register        | MCINTEL  | -      | R/W | 8    | 0x00    |
| 0xF051                 | Reserved                                    | -        | -      | -   | -    | -       |
| 0xF052                 | MCU Status Interrupt Register               | MCISTATL | -      | R   | 8    | 0x00    |
| 0xF053                 | Reserved                                    | -        | -      | -   | -    | -       |
| 0xF054                 | MCLL Statue Interrunt Clear Degister (L/LL) | MCINTCLL |        | W   | 8    | 0x00    |
| 0xF055                 | MCU Status Interrupt Clear Register (L/H)   | MCINTCLH | -      | W   | 8    | 0x00    |

### 29.2.2 RAM Guard Setting Register (RAMGD)

RAMGD is a SFR used to disable writing the RAM. Data in the specified RAM area is protectable.

| Acce<br>Acce     | Address:0xF0B0Access:R/WAccess size:8 bitInitial value:0x00 |                 |    | ) (RAMG | BD)     |         |          |          |         |          |    |   |   |      |      |      |
|------------------|-------------------------------------------------------------|-----------------|----|---------|---------|---------|----------|----------|---------|----------|----|---|---|------|------|------|
|                  | 15                                                          | 14              | 13 | 12      | 11      | 10      | 9        | 8        | 7       | 6        | 5  | 4 | 3 | 2    | 1    | 0    |
| Word             |                                                             |                 |    |         |         |         |          |          | -       |          |    |   |   |      |      |      |
| Byte             | -                                                           |                 |    |         |         |         |          | RAMGD    |         |          |    |   |   |      |      |      |
| Bit              | -                                                           | -               | -  | -       | -       | -       | -        | -        | -       | -        | -  | - | - | RGD2 | RGD1 | RGD0 |
| R/W              | R                                                           | R               | R  | R       | R       | R       | R        | R        | R       | R        | R  | R | R | R/W  | R/W  | R/W  |
| Initial<br>value | 0                                                           | 0               | 0  | 0       | 0       | 0       | 0        | 0        | 0       | 0        | 0  | 0 | 0 | 0    | 0    | 0    |
| Bit No.          | •                                                           | Bit sym<br>name |    |         |         |         |          |          | D       | escripti | on |   |   |      |      |      |
| 7 to 3           | - Reserved bits                                             |                 |    |         |         |         |          |          |         |          |    |   |   |      |      |      |
| 2 to 0           | RCD2 to                                                     |                 |    | Salact  | a nroto | ct area | for writ | ing on t | the RAM | И        |    |   |   |      |      |      |

| 2 to 0 | RGD2 to | Select a protect area for writing on the RAM.                                  |
|--------|---------|--------------------------------------------------------------------------------|
|        | RGD0    | 000: All RAM area writable and readable (Initial value)                        |
|        |         | 001: 0x0:0EFC0 to 0x0:0EFFF (64 byte) is unwritable and readable               |
|        |         | 010: 0x0:0EF80 to 0x0:0EFFF (128 byte) is unwritable and readable              |
|        |         | 011: 0x0:0EF00 to 0x0:0EFFF (256 byte) is unwritable and readable              |
|        |         | 100: 0x0:0EE00 to 0x0:0EFFF (512 byte) is unwritable and readable              |
|        |         | 101: Do not use (0x0:0EE00 to 0x0:0EFFF (512 byte) is unwritable and readable) |
|        |         | 110: Do not use (0x0:0EE00 to 0x0:0EFFF (512 byte) is unwritable and readable) |
|        |         | 111: Do not use (0x0:0EE00 to 0x0:0EFFF (512 byte) is unwritable and readable) |

### 29.2.3 SFR Guard Setting Register 0 (SFRGD0)

SFRGD0 is a SFR used to disable writing certain SFRs. Data in the specified SFR area is protectable.

| Acc<br>Acc       | lress:<br>ess:<br>ess siz<br>al value |    |    |     |      |    |   |     | RGD0H   | ) |       |       |       |       |       |       |
|------------------|---------------------------------------|----|----|-----|------|----|---|-----|---------|---|-------|-------|-------|-------|-------|-------|
|                  | 15                                    | 14 | 13 | 12  | 11   | 10 | 9 | 8   | 7       | 6 | 5     | 4     | 3     | 2     | 1     | 0     |
| Word             |                                       |    |    |     |      |    |   | SFF | RGD0    |   |       |       |       |       |       |       |
| Byte             |                                       |    |    | SFR | GD0H |    |   |     | SFRGD0L |   |       |       |       |       |       |       |
| Bit              | -                                     | -  | -  | -   | -    | -  | - | -   | -       | - | SGD05 | SGD04 | SGD03 | SGD02 | SGD01 | SGD00 |
| R/W              | R                                     | R  | R  | R   | R    | R  | R | R   | R       | R | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0                                     | 0  | 0  | 0   | 0    | 0  | 0 | 0   | 0       | 0 | 0     | 0     | 0     | 0     | 0     | 0     |

Common description of each bits :

It is configured writable/unwritable target SFRs

0: Target SFRs are writable and readable (Initial value)

1: Target SFRs are unwritable and readable

| Bit No. | Bit symbol name | Description (target SFRs)                                                  |
|---------|-----------------|----------------------------------------------------------------------------|
| 15 to 6 | -               | Reserved bits                                                              |
| 5       | SGD05           | WDTMOD register; see Chapter 10 "Watchdog timer"                           |
| 4       | SGD04           | BCKCONn and BRECONn registers (n=0 to 3); see Chapter 4 "Power management" |
| 3       | SGD03           | RASFMOD register; see this chapter.                                        |
| 2       | SGD02           | SFRs described in Chapter 22 "LLD"                                         |
| 1       | SGD01           | SFRs described in Chapter 6 "Clock Generation Circuit"                     |
| 0       | SGD00           | SFRs described in Chapter 5 "Interrupt"                                    |

### 29.2.4 SFR Guard Setting Register 1 (SFRGD1)

SFRGD1 is a SFR used to disable writing certain SFRs. Data in the specified SFR area is protectable.

| Address:0xF0B6(SFRGD1L/SFRGD1), 0xF0B7(SFRGD1H)Access:R/WAccess size:8/16 bitInitial value:0x0000 | Access:<br>Access size: | pit |
|---------------------------------------------------------------------------------------------------|-------------------------|-----|
|---------------------------------------------------------------------------------------------------|-------------------------|-----|

|                  | 15 | 14 | 13 | 12  | 11   | 10 | 9 | 8   | 7   | 6 | 5 | 4   | 3    | 2     | 1     | 0     |
|------------------|----|----|----|-----|------|----|---|-----|-----|---|---|-----|------|-------|-------|-------|
| Word             |    |    |    |     |      |    |   | SFF | GD1 |   |   |     |      |       |       |       |
| Byte             |    |    |    | SFR | GD1H |    |   |     |     |   |   | SFR | GD1L |       |       |       |
| Bit              | -  | -  | -  | -   | -    | -  | - | -   | -   | - | - | -   | -    | SGD12 | SGD11 | SGD10 |
| R/W              | R  | R  | R  | R   | R    | R  | R | R   | R   | R | R | R   | R    | R/W   | R/W   | R/W   |
| Initial<br>value | 0  | 0  | 0  | 0   | 0    | 0  | 0 | 0   | 0   | 0 | 0 | 0   | 0    | 0     | 0     | 0     |

Common description of each bits :

It is configured writable/unwritable target SFRs in chapter 17. GPIO.

0: Target SFRs are writable and readable (Initial value)

1: Target SFRs are unwritable and readable

| Bit No. | Bit symbol<br>name | Description                |
|---------|--------------------|----------------------------|
| 15 to 3 | -                  | Reserved bits              |
| 2       | SGD12              | SFRs related to the port 2 |
| 1       | SGD11              | SFRs related to the port 1 |
| 0       | SGD10              | SFRs related to the port 0 |

### 29.2.5 RAM Parity Setting Register (RASFMOD)

RASFMOD is a special function register (SFR) used to control the RAM parity error reset function. The RAM parity error is detectable and the RAM parity error reset is generatable. The reset flag by a RAM parity error can be checked by the reset status register (SRSTAT). See Chapter 3 "Reset Function" for details about the reset flag.

| Acce<br>Acce     | dress: 0xF0B<br>cess: R/W<br>cess size: 8 bit<br>ial value: 0x00 |                 |    | C(RASF                           | MOD)                         |                                                 |                                 |          |           |          |         |           |           |          |         |         |
|------------------|------------------------------------------------------------------|-----------------|----|----------------------------------|------------------------------|-------------------------------------------------|---------------------------------|----------|-----------|----------|---------|-----------|-----------|----------|---------|---------|
|                  | 15                                                               | 14              | 13 | 12                               | 11                           | 10                                              | 9                               | 8        | 7         | 6        | 5       | 4         | 3         | 2        | 1       | 0       |
| Word             |                                                                  |                 |    |                                  |                              |                                                 |                                 |          | -         |          |         |           |           |          |         |         |
| Byte             |                                                                  |                 |    |                                  | -                            |                                                 |                                 |          |           |          |         | RASE      | MOD       |          |         |         |
| Bit              | -                                                                | -               | -  | -                                | -                            | -                                               | -                               | -        | PERF      | -        | -       | -         | -         | -        | -       | PEREN   |
| R/W              | R                                                                | R               | R  | R                                | R                            | R                                               | R                               | R        | R/W       | R        | R       | R         | R         | R        | R       | R/W     |
| Initial<br>value | 0                                                                | 0               | 0  | 0                                | 0                            | 0                                               | 0                               | 0        | 0         | 0        | 0       | 0         | 0         | 0        | 0       | 0       |
| Bit No.          | E                                                                | Bit sym<br>name |    |                                  |                              |                                                 |                                 |          | D         | escript  | ion     |           |           |          |         |         |
| 7                | PERF                                                             |                 |    | Write "<br>When<br>(SRST<br>0: D | 1" to th<br>PEREN<br>AT) car | is bit to<br>l is set<br>n be use<br>l (Initial | clear.<br>to "1" to<br>ed to ch | o enabl  | or occurs |          | or rese | t functio | on, the i | reset st | atus re | ∋gister |
| 6 to 1           | -                                                                |                 |    | Reserv                           | ed bits                      |                                                 |                                 |          |           |          |         |           |           |          |         |         |
| 0                | PE                                                               | REN             |    | 0: D                             |                              | l (Initial                                      |                                 | oarity e | rror rese | et funct | ion.    |           |           |          |         |         |

[Note]

If the RAM is not initialized when it is read, a parity error may occur. If you want to use parity error reset (check the parity error flag or enable parity error reset), initialize the entire RAM area before using it.

### 29.2.6 Communication Test Setting Register (COMFT0)

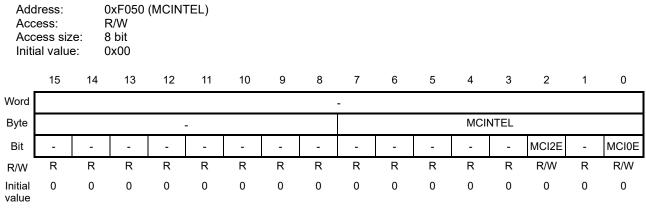
COMFT0 is a SFR used to control the communication test function, which enables the loop back test with transmit data in the serial communication units. See Section 29.3.1 "Communication Function Self Test" for more details. As the  $I^2C$  bus unit and the  $I^2C$  master are equipped with the function to read the transmit data, the function can be used for testing. For details, see Chapter 13 "I<sup>2</sup>C Bus".

| Address:       | 0xF0BE(COMFT0/COMFT0L), 0xF0BF(COMFT0H) |
|----------------|-----------------------------------------|
| Access:        | R/W                                     |
| Access size:   | 8/16 bit                                |
| Initial value: | 0x0000                                  |

|                  | 15 | 14 | 13 | 12  | 11   | 10 | 9 | 8   | 7     | 6 | 5 | 4   | 3    | 2 | 1          | 0          |
|------------------|----|----|----|-----|------|----|---|-----|-------|---|---|-----|------|---|------------|------------|
| Word             |    |    |    |     |      |    |   | CON | /IFT0 |   |   |     |      |   |            |            |
| Byte             |    |    |    | COM | FT0H |    |   |     |       |   |   | COM | FT0L |   |            |            |
| Bit              | -  | -  | -  | -   | -    | -  | - | -   | -     | - | - | -   | -    | - | CMFT0<br>1 | CMFT0<br>0 |
| R/W              | R  | R  | R  | R   | R    | R  | R | R   | R     | R | R | R   | R    | R | R/W        | R/W        |
| Initial<br>value | 0  | 0  | 0  | 0   | 0    | 0  | 0 | 0   | 0     | 0 | 0 | 0   | 0    | 0 | 0          | 0          |

Common description of each bits :

It is configured enable/disable the self-test for target communication function.


0: Target function is disabled. (Initial value)

1: Target function is enabled.

| Bit No. | Bit symbol<br>name | Description (target) |
|---------|--------------------|----------------------|
| 15 to 2 | -                  | Reserved bits        |
| 1       | CMFT01             | UART1                |
| 0       | CMFT00             | UART0                |

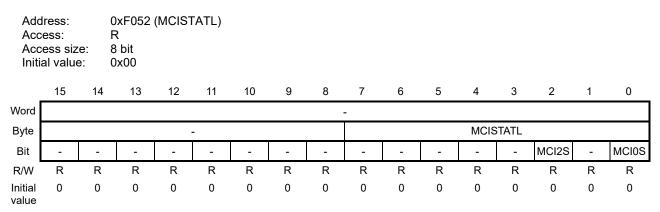
#### 29.2.7 MCU Status Interrupt Enable Register (MCINTEL)

MCINTEL is a SFR used to control enabling/disabling three types of interrupt status on the microcontroller.



Common description of each bits :

- It is configured enable/disable target interrupt.
  - 0: Target interrupt is disabled. (Initial value)
  - 1: Target interrupt is enabled.


| Bit No. | Bit symbol name | Description (target interrupt)                                     |  |  |  |  |  |
|---------|-----------------|--------------------------------------------------------------------|--|--|--|--|--|
| 7 to 3  | -               | Reserved bits                                                      |  |  |  |  |  |
| 2       | MCI2E           | The interrupt at the completion of data flash erasing/programming. |  |  |  |  |  |
| 1       | -               | Reserved bit                                                       |  |  |  |  |  |
| 0       | MCI0E           | The interrupt at the occurrence of RAM parity error.               |  |  |  |  |  |

#### [Note]

If the RAM is not initialized when it is read, a parity error may occur.

### 29.2.8 MCU Status Interrupt Register (MCISTATL)

MCISTATL is a read-only SFR used to indicate status of the three types of interrupts. The MCI2S bit to MCI0S bit is initialized, in addition to reset function, by writing "1" to the same number of bit in the MCINTCL register.



Common description of each bits :

It is to indicate status of target interrupt.

- 0: Target interrupt has not been generated. (Initial value)
- 1: Target interrupt has been generated.

| Bit No. | Bit symbol<br>name | Description (target interrupt)                                     |  |  |  |  |  |  |
|---------|--------------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| 7 to 3  | -                  | Reserved bits                                                      |  |  |  |  |  |  |
| 2       | MCI2S              | The interrupt at the completion of data flash erasing/programming. |  |  |  |  |  |  |
| 1       | -                  | Reserved bit                                                       |  |  |  |  |  |  |
| 0       | MCI0S              | The interrupt at the occurrence of RAM parity error.               |  |  |  |  |  |  |

#### [Note]

If the bit of each interrupt status is set to "1" and the same interrupt occurs again, the interrupt request will not be output. In order to output the interrupt request, write "1" to the same bit in MCINTCL register and clear the status bit to "0".

### 29.2.9 MCU Status Interrupt Clear Register L/H (MCINTCLL, MCINTCLH)

MCINTCL is a write-only special function register (SFR) used to clear the MCU status interrupts.

If the MCI2C bit to MCI0C bit is set to "1", the interrupt request indicated by the same number of bit in the MCISTATL register gets cleared.

This register always returns "0x0000" for reading.

| Acc<br>Acc       | lress:<br>æss:<br>æss size<br>al value |    | 0xF054(MCINTCLL), 0xF055(MCINTCLH)<br>W<br>8/16 bit<br>0x0000 |      |       |    |   |   |          |   |   |   |   |       |   |       |
|------------------|----------------------------------------|----|---------------------------------------------------------------|------|-------|----|---|---|----------|---|---|---|---|-------|---|-------|
|                  | 15                                     | 14 | 13                                                            | 12   | 11    | 10 | 9 | 8 | 7        | 6 | 5 | 4 | 3 | 2     | 1 | 0     |
| Word             |                                        |    |                                                               |      |       |    |   |   | -        |   |   |   |   |       |   |       |
| Byte             |                                        |    |                                                               | MCIN | ITCLH |    |   |   | MCINTCLL |   |   |   |   |       |   |       |
| Bit              | MCIR                                   | -  | -                                                             | -    | -     | -  | - | - | -        | - | - | - | - | MCI2C | - | MCI0C |
| R/W              | W                                      | R  | R                                                             | R    | R     | R  | R | R | R        | R | R | R | R | W     | R | W     |
| Initial<br>value | 0                                      | 0  | 0                                                             | 0    | 0     | 0  | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0     | 0 | 0     |

Common description of each bits; bit 2 to 0 :

It is to indicate status of target interrupt.

Writing "0" : Invalid

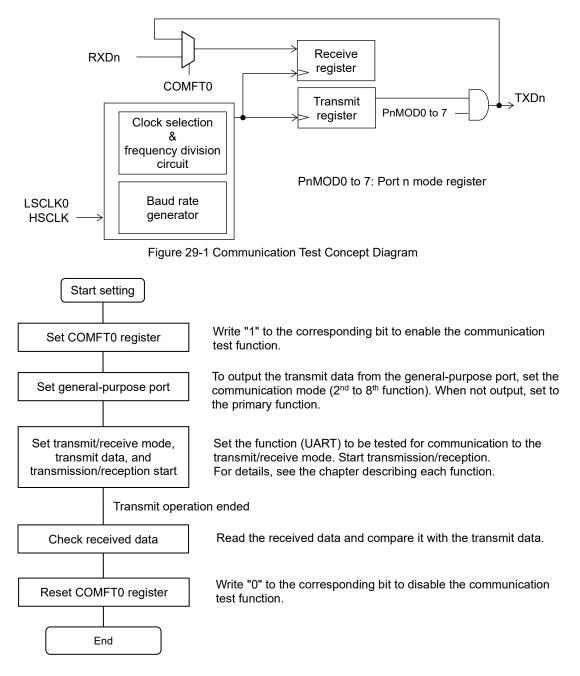
Writing "1": Target interrupt status gets cleared.

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                                                       |
|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15      | MCIR               | Request bit for the MCU status interrupt.<br>Write "1" to this bit before returning from the interrupt routine.<br>Writing "0":Invalid<br>Writing "1":If an unhandled interrupt exists, it generates the interrupt request again. |
| 14 to 3 | -                  | Reserved bits                                                                                                                                                                                                                     |
| 2       | MCI2C              | The interrupt at the completion of data flash erasing/programming.                                                                                                                                                                |
| 1       | -                  | Reserved bit                                                                                                                                                                                                                      |
| 0       | MCI0C              | The interrupt at the occurrence of RAM parity error.                                                                                                                                                                              |

#### 29.3 Description of Operation

#### 29.3.1 Communication Function Self-Test

This self test is enabled by the COMFT0 register setting.


The communication function can be tested through the self test by internally connecting transmit and receive data of UART.

Before testing the communication, write "1" to the corresponding bit of the COMFT0 register.

Transmit side data output can be enabled/disabled by setting the mode (secondary to octonary function) of the generalpurpose port.

For receive side data, it is not required to set the mode (2<sup>nd</sup> to 8<sup>th</sup> function) of the general-purpose port.

Figure 29-1 shows a concept diagram of the communication test. Figure 29-2 shows a flow chart of the communication test.







#### 29.3.2 Unused ROM Area Access Reset Function

This function constantly monitors the program counter (PC) of the CPU. It generates the LSI reset when it detects that the program counter (PC) executes a program located outside of the area. This function can be enabled/disabled by the code option. The reset flag due to unused ROM area access can be confirmed with the SRSTAT register. See Chapter 3 "Reset Function" for details of the reset flag.

<ROM unused area>

Program memory size : PC 32KB : 07FC0 to 0FFFF 16KB : 03FC0 to 0FFFF

#### 29.3.3 Clock Mutual Monitoring Function

This function is used to monitor the low-speed clock (low-speed RC oscillation circuit) and high-speed clock (PLL oscillation circuit) to check if they are normally oscillating. The 16-bit timer and operational timer are available to implement the function. For details, see Section 9.3.10 "Clock Mutual Monitoring Function".

#### 29.3.4 WDT Counter Read

The count value can be read from the watchdog timer counter register (WDTMC). Periodic checks of the count value allow confirmation that the watchdog timer is normally counting. See Chapter 10 "Watchdog Timer" for its operation.

#### 29.3.5 Port Output Level Test

When the general-purpose port is used as an output pin, the output data can be read by setting the input/output mode. See Chapter 17 "General-purpose Port" for its operation.

#### 29.3.6 Successive Approximation Type A/D Converter Test

The self test can be performed by A/D-converting the full scale, zero scale and internal reference voltage. See Section 23.3.2 "Test function of Successive Approximation Type A/D Converter" for details.

# **Chapter 30 Code Option**

### 30. Code Option

#### 30.1 General Description

The code option is used to choose watchdog timer operation etc. depending on values written in the code option area of the program memory area.

The hardware automatically refers to data in the code option area when the microcontroller starts up due to one of system resets described below to set each function.

The code option area can be erased or programmed through the on-chip debug function, self-rewrite function of flash memory, or ISP function.

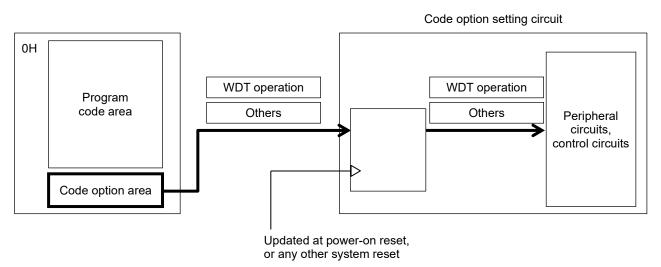



Figure 30-1 Code Option Overview

#### 30.1.1 Function List

- Readable configured code options from SFRs
- Enabling or disabling the unused ROM area access reset
- Enabling or disabling the remapping function
- The software remap or hardware remap is selectable for the remap function
- Enabling or disabling the watchdog timer operation
- Enabling or disabling the watchdog timer operation at HALT

### 30.2 Description of Code Option

#### 30.2.1 Reading from SFRs

The address of code option area is dependent of the size of the program memory space (flash memory). The address of SFRs for reading is fixed.

| SFR address | Degister Name | Symbo    | R/W     | Size |      |
|-------------|---------------|----------|---------|------|------|
| SFR address | Register Name | Byte     | Word    |      | Size |
| 0xF920      | Code Option 0 | CODEOP0L | CODEOP0 | R    | 8/16 |
| 0xF921      |               | CODEOP0H | CODEOFU | R    | 8    |
| 0xF922      | Code Option 1 | CODEOP1L |         | R    | 8/16 |
| 0xF923      | Code Option 1 | CODEOP1H | CODEOP1 | R    | 8    |
| 0xF924      | Code Option 2 | CODEOP2L | CODEOP2 | R    | 8/16 |
| 0xF925      |               | CODEOP2H | CODEOP2 | R    | 8    |

[Note]

There are available to read the code option values from SFRs, if INITE flag bit of Reset Status Register (RSTAT) is "0".

### 30.2.2 Code Option 0 (CODEOP0)

| Address:                 | (See Table 30-1)                                                                |
|--------------------------|---------------------------------------------------------------------------------|
| SFR address for reading: | 0xF920 (CODEOP0L/CODEOP0), 0xF921(CODEOP0H)                                     |
| Access to SFR :          | R                                                                               |
| Access size to SFR:      | 8/16 bit                                                                        |
| Initial value:           | 0xFFFF (Erased or factory default setting for products with blank flash memory) |
|                          |                                                                                 |

|                  | 15 | 14 | 13 | 12         | 11   | 10 | 9 | 8           | 7        | 6 | 5 | 4 | 3 | 2            | 1 | 0         |
|------------------|----|----|----|------------|------|----|---|-------------|----------|---|---|---|---|--------------|---|-----------|
| Word             |    |    |    |            |      |    |   | CODE        | EOP0     |   |   |   |   |              |   |           |
| Byte             |    |    |    | CODE       | OP0H |    |   |             | CODEOP0L |   |   |   |   |              |   |           |
| Bit              | -  | -  | -  | PCER<br>MD | -    | -  | - | REMA<br>PMD | -        | - | - | - | - | WDTP<br>WMD0 | - | WDTM<br>D |
| R/W              | R  | R  | R  | R          | R    | R  | R | R           | R        | R | R | R | R | R            | R | R         |
| Initial<br>value | 1  | 1  | 1  | 1          | 1    | 1  | 1 | 1           | 1        | 1 | 1 | 1 | 1 | 1            | 1 | 1         |

| Bit No.  | Bit symbol<br>name | Description                                                                                                                                                                                                                  |
|----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 13 | -                  | Reserved bits. Set "1" to all bits.                                                                                                                                                                                          |
| 12       | PCERMD             | Select enable/disable the unused ROM area access reset.<br>See Chapter 29.3.2 "Unused ROM Area Access Reset Function" for the unused ROM area<br>access reset.<br>0: Disabled<br>1: Enabled (Initial value)                  |
| 11 to 9  | -                  | Reserved bits. Set "1" to all bits.                                                                                                                                                                                          |
| 8        | REMAPMD            | Select to enable/disable the remapping function (software remap or hardware remap)<br>operation.<br>See Chapter 2.8 "Remapping Function" for details of the remapping function.<br>0: Enabled<br>1: Disabled (Initial value) |
| 7 to 3   | -                  | Reserved bits. Set "1" to all bits.                                                                                                                                                                                          |
| 2        | WDTPWMD0           | Select to enable/disable the watchdog timer (WDT) operation in HALT/HALT-H mode, if<br>WDTMD = "1".<br>0: Disabled<br>1: Enabled (Initial value)                                                                             |
| 1        | -                  | Reserved bit. Set "1" to this bit.                                                                                                                                                                                           |
| 0        | WDTMD              | Select to enable/disable the watchdog timer (WDT) operation.<br>0: Disabled<br>1: Enabled (Initial value)                                                                                                                    |

### 30.2.3 Code Option 1 (CODEOP1)

| 0.2.50                                |                                                                                                                                                                       |                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |    |   |   |             |   |   |      |      |   |   |   |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|---|---|-------------|---|---|------|------|---|---|---|--|
| Addi<br>SFR<br>Acce<br>Acce<br>Initia | (See Table 30-1)<br>: 0xF922 (CODEOP1L/CODEOP1), 0xF923(CODEOP1H)<br>R<br>8/16 bit<br>0xFFFF (Erased or factory default setting for products with blank flash memory) |                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |    |   |   |             |   |   |      |      |   |   |   |  |
| _                                     | 15                                                                                                                                                                    | 14               | 13 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11   | 10 | 9 | 8 | 7           | 6 | 5 | 4    | 3    | 2 | 1 | 0 |  |
| Word                                  | CODEOP1                                                                                                                                                               |                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |    |   |   |             |   |   |      |      |   |   |   |  |
| Byte                                  |                                                                                                                                                                       |                  |    | CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OP1H |    |   |   |             |   |   | CODE | OP1L |   |   |   |  |
| Bit                                   | -                                                                                                                                                                     | -                | -  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    | -  | - | - | TRAM<br>USE | - | - | -    | -    | - | - | - |  |
| R/W                                   | R                                                                                                                                                                     | R                | R  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R    | R  | R | R | R           | R | R | R    | R    | R | R | R |  |
| Initial<br>value                      | 1                                                                                                                                                                     | 1                | 1  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1    | 1  | 1 | 1 | 1           | 1 | 1 | 1    | 1    | 1 | 1 | 1 |  |
| Bit No.                               | E                                                                                                                                                                     | Bit syml<br>name |    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |    |   |   |             |   |   |      |      |   |   |   |  |
| 15 to 8                               | -                                                                                                                                                                     |                  |    | Reserved bits. Set "1" to all bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |    |   |   |             |   |   |      |      |   |   |   |  |
| 7                                     | TR                                                                                                                                                                    | AMUSE            | Ξ  | Select whether to enable/disable the branch trace function among the debugging functions.<br>When the branch trace function is enabled, 1 KB of the 2 KB of the installed RAM capacity is<br>dedicated to the trace function during the debugger connection, so it cannot be used. (RAM<br>usable range: 0EC00H~0EFFFH)<br>If you disable the branch trace function, you can use the installed RAM capacity of 2 KB as it<br>is.<br>0: Branch tracing function enabled<br>1: Branch tracing function disabled (initial value)<br>To enable the branch trace function, refer to Chapter 30.4 "Branch Trace Function". |      |    |   |   |             |   |   |      |      |   |   |   |  |
| 6 to 0                                | - Reserved bits. Set "1" to all bits.                                                                                                                                 |                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |    |   |   |             |   |   |      |      |   |   |   |  |

### 30.2.4 Code Option 2 (CODEOP2)

| Address:                 | (See Table 30-1)                                                                |
|--------------------------|---------------------------------------------------------------------------------|
| SFR address for reading: | 0xF924 (CODEOP2L/CODEOP2), 0xF925 (CODEOP2H)                                    |
| Access to SFR :          | R                                                                               |
| Access size to SFR:      | 8/16 bit                                                                        |
| Initial value:           | 0xFFFF (Erased or factory default setting for products with blank flash memory) |

|                  | 15           | 14      | 13    | 12    | 11         | 10         | 9          | 8          | 7        | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------------------|--------------|---------|-------|-------|------------|------------|------------|------------|----------|---|---|---|---|---|---|---|
| Word             |              | CODEOP2 |       |       |            |            |            |            |          |   |   |   |   |   |   |   |
| Byte             |              |         |       |       |            |            |            |            | CODEOP2L |   |   |   |   |   |   |   |
| Bit              | CREM<br>APMD | CRES2   | CRES1 | CRES0 | CREA1<br>5 | CREA1<br>4 | CREA1<br>3 | CREA1<br>2 | -        | - | - | - | - | - | - | - |
| R/W              | R            | R       | R     | R     | R          | R          | R          | R          | R        | R | R | R | R | R | R | R |
| Initial<br>value | 1            | 1       | 1     | 1     | 1          | 1          | 1          | 1          | 1        | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

| Bit No.  | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15       | CREMAPMD            | Control the initial value of Flash Remap Address Register (REMAPADD) at the system reset.<br>0: The initial value of the REMAPADD consists of CREA15 to 12 bits and CRES1 to 0 bits<br>1: The initial value of the REMAPADD is 0x00<br>If setting this bit to "0", The initial value of the REMAPADD consists of CREA15 to 12 bits and<br>CRES1 to 0 bits. For details on REMAPADD, see Section 2.7.3 "Flash Remap Address<br>Register (REMAPADD)".<br>The MCU remaps to the address specified with the CREA15 to 12 bits and the CRES1 to 0<br>bits every time at the system reset. See also Section 2.8.3 "Code Option Remap". |
|          |                     | The remap function is enabled by setting REMAPMD bit of the Code Options 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14 to 12 | CRES2 to<br>CRES0   | Set the initial values of RES2 to RES0 bits of the Flash Remap Address Register (REMAPADD).<br>RES2 and RES1 are reserved bits. Set "0" to all bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11 to 8  | CREA15 to<br>CREA12 | Set the initial values of REA15 to REA12 bits of the Flash Remap Address Register (REMAPADD).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7 to 0   | -                   | Reserved bits. Set "1" to all bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### CPU instruction execution start address after releasing the reset

| Reset             | REMAPMD | CREMAPMD | Remap function    | CPU instruction execution start<br>address   |  |  |
|-------------------|---------|----------|-------------------|----------------------------------------------|--|--|
|                   | 1       | 1        | Disabled          | 02000                                        |  |  |
| CPU reset         | 1 0     |          | Disabled          | 0x0000                                       |  |  |
| (BRK instruction) | 0       | 1        | Enabled           | Address set in the REMAPADD                  |  |  |
|                   | 0 0     |          | Software remap    | register                                     |  |  |
|                   | 1       | 1        | Disabled          | 0x0000                                       |  |  |
| Custom recet      | 1       | 0        | Disabled          | 0x0000                                       |  |  |
| System reset      | 0       | 1        | Enabled           | Initial data of the REMAPADD                 |  |  |
|                   | 0       | 0        | Code option remap | register<br>(data set by the Code Options 2) |  |  |

See Section 2.7.3 "Flash Remap Address Register (REMAPADD)" and Section 2.8.3 "Code Option Remap".

#### 30.3 Code Option Data Setting

The address of code option area is dependent of the size of the program memory space (flash memory). Table 30-1 shows addresses of code option areas for each product.

|                | Program              |                   | Address  |          |          |  |  |  |
|----------------|----------------------|-------------------|----------|----------|----------|--|--|--|
| Product name   | memory space<br>size | Code Option area  | CODEOP2  | CODEOP1  | CODEOP0  |  |  |  |
| ML62Q2033/2043 | 16K byte             | 0x0:3FD0~0x0:3FFF | 0x0:3FDC | 0x0:3FDA | 0x0:3FD8 |  |  |  |
| ML62Q2035/2045 | 32K byte             | 0x0:7FD0~0x0:7FFF | 0x0:7FDC | 0x0:7FDA | 0x0:7FD8 |  |  |  |

Table 30-1 List of Addresses of Code Option Areas for Each Product

Figure 30-2 shows an example of a code option setting program (for products with the program memory space=32 Kbytes). The setting is described in the start-up file (ML6220xx.ASM) of each product. Set every unused bit of the code option data area to "1".

For products with blank flash memory, every bit has been set to "1" as the factory default setting.

Setting the code-option data (for ML6220xx) cseg at 07fd0h ; 32KB 0ffffh ;07fd0h dw dw 0ffffh ;07fd2h dw 0ffffh ;07fd4h dw 0ffffh ;07fd6h cseg #0 at 07fd8h dw 0eefeh ; 07fd8h ;coop0 ; Unused ROM area access reset disabled, remapping operation enabled, WDT operation disabled cseg #0 at 07fdah ; 07fdah ;coop1 dw 0ffffh ; Disabled debugger branch tracing cseg #0 at 07fdch 00dffh ; 07fdch ;coop2 dw ; Setting the remap address during a system reset (0:d000) cseg #0 at 07fdeh dw 0ffffh ;07fdeh; 0ffffh ;07fe0h; dw dw 0ffffh ;07fe2h; dw 0ffffh ;07fe4h; dw 0ffffh ;07fe6h; dw 0ffffh ;07fe8h; dw 0ffffh ;07feah; 0ffffh ;07fech; dw dw 0ffffh ;07feeh; 0ffffh ;07ff0h; dw 0ffffh ;07ff2h; dw 0ffffh ;07ff4h; dw 0ffffh ;07ff6h; dw dw 0ffffh ; 07ff8h; dw 0ffffh ;07ffah; 0ffffh dw ;07ffch; dw 0ffffh ; 07ffeh ; Figure 30-2 Example of Code Option Data Program (for Products with the Program Memory Space = 32 Kbytes)

#### [Note]

 For the code option data definition, always use the dw directive instruction to configure the data in the unit of word.

#### 30.4 Branch Trace Function

If you set the CODEOP1 TRAMUSE bit to 0, the branch trace function is enabled when a debugger is attached. There are the following differences in this LSI depending on whether the branch trace function is enabled or disabled.

Product ID

When the branch trace function is enabled, the extension bit 0(EX0) of the product ID becomes "1". In addition, the LSI target name is appended with "R" after the product name.

·RAM area of data memory

Since the branch trace function occupies 1 KB of the 2 KB RAM area (0E800H~0EFFFH) of the data memory space, the RAM area that can be used as data memory is 1 KB (0EC00H~0EFFFH).

Since the RAM area that can be used as data memory differs when the branch trace function is enabled, use the LSI target name appended "R" to the end of the product name during compilation.

#### [Note]

• At the time of shipment or when the program is erased, the code options are also initialized and the branch trace function is disabled.

If you want to enable branch trace function for an LSI that is in disabled branch trace function state, connect to a debugger with the normal product name and enable branch trace function.

# **Chapter 31 Auxiliary Function**

### 31. Auxiliary Function

### 31.1 General Description

- Indication of Product ID
- Indication of unique chip ID (32bit); reading from FLASH

### 31.2 Description of Registers

### 31.2.1 List of Registers

| Address | Name                  | Syn   | nbol | R/W     | Size | Initial |
|---------|-----------------------|-------|------|---------|------|---------|
|         | Name                  | Byte  | Word | r./ v v | Size | value   |
| 0xF930  | Braduat ID register 0 | PID0L | PID0 | R       | 8/16 | *1      |
| 0xF931  | Product ID register 0 | PID0H | FIDU | R       | 8    | *1      |
| 0xF932  | Draduct ID vanistant  | PID1L | PID1 | R       | 8/16 | 0x22    |
| 0xF933  | Product ID register 1 | PID1H | PIDT | R       | 8    | 0x06    |

\*1: It depends on product.

### 31.2.2 Product ID Register 0,1 (PID0, PID1)

This is a SFR to indicate product ID.

|                  |     | R<br>e: 8/                                                                                                                                        | 16 bit | (PID0/P<br>622, PID | ,   | 0xF931 | (PID0H | ), 0xF9 | 32 (PIC | )1/PID1  | L), 0xF | 933(PII | D1H) |     |     |     |
|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|-----|--------|--------|---------|---------|----------|---------|---------|------|-----|-----|-----|
|                  | 15  | 14                                                                                                                                                | 13     | 12                  | 11  | 10     | 9      | 8       | 7       | 6        | 5       | 4       | 3    | 2   | 1   | 0   |
| Word             |     |                                                                                                                                                   |        |                     |     |        |        | PI      | D1      |          |         |         |      |     |     |     |
| Byte             |     |                                                                                                                                                   |        | PI                  | D1H |        |        |         |         |          |         | PIE     | D1L  |     |     |     |
| Bit              | -   | -                                                                                                                                                 | -      | -                   | d53 | d52    | d51    | d50     | d43     | d42      | d41     | d40     | d33  | d32 | d31 | d30 |
| R/W              | R   | R                                                                                                                                                 | R      | R                   | R   | R      | R      | R       | R       | R        | R       | R       | R    | R   | R   | R   |
| Initial<br>value | 0   | 0                                                                                                                                                 | 0      | 0                   | 0   | 1      | 1      | 0       | 0       | 0        | 1       | 0       | 0    | 0   | 1   | 0   |
|                  | 15  | 14                                                                                                                                                | 13     | 12                  | 11  | 10     | 9      | 8       | 7       | 6        | 5       | 4       | 3    | 2   | 1   | 0   |
| Word             |     |                                                                                                                                                   |        |                     |     |        |        | PI      | D0      |          |         |         |      |     |     |     |
| Byte             |     |                                                                                                                                                   |        | PI                  | DOH |        |        |         |         |          |         | PIE     | DOL  |     |     |     |
| Bit              | d23 | d22                                                                                                                                               | d21    | d20                 | d13 | d12    | d11    | d10     | d03     | d02      | d01     | d00     | ex3  | ex2 | ex1 | ex0 |
| R/W              | R   | R                                                                                                                                                 | R      | R                   | R   | R      | R      | R       | R       | R        | R       | R       | R    | R   | R   | R   |
| Initial<br>value | 0   | 0                                                                                                                                                 | 0      | 0                   | 0/1 | 0/1    | 0/1    | 0/1     | 0/1     | 0/1      | 0/1     | 0/1     | 0    | 0   | 0   | 0/1 |
| Bit No.          | В   | it symb<br>name                                                                                                                                   | ol     |                     |     |        |        |         | De      | scriptio | n       |         |      |     |     |     |
| 15 to 4          | -   | It indicates 6-digit number of product name.<br>The upper 20-bit number is fixed at "0x6220". The lower 8-bit number depends on the product name. |        |                     |     |        |        |         |         |          |         |         |      |     |     |     |
| 3 to 0           | -   | It indicates 1 character from A to F as extended identifier of product.<br>If the product name has "P" or "T", it is ignored.                     |        |                     |     |        |        |         |         |          |         |         |      |     |     |     |

Ex) ML62Q2045 : "0x0622\_0450"

#### 31.3 Description of Operation

#### 31.3.1 How to Confirm Unique ID

This LSI chip has unique ID with 32-bit. It is to read from test area in data memory space. Its address is different for each product.

| Product name   | Program Memory size | Data Memory Space Address to read. |
|----------------|---------------------|------------------------------------|
| ML62Q2033/2043 | 16KByte             | 0x0:43F7 to 4                      |
| ML62Q2035/2045 | 32KByte             | 0x0:83F7 to 4                      |

Table 31-1 Address to read for each product

If branch trace is enabled (TRAMUSE bit = 0) in the code option, ex0 becomes "1".

# Appendix

### Appendix A Resister List

The SFR list is show below. Access "Reserved" register is not guaranteed. Please do not access them. Initial value with \*1 depend on code option that is set. See Chapter "30 Code option". Initial value with \*2 depend on product. See Chapter "31 Auxiliary Function".

| Address                | Namo                                              | Symbo    | l name  | R/W | Size | Initial |
|------------------------|---------------------------------------------------|----------|---------|-----|------|---------|
| Address                | Name                                              | Byte     | Word    | R/W | Size | value   |
| 0xF000                 | Data segment register                             | DSR      |         | R/W | 8    | 0x00    |
| 0xF001                 | Reserved                                          | -        | -       | -   | -    | -       |
| 0xF002                 | Link and the large states                         | FHCKMODL | FUOKMOD | R/W | 8/16 | 0x00    |
| 0xF003                 | High-speed clock mode register                    | FHCKMODH | FHCKMOD | R/W | 8    | 0x03    |
| 0xF004                 | Reserved                                          | -        |         | -   | -    | -       |
| 0xF005                 | Reserved                                          | -        | -       | -   | -    | -       |
| 0xF006                 | Cleak control register                            | FCON     | FCONW   | R/W | 8/16 | 0x00    |
| 0xF007                 | Clock control register                            | FCON1    | FCONV   | R/W | 8    | 0x00    |
| 0xF008                 | High-speed clock wake up time setting<br>register | FHWUPT   | -       | R/W | 8    | 0x00    |
| 0xF009                 | Reserved                                          | -        |         | -   | -    | -       |
| 0xF00A<br>to<br>0xF00F | Reserved                                          | -        | -       | -   | -    | -       |
| 0xF010                 | Watchdog timer control register                   | WDTCON   |         | R/W | 8    | 0x00    |
| 0xF011                 | Reserved                                          | -        | -       | -   | -    | -       |
| 0xF012                 | Watchdog timer mode register                      | WDTMOD   |         | R/W | 8    | 0x06    |
| 0xF013                 | Reserved                                          | -        | -       | -   | -    | -       |
| 0xF014                 |                                                   | WDTMCL   | WOTMO   | R   | 8/16 | 0x00    |
| 0xF015                 | Watchdog timer counter register                   | WDTMCH   | WDTMC   | R   | 8    | 0x00    |
| 0xF016                 | Watchdog timer status register                    | WDTSTA   |         | R   | 8    | 0x01    |
| 0xF017                 | Reserved                                          | -        | -       | -   | -    | -       |
| 0xF018                 | Stop code acceptor                                | STPACP   |         | W   | 8    | 0x00    |
| 0xF019                 | Reserved                                          | -        | -       | -   | -    | -       |
| 0xF01A                 |                                                   | SBYCONL  |         | W   | 8/16 | 0x00    |
| 0xF01B                 | Standby control register                          | -        | SBYCON  | -   | -    | -       |
| 0xF01C                 | Standby prohibition flag register                 | SBYEFLG  |         | R   | 8    | 0x00    |
| 0xF01D                 | Reserved                                          | -        | -       | -   | -    | -       |
| 0xF01E                 | Reserved                                          | -        |         | -   | -    | -       |
| 0xF01F                 | Reserved                                          | -        | -       | -   | -    | -       |
| 0xF020                 | Interrupt enable register 01                      | IE0      |         | R/W | 8/16 | 0x00    |
| 0xF021                 | Interrupt enable register 01                      | IE1      | IE01    | R/W | 8    | 0x00    |
| 0xF022                 | Interrupt anable register 22                      | IE2      | IE23    | R/W | 8/16 | 0x00    |
| 0xF023                 | Interrupt enable register 23                      | IE3      | IE23    | R/W | 8    | 0x00    |
| 0xF024                 | Interrupt enable register 45                      | IE4      | IE45    | R/W | 8/16 | 0x00    |
| 0xF025                 |                                                   | IE5      | 1⊏40    | R/W | 8    | 0x00    |
| 0xF026                 | Interrupt anable register 67                      | IE6      |         | R/W | 8/16 | 0x00    |
| 0xF027                 | Interrupt enable register 67                      | IE7      | IE67    | R/W | 8    | 0x00    |
| 0xF028                 | Interrupt request register 04                     | IRQ0     |         | R/W | 8/16 | 0x00    |
| 0xF029                 | Interrupt request register 01                     | IRQ1     | IRQ01   | R/W | 8    | 0x00    |
| 0xF02A                 |                                                   | IRQ2     | IDOOO   | R/W | 8/16 | 0x00    |
| 0xF02B                 | Interrupt request register 23                     | IRQ3     | IRQ23   | R/W | 8    | 0x00    |

|                  |                                            | Symbo    | l name  |          | <u> </u>  | Initial   |
|------------------|--------------------------------------------|----------|---------|----------|-----------|-----------|
| Address          | Name                                       | Byte     | Word    | R/W      | Size      | value     |
| 0xF02C           |                                            | IRQ4     |         | R/W      | 8/16      | 0x00      |
| 0xF02D           | Interrupt request register 45              | IRQ5     | IRQ45   | R/W      | 8         | 0x00      |
| 0xF02E           |                                            | IRQ6     |         | R/W      | 8/16      | 0x00      |
| 0xF02F           | Interrupt request register 67              | IRQ7     | IRQ67   | R/W      | 8         | 0x00      |
| 0xF030           | Interrupt level control enable register    | ILEN     |         | R/W      | 8         | 0x00      |
| 0xF031           | Reserved                                   | -        | -       | -        | -         | -         |
|                  | Current interrupt level management         | 0"       |         |          |           | 0.00      |
| 0xF032           | register                                   | CIL      | -       | R/W      | 8         | 0x00      |
| 0xF033           | Interrupt level mask register              | MCIL     |         | R/W      | 8         | 0x00      |
| 0xF034           | Interrupt level control register 0         | ILC00    | ILC0    | R/W      | 8/16      | 0x00      |
| 0xF035           |                                            | ILC01    | ILC0    | R/W      | 8         | 0x00      |
| 0xF036           | Interrupt level control register 1         | ILC10    | ILC1    | R/W      | 8/16      | 0x00      |
| 0xF037           |                                            | ILC11    | ILCT    | R/W      | 8         | 0x00      |
| 0xF038           |                                            | ILC20    |         | R/W      | 8/16      | 0x00      |
| 0xF039           | Interrupt level control register 2         | ILC21    | ILC2    | R/W      | 8         | 0x00      |
| 0xF03A           |                                            | ILC30    |         | R/W      | 8/16      | 0x00      |
| 0xF03B           | Interrupt level control register 3         | ILC31    | ILC3    | R/W      | 8         | 0x00      |
| 0xF03C           |                                            | ILC40    |         | R/W      | 8/16      | 0x00      |
| 0xF03D           | Interrupt level control register 4         | ILC41    | ILC4    | R/W      | 8         | 0x00      |
| 0xF03E           |                                            | ILC50    |         | R/W      | 8/16      | 0x00      |
| 0xF03F           | Interrupt level control register 5         | ILC51    | ILC5    | R/W      | 8         | 0x00      |
| 0xF040           |                                            | ILC60    |         | R/W      | 8/16      | 0x00      |
| 0xF041           | Interrupt level control register 6         | ILC61    | ILC6    | R/W      | 8         | 0x00      |
| 0xF042           |                                            | ILC70    |         | R/W      | 8/16      | 0x00      |
| 0xF043           | Interrupt level control register 7         | ILC71    | ILC7    | R/W      | 8         | 0x00      |
| 0xF044           |                                            | EICONOL  |         | R/W      | 8/16      | 0x00      |
| 0xF045           | External interrupt control register 0      | EICONOL  | EICON0  | R/W      | 8         | 0x00      |
| 0xF046           | Reserved                                   | LICONULI |         | -        | -         | -         |
| 0xF040           | Reserved                                   | _        | -       |          |           | _         |
| 0xF047<br>0xF048 | Reserved                                   | EIMOD0L  |         | -<br>R/W | -<br>8/16 | -<br>0x00 |
|                  | External interrupt mode register 0         |          | EIMOD0  |          |           |           |
| 0xF049           | Decembed                                   | EIMOD0H  |         | R/W      | 8         | 0x00      |
| 0xF04A           | Reserved                                   | -        | -       | -        | -         | -         |
| 0xF04B           | Reserved                                   |          |         | -        | -         | -         |
| 0xF04C           | External interrupt port selection register | EIPSELOL | EIPSEL0 | R/W      | 8/16      | 0x00      |
| 0xF04D           | 0                                          | EIPSEL0H |         | R/W      | 8         | 0x00      |
| 0xF04E           | Reserved                                   | -        | -       | -        | -         | -         |
| 0xF04F           | Reserved                                   | -        |         | -        | -         | -         |
| 0xF050           | MCU Status Interrupt Enable Register       | MCINTEL  | -       | R/W      | 8         | 0x00      |
| 0xF051           | Reserved                                   | -        |         | -        | -         | -         |
| 0xF052           | MCU Status Interrupt Register              | MCISTATL | -       | R        | 8         | 0x00      |
| 0xF053           | Reserved                                   | -        |         | -        | -         | -         |
| 0xF054           | MCU Status Interrupt Clear Register        | MCINTCLL | _       | W        | 8         | 0x00      |
| 0xF055           | (L/H)                                      | MCINTCLH | -       | W        | 8         | 0x00      |
| 0xF056           | Reserved                                   | _        |         | -        | -         | -         |
| 0xF057           | Reserved                                   | -        | -       | -        | -         | -         |
| 0xF058           |                                            | RSTATL   | DOTAT   | R/W      | 8/16      | Undefined |
| 0xF059           | Reset status register                      | RSTATH   | RSTAT   | R/W      | 8         | Undefined |

|                  |                                       | Symbo         | l name    |          |      | Initial   |
|------------------|---------------------------------------|---------------|-----------|----------|------|-----------|
| Address          | Name                                  | Byte          | Word      | R/W      | Size | value     |
| 0xF05A           | Safety function reset status register | SRSTAT        |           | R/W      | 8    | Undefined |
| 0xF05B           | Reserved                              | -             | -         | _        | -    | -         |
| 0xF05C           | Software reset acceptor               | SOFTRACP      |           | W        | 8    | 0x00      |
| 0xF05D           | Reserved                              | -             | -         |          | -    | -         |
| 0xF05E           | Software reset control register       | SOFTRCON      |           | R/W      | 8    | 0x00      |
| 0xF05E           | Reserved                              |               | -         | 10,00    | 0    | 0,000     |
| 0xF060           | Reserved                              | -             |           | -        | -    | -         |
| to               | Reserved                              | -             | _         | -        | -    | -         |
| 0xF06F           |                                       |               |           |          |      |           |
| 0xF070           |                                       | BCKCON0L      | DOKOONA   | R/W      | 8/16 | 0x00      |
| 0xF071           | Block clock control register 0        | BCKCON0H      | BCKCON0   | R/W      | 8    | 0x00      |
| 0xF072           |                                       | BCKCON1L      | 501/0011/ | R/W      | 8/16 | 0x00      |
| 0xF073           | Block clock control register 1        | BCKCON1H      | BCKCON1   | R/W      | 8    | 0x00      |
| 0xF074           |                                       | BCKCON2L      |           | R/W      | 8/16 | 0x00      |
| 0xF075           | Block clock control register 2        | BCKCON2H      | BCKCON2   | R/W      | 8    | 0x00      |
| 0xF076           |                                       | BCKCON3L      |           | R/W      | 8/16 | 0x00      |
| 0xF077           | Block clock control register 3        | BCKCON3H      | BCKCON3   | R/W      | 8    | 0x00      |
| 0xF077           |                                       | BRECONOL      |           | R/W      | 8/16 | 0x00      |
| 0xF070           | Block reset control register 0        | BRECONOH      | BRECON0   | R/W      | 8    | 0x00      |
| 0xF079           |                                       | BRECON1L      |           | R/W      | 8/16 | 0x00      |
| 0xF07A           | Block reset control register 1        |               | BRECON1   |          |      |           |
|                  |                                       | BRECON1H      |           | R/W      | 8    | 0x00      |
| 0xF07C           | Block reset control register 2        | BRECON2L      | BRECON2   | R/W      | 8/16 | 0x00      |
| 0xF07D           |                                       | BRECON2H      |           | R/W      | 8    | 0x00      |
| 0xF07E           | Block reset control register 3        | BRECON3L      | BRECON3   | R/W      | 8/16 | 0x00      |
| 0xF07F           |                                       | BRECON3H      |           | R/W      | 8    | 0x00      |
| 0xF080<br>to     | Reserved                              | _             |           | _        | _    |           |
| 0xF08F           |                                       |               |           |          |      |           |
| 0xF090           |                                       | FLASHAL       |           | R/W      | 8/16 | 0xFF      |
| 0xF091           | Flash address register                | FLASHAH       | FLASHA    | R/W      | 8    | 0xFF      |
| 0xF092           |                                       | FLASHD0L      |           | R/W      | 8/16 | 0xFF      |
| 0xF093           | Flash data register 0                 | FLASHD0H      | FLASHD0   | R/W      | 8    | 0xFF      |
| 0xF094           | Reserved                              | -             |           | -        | -    | -         |
| 0xF095           | Reserved                              | _             | -         | _        | -    | _         |
| 0xF096           | Flash control register                | FLASHCON      |           | W        | 8    | 0x00      |
| 0xF090           | Reserved                              | -             | -         | -        | -    | -         |
| 0xF098           | Flash acceptor                        | -<br>FLASHACP |           | w        | 8    | 0x00      |
| 0xF098           | Reserved                              |               | -         | ~ ~      |      | 0,00      |
| 0xF099           | Flash segment register                | -<br>FLASHSEG |           | -<br>R/W | - 8  | -<br>0x10 |
| 0xF09A<br>0xF09B | Reserved                              | I LASIISEG    | -         | 17/77    | 0    | 0,10      |
| -                |                                       |               |           | -        | -    | -         |
| 0xF09C           | Flash self register                   | FLASHSLF      | -         | R/W      | 8    | 0x00      |
| 0xF09D           | Reserved                              |               |           | -        | -    | -         |
| 0xF09E           | Flash status register                 | FLASHSTA      | -         | R        | 8    | 0x00      |
| 0xF09F           | Reserved                              | -             |           | -        | -    | -         |
| 0xF0A0           | Flash remap address register          | REMAPADD      | _         | R/W      | 8    | *1        |
| 0xF0A1           | Reserved                              | -             |           | R/W      | 8    | 0x00      |

|             |                                       | Symbo   | l name     |       |      | Initial |
|-------------|---------------------------------------|---------|------------|-------|------|---------|
| Address     | Name                                  | Byte    | Word       | R/W   | Size | value   |
| 0xF0A2      |                                       | Byto    | Word       |       |      |         |
| to          | Reserved                              | -       | -          | R/W   | 8    | 0x00    |
| 0xF0AF      |                                       |         |            |       |      |         |
| 0xF0B0      | RAM Guard Setting Register 0          | RAMGD   | _          | R/W   | 8    | 0x00    |
| 0xF0B1      | Reserved                              | -       |            | -     | -    | -       |
| 0xF0B2      | Reserved                              | -       | _          | -     | -    | -       |
| 0xF0B3      | Reserved                              | -       |            | -     | -    | -       |
| 0xF0B4      | SFR Guard Setting Register 0          | SFRGD0L | SFRGD0     | R/W   | 8/16 | 0x00    |
| 0xF0B5      |                                       | SFRGD0H |            | R/W   | 8    | 0x00    |
| 0xF0B6      | SFR Guard Setting Register 1          | SFRGD1L | SFRGD1     | R/W   | 8/16 | 0x00    |
| 0xF0B7      |                                       | SFRGD1H |            | R/W   | 8    | 0x00    |
| 0xF0B8      |                                       |         |            |       |      |         |
| to<br>0xFBB | Reserved                              | -       | -          | -     | -    | -       |
| 0xF0BC      | RAM Parity Setting Register           | RASFMOD |            | R/W   | 8    | 0x00    |
| 0xF0BD      | Reserved                              | -       | -          | -     | -    | -       |
| 0xF0BE      |                                       | COMFT0L |            | R/W   | 8/16 | 0x00    |
| 0xF0BF      | Communication Test Setting Register 0 | COMFT0H | COMFT0     | R/W   | 8    | 0x00    |
| 0xF0C0      |                                       |         |            | 10,00 | 0    | 0,00    |
| to          | Reserved                              | -       | -          | -     | -    | -       |
| 0xF1FF      |                                       |         |            |       |      |         |
| 0xF200      | Port 0 data register                  | P0DI    | P0D        | R     | 8/16 | 0xFF    |
| 0xF201      |                                       | P0DO    | 1.05       | R/W   | 8    | 0x00    |
| 0xF202      | Port 0 mode register 01               | P0MOD0  | P0MOD01    | R/W   | 8/16 | 0x05    |
| 0xF203      |                                       | P0MOD1  |            | R/W   | 8    | 0x00    |
| 0xF204      | Port 0 mode register 23               | P0MOD2  | P0MOD23    | R/W   | 8/16 | 0x00    |
| 0xF205      |                                       | P0MOD3  | 1 01100220 | R/W   | 8    | 0x00    |
| 0xF206      | Port 0 mode register 45               | P0MOD4  | P0MOD45    | R/W   | 8/16 | 0x00    |
| 0xF207      |                                       | P0MOD5  |            | R/W   | 8    | 0x00    |
| 0xF208      | Port 0 mode register 67               | P0MOD6  | P0MOD67    | R/W   | 8/16 | 0x00    |
| 0xF209      |                                       | P0MOD7  | 1 0100001  | R/W   | 8    | 0x00    |
| 0xF20A      | Reserved                              | -       | _          | -     | -    | -       |
| 0xF20B      | Reserved                              | -       | _          | -     | -    | -       |
| 0xF20C      | Reserved                              | -       | _          | -     | -    | -       |
| 0xF20D      | Reserved                              | -       | _          | -     | -    | -       |
| 0xF20E      | Reserved                              | -       | _          | -     | -    | -       |
| 0xF20F      | Reserved                              | -       | -          | -     | -    | -       |
| 0xF210      | Port 1 data register                  | P1DI    | P1D        | R     | 8/16 | 0xFF    |
| 0xF211      |                                       | P1DO    |            | R/W   | 8    | 0x00    |
| 0xF212      | Port 1 mode register 01               | P1MOD0  | P1MOD01    | R/W   | 8/16 | 0x00    |
| 0xF213      |                                       | P1MOD1  |            | R/W   | 8    | 0x00    |
| 0xF214      | Port 1 mode register 23               | P1MOD2  | P1MOD23    | R/W   | 8/16 | 0x00    |
| 0xF215      |                                       | P1MOD3  |            | R/W   | 8    | 0x00    |
| 0xF216      | Port 1 modo register 45               | P1MOD4  |            | R/W   | 8/16 | 0x00    |
| 0xF217      | Port 1 mode register 45               | P1MOD5  | P1MOD45    | R/W   | 8    | 0x00    |
| 0xF218      | Port 1 modo register 67               | P1MOD6  | D1M0D07    | R/W   | 8/16 | 0x00    |
| 0xF219      | Port 1 mode register 67               | P1MOD7  | P1MOD67    | R/W   | 8    | 0x00    |

|                  |                                                     | Symbo                 | l name   |            | 0.        | Initial      |
|------------------|-----------------------------------------------------|-----------------------|----------|------------|-----------|--------------|
| Address          | Name                                                | Byte                  | Word     | R/W        | Size      | value        |
| 0xF21A           |                                                     | P1PMDL                |          | R/W        | 8/16      | 0x00         |
| 0xF21B           | Port 1 pulse mode register                          | P1PMDH                | P1PMD    | R/W        | 8         | 0x00         |
| 0xF21C           |                                                     | P1PSLL                |          | R/W        | 8/16      | 0x00         |
| 0xF21D           | Port 1 pulse selection register                     | P1PSLH                | P1PSL    | R/W        | 8         | 0x00         |
| 0xF21E           | Reserved                                            | _                     |          | -          | -         | -            |
| 0xF21F           | Reserved                                            | _                     | -        | -          | -         | -            |
| 0xF220           |                                                     | P2DI                  |          | R          | 8/16      | 0xFF         |
| 0xF221           | Port 2 data register                                | P2DO                  | P2D      | R/W        | 8         | 0x00         |
| 0xF222           |                                                     | P2MOD0                |          | R/W        | 8/16      | 0x00         |
| 0xF223           | Port 2 mode register 01                             | P2MOD1                | P2MOD01  | R/W        | 8         | 0x00         |
| 0xF224           |                                                     | P2MOD2                |          | R/W        | 8/16      | 0x00         |
| 0xF225           | Port 2 mode register 23                             | P2MOD3                | P2MOD23  | R/W        | 8         | 0x00         |
| 0xF226           |                                                     | 1 211000              |          | 1000       |           | 0,00         |
| to<br>0xF22F     | Reserved                                            | -                     | -        | -          | -         | -            |
| 0xF300           |                                                     | TMH0DL                | THURD    | R/W        | 8/16      | 0xFF         |
| 0xF301           | 16-bit timer 0 data register                        | TMH0DH                | TMH0D    | R/W        | 8         | 0xFF         |
| 0xF302           |                                                     | TMH0CL                |          | R/W        | 8/16      | 0x00         |
| 0xF303           | 16-bit timer 0 counter register                     | TMH0CH                | TMH0C    | R/W        | 8         | 0x00         |
| 0xF304           |                                                     | TMH0MODL              |          | R/W        | 8/16      | 0x00         |
| 0xF305           | 16-bit timer 0 mode register                        | TMH0MODH              | TMH0MOD  | R/W        | 8         | 0x00         |
| 0xF306           |                                                     |                       |          |            |           |              |
| to<br>0xF33F     | Reserved                                            | -                     | -        | -          | -         | -            |
| 0xF340           |                                                     | TMHSTRL               | TMUOTO   | W          | 8/16      | 0x00         |
| 0xF341           | 16-bit timer start register                         | TMHSTRH               | TMHSTR   | W          | 8         | 0x00         |
| 0xF342           |                                                     | TMHSTPL               |          | W          | 8/16      | 0x00         |
| 0xF343           | 16-bit timer stop register                          | TMHSTPH               | TMHSTP   | W          | 8         | 0x00         |
| 0xF344           |                                                     | TMHSTATL              |          | R          | 8/16      | 0x00         |
| 0xF345           | 16-bit timer status register                        | TMHSTATH              | TMHSTAT  | R          | 8         | 0x00         |
| 0xF346           |                                                     |                       |          |            |           |              |
| to               | Reserved                                            | -                     | -        | -          | -         | -            |
| 0xF37F           |                                                     |                       |          |            |           |              |
| 0xF380           | OTM common update register                          | OTCUD                 | -        | W          | 8         | 0x00         |
| 0xF381           | Reserved register                                   | -                     |          | -          | -         | -            |
| 0xF382           | OTM common control register                         | OTCCONL               | OTCCON   | R/W        | 8/16      | 0x00         |
| 0xF383           |                                                     | OTCCONH               |          | R/W        | 8         | 0x00         |
| 0xF384           | OTM common start register                           | OTCSTRL               | OTCSTR   | W          | 8/16      | 0x00         |
| 0xF385           |                                                     | OTCSTRH               |          | W          | 8         | 0x00         |
| 0xF386           | OTM common stop register                            | OTCSTPL               | OTCSTP   | W          | 8/16      | 0x00         |
| 0xF387           |                                                     | OTCSTPH               |          | W          | 8         | 0x00         |
| 0xF388           | OTM common status register                          | OTCSTATL              | OTCSTAT  | R          | 8/16      | 0x00         |
| 0xF389           |                                                     | OTCSTATH              |          | R          | 8         | 0x00         |
| 0xF38A           | OTM common break control register                   | OTCBRK                | -        | R/W        | 8         | 0x3F         |
| 0xF38B           | Reserved register                                   | -                     |          | -          | -         | -            |
| 0xF38C<br>0xF38D | OTM common OTMn0 output logical authorized register | OTC0OCONL<br>OTC0OCON | OTC0OCON | R/W<br>R/W | 8/16<br>8 | 0x00<br>0x00 |
|                  |                                                     | Н                     |          | 11/10      | U         | 0,00         |

|              | Name                                                        | Symbol name |          | DAA | 0.   | Initial |
|--------------|-------------------------------------------------------------|-------------|----------|-----|------|---------|
| Address      |                                                             | Byte        | Word     | R/W | Size | value   |
| 0xF38E       | OTM common OTMn1 output logical                             | OTC10CONL   | OTC10CON | R/W | 8/16 | 0x00    |
| 0xF38F       | authorized register OTC10C0NH                               | OTCTOCON    | R/W      | 8   | 0x00 |         |
| 0xF390       | <ul> <li>OTM0 output logical authorized register</li> </ul> | OT0OCONL    | OT0OCON  | R/W | 8/16 | 0x00    |
| 0xF391       |                                                             | OT0OCONH    |          | R/W | 8    | 0x00    |
| 0xF392       | OTM1 output logical authorized register                     | OT1OCONL    | OT1OCON  | R/W | 8/16 | 0x00    |
| 0xF393       | o finitiouput logical autionzed register                    | OT1OCONH    | OTIOCON  | R/W | 8    | 0x00    |
| 0xF394       | OTM2 output logical authorized register                     | OT2OCONL    | OT2OCON  | R/W | 8/16 | 0x00    |
| 0xF395       |                                                             | OT2OCONH    | 0120001  | R/W | 8    | 0x00    |
| 0xF396       | OTM3 output logical authorized register                     | OT3OCONL    | OT3OCON  | R/W | 8/16 | 0x00    |
| 0xF397       |                                                             | OT3OCONH    | 0130001  | R/W | 8    | 0x00    |
| 0xF398       | OTM4 output logical authorized register                     | OT4OCONL    | OT4OCON  | R/W | 8/16 | 0x00    |
| 0xF399       |                                                             | OT4OCONH    | 0140001  | R/W | 8    | 0x00    |
| 0xF39A       | OTM5 output logical authorized register                     | OT5OCONL    | OT5OCON  | R/W | 8/16 | 0x00    |
| 0xF39B       | o mio ouput logical autionzed register                      | OT5OCONH    | 0130001  | R/W | 8    | 0x00    |
| 0xF39C       | Reserved register                                           | -           |          | -   | -    | -       |
| 0xF39D       | Reserved register                                           | -           | -        | -   | -    | -       |
| 0xF39E       | Reserved register                                           | -           |          | -   | -    | -       |
| 0xF39F       | Reserved register                                           | -           | -        | -   | -    | -       |
| 0xF3A0       | OTM0 counter trigger 1 register                             | OT0CTRG1L   | OT0CTRG1 | R/W | 8/16 | 0x00    |
| 0xF3A1       |                                                             | OT0CTRG1H   | ONCING   | R/W | 8    | 0x00    |
| 0xF3A2       | OTM1 counter triager 1 register                             | OT1CTRG1L   | OT1CTRG1 | R/W | 8/16 | 0x00    |
| 0xF3A3       | OTM1 counter trigger 1 register                             | OT1CTRG1H   |          | R/W | 8    | 0x00    |
| 0xF3A4       | OTM2 counter trigger 1 register                             | OT2CTRG1L   | OT2CTRG1 | R/W | 8/16 | 0x00    |
| 0xF3A5       |                                                             | OT2CTRG1H   |          | R/W | 8    | 0x00    |
| 0xF3A6       | OTM3 counter trigger 1 register                             | OT3CTRG1L   | OT3CTRG1 | R/W | 8/16 | 0x00    |
| 0xF3A7       |                                                             | OT3CTRG1H   |          | R/W | 8    | 0x00    |
| 0xF3A8       | OTM4 counter trigger 1 register                             | OT4CTRG1L   | OT4CTRG1 | R/W | 8/16 | 0x00    |
| 0xF3A9       |                                                             | OT4CTRG1H   |          | R/W | 8    | 0x00    |
| 0xF3AA       | OTM5 counter trigger 1 register                             | OT5CTRG1L   | OT5CTRG1 | R/W | 8/16 | 0x00    |
| 0xF3AB       |                                                             | OT5CTRG1H   |          | R/W | 8    | 0x00    |
| 0xF3AC       |                                                             |             | -        |     | -    | -       |
| to<br>0xF3EF | Reserved register                                           | -           |          | -   |      |         |
| 0xF3F0       | OTM Cycle setting method selection                          | OTCPCL      |          | R/W | 8/16 | 0x00    |
| 0xF3F1       | register                                                    | OTCPCH      | OTCPC    | R/W | 8    | 0x00    |
| 0xF3F2       |                                                             |             |          |     | -    |         |
| to           | Reserved register                                           | -           | -        | -   | -    | -       |
| 0xF3FF       |                                                             |             |          |     |      |         |
| 0xF400       | OTM0 cycle register                                         | OT0PL       | OT0P     | R/W | 8/16 | 0xFF    |
| 0xF401       |                                                             | OT0PH       | 0101     | R/W | 8    | 0xFF    |
| 0xF402       | OTM00 Rise Point register                                   | OT00RL      | OT00R    | R/W | 8/16 | 0x00    |
| 0xF403       |                                                             | OT00RH      |          | R/W | 8    | 0x00    |
| 0xF404       | OTM00 Fall Point register                                   | OT00FL      | OT00F    | R/W | 8/16 | 0x00    |
| 0xF405       |                                                             | OT00FH      |          | R/W | 8    | 0x00    |
| 0xF406       | OTM01 Rise Point register                                   | OT01RL      | OT01R    | R/W | 8/16 | 0x00    |
| 0xF407       |                                                             | OT01RH      |          | R/W | 8    | 0x00    |
| 0xF408       | OTM01 Fall Point register                                   | OT01FL      | OT01F    | R/W | 8/16 | 0x00    |
| 0xF409       |                                                             | OT01FH      |          | R/W | 8    | 0x00    |

|                  | Name                                                | Symbol name          |          |            |           | Initial      |
|------------------|-----------------------------------------------------|----------------------|----------|------------|-----------|--------------|
| Address          |                                                     | Byte                 | Word     | R/W        | Size      | value        |
| 0xF40A           |                                                     | OTOCL                | 0700     | R/W        | 8/16      | 0x00         |
| 0xF40B           | OTM0 counter register                               | OT0CH                | OT0C     | R/W        | 8         | 0x00         |
| 0xF40C           | <ul> <li>OTM0 status register</li> </ul>            | OT0STATL             |          | R          | 8/16      | 0x06         |
| 0xF40D           |                                                     | OTOSTATH             | OTOSTAT  | R          | 8         | 0x00         |
| 0xF40E           | +                                                   | OT0MODL              | OT0MOD   | R/W        | 8/16      | 0x00         |
| 0xF40F           | OTM0 mode register                                  | OT0MODH              |          | R/W        | 8         | 0x40         |
| 0xF410           | <ul> <li>OTM0 cycle stop timing register</li> </ul> | OT0SCLRL             |          | R/W        | 8/16      | 0x00         |
| 0xF411           |                                                     | OT0SCLRH             | OTOSCLR  | R/W        | 8         | 0x00         |
| 0xF412           | - OTM0 clock register                               | OT0CLKL              |          | R/W        | 8/16      | 0x00         |
| 0xF413           |                                                     | OT0CLKH              | OT0CLK   | R/W        | 8         | 0x00         |
| 0xF414           | OTM0 counter trigger 0 register                     | OT0CTRG0L            |          | R/W        | 8/16      | 0x00         |
| 0xF415           |                                                     | OT0CTRG0H            | OT0CTRG0 | R/W        | 8         | 0x00         |
| 0xF416           |                                                     | OT0FTRG0L            |          | R/W        | 8/16      | 0x00         |
| 0xF417           | OTM0 Forced stop trigger 0 register                 | OTOFTRG0H            | OT0FTRG0 | R/W        | 8         | 0x00         |
| 0xF418           |                                                     | OT0FTRG1L            |          | R/W        | 8/16      | 0x00         |
| 0xF419           | OTM0 Forced stop trigger 1 register                 | OT0FTRG1H            | OT0FTRG1 | R/W        | 8         | 0x00         |
| 0xF41A           |                                                     | OTOINTEL             |          | R/W        | 8/16      | 0x00         |
| 0xF41B           | OTM0 Interrupt enable Register                      | OTOINTEH             | OT0INTE  | R/W        | 8         | 0x00         |
| 0xF41C           | +                                                   | OTOINTSL             |          | R          | 8/16      | 0x00         |
| 0xF41D           | OTM0 interrupt status register                      | OTOINTSH             | OT0INTS  | R          | 8         | 0x00         |
| 0xF41E           |                                                     | OTOINTCL             | _        | W          | 8         | 0x00         |
| 0xF41F           | OTM0 interrupt clear register                       | OTOINTCH             |          | W          | 8         | 0x00         |
| 0xF420           |                                                     | OT1PL                | OT1P     | R/W        | 8/16      | 0xFF         |
| 0xF421           | OTM1 cycle register                                 | OT1PH                |          | R/W        | 8         | 0xFF         |
| 0xF422           |                                                     | OT10RL               |          | R/W        | 8/16      | 0x00         |
| 0xF423           | OTM10 Rise Point register                           | OT10RH               | OT10R    | R/W        | 8         | 0x00         |
| 0xF423           |                                                     | OT10FL               |          | R/W        | 8/16      | 0x00         |
| 0xF425           | OTM10 Fall Point register                           | OT10FH               | OT10F    | R/W        | 8         | 0x00         |
| 0xF425           |                                                     | OT10FI1              |          | R/W        | 8/16      | 0x00         |
| 0xF420           | OTM11 Rise Point register                           | OT11RH               | OT11R    | R/W        | 8         | 0x00         |
| 0xF427<br>0xF428 |                                                     | OT11FL               |          | R/W        | 8/16      | 0x00         |
| 0xF420           | OTM11 Fall Point register                           |                      | OT11F    |            | 8         | 0x00         |
| 0xF429<br>0xF42A |                                                     | OT11FH<br>OT1CL      |          | R/W<br>R/W | 8/16      | 0x00<br>0x00 |
| 0xF42A<br>0xF42B | OTM1 counter register                               | OTICE<br>OTICH       | OT1C     |            |           |              |
|                  |                                                     | -                    |          | R/W        | 8/16      | 0x00         |
| 0xF42C           | OTM1 status register                                | OT1STATL<br>OT1STATH | OT1STAT  | R          | 8/16<br>8 | 0x06         |
| 0xF42D           |                                                     | -                    |          | R          | 8         | 0x00         |
| 0xF42E           | OTM1 mode register                                  | OT1MODL              | OT1MOD   | R/W        | 8/16      | 0x00         |
| 0xF42F           |                                                     | OT1MODH              | OT1SCLR  | R/W        | 8         | 0x40         |
| 0xF430           | OTM1 cycle stop timing register                     | OT1SCLRL             |          | R/W        | 8/16      | 0x00         |
| 0xF431           |                                                     | OT1SCLRH             |          | R/W        | 8         | 0x00         |
| 0xF432           | OTM1 clock register                                 | OT1CLKL              | OT1CLK   | R/W        | 8/16      | 0x00         |
| 0xF433           |                                                     | OT1CLKH              |          | R/W        | 8         | 0x00         |
| 0xF434           | OTM1 counter trigger 0 register                     | OT1CTRG0L            | OT1CTRG0 | R/W        | 8/16      | 0x00         |
| 0xF435           |                                                     | OT1CTRG0H            | OT1FTRG0 | R/W        | 8         | 0x00         |
| 0xF436           | OTM1 Forced stop trigger 0 register                 | OT1FTRG0L            |          | R/W        | 8/16      | 0x00         |
| 0xF437           |                                                     | OT1FTRG0H            |          | R/W        | 8         | 0x00         |

|                  | Name                                               | Symbol name            |              |     |           | Initial      |
|------------------|----------------------------------------------------|------------------------|--------------|-----|-----------|--------------|
| Address          |                                                    | Byte                   | Word         | R/W | Size      | value        |
| 0xF438           |                                                    | OT1FTRG1L              |              | R/W | 8/16      | 0x00         |
| 0xF439           | OTM1 Forced stop trigger 1 register                | OT1FTRG1H              | OT1FTRG1     | R/W | 8         | 0x00         |
| 0xF43A           | <ul> <li>OTM1 interrupt enable register</li> </ul> | OT1INTEL               | OT1INTE      | R/W | 8/16      | 0x00         |
| 0xF43B           |                                                    | OT1INTEH               |              | R/W | 8         | 0x00         |
| 0xF43C           | <ul> <li>OTM1 interrupt status register</li> </ul> | OT1INTSL               | OT1INTS      | R   | 8/16      | 0x00         |
| 0xF43D           |                                                    | OT1INTSH               |              | R   | 8         | 0x00         |
| 0xF43E           |                                                    | OT1INTCL               |              | W   | 8         | 0x00         |
| 0xF43F           | OTM1 interrupt clear register(L/H)                 | OT1INTCH               | -            | W   | 8         | 0x00         |
| 0xF440           | - OTM2 cycle register                              | OT2PL                  |              | R/W | 8/16      | 0xFF         |
| 0xF441           |                                                    | OT2PH                  | OT2P         | R/W | 8         | 0xFF         |
| 0xF442           | OTM20 Rise Point register                          | OT20RL                 |              | R/W | 8/16      | 0x00         |
| 0xF443           |                                                    | OT20RH                 | OT20R        | R/W | 8         | 0x00         |
| 0xF444           |                                                    | OT20FL                 |              | R/W | 8/16      | 0x00         |
| 0xF445           | OTM20 Fall Point register                          | OT20FH                 | OT20F        | R/W | 8         | 0x00         |
| 0xF446           | +                                                  | -                      |              | -   | -         | -            |
| 0xF447           | Reserved register                                  |                        | -            |     |           | _            |
| 0xF448           |                                                    |                        |              | _   | _         | _            |
| 0xF449           | Reserved register                                  |                        | -            |     |           |              |
| 0xF44A           | +                                                  | OT2CL                  |              | R/W | 8/16      | 0x00         |
| 0xF44B           | OTM2 counter register                              | OT2CH                  | OT2C         | R/W | 8         | 0x00         |
| 0xF44C           |                                                    | OT2STATL               |              | R   | 8/16      | 0x02         |
| 0xF44D           | OTM2 status register                               | OT2STATE<br>OT2STATH   | OT2STAT      | R   | 8         | 0x02         |
| 0xF44E           |                                                    | OT2MODL                |              | R/W | 8/16      | 0x00         |
| 0xF44E           | <ul> <li>OTM2 mode register</li> </ul>             | OT2MODE<br>OT2MODH     | OT2MOD       | R/W | 8         | 0x00         |
| 0xF44F<br>0xF450 |                                                    | OT2MODH<br>OT2SCLRL    |              | R/W | 8/16      | 0x00         |
| 0xF450<br>0xF451 | OTM2 cycle stop timing register                    | OT2SCLRL<br>OT2SCLRH   | OT2SCLR      | R/W | 8         | 0x00<br>0x00 |
| 0xF451<br>0xF452 |                                                    | OT2SCLKH<br>OT2CLKL    |              | R/W | 8/16      | 0x00<br>0x00 |
|                  | OTM2 clock register                                |                        | OT2CLK       |     |           |              |
| 0xF453           |                                                    | OT2CLKH                |              | R/W | 8         | 0x00         |
| 0xF454           | OTM2 counter trigger 0 register                    | OT2CTRG0L<br>OT2CTRG0H | OT2CTRG0     | R/W | 8/16<br>8 | 0x00<br>0x00 |
| 0xF455           |                                                    | OT2CTRG0H<br>OT2FTRG0L |              | R/W | o<br>8/16 |              |
| 0xF456           | OTM2 Forced stop trigger 0 register                |                        | OT2FTRG0     | R/W |           | 0x00         |
| 0xF457           |                                                    | OT2FTRG0H              |              | R/W | 8/16      | 0x00         |
| 0xF458           | OTM2 Forced stop trigger 1 register                | OT2FTRG1L              | OT2FTRG1     | R/W | 8/16      | 0x00         |
| 0xF459           |                                                    | OT2FTRG1H              |              | R/W | 8         | 0x00         |
| 0xF45A           | OTM2 interrupt enable register                     | OT2INTEL               | OT2INTE      | R/W | 8/16      | 0x00         |
| 0xF45B           |                                                    | OT2INTEH               |              | R/W | 8         | 0x00         |
| 0xF45C           | OTM2 interrupt status register                     | OT2INTSL               | OT2INTS<br>- | R   | 8/16      | 0x00         |
| 0xF45D           |                                                    | OT2INTSH               |              | R   | 8         | 0x00         |
| 0xF45E           | OTM2 interrupt clear register(L/H)                 | OT2INTCL               |              | W   | 8         | 0x00         |
| 0xF45F           |                                                    | OT2INTCH               |              | W   | 8         | 0x00         |
| 0xF460           | OTM3 cycle register                                | OT3PL                  | OT3P         | R/W | 8/16      | 0xFF         |
| 0xF461           | , , ,                                              | OT3PH                  |              | R/W | 8         | 0xFF         |
| 0xF462           | OTM30 Rise Point register                          | OT30RL                 | OT30R        | R/W | 8/16      | 0x00         |
| 0xF463           |                                                    | OT30RH                 |              | R/W | 8         | 0x00         |
| 0xF464           | OTM30 Fall Point register                          | OT30FL                 | OT30F        | R/W | 8/16      | 0x00         |
| 0xF465           |                                                    | OT30FH                 | 0.000        | R/W | 8         | 0x00         |

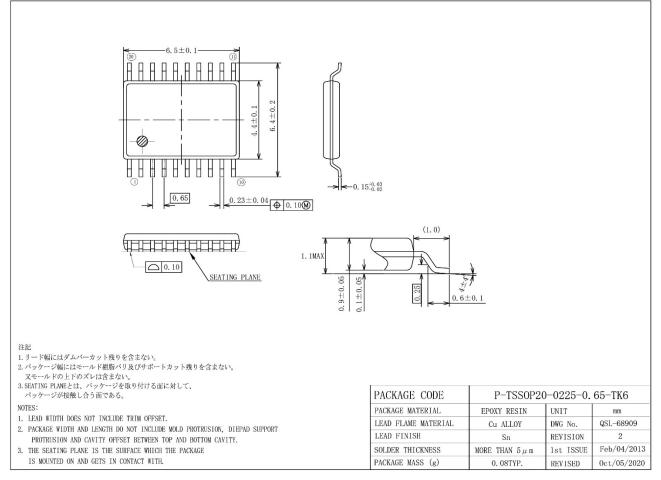
| Address | Name                                                                             | Symbol name |          |         |      | Initial      |
|---------|----------------------------------------------------------------------------------|-------------|----------|---------|------|--------------|
|         |                                                                                  | Byte        | Word     | R/W     | Size | value        |
| 0xF466  | De como dos sistem                                                               | -           |          | -       | -    | -            |
| 0xF467  | Reserved register                                                                | -           | -        | -       | -    | -            |
| 0xF468  | - Reserved register                                                              | -           |          | -       | -    | -            |
| 0xF469  |                                                                                  | -           | -        | -       | -    | -            |
| 0xF46A  |                                                                                  | OT3CL       | OT3C     | R/W     | 8/16 | 0x00         |
| 0xF46B  | OTM3 counter register                                                            | OT3CH       |          | R/W     | 8    | 0x00         |
| 0xF46C  |                                                                                  | OT3STATL    | OTOOTAT  | R       | 8/16 | 0x02         |
| 0xF46D  | OTM3 status register                                                             | OT3STATH    | OT3STAT  | R       | 8    | 0x00         |
| 0xF46E  | OTM3 mode register                                                               | OT3MODL     | OTAMOD   | R/W     | 8/16 | 0x00         |
| 0xF46F  |                                                                                  | OT3MODH     | OT3MOD   | R/W     | 8    | 0x00         |
| 0xF470  | <ul> <li>OTM3 cycle stop timing register</li> <li>OTM3 clock register</li> </ul> | OT3SCLRL    |          | R/W     | 8/16 | 0x00         |
| 0xF471  |                                                                                  | OT3SCLRH    | OT3SCLR  | R/W     | 8    | 0x00         |
| 0xF472  |                                                                                  | OT3CLKL     |          | R/W     | 8/16 | 0x00         |
| 0xF473  |                                                                                  | OT3CLKH     | OT3CLK   | R/W     | 8    | 0x00         |
| 0xF474  |                                                                                  | OT3CTRG0L   |          | R/W     | 8/16 | 0x00         |
| 0xF475  | OTM3 counter trigger 0 register                                                  | OT3CTRG0H   | OT3CTRG0 | R/W     | 8    | 0x00         |
| 0xF476  |                                                                                  | OT3FTRG0L   |          | R/W     | 8/16 | 0x00         |
| 0xF477  | OTM3 Forced stop trigger 0 register                                              | OT3FTRG0H   | OT3FTRG0 | R/W     | 8    | 0x00         |
| 0xF478  |                                                                                  | OT3FTRG1L   |          | R/W     | 8/16 | 0x00         |
| 0xF479  | OTM3 Forced stop trigger 1 register                                              | OT3FTRG1H   | OT3FTRG1 | R/W     | 8    | 0x00         |
| 0xF47A  |                                                                                  | OT3INTEL    |          | R/W     | 8/16 | 0x00         |
| 0xF47B  | OTM3 interrupt enable register                                                   | OT3INTEH    | OT3INTE  | R/W     | 8    | 0x00         |
| 0xF47C  |                                                                                  | OT3INTSL    | OT3INTS  | R       | 8/16 | 0x00         |
| 0xF47D  | OTM3 interrupt status register                                                   | OT3INTSH    |          | R       | 8    | 0x00         |
| 0xF47E  |                                                                                  | OT3INTCL    |          | W       | 8    | 0x00         |
| 0xF47F  | OTM3 interrupt clear register(L/H)                                               | OT3INTCH    | -        | W       | 8    | 0x00         |
| 0xF480  |                                                                                  | OT4PL       |          | R/W     | 8/16 | 0xFF         |
| 0xF481  | OTM4 cycle register                                                              | OT4PH       | OT4P     | R/W     | 8    | 0xFF         |
| 0xF482  |                                                                                  | OT40RL      | OT40R    | R/W     | 8/16 | 0x00         |
| 0xF483  | OTM40 Rise Point register                                                        | OT40RH      |          | R/W     | 8    | 0x00         |
| 0xF484  |                                                                                  | OT40FL      |          | R/W     | 8/16 | 0x00         |
| 0xF485  | OTM40 Fall Point register                                                        | OT40FH      | OT40F    | R/W     | 8    | 0x00         |
| 0xF486  |                                                                                  | OT41RL      |          | R/W     | 8/16 | 0x00         |
| 0xF487  | OTM41 Rise Point register                                                        | OT41RH      | OT41R    | R/W     | 8    | 0x00         |
| 0xF488  |                                                                                  | OT41FL      |          | R/W     | 8/16 | 0x00         |
| 0xF489  | OTM41 Fall Point register                                                        | OT41FH      | OT41F    | R/W     | 8    | 0x00         |
| 0xF48A  |                                                                                  | OT4CL       | OT4C     | R/W     | 8/16 | 0x00         |
| 0xF48B  | OTM4 counter register                                                            | OT4CH       |          | R/W     | 8    | 0x00         |
| 0xF48C  |                                                                                  | OT4STATL    | OT4STAT  | R       | 8/16 | 0x06         |
| 0xF48D  | <ul> <li>OTM4 status register</li> </ul>                                         | OT4STATH    |          | R       | 8    | 0x00         |
| 0xF48E  | OTM4 mode register                                                               | OT4MODL     |          | R/W     | 8/16 | 0x00         |
| 0xF48F  |                                                                                  | OT4MODH     | OT4MOD   | R/W     | 8    | 0x00<br>0x40 |
| 0xF490  |                                                                                  | OT4SCLRL    |          | R/W     | 8/16 | 0x40         |
| 0xF491  | OTM4 cycle stop timing register                                                  | OT4SCLRH    | OT4SCLR  | R/W     | 8    | 0x00         |
| 0xF491  |                                                                                  | OT4CLKL     | OT4CLK   | R/W     | 8/16 | 0x00         |
| 0xF492  | OTM4 clock register                                                              | OT4CLKH     |          | R/W     | 8    | 0x00         |
| 07493   |                                                                                  |             |          | FV/ V V | 0    | 0,00         |

|                        | Name                                | Symbol name |          | -   | <i>c</i> : | Initial |
|------------------------|-------------------------------------|-------------|----------|-----|------------|---------|
| Address                |                                     | Byte        | Word     | R/W | Size       | value   |
| 0xF494                 |                                     | OT4CTRG0L   |          | R/W | 8/16       | 0x00    |
| 0xF495                 | OTM4 counter trigger 0 register     | OT4CTRG0H   | OT4CTRG0 | R/W | 8          | 0x00    |
| 0xF496                 |                                     | OT4FTRG0L   | OT4FTRG0 | R/W | 8/16       | 0x00    |
| 0xF497                 | OTM4 Forced stop trigger 0 register | OT4FTRG0H   |          | R/W | 8          | 0x00    |
| 0xF498                 |                                     | OT4FTRG1L   | OT4FTRG1 | R/W | 8/16       | 0x00    |
| 0xF499                 | OTM4 Forced stop trigger 1 register | OT4FTRG1H   |          | R/W | 8          | 0x00    |
| 0xF49A                 |                                     | OT4INTEL    | OT4INTE  | R/W | 8/16       | 0x00    |
| 0xF49B                 | OTM4 interrupt enable register      | OT4INTEH    |          | R/W | 8          | 0x00    |
| 0xF49C                 |                                     | OT4INTSL    |          | R   | 8/16       | 0x00    |
| 0xF49D                 | OTM4 interrupt status register      | OT4INTSH    | OT4INTS  | R   | 8          | 0x00    |
| 0xF49E                 |                                     | OT4INTCL    |          | W   | 8          | 0x00    |
| 0xF49F                 | OTM4 interrupt clear register(L/H)  | OT4INTCH    | -        | W   | 8          | 0x00    |
| 0xF4A0                 |                                     | OT5PL       |          | R/W | 8/16       | 0xFF    |
| 0xF4A1                 | OTM5 cycle register                 | OT5PH       | OT5P     | R/W | 8          | 0xFF    |
| 0xF4A2                 |                                     | OT50RL      |          | R/W | 8/16       | 0x00    |
| 0xF4A3                 | OTM50 Rise Point register           | OT50RH      | OT50R    | R/W | 8          | 0x00    |
| 0xF4A4                 |                                     | OT50FL      | 0.7.5.5  | R/W | 8/16       | 0x00    |
| 0xF4A5                 | OTM50 Fall Point register           | OT50FH      | OT50F    | R/W | 8          | 0x00    |
| 0xF4A6                 |                                     | OT51RL      |          | R/W | 8/16       | 0x00    |
| 0xF4A7                 | OTM51 Rise Point register           | OT51RH      | OT51R    | R/W | 8          | 0x00    |
| 0xF4A8                 |                                     | OT51FL      | OT51F    | R/W | 8/16       | 0x00    |
| 0xF4A9                 | OTM51 Fall Point register           | OT51FH      |          | R/W | 8          | 0x00    |
| 0xF4AA                 |                                     | OT5CL       | OT5C     | R/W | 8/16       | 0x00    |
| 0xF4AB                 | OTM5 counter register               | OT5CH       |          | R/W | 8          | 0x00    |
| 0xF4AC                 |                                     | OT5STATL    | OT5STAT  | R   | 8/16       | 0x06    |
| 0xF4AD                 | OTM5 status register                | OT5STATH    |          | R   | 8          | 0x00    |
| 0xF4AE                 | OTME mode register                  | OT5MODL     |          | R/W | 8/16       | 0x00    |
| 0xF4AF                 | OTM5 mode register                  | OT5MODH     | OT5MOD   | R/W | 8          | 0x40    |
| 0xF4B0                 |                                     | OT5SCLRL    |          | R/W | 8/16       | 0x00    |
| 0xF4B1                 | OTM5 cycle stop timing register     | OT5SCLRH    | OT5SCLR  | R/W | 8          | 0x00    |
| 0xF4B2                 | OTM5 clock register                 | OT5CLKL     | OT5CLK   | R/W | 8/16       | 0x00    |
| 0xF4B3                 | O TIMO CIOCK TEGISTEI               | OT5CLKH     | OTSOLK   | R/W | 8          | 0x00    |
| 0xF4B4                 | OTM5 counter trigger 0 register     | OT5CTRG0L   | OT5CTRG0 | R/W | 8/16       | 0x00    |
| 0xF4B5                 |                                     | OT5CTRG0H   |          | R/W | 8          | 0x00    |
| 0xF4B6                 | OTM5 Forced stop trigger 0 register | OT5FTRG0L   | OT5FTRG0 | R/W | 8/16       | 0x00    |
| 0xF4B7                 |                                     | OT5FTRG0H   |          | R/W | 8          | 0x00    |
| 0xF4B8                 | OTM5 Forced stop trigger 1 register | OT5FTRG1L   | OT5FTRG1 | R/W | 8/16       | 0x00    |
| 0xF4B9                 |                                     | OT5FTRG1H   |          | R/W | 8          | 0x00    |
| 0xF4BA                 | OTM5 interrupt enable register      | OT5INTEL    | OT5INTE  | R/W | 8/16       | 0x00    |
| 0xF4BB                 |                                     | OT5INTEH    |          | R/W | 8          | 0x00    |
| 0xF4BC                 | OTM5 interrupt status register      | OT5INTSL    | OT5INTS  | R   | 8/16       | 0x00    |
| 0xF4BD                 |                                     | OT5INTSH    |          | R   | 8          | 0x00    |
| 0xF4BE                 | OTM5 interrupt clear register(L/H)  | OT5INTCL    | _        | W   | 8          | 0x00    |
| 0xF4BF                 |                                     | OT5INTCH    | _        | W   | 8          | 0x00    |
| 0xF4C0<br>to<br>0xF5FF | Reserved                            | -           | -        | -   | -          | -       |

## ML62Q2033/2035/2043/2045 User's Manual Appendix A SFR List

|         |                                                    | Symbo        | l name  |          |      | Initial      |
|---------|----------------------------------------------------|--------------|---------|----------|------|--------------|
| Address | Name                                               | Byte         | Word    | R/W      | Size | value        |
| 0xF600  | UART0 reception buffer                             | UA0BUF0      |         | R        | 8    | 0x00         |
| 0xF601  | UART0 transmission buffer                          | UA0BUF1      | -       | R/W      | 8    | 0x00         |
| 0xF602  | UART0 status register                              | UAOSTAT      |         | R        | 8    | 0x00         |
| 0xF603  | UART0 status clear register                        | UA0STAC      | -       | W        | 8    | 0x00         |
| 0xF604  | UART0 control register                             | UA0CON       |         | R/W      | 8    | 0x00         |
| 0xF605  | Reserved                                           | -            | -       | -        | -    | 0,000        |
| 0xF606  |                                                    | UA0MODL      |         | R/W      | 8/16 | 0x01         |
| 0xF607  | UART0 mode register                                | UA0MODH      | UA0MOD  | R/W      | 8    | 0x00         |
| 0xF608  | UART0 interrupt enable register                    | UA0INTE      |         | R/W      | 8    | 0x00<br>0x00 |
| 0xF609  | Reserved                                           | UAUINTE      | -       | -        | -    | -            |
|         | Reserved                                           | -<br>UA0BRTL |         | -<br>R/W |      | -<br>0xFF    |
| 0xF60A  | UART0 baud rate register                           | UA0BRTH      | UA0BRT  |          | 8/16 |              |
| 0xF60B  |                                                    |              |         | R/W      | 8    | 0x0F         |
| 0xF60C  | UART0 baud rate adjustment register                | UA0BRC       | -       | R/W      | 8    | 0x00         |
| 0xF60D  | Reserved                                           | -            |         | -        | -    | -            |
| 0xF60E  | Reserved                                           | -            | -       | -        | -    | -            |
| 0xF60F  | Reserved                                           | -            |         | -        | -    | -            |
| 0xF610  | UART1 reception buffer                             | UA1BUF0      | _       | R        | 8    | 0x00         |
| 0xF611  | UART1 transmission buffer                          | UA1BUF1      |         | R/W      | 8    | 0x00         |
| 0xF612  | UART1 status register                              | UA1STAT      | -       | R        | 8    | 0x00         |
| 0xF613  | UART1 status clear register                        | UA1STAC      |         | W        | 8    | 0x00         |
| 0xF614  | UART1 control register                             | UA1CON       | _       | R/W      | 8    | 0x00         |
| 0xF615  | Reserved                                           | -            | _       | -        | -    | -            |
| 0xF616  | UART1 mode register                                | UA1MODL      | UA1MOD  | R/W      | 8/16 | 0x01         |
| 0xF617  |                                                    | UA1MODH      | 0/(IMOD | R/W      | 8    | 0x00         |
| 0xF618  | UART1 interrupt enable register                    | UA1INTE      |         | R/W      | 8    | 0x00         |
| 0xF619  | Reserved                                           | -            | -       | -        | -    | -            |
| 0xF61A  | UART1 baud rate register                           | UA1BRTL      | UA1BRT  | R/W      | 8/16 | 0xFF         |
| 0xF61B  | OART I badd fale fegislei                          | UA1BRTH      | UAIBRI  | R/W      | 8    | 0x0F         |
| 0xF61C  | UART1 baud rate adjustment register                | UA1BRC       |         | R/W      | 8    | 0x00         |
| 0xF61D  | Reserved                                           | -            | -       | -        | -    | -            |
| 0xF61E  |                                                    |              |         |          |      |              |
| to      | Reserved                                           | -            | -       | -        | -    | -            |
| 0xF77F  |                                                    | 101101400    |         | D/4/     | 0    | 000          |
| 0xF780  | I <sup>2</sup> C bus unit 0 mode register          | I2U0MSS      | -       | R/W      | 8    | 0x00         |
| 0xF781  | Reserved                                           | -            |         | -        | -    | -            |
| 0xF782  | I <sup>2</sup> C bus unit 0 receive register       | I2U0RD       | -       | R        | 8    | 0x00         |
| 0xF783  | Reserved                                           | -            |         | -        | -    | -            |
| 0xF784  | I <sup>2</sup> C bus unit 0 slave address register | I2U0SA       | -       | R/W      | 8    | 0x00         |
| 0xF785  | Reserved                                           | -            |         | -        | -    | -            |
| 0xF786  | I <sup>2</sup> C bus unit 0 transmit data register | I2U0TD       | _       | R/W      | 8    | 0x00         |
| 0xF787  | Reserved                                           | -            |         | -        | -    | -            |
| 0xF788  | I <sup>2</sup> C bus unit 0 control register       | I2U0CON      | -       | R/W      | 8    | 0x00         |
| 0xF789  | Reserved                                           | -            |         | -        | -    | -            |
| 0xF78A  | I <sup>2</sup> C bus unit 0 mode register          | I2U0MODL     | I2U0MOD | R/W      | 8/16 | 0x00         |
| 0xF78B  |                                                    | I2U0MODH     |         | R/W      | 8    | 0x22         |
| 0xF78C  | I <sup>2</sup> C bus unit 0 status register        | I2U0STAT     | I2U0STR | R        | 8/16 | 0x00         |
| 0xF78D  |                                                    | I2U0ISR      | 120031R | R        | 8    | 0x00         |

## ML62Q2033/2035/2043/2045 User's Manual Appendix A SFR List


|                        |                                                   | Symbo     |             | 01       | Initial |           |
|------------------------|---------------------------------------------------|-----------|-------------|----------|---------|-----------|
| Address                | Name                                              | Byte      | Word        | R/W      | Size    | value     |
| 0xF78E                 |                                                   | I2U0SCLRL |             | W        | 8/16    | 0x00      |
| 0xF78F                 | I <sup>2</sup> C bus unit 0 status clear register | I2U0SCLRH | I2U0SCLR    | W        | 8       | 0x00      |
| 0xF790                 |                                                   |           |             |          |         |           |
| to<br>0xF7FF           | Reserved                                          | -         | -           | -        | -       | -         |
| 0xF800                 | SA-ADC mode register                              | SADMODL   | SADMOD      | R/W      | 8/16    | 0x30      |
| 0xF801                 | SA-ADC mode register                              | SADMODH   | SADINOD     | R/W      | 8       | 0x00      |
| 0xF802                 | SA ADC control register                           | SADCONL   | SADCON      | R/W      | 8/16    | 0x00      |
| 0xF803                 | SA-ADC control register                           | SADCONH   | SADCON      | R/W      | 8       | 0x00      |
| 0xF804                 | SA ADC conversion interval register               | SADSTML   | SADSTM      | R/W      | 8/16    | 0x00      |
| 0xF805                 | SA-ADC conversion interval register               | SADSTMH   | SADSTM      | R/W      | 8       | 0x00      |
| 0xF806                 | Reference voltage control register                | VREFCON   |             | R/W      | 8       | 0x00      |
| 0xF807                 | Reserved                                          | -         | -           | -        | -       | -         |
| 0xF808                 | SA-ADC interrupt mode register                    | SADIMOD   |             | R/W      | 8       | 0x00      |
| 0xF809                 | Reserved                                          | -         | -           | -        | -       | -         |
| 0xF80A                 | SA-ADC trigger register                           | SADTRG    |             | R/W      | 8       | 0x00      |
| 0xF80B                 | Reserved                                          | -         | -           | _        | -       | -         |
| 0xF80C                 |                                                   | SADEN0L   |             | R/W      | 8/16    | 0x00      |
| 0xF80D                 | SA-ADC enable register 0                          | SADEN0H   | SADEN0      | R/W      | 8       | 0x00      |
| 0xF80E                 |                                                   | SADEN1L   |             | R/W      | 8/16    | 0x00      |
| 0xF80F                 | SA-ADC enable register 1                          | SADEN1H   | SADEN1      | R/W      | 8       | 0x00      |
| 0xF810                 |                                                   |           |             |          |         |           |
| to<br>0xF82F           | Reserved                                          | -         | -           | -        | -       | -         |
| 0xF830                 | SA-ADC test mode register                         | SADTMOD   |             | R/W      | 8       | 0x00      |
| 0xF831                 | Reserved                                          | -         | -           | _        | -       | -         |
| 0xF832                 |                                                   |           |             |          |         |           |
| to<br>0xF87F           | Reserved                                          | -         | -           | -        | -       | -         |
| 0xF880                 | Comparator control register                       | CMPCONL   | CMPCON      | R/W      | 8/16    | 0x00      |
| 0xF881                 |                                                   | CMPCONH   | CIMPCON     | R/W      | 8       | 0x00      |
| 0xF882                 | Comparator 0 mode register                        | CMP0MODL  | CMP0MOD     | R/W      | 8/16    | 0x00      |
| 0xF883                 |                                                   | CMP0MODH  | CIVIPOIVIOD | R/W      | 8       | 0x00      |
| 0xF884                 | Comparator 1 mode register                        | CMP1MODL  | CMP1MOD     | R/W      | 8/16    | 0x00      |
| 0xF885                 |                                                   | CMP1MODH  |             | R/W      | 8       | 0x00      |
| 0xF886                 | Comparator 2 mode register                        | CMP2MODL  | CMP2MOD     | R/W      | 8/16    | 0x00      |
| 0xF887                 |                                                   | CMP2MODH  | CIVIFZIVIOD | R/W      | 8       | 0x00      |
| 0xF888                 | Comparator status register                        | CMPSTA    |             | R        | 8       | 0x00      |
| 0xF889                 | Reserved register                                 | -         | -           | R        | 8       | 0x00      |
| 0xF88A<br>to<br>0xF88F | Reserved register                                 | -         | -           | R        | 8       | 0x00      |
| 0xF890                 | Low Level Detector control register               | LLD0CON   |             | R/W      | 8       | 0x00      |
| 0xF891                 | Reserved                                          | _         | -           | -        | -       | -         |
| 0xF892                 | Low Level Detector mode register                  | LLD0MOD   |             | R/W      | 8       | 0x00      |
| 0xF893                 | Reserved                                          | -         | -           | _        | -       | -         |
| 0xF894                 | Reserved                                          |           |             | -        | -       | -         |
| 0xF895                 | Reserved                                          |           | -           |          | -       | -         |
| 0xF895                 | Low Level Detector sampling register              | LLD0SMP   | -           | -<br>R/W | - 8     | -<br>0x00 |
| 071 090                |                                                   | LEDUSIVIE | -           | 11/11    | U       | 0,00      |

## ML62Q2033/2035/2043/2045 User's Manual Appendix A SFR List

|                        |                                | Symbo    | ol name       | DAA | 0.   | Initial |
|------------------------|--------------------------------|----------|---------------|-----|------|---------|
| Address                | Name                           | Byte     | Word          | R/W | Size | value   |
| 0xF897                 | Reserved                       | -        |               | -   | -    | -       |
| 0xF898<br>to<br>0xF89F | Reserved                       | -        | -             | -   | -    | -       |
| 0xF8A0                 | D/A converter control register | DACCON   |               | R/W | 8    | 0x00    |
| 0xF8A1                 | Reserved                       | -        | -             | -   | -    | -       |
| 0xF8A2                 | D/A converter mode register    | DACMODE  |               | R/W | 8    | 0x00    |
| 0xF8A3                 | Reserved                       | -        | -             | -   | -    | -       |
| 0xF8A4                 | D/A converter 0 code register  | DAC0CODE |               | R/W | 8    | 0x00    |
| 0xF8A5                 | Reserved                       | -        | -             | -   | -    | -       |
| 0xF8A6                 | D/A converter 1 code register  | DAC1CODE |               | R/W | 8    | 0x00    |
| 0xF8A7                 | Reserved                       | -        | -             | -   | -    | -       |
| 0xF8A8<br>to<br>0xF8AF | Reserved                       | -        | -             | -   | -    | -       |
| 0xF8B0                 | PGA control register           | PGACON   |               | R/W | 8    | 0x00    |
| 0xF8B1                 | Reserved register              | -        | -             | -   | -    | -       |
| 0xF8B2                 | PGA mode register              | PGAMOD   |               | R/W | 8    | 0x00    |
| 0xF8B3                 | Reserved register              | -        | -             | -   | -    | -       |
| 0xF8B4<br>to<br>0xF91F | Reserved register              | -        | -             | -   | -    | -       |
| 0xF920                 |                                | CODEOP0L |               | R   | 8/16 | *1      |
| 0xF921                 | Code Option 0                  | CODEOP0H | CODEOP0       | R   | 8    | *1      |
| 0xF922                 |                                | CODEOP1L | 0005004       | R   | 8/16 | *1      |
| 0xF923                 | Code Option 1                  | CODEOP1H | CODEOP1       | R   | 8    | *1      |
| 0xF924                 |                                | CODEOP2L | 0005000       | R   | 8/16 | *1      |
| 0xF925                 | Code Option 2                  | CODEOP2H | CODEOP2       | R   | 8    | *1      |
| 0xF926<br>to<br>0xF92F | Reserved register              | -        | -             | -   | -    | -       |
| 0xF930                 |                                | PID0L    |               | R   | 8/16 | *2      |
| 0xF931                 | Product ID register 0          | PID0H    | PID0          | R   | 8    | *2      |
| 0xF932                 |                                | PID1L    | <b>_</b> != : | R   | 8/16 | 0x22    |
| 0xF933                 | Product ID register 1          | PID1H    | PID1          | R   | 8    | 0x06    |
| 0xF926<br>to<br>0xFFFF | Reserved register              | -        | -             | -   | -    | -       |

### Appendix B Package Dimensions

### ●20pin TSSOP



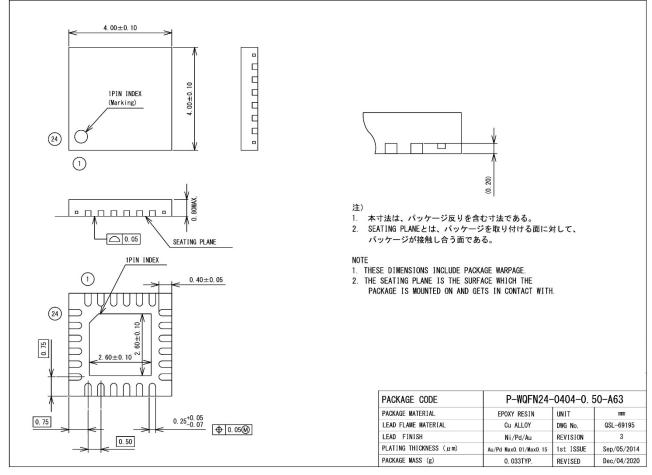

(Unit: mm)

Figure B-1 TSSOP20 Package Dimension

#### [Note] Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

### ●24pin WQFN



(Unit: mm)

Figure B-2 WQFN24 Package Dimension

#### [Note] Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

[Note] Notes for the package with exposed die pad

The die pad is exposed on the bottom of WQFN package. Make the die pad electrically open when soldering onto the PCB.

### Appendix CInstruction Execution Cycle

Tables on following pages show the all instructions of nX-U16/100 core and the execution cycles. "-" indicates that there is no memory access during the instruction execution. See "Example of Instruction execution cycle" for details on how to read the table.

| (1)                           |      | (2)                     | (3)                    | (4)                     | (5)                           |   |
|-------------------------------|------|-------------------------|------------------------|-------------------------|-------------------------------|---|
| Instruction<br>(No wait mode) |      | Min. execution<br>cycle | ROM reference<br>cycle | Effect of DSR<br>access | Effect of [EA+]<br>addressing |   |
| ADD                           | ERn  | ERm                     | 1                      | -                       | -                             | - |
| Б                             | Cadr |                         | 2                      | -                       | -                             | 1 |
| В                             | ERn  |                         | 2                      | -                       | -                             | 1 |
|                               | ERn  | [EA]                    | 1                      | 1                       | 1                             | - |
| L                             |      | [EA+]                   | 1                      | 1                       | 1                             | - |

#### Example of Instruction execution cycle

[How to read the table]

- 1) These are the instructions of nX-U16/100 (A35 core)
- 2) The execution cycle of each instruction.
- 3) Additional execution cycle when the instruction refers to ROM.
- 4) Additional execution cycle when the instruction reads the address allocated in segment 1 or larger. One cycle is added in spite of the CPU operating mode.
  5. In the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
- For more details, see the section 1.3.4 "DSR Prefix Instructions" in the nX-U16/100 core instruction manual.
  Additional execution effected by the instruction with the [EA+] addressing.
- For more details, see the section 3.3 "Instruction Execution Times" in the nX-U16/100 core instruction manual.

### Arithmetic Instructions

| Instruction<br>(No wait mode) |             | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |   |
|-------------------------------|-------------|----------------------------|---------------------------|----------------------------|-------------------------------|---|
| ADD                           | ERn         | ER <i>m</i>                | 1                         | -                          | -                             | - |
| ADD                           |             | #imm7                      | 1                         | -                          | -                             | - |
| ADD                           | R <i>n</i>  | R <i>m</i>                 | 1                         | -                          | -                             | - |
| ADD                           |             | #imm8                      | 1                         | -                          | -                             | - |
| ADDC                          | R <i>n</i>  | R <i>m</i>                 | 1                         | -                          | -                             | - |
| ADDC                          |             | #imm8                      | 1                         | -                          | -                             | - |
| AND                           | R <i>n</i>  | R <i>m</i>                 | 1                         | -                          | -                             | - |
| AND                           |             | #imm8                      | 1                         | -                          | -                             | - |
| CMP                           | R <i>n</i>  | R <i>m</i>                 | 1                         | -                          | -                             | - |
| CIVIE                         | 13/7        | #imm8                      | 1                         | -                          | -                             | - |
| CMPC                          | R <i>n</i>  | R <i>m</i>                 | 1                         | -                          | -                             | - |
| CIVIFC                        |             | #imm8                      | 1                         | -                          | -                             | - |
| MOV                           | ER <i>n</i> | ER <i>m</i>                | 1                         | -                          | -                             | - |
| NOV                           |             | #imm7                      | 1                         | -                          | -                             | - |
| MOV                           | R <i>n</i>  | R <i>m</i>                 | 1                         | -                          | -                             | - |
| NOV                           |             | #imm8                      | 1                         | -                          | -                             | - |
| OR                            | R <i>n</i>  | R <i>m</i>                 | 1                         | -                          | -                             | - |
| UK                            |             | #imm8                      | 1                         | -                          | -                             | - |
| XOR                           | R <i>n</i>  | R <i>m</i>                 | 1                         | -                          | -                             | - |
| XUR                           | RN          | #imm8                      | 1                         | -                          | -                             | - |
| CMP                           | ER <i>n</i> | ER <i>m</i>                | 1                         | -                          | -                             | - |
| SUB                           | R <i>n</i>  | R <i>m</i>                 | 1                         | -                          | -                             | - |
| SUBC                          | R <i>n</i>  | R <i>m</i>                 | 1                         | -                          | -                             | - |

### Shift instructions

| Instruction<br>(No wait mode) |            | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |   |
|-------------------------------|------------|----------------------------|---------------------------|----------------------------|-------------------------------|---|
| SLL                           | R <i>n</i> | R <i>m</i>                 | 1                         | -                          | -                             | 1 |
| SLL                           | R/I        | #width                     | 1                         | -                          | -                             | 1 |
| SLLC                          | R <i>n</i> | R <i>m</i>                 | 1                         | -                          | -                             | 1 |
| SLLC                          |            | #width                     | 1                         | -                          | -                             | 1 |
| SRA                           | R <i>n</i> | R <i>m</i>                 | 1                         | -                          | -                             | 1 |
| SKA                           |            | #width                     | 1                         | -                          | -                             | 1 |
| SRL                           | R <i>n</i> | R <i>m</i>                 | 1                         | -                          | -                             | 1 |
| SKL                           |            | #width                     | 1                         | -                          | -                             | 1 |
| SRLC                          | R <i>n</i> | R <i>m</i>                 | 1                         | -                          | -                             | 1 |
|                               |            | #width                     | 1                         | _                          | -                             | 1 |



#### Load/Store instructions

|    |             | truction<br>/ait mode) | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |
|----|-------------|------------------------|----------------------------|---------------------------|----------------------------|-------------------------------|
|    |             | [EA]                   | 1                          | 1                         | 1                          | -                             |
|    |             | [EA+]                  | 1                          | 1                         | 1                          | -                             |
|    |             | [ERm]                  | 1                          | 1                         | 1                          | 1                             |
|    | ERn         | Disp16[ERm]            | 2                          | 1                         | 1                          | 1                             |
|    |             | Disp6[BP]              | 2                          | 1                         | 1                          | 1                             |
|    |             | Disp6[FP]              | 2                          | 1                         | 1                          | 1                             |
|    |             | Dadr                   | 2                          | 1                         | 1                          | 1                             |
|    |             | [EA]                   | 1                          | 1                         | 1                          | -                             |
|    |             | [EA+]                  | 1                          | 1                         | 1                          | -                             |
| L  |             | [ER <i>m</i> ]         | 1                          | 1                         | 1                          | 1                             |
|    | R <i>n</i>  | Disp16[ERm]            | 2                          | 1                         | 1                          | 1                             |
|    |             | Disp6[BP]              | 2                          | 1                         | 1                          | 1                             |
|    |             | Disp6[FP]              | 2                          | 1                         | 1                          | 1                             |
|    |             | Dadr                   | 2                          | 1                         | 1                          | 1                             |
|    | XR <i>n</i> | [EA]                   | 2                          | 2                         | 1                          | -                             |
|    |             | [EA+]                  | 2                          | 2                         | 1                          | -                             |
|    | QR <i>n</i> | [EA]                   | 4                          | 4                         | 1                          | -                             |
|    | QR/I        | [EA+]                  | 4                          | 4                         | 1                          | -                             |
|    |             | [EA]                   | 1                          | -                         | -                          | -                             |
|    |             | [EA+]                  | 1                          | -                         | -                          | -                             |
|    |             | [ER <i>m</i> ]         | 1                          | -                         | -                          | 1                             |
|    | ER <i>n</i> | Disp16[ERm]            | 2                          | -                         | -                          | 1                             |
|    |             | Disp6[BP]              | 2                          | -                         | -                          | 1                             |
|    |             | Disp6[FP]              | 2                          | -                         | -                          | 1                             |
|    |             | Dadr                   | 2                          | -                         | -                          | 1                             |
|    |             | [EA]                   | 1                          | -                         | -                          | -                             |
| ST |             | [EA+]                  | 1                          | -                         | -                          | -                             |
| 51 |             | [ER <i>m</i> ]         | 1                          | -                         | -                          | 1                             |
|    | R <i>n</i>  | Disp16[ERm]            | 2                          | -                         | -                          | 1                             |
|    |             | Disp6[BP]              | 2                          | -                         | -                          | 1                             |
|    |             | Disp6[FP]              | 2                          | -                         | -                          | 1                             |
|    |             | Dadr                   | 2                          | -                         | -                          | 1                             |
|    | XR <i>n</i> | [EA]                   | 2                          | -                         | -                          | -                             |
|    |             | [EA+]                  | 2                          | -                         | -                          | -                             |
|    | QR <i>n</i> | [EA]                   | 4                          | -                         | -                          | -                             |
|    |             | [EA+]                  | 4                          | -                         | -                          | -                             |

(\*1) When the immediately preceding instruction is for reading the data memory or not (not the instruction for reading the data memory / the instruction for reading the data memory)

### **Control Register Access Instructions**

| Instruction<br>(No wait mode) |              | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of<br>[EA+]<br>addressing |   |
|-------------------------------|--------------|----------------------------|---------------------------|----------------------------|----------------------------------|---|
| ADD                           | SP           | #signed8                   | 1                         | -                          | -                                | - |
|                               | ECSR         | R <i>m</i>                 | 1                         | -                          | -                                | - |
|                               | ELR          | ER <i>m</i>                | 1                         | -                          | -                                | - |
|                               | EPSW         | R <i>m</i>                 | 1                         | -                          | -                                | - |
|                               | ER <i>n</i>  | ELR                        | 1                         | -                          | -                                | - |
|                               |              | SP                         | 1                         | -                          | -                                | - |
| MOV                           | <b>D</b> 014 | R <i>m</i>                 | 1                         | -                          | -                                | - |
| MOV                           | PSW          | #unsigned8                 | 1                         | -                          | -                                | - |
|                               |              | CR <i>m</i>                | 1                         | -                          | -                                | - |
|                               | Da           | ECSR                       | 1                         | -                          | -                                | - |
|                               | R <i>n</i>   | EPSW                       | 1                         | -                          | -                                | - |
|                               |              | PSW                        | 1                         | -                          | -                                | - |
|                               | SP           | ER <i>m</i>                | 1                         | -                          | -                                | - |



### **PUSH/POP** Instructions

| ۹)   | Instruction<br>lo wait mode) | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |
|------|------------------------------|----------------------------|---------------------------|----------------------------|-------------------------------|
|      | EA                           | 1                          | -                         | -                          | 1                             |
|      | ELR                          | 1 / 2 (*1)                 | -                         | -                          | 1                             |
|      | EA,ELR                       | 2/3(*1)                    | -                         | -                          | 1                             |
|      | EPSW                         | 1                          | -                         | -                          | 1                             |
|      | EPSW,EA                      | 2                          | -                         | -                          | 1                             |
|      | EPSW,ELR                     | 2 / 3 (*1)                 | -                         | -                          | 1                             |
|      | EPSW,ELR, EA                 | 3 / 4 (*1)                 | -                         | -                          | 1                             |
|      | LR                           | 1 / 2 (*1)                 | -                         | -                          | 1                             |
|      | LR,EA                        | 2/3(*1)                    | -                         | -                          | 1                             |
| PUSH | LR,ELR                       | 2 / 4 (*1)                 | -                         | -                          | 1                             |
|      | LR,EA,ELR                    | 3 / 5 (*1)                 | -                         | -                          | 1                             |
|      | LR,EPSW                      | 2/3(*1)                    | -                         | -                          | 1                             |
|      | LR,EPSW,EA                   | 3 / 4 (*1)                 | -                         | -                          | 1                             |
|      | LR,EPSW,ELR                  | 3 / 5 (*1)                 | -                         | -                          | 1                             |
|      | LR,ELR,EPSW,EA               | 4 / 6 (*1)                 | -                         | -                          | 1                             |
|      | ERn                          | 1                          | -                         | -                          | 1                             |
|      | QR <i>n</i>                  | 4                          | -                         | -                          | 1                             |
|      | Rn                           | 1                          | -                         | -                          | 1                             |
|      | XRn                          | 2                          | -                         | -                          | 1                             |
|      | EA                           | 2                          | -                         | -                          | 1                             |
|      | EA,LR                        | 3 / 4 (*1)                 | -                         | -                          | 1                             |
|      | EA,PC                        | 5 / 6 (*1)                 | -                         | -                          | 1                             |
|      | EA,PC,LR                     | 6 / 8 (*1)                 | -                         | -                          | 1                             |
|      | EA,PC,PSW                    | 6 / 7 (*1)                 | -                         | -                          | 1                             |
|      | EA,PC,PSW,LR                 | 7 / 9 (*1)                 | -                         | -                          | 1                             |
|      | EA,PSW                       | 3                          | -                         | -                          | 1                             |
|      | EA,PSW,LR                    | 4 / 5 (*1)                 | -                         | -                          | 1                             |
|      | LR                           | 1 / 2 (*1)                 | -                         | -                          | 1                             |
| POP  | LR,PSW                       | 2 / 3 (*1)                 | -                         | -                          | 1                             |
|      | PC                           | 3 / 4 (*1)                 | -                         | -                          | 1                             |
|      | PC,LR                        | 4 / 6 (*1)                 | -                         | -                          | 1                             |
|      | PC,PSW                       | 4 / 5 (*1)                 | -                         | -                          | 1                             |
|      | PC,PSW,LR                    | 5 / 7 (*1)                 | -                         | -                          | 1                             |
|      | PSW                          | 1                          | -                         | -                          | 1                             |
|      | ERn                          | 1                          | -                         | -                          | 1                             |
|      | QR <i>n</i>                  | 4                          | -                         | -                          | 1                             |
|      | Rn                           | 1                          | -                         | -                          | 1                             |
|      | XRn<br>the memory mode is    | 2                          | -                         | -                          | 1                             |

(\*1) When the memory mode is SMALL or LARGE (SMALL model/LARGE model)

### Coprocessor Data Transfer Instructions

| (N  | Instruction<br>(No wait mode) |              | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |
|-----|-------------------------------|--------------|----------------------------|---------------------------|----------------------------|-------------------------------|
|     | CR <i>n</i>                   | R <i>m</i>   | 1                          | -                         | -                          | -                             |
|     | OFDa                          | [EA]         | 1                          | 1                         | 1                          | 1                             |
|     | CERn                          | [EA+]        | 1                          | 1                         | 1                          | 1                             |
|     | CQR <i>n</i>                  | [EA]         | 4                          | 4                         | 1                          | 1                             |
| MOV | CQRII                         | [EA+]        | 4                          | 4                         | 1                          | 1                             |
|     | CRn                           | [EA]         | 1                          | 1                         | 1                          | 1                             |
|     |                               | [EA+]        | 1                          | 1                         | 1                          | 1                             |
|     | CXRn                          | [EA]         | 2                          | 2                         | 1                          | 1                             |
|     |                               | [EA+]        | 2                          | 2                         | 1                          | 1                             |
|     | R <i>n</i>                    | CR <i>m</i>  | 1                          | -                         | -                          | -                             |
|     | [EA]                          | CER <i>m</i> | 1                          | 1                         | 1                          | 1                             |
|     | [EA+]                         | CER <i>m</i> | 1                          | 1                         | 1                          | 1                             |
|     | [EA]                          | CQR <i>m</i> | 4                          | 4                         | 1                          | 1                             |
| MOV | [EA+]                         | CQR <i>m</i> | 4                          | 4                         | 1                          | 1                             |
|     | [EA]                          | CR <i>m</i>  | 1                          | 1                         | 1                          | 1                             |
|     | [EA+]                         | CR <i>m</i>  | 1                          | 1                         | 1                          | 1                             |
|     | [EA]                          | CXR <i>m</i> | 2                          | 2                         | 1                          | 1                             |
|     | [EA+]                         | CXR <i>m</i> | 2                          | 2                         | 1                          | 1                             |

### EA Register Data Transfer Instructions

| Instruction<br>(No wait mode) |                | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |
|-------------------------------|----------------|----------------------------|---------------------------|----------------------------|-------------------------------|
|                               | [ER <i>m</i> ] | 1                          | -                         | -                          | -                             |
| LEA                           | Disp16[ERm]    | 2                          | -                         | -                          | -                             |
|                               | Dadr           | 2                          | -                         | -                          | -                             |

### **ALU Instructions**

| Instruction<br>(No wait mode) |            | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |
|-------------------------------|------------|----------------------------|---------------------------|----------------------------|-------------------------------|
| DAA                           | R <i>n</i> | 1                          | -                         | -                          | -                             |
| DAS                           | Rn         | 1                          | -                         | -                          | -                             |
| NEG                           | Rn         | 1                          | -                         | -                          | -                             |

#### **Bit Access Instructions**

| Instruction<br>(No wait mode) |               | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |
|-------------------------------|---------------|----------------------------|---------------------------|----------------------------|-------------------------------|
| SB                            | Dbitadr       | 2                          | -                         | 1                          | -                             |
| 30                            | Rn.bit_offset | 1                          | -                         | -                          | -                             |
| RB                            | Dbitadr       | 2                          | -                         | 1                          | -                             |
| RD                            | Rn.bit_offset | 1                          | -                         | -                          | -                             |
| ТВ                            | Dbitadr       | 2                          | 1                         | 1                          | -                             |
|                               | Rn.bit_offset | 1                          | -                         | -                          | -                             |

#### **PSW Access Instructions**

| Instruction<br>(No wait mode) | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |
|-------------------------------|----------------------------|---------------------------|----------------------------|-------------------------------|
| EI                            | 1                          | -                         | -                          | -                             |
| DI                            | 3                          | -                         | -                          | -                             |
| SC                            | 1                          | -                         | -                          | -                             |
| RC                            | 1                          | -                         | -                          | -                             |
| CPLC                          | 1                          | -                         | -                          | -                             |

#### Sign Extension Instruction

|       | truction<br>vait mode) | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |
|-------|------------------------|----------------------------|---------------------------|----------------------------|-------------------------------|
| EXTBW | ER <i>n</i>            | 1                          | -                         | -                          | -                             |

#### **Branch Instructions**

| Instruction<br>(No wait mode) |             | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR access | Effect of [EA+]<br>addressing |
|-------------------------------|-------------|----------------------------|---------------------------|-------------------------|-------------------------------|
| В                             | Cadr        | 2                          | -                         | -                       | 1                             |
|                               | ER <i>n</i> | 2                          | -                         | -                       | 1                             |
| BL                            | Cadr        | 2                          | -                         | -                       | 1                             |
|                               | ERn         | 2                          | -                         | -                       | 1                             |

(\*1) When the immediately preceding instruction is for reading the data memory or not (not the instruction for reading the data memory / the instruction for reading the data memory)

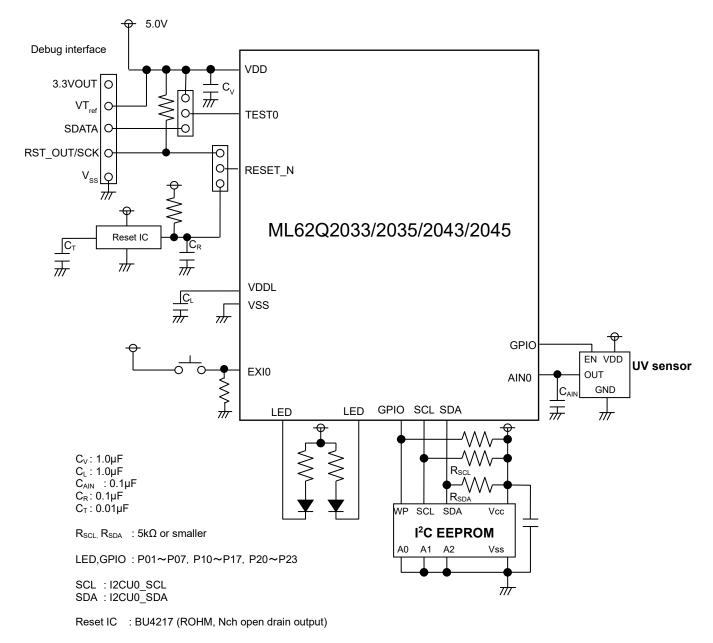
#### **Conditional Relative Branch Instructions**

| Instruction<br>(No wait mode) |      | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |
|-------------------------------|------|----------------------------|---------------------------|----------------------------|-------------------------------|
| BGE                           | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BLT                           | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BGT                           | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BLE                           | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BGES                          | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BLTS                          | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BGTS                          | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BLES                          | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BNE                           | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BEQ                           | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BNV                           | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BOV                           | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BPS                           | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BNS                           | Radr | 1 / 2(*1)                  | -                         | -                          | 1                             |
| BAL                           | Radr | 2                          | -                         | -                          | 1                             |

(\*1) When the branch condition is matched or not (Not matched / Matched)

### Multiplication and Division Instructions

| Instruction<br>(No wait mode) |             | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |   |
|-------------------------------|-------------|----------------------------|---------------------------|----------------------------|-------------------------------|---|
| MUL                           | ER <i>n</i> | R <i>m</i>                 | 9                         | -                          | -                             | - |
| DIV                           | ERn         | R <i>m</i>                 | 17                        | -                          | -                             | - |


#### Interrupts

| Instruction<br>(No wait mode) |                          | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |
|-------------------------------|--------------------------|----------------------------|---------------------------|----------------------------|-------------------------------|
| SWI #snum                     |                          | 3                          | -                         | -                          | 1                             |
| BRK                           |                          | 7                          | -                         | -                          | 1                             |
| Interrupt tran                | Interrupt transfer cycle |                            | -                         | -                          | 1                             |

#### Miscellaneous

| Instruction<br>(No wait mode) | Min.<br>execution<br>cycle | ROM<br>reference<br>cycle | Effect of<br>DSR<br>access | Effect of [EA+]<br>addressing |
|-------------------------------|----------------------------|---------------------------|----------------------------|-------------------------------|
| NOP                           | 1                          | -                         | -                          | -                             |
| DEC [EA]                      | 2                          | -                         | 1                          | 1                             |
| INC [EA]                      | 2                          | -                         | 1                          | 1                             |
| RT                            | 2                          | -                         | 1                          | 1                             |
| RTI                           | 2                          | -                         | 1                          | 1                             |

### Appendix DApplication Circuit Example



### [Note] Place the capacitor for VDDL pin as close to the LSI power pins as possible.

### Appendix E List of Notes

This Check List has important notes to prevent commonly-made programming mistakes and frequently overlooked or misunderstood hardware specifications of the LSI. Check each note listed in chapter by chapter when coding or evaluating the program. Number in a mark [] shows section number to refer.

#### Common to all Chapters

- □ Please see the "Notes" and the "Notes for product usage" in this document front pages.
- Word access is available for registers with the word symbol. Specify an even address for the word access. See "List of Registers" in each chapter.
- Registers for unequipped channels are not available to use. They return 0x0000 for reading. See "List of Registers" in each chapter.

#### 1. Overview

□ [1.3.4] Terminate unused input pins according to the Table 1-5 in order to avoid unexpected through-current in the pins.

#### 2. CPU and Memory Space

- □ [2.3.3] □ Changing to STOP/HALT mode during calculation is prohibited. When changing to STOP/HALT mode after using the multiplier and divider, wait until the calculation time in Table 2-7 has elapsed.
- $\Box$  [2.5] The CSR of this LSI is fixed at "0".
- [2.5] The Code Option area (48 bytes) is not available for the program code area. For details of Code Option settings, see Chapter 30 "Code Option" and make sure the setting data is correct.
- [2.5] It is recommended to fill unused areas with data "0xFFFF" (BRK instruction) in the program memory space to ensure failsafe using the generation tool of the ROM code data. See its manual for details on how to use. See "nX-U16/100 Core Instruction Manual" for details of the BRK instruction.
- □ [2.5, 2.6] Do not read or program unused areas to prevent the CPU works incorrectly.
- □ [2.6] The contents of the RAM area are undefined at power-on and system reset. Initialize this area by the software.
- $\Box$  [2.6] Read the data flash area in bytes.
- □ [2.8.2] If the entire LSI is reset through a system reset, the remapping function is disabled as the REMAPADD register is restored with the initial value.

#### 3. Reset Function

- [3.3.1] The BRK instruction reset only initializes the CPU if ELEVEL is 2 or higher. Peripheral circuits and other circuits are not initialized. Use the pin reset or the watchdog timer (WDT) reset to surely initialize the LSI when an abnormality is detected.
- □ [3.3.1] □ Command reset in on-chip debug does not reset to Low Level Detector parts. Do initialization of these functions by writing SFRs on debug, if needed. See Chapter 28 for details .
- □ [3.3.2] In system reset mode, the contents of data memory (RAM) and SFRs that have an undefined initial value are not initialized. Initialize them by the software .
- [3.3.4] In case of instantaneous power failure and a pulse shorter than the power-on reset reaction time is asserted to VDD, MCU may not get reset and it may malfunction. In that case, please have preventive measures such as using bypass capacitor to avoid the instantaneous voltage drop or using pin reset to initialize MCU.

#### 4. Power Management

- $\Box$  [4.1.3] In order to improve the noise resistance, place the inter-power supply bypass capacitor (CV) and the internal logic voltage (VDDL) capacitor (CL : 1µF) in the vicinity of LSI on the user board using the shortest possible wiring without passing through via holes.
- [4.2.2] Writing to the stop code acceptor is invalid on the condition both interrupts enable bits and interrupt request bits are "1", it will not get enabled for entering to the STOP mode.
- □ [4.2.3] The operating state does not enter the standby mode under some conditions. See "4.3.2.3 Note of entering to the standby mode" for detail conditions.
- [4.2.3] When an interrupt enabled in the interrupt enable registers (IE0 to IE7) is generated on the condition of MIE flag of the program status word (PSW) is "0", it cancels the standby mode only and the CPU does not go to the interrupt routine. For more details about MIE flag, see "nX-U16/100 Core Instruction Manual".
- □ [4.2.3] □ Insert two NOP instructions in the next to the instruction of that sets HLT and STP bit to "1". The operation without the two NOP instructions is not guaranteed.
- □ [4.2.6] Do not enter the standby mode when SOFTR bit is "1". Ensure SOFTR bit is "0" before entering the standby mode.
- □ [4.2.9, 4.2.13] DCKACC bit can be set to "0" when the multiplication/division library "muldivu8.lib" is specified. See a manual of the multiplication/division library for how to use.
- □ [4.3.2.3] Note of entering to the standby mode

- □ [4.3.2.4] Note on Return Operation from Standby Mode
- [4.3.2.4] Since up to two instructions are executed during the period between the release of standby mode and a transition to interrupt processing, place two NOP instructions next to the instruction set for the standby mode. When a master interrupt enable (MIE) flag of the program status word (PSW) in the nX-U16/100 CPU core is "1", following the execution of the two NOP instructions, the interrupt transition cycle will be executed and execution of the instruction for interrupt routine begins. If MIE is "0", following the execution of the two NOP instructions, the instruction set to the instruction execution is continued from the one that follows the NOP instruction without transition to the interrupt.
- $\Box$  [4.3.2.6] When the FHWUPT register is set to "0x01", the frequency of PLL oscillation clock gradually increases and reaches the target frequency switched by the code option before approx. 2 ms elapse. The PLL oscillation clock during this time period can be used for the SYSCLK, however, accuracy of the frequency is not guaranteed.
- □ [4.3.3] If the clock supply is only stopped without resetting each peripheral circuit using the block control function, it may cause the output levels of the timer and communication pins to be fixed, causing the excess current to flow. Also, in the successive approximation type A/D converter, the circuits may stop their function with the current kept flowing.

#### 5. Interrupts

□ [5.2.3,5.2.5,5.2.7,5.2.9,5.2.16,5.2.20] In the 16-bit timer 0 interrupt, the interrupt factor is assigned to two places. (TM0INT0, TM0INT1)

Do not use TM0INT and TM0INT1 at the same time. (See Section 5.3.9 "16-bit Timer 0 Interrupt").

- [5.2.6 to 5.2.9] When rewrite a specific bit of this register, use a bit symbol. Otherwise, other request bits in the same register might be cleared. See Section 5.3.8 "Writing to IRQ01/IRQ23/IRQ45/IRQ67" for more detail.
- $\Box$  [5.2.10] Disable the interrupt level control function by resetting ILE bit to "0" after resetting the Interrupt level control register 0 to 7 (ILC0 to ILC7) to "0x0000" and confirming the current interrupt request level register (CIL) is "0x00" when the interrupt is disabled (IE01 to IE67 registers are "0x00").
- [5.2.10] Enable the interrupt level control function by setting the ILE bit to "1" when the interrupt is disabled (IE0 to IE7 registers are "0") or master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.
- □ [5.2.13 to 5.2.20] Write to this register when the interrupt is disabled (IE01 to IE67 registers are "0x0000") or the master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.
- □ [5.3] The WDT interrupt (WDTINT) is a non-maskable interrupt. If the non-maskable interrupt occurs while an interrupt processing is in progress, abort the interrupt processing and proceed with processing the non-maskable interrupt preferentially regardless of multiple interrupts enabled/disabled.
- [5.3] For failsafe, define unused all interrupt vectors. If an unused interrupt occurs, it may indicate the possibility that the CPU went out of control. It is recommended to cause the WDT overflow reset to occur using the infinite loop to initialize the LSI.
- □ [5.3.4] Notes on Interrupt Routine (with Interrupt Level Control Disabled)
- [5.3.4] Do not enable interrupts in a subroutine called from an interrupt routine for which multiple interrupts are disabled.
   Otherwise, the program may run out of control when multiple interrupts occur.
- □ [5.3.5] For processing of non-maskable interrupt, follow the flow chart "When multiple interrupts are enabled". Registers that should be saved in the stack are ELR2 and EPSW2.
- [5.3.5] When programming in C, it is not required to write program codes for saving/restoring registers because they are generated in the C compiler. However, program codes for enabling/disabling interrupts through EI and DI instructions and for writing to the current interrupt level management register (CIL) must be written. See Section 5.3.6 "How To Write Interrupt Processing When Interrupt Level Control Enabled" for the specific program description.
- □ [5.3.6.1] Do not enable interrupts in a function called from a function for which multiple interrupts are disabled. Otherwise, the program may run out of control when the multiple interrupts occur.

#### 6. Clock Generation Circuit

- □ [6.1.2] After the power-on or the system reset, LSCLK0 (32.768 kHz) is initially selected as SYSCLK.
- [6.3.4] While the CPU is running with the low-speed clock, if running the peripheral circuits with the high-speed clock which can frequently generate interrupts, the operation may fail to function properly due to the CPU becoming incapable of processing interrupts in time. If interrupts frequently occur for reasons such as short interrupt cycles of peripheral circuits, take into account the operating frequency of the CPU so that it can process interrupts in time.

#### 8. 16-bit Timer

- □ [8.2.2] When "0x0000" is written in TMHnD in the 16-bit timer mode, "0x0001" is set in TMHnD.
- □ [8.2.3] Read TMHnC register twice to verify the valid data to prevent reading uncertain data while counting-up, if a source of timer clock is as different as one of system clock.
- □ [8.2.4] Set TMHnMOD when the timer n is stopped (THnSTAT bits of TMHSTAT/TMHXSTAT register are "0"). If it is changed while it is operating, the operation is not guaranteed.
- [8.3.2] After THnRUN bit is set to "1", the first interrupt has a time error equivalent to maximum of one clock of the timer clock because the counting operation starts in synchronization with the timer clock. The 2nd timer interrupt or later interrupts have constant cycles.

□ [8.3.2] After THnSTP bit is set to "1", a 16-bit timer n interrupt (TMnINT) may be generated depending on the stop timing because the counting operation stops in synchronization with the timer clock .

#### 9. Operational Timer

- □ [9.2.2] When 0x0000 is written in this register, 0x0001 is set and the read value is also becoming 0x0001.
- [9.2.8] When switching from PWM mode to CAPTURE mode, OTnFLGA bit and OTnFLGB bits might be unintentionally set to "1". So, when switching to CAPTURE mode, read OTn0R register and OTn0F register once to initialize OTnFLGA and OTnFLGB bits.
- □ [9.2.9] Set OTnMOD register when the counter operation is stopped.
- [9.2.10] If it is required to update OTnOCON register while the counter is running, change the setting value after stopping the logical output by OTC0OCON/OTC1OCON register. If the setting of OTnOCON register is changed during counter operation in the logical output permitting state, unintended waveforms might be output.
- $\Box$  [9.2.11] Set OTnSCLR register when counter operation is stopped.
- [9.2.11] The time interval set to OTnDLY bit must be shorter than the interval set to OTnP register.
   If the time interval is set for OTnDLY bit longer than the interval set to OTnP register, the counter may stop even if the time interval is less than the interval set by OTnDLY bit
   [9.2.12] Set OTnCLK register when counter operation is stopped.
- $\square$  [9.2.13,9.2.14] Trigger pulse width must be 2cloks wide of timer clock or more.
- [9.2.13,9.2,14] In one-shot mode, set OTnTRM02 to OTnTRM00 bits to "1X0" or "1X1", and if the start condition and the level of the counter control signal 0 match, and the stop condition in one-shot mode is satisfied, the counting operation is continued (count-up is resumed from 0).
- [9.2.13,9.2.14] If OTnCTRG0 register is set when a trigger event is enabled, a trigger event may occur at the moment of the setting. So when setting OTnCTRG0 register, verify that OTnTGEN bit of OTCSTAT register is "0" and change the setting of OTnCTRG0 register in the trigger operation stopped state.
- [9.2.15] When changing the setting of OTnFTRG0 register during counter operation, set the following bits of the register to "0" once, and then change the setting value.
- $\Box$  •OTnFCC0 bit
- $\Box$  •OTnFCN01 bit
- □ •OTnFCN00 bit
- □ [9.2.16]
- □ When changing the setting of OTnFTRG1 register during counter operation, set the following bits of the register to "0" once, and then change the setting value.
- •OTnFCC1 bit
- □ •OTnFCN11 bit
- □ •OTnFCN10 bit
- □ [9.2.28] Set OTCPC register in a state where the counter operation is stopped.
- □ [9.2.28] When the period is set to be linked with OT20R/OT30R, set the period of the count clock to be set to the linked OTMn so that it is less than or equal to the period of the count clock set in OTM2 and OTM3.
- □ [9.2.28] If the period is set to longer than the period of the count clock set in OTM2 and OTM3, there is a possibility that an unintended value may be set to OTnP during period-linked operation.

#### 10. Watchdog Timer

- □ [10.1.1] Not all the abnormal operations are detectable by the watchdog timer. Even if the CPU is runaway, the watchdog timer is undetectable to the abnormality in the operation state in which the WDT counter is cleared. As a fail-safe, it is recommended that the WDT counter is cleared at one place in the main loop of the program.
- □ [10.2.2] In WDT interrupt routine (when the interrupt level (ELEVEL) of the CPU program status word (PSW) is "2"), WDT counter is unable to get cleared.
- $\Box$  [10.2.3] See the data-sheet for frequency accuracy of RC1K.
- $\Box$  [10.3.1] In the STOP mode, the WDT timer is stopped.
- □ [10.3.3] When using the window function enabled mode, always define a WDT interrupt function even though no WDT interrupt occurs.
- [10.3.3] In the watchdog timer (WDT) interrupt function, as the interrupt level (ELEVEL) of the CPU program status word (PSW) becomes "2", the WDT counter is unable to get cleared. Clear the WDT when the ELEVEL is "0" or "1". It is recommended that the WDT counter is cleared at one place in the main loop of the program as a fail-safe.

#### 13. I<sup>2</sup>C Bus

- [13.1.3] Use external pull-up resistors for SDA pin and SCL pin according to the I2C bus specification. The internal pull-up resistors are unsatisfied the I2C bus specification. See the data sheet for each product for the value of internal pull-up resistors.
- □ [13.1.3, 13.2.2] If powering off this LSI in the slave mode, it disables communications of other devices on the I2C bus. Keep this LSI powered on when it works as a slave mode until the master device is powered off.

- □ [13.1.4, 13.2.2] Do not connect multiple master devices on the I2C bus when using the master function.
- [13.2.2] All SFRs are shared in master mode with slave mode. If switching master/slave mode, set "0" to I2U0EN bit of I2UMOD register, then switch the mode and reconfigurate each SFRs.
- [13.3.4] Update it without a bit access instruction in the control register setting wait state. See Section 13.5.1.5 "Control Register Setting Wait State" for details.
- □ [13.3.4] When I2U0ST bit is "1", write other bits of I2U0CON register in the control register setting wait state .
- □ [13.4.4] If system clock is extremely slower than the communication speed, the data transmission/reception can be failed .
- □ [13.4.4] Before releasing the communication wait state, change the system clock enough speed for the communication.
- □ [13.4.5] To be disable the wake-up from standby mode by matching the slave address, Stop the operation by resetting I2U0EN bit to "0" before entering STOP mode.
- $\Box$  [13.5.4] When the slave device uses the clock stretch function which holds SCLU0 pin at "L" level, the time t<sub>CYC</sub> and time t<sub>LOW</sub> are extended.
- □ [13.6.2] If entering to the STOP mode while the slave mode is enabled, first make sure that communication is not in progress (from coincidence of address to reception of stop condition).

#### 14.UART

- □ [14.2.6] Do setting for used ports and the mode/baud rate before setting "1" to UnEN bit.
- □ [14.2.7] Be sure to set the UAn0MOD register while communication is stopped (Un0EN=0).
- □ [14.2.9, 14.2.10] Be sure to set the UAnBRT and UAnBRC register while communication is stopped (UnEN=0). Do not rewrite it during communication.
- [14.3.4] The transmission is start when setting "1" to UnEN bit of UAnCON with the UnFUL bit =1. Write "1" to the UnFULC bit in the UAnSTAC register to reset the UnFUL bit, and then set "1" to the UnEN to allow transmission/reception, if the transmission data is not ready and the reception is permitted first.
- [14.3.5.3] When designing the system, consider the difference of the baud rate between the transmission side and reception side, a delay of the start bit detection, signal degradation and noise influence, then adjust the baud rate and reception timing to ensure sufficient receiving margin.

#### 17. GPIO

- □ [17.2.3] P00 pin is initially configured as the input with pull-up resistor. If input "L" level at an initial setting, the input current flows.
- □ [17.2.3 ~ 17.2.7] Be sure to set PnMODm (m=0 to 7) registers before setting EICON0, EIMOD0 and IE1 registers. If setting PnMOD01 register when the interrupt is enabled, unexpected interrupts may happen.
- $\Box$  [17.2.3 ~ 17.2.7] It is recommended to enable the output after setting a peripheral and shared function to prevent the unexpected output.
- $\Box$  [17.2.3 ~ 17.2.7] Don't set un-assigned shared functions on PnmMD3-0 bits.
- □ [17.3.8] Notes for using P00/TEST0 pin

#### 18. External Interrupt Function

- □ [18.2.3] If high-speed clock is selected as sampling clock source, it works without sampling when the high-speed clock does not supply; it includes stop by entry to standby mode. Set to LSCLK0 as sampling clock if needed..
- □ [18.2.3] In the STOP mode, it works without sampling.

#### 20. Analog comparator

- □ [20.1.3] When using the analog comparator, write "0" to the target PnmIE bit and PnmOE bit of port n mode registers to set the general port to Hi-impedance, otherwise a shoot-through current may flow.
- □ [20.1.3] An influence of the noise is reducible by preventing the switching of neighboring pins when the comparator enables.
- □ [20.2.2] When using the analog comparator, write "0" to the target PnmIE bit and PnmOE bit of port n mode registers ()n=0 to 2, m=0 to 7) to set the general port to Hi-impedance, otherwise a shoot-through current may flow.
- □ [20.2.2] An influence of the noise is reducible by preventing the switching of neighboring pins when the comparator enables.
- □ [20.2.2] After CMPnEN bit is set to "1", it takes 100µs to stabilize the operation of the analog comparator.
- [20.2.3] In the STOP mode, the sampling clock stops and the VLS works without sampling regardless the setting in CMPnCS1 bit and CMPnCS0 bit. When selecting "with sampling" and entering those mode, there is a time period in which interrupts gets disabled.
- [20.2.3] When the HSCLK is selected for the sampling clock and the high-speed clock is not oscillating, the sampling circuit does not work. When using analog comparator in this case, select "No sampling" or "Sampling with LSCLK0" for sampling condition. For how to enable the high-speed clock oscillation, see Chapter 6 "Clock Generation Circuit".
- □ [20.2.3] Write CMPnMOD register when the Analog comparator stops (CMPnEN bit of CMPCON register is "0"), The analog comparator output is not guaranteed CMPnMOD register is changed while the analog comparator is activated.
- [20.2.3] When CMPnOMASK bit is set to "1", set to interrupt inhibition at CMPnE1/CMPnE0 bit. If interrupts are enabled, interrupts may occur unintentionally during mask processing at the start of A/D conversion.

- $\Box$  [20.2.3] When the output of the D/A converter is selected as CMPnM pin and the DAC internal reference voltage (0.8V) is selected as the reference voltage of the D/A converter (DACMODE.DAMDn bit = "1"), enable sampling function of the analog comparator.
- □ [20.2.4] After the analog comparator is started, CMPnSTA bit may be set to "1" until the operation stabilizes. After the operation is stable, read CMPnSTA register once and initialize the value.

#### 21. D/A Converter

[21.1.3, 21.2.2] For GPIO that outputs D/A converter, set the PnmMD2~0 bits (m: bit number 0~7) of the corresponding port n-mode register m to the 5th function, write "0" to the PnmIE bit and the PnmOE bit, and set it to high impedance (input disabled, output disabled). In other settings, the D/A converter is not output.

#### 22. LOW Level Detector

- □ [22.2.2, 22.2.3] When the LLD is in enable operating (LLD0EN=1) and the STOP mode is shifted, make sure that the LLD is in stable operation (LLD0RF bit = 1) before transitioning.
- □ [22.2.2] If a reset other than Power On Reset and pin reset occurs during LLD operation, the LLD maintains its operating state.
- □ [22.2.4] During STOP, this register is set "no sampling" regardless of LLD0SM1 bit setting.
- [22.3.1.1] It is impossible to change to STOP mode during the LLD stabilization time. When changing to STOP mode after LLD starting, make sure that LLD0RF bit is set to "1" before changing STOP mode.

#### 23. Successive Approximation Type A/D Converter

- □ [23.1.3] When using the SA-ADC, set PnmMD2 to 0 bit to the 6th or 8th function of port n mode register 01/23/45/67 (n: port number 1, 2 m: bit number 0 to 7) and set PnmIE bit and PnmOE bit to "0" as "Disable input" and "Disable output", otherwise a shoot-through current may flow.
- □ [23.1.3] While the A/D converter is operating, an influence of the noise is reducible by preventing the switching of neighboring pins or A/D converting in the HALT mode.
- [23.1.3] When using AIN4, if both P13 and P20 are set to the 6th or 8th function, the input from P13 becomes AIN4 input. Input from P20 will be disabled.
- □ [23.2.3] Start the A/D conversion with one or more channels chosen by the SA-ADC enable registers (SADEN0 and SADEN1). If no channel is chosen, the operation does not start.
- □ [23.2.3] Enter STOP mode after checking SARUN bit is "0". It does not enter the STOP mode when SARUN bit is "1".
- □ [23.2.3] When SACK2 to 0 bits are set to 0x7, it takes max. 3 clocks of the low-speed clock (LSCLK0) to start or stop the A/D conversion after setting or resetting SARUN bit.
- □ [23.2.4] If only temperature conversion is enabled and the SAD\_CLK is set to 1/1 x HSCLK, the SAD\_CLK period used for the conversion interval for A/D conversion will be 1/2 x HSCLK.
- [23.2.5] After VREFEN bit is set to "1", it takes 200µs (Max.) for the ADC internal reference voltage (2.5 V) to stabilize.
   A/D conversion should be started after this stabilization time has elapsed. VREFEN bit is set to "1" and remains stable after 200µs until it is disabled. Therefore, there is no need to wait for 200µs (Max.) again when A/D conversion.
- [23.2.8, 23.2.9] Do not start the A/D conversion when the all bits of SACHn (n=00 to 18) are "0". In that case SARUN bit of SADCON register does not get to "1".
- □ [23.2.9] When using channel 16 (SACH16), permit the temperature sensor operation by VREFCON register.
- □ [23.2.9]When using channel 18 (SACH18), enable the A/D converter test function by SADTMOD register (set to something other than "00").
- [23.2.10] When the setting of the source clock of the SAD\_CLK and the setting of the system clock are different, the wrong value may be read during the update. Make sure that SARUN bit of SADCON register is "0" before reading. Also, during continuous A/D conversion (SALP=1), read SADR register twice and make sure that the values are the same.
- [23.2.11] If the source clock (HSCLK/LSCLK0) setting of the SAD\_CLK differs from the source clock (HSCLK/LSCLK0) setting of the system clock, uncertain data during the A/D conversion result update may be read when the SADRn register is read. If the source clock settings of the SAD\_CLK and the system clock are different, make sure that the SARUN bit of the SADCON register is "0" before reading. During continuous A/D conversion (the SADP bit of the SADMOD register is "1"), read the SADR register twice and make sure that the values are the same.
- $\Box$  [23.4] Notes on SA-ADC

#### 24. PGA

- $\Box$  [24.1.3, 24.2.2] When PGA is used, following the setting below.
  - (1) Set PnmMD2 to 0bit of the corresponding port n-mode register m (n: 0 to 2, m: 0 to 7) to the 6th or 8th function,
  - (2) Write "0" to the corresponding bits of input permission (PnmIE) and output permission (PnmOE).
  - (3) set the general-purpose port to high impedance.
  - In other settings, through current may occurs.
- □ [24.1.3] During PGA is in operation, the influence of the output voltage fluctuates due to the noise can be reduced by not switching adjacent pins on AINn.

- □ [24.2.2] After setting the PGAEN bit to "1", it takes 200µs for PGA to stabilize. A/D conversion should be started after this stabilization time has elapsed.
- □ After the stabilization time (200µs) has elapsed, PGA remains stable until the operation stops, so there is no need to wait for 200µs again for each A/D conversions.
- □ [24.2.3] Writing to the PGAMOD register while PGA operation is permited, the operation is not guaranteed.

### 26. Flash Memory

- □ [26.2.2] Note that programming for the program memory space is performed by the unit of 2 bytes. Because of this, the setting values in the FA0 bit are ignored.
- □ [26.2.4] Specify a segment address to FLASHSEG at first, because it determines whether the programming is for program memory space or data flash memory.
- [26.2.4] During programming data-flash, a CPU can execute instruction by the background operation function; BGO.
   Confirm FDPRSTA bit of FLASHSTA register for complition of programming.
- □ [26.2.4] Erase data in the addresses in advance. Programmed data without erase is unguaranteed.
- □ [26.2.4] Do not read or program unused areas to prevent the CPU works incorrectly.
- □ [26.2.6, 26.2.7] A flash memory data in processing to program is not guaranteed, if this register is written any data when FLASHSTA is not 0x0.
- □ [26.2.8] Perform the erasing or programming after checking FDERSTA bit or FDPRSTA bit are "0". Do not perform the erasing or programming when either FDERSTA bit or FDPRSTA bit is "1".
- □ [26.3.1] Notes on Debugging Self-programming Code
- [26.3.2] Only erase areas irrelevant to program processing. If erasing the area where program processing is in progress, the LSI works incorrectly.
- □ [26.3.2] During block/sector erasing, the CPU stops the operation for maximum 50 ms whereas peripheral circuits continue operation. Therefore, clear the WDT counter accordingly.
- [26.3.2, 26.3.3] For block/sector erasing, place two NOP instructions following the instruction used to set FERS/FSERS bits of FLASHCON register to "1".
- [26.3.2] Only write areas irrelevant to program processing. If programming the area where program processing is in progress, the LSI works incorrectly.
- [26.3.2] During the programming, the CPU stops the operation for maximum 40 μs whereas peripheral circuits continue operation. Therefore, clear the WDT counter accordingly.
- □ [26.3.2] For data programming setting, place two NOP instructions following the instruction used to set the programming data in FLASHD0 register.
- □ [26.3.3] STOP mode is not available during the erasing. In addition, set FSELF bit of FLASHSLF register to "0" after the erasing is completed.
- $\Box$  [26.3.3] The data flash area is unreadable during erasing.
- [26.3.3] The CPU continues program processing even while data flash programming is in progress. An entering to the STOP mode is not available during the programming. In addition, set FSELF bit of FLASHSLF register to "0" (erase/program disabled) after the programming ended.
- □ [26.3.3] The data flash area is unreadable during programming.
- [26.3.3] For data programming setting, place two NOP instructions following the instruction used to set the programming data in FLASHD0L register.
- □ [26.3.4] Notes on use of self-programming
- □ [26.4.3] Accessing to the program code area is performed in units of four bytes. Set four byte boundaries (0H/4H/8H/CH) for lower four bits of the address. Accessing to the data flash area is performed in units of one byte.
- □ [26.4.4] Perform the process within 55 ms from the ISP mode transition command (B in Figure 26-6) to the completion of the initial setting command transmission (1).
- □ [26.4.5.1] Initial setting process should be processed within 1000 ms.
- $\Box$  [26.4.5.2] Erasure should be processed within 500 ms.
- □ [26.4.5.3] Writing should be processed within 500ms. When writing multiple addresses, process from data setting to data setting of the next address or completion of sending initial setting command (7) within 500 ms.
- □ [26.4.5.4] Verify should be processed within 500 ms. When verifying multiple addresses, process from data setting to data setting of the next address or completion of sending initial setting command (7) within 500 ms.

#### 28. On-Chip Debug Function

- $\square$  [28.3] Make RESET\_N pin able to be connected to V<sub>DD</sub> with a jumper or something when not using the on-chip debug function.
- $\square$  [28.3] Make P00/TEST0 pin able to be connected to V<sub>DD</sub> with a jumper or something when not using the on-chip debug function.
- [28.3] Do not program instruction codes into the LSI that set P00/TEST0 pin to the output mode. If P00/TEST0 is set to the output mode before On-chip emulator performs read/write to/from the target chip, communication with On-chip emulator after that will be disabled. Also note that the input/output mode of P00/TEST0 is uninitialized by On-chip emulator.

- □ [28.3] Validate the ROM code on user production board without the On-chip emulator.
- [28.3] Disconnect On-chip emulator when measuring the current consumption of the target system. If On-chip emulator remains connected, the current consumption increases as the on-chip debug circuit inside the LSI works for the communication.
- □ [28.3] LSI used to debug a program is not covered by the product warranty. Do not use the LSI for mass-production.
- □ [28.3] A reset due to unused ROM area access does not occur in the on-chip debug mode regardless of code option settings.
- □ [28.3] A RAM parity error reset does not occur in the on-chip debug mode and the break operation occurs instead.
- [28.3] If the contents of the data memory are displayed in the debugger in a state where a RAM parity error may occur (including when the RAM is not initialized), a RAM parity error may occur even if the RAM area is not displayed.
- □ [28.3] The all interrupts and watchdog timer operation always stop while the debugger is in the break state.
- $\Box$  [28.3] If the LSI cannot be connected to the debugger, check that the LSI is supplied with a power supply (V<sub>DD</sub>=4.5V~5.5V).

### 29. Safety Function

- □ [29.2.5] If the RAM is not initialized when it is read, a parity error may occur. If you want to use parity error reset (check the parity error flag or enable parity error reset), initialize the entire RAM area before using it.
- □ [29.2.7] If the RAM is not initialized when it is read, a parity error may occur.
- □ [29.2.8] If the MCISTATL register is not zero, a request to interrupt controller is not given when a new interrupt occurs. Clear the MCISTATL register with the MCINTCL register before that time.

#### 30. Code Option

- [30.2.1] There are available to read the code option values from SFRs, if INITE flag bit of Reset Status Register (RSTAT) is "0".
- □ [30.3] For the code option data definition, always use the dw directive instruction to configure the data in the unit of word.
- □ [30.4] At the time of shipment or when the program is erased, the code options are also initialized and the branch trace function is disabled. If you want to enable branch trace function for an LSI that is in disabled branch trace function state, connect to a debugger with the normal product name and enable branch trace function.

#### 31. Auxiliary Function

#### A. SFR List

□ Access "Reserved" register is not guaranteed. Please do not access them.

#### B. Package Dimensions

- The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.
   Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).
- □ The die pad is exposed on the bottom of WQFN package. Make the die pad electrically open when soldering onto the PCB.

#### C. Instruction Execution Cycle

#### D. Application Circuit Example

 $\hfill\square$  Place the capacitor for VDDL pin as close to the LSI power pins as possible.

# **Revision History**

### **REVISON HISTORY**

|                |           | Page                |                    |                                                |  |
|----------------|-----------|---------------------|--------------------|------------------------------------------------|--|
| Document No.   | Date      | Previous<br>Edition | Current<br>Edition | Description                                    |  |
| FEUL62Q2045-01 | 2024.6.21 | —                   | -                  | 1 <sup>st</sup> edition                        |  |
|                |           | 1-10                | 1-10               | 1.3.2 Correction of 'Pin List'.                |  |
| FEUL62Q2045-02 | 2024.9.5  | 22-6                | 22-6               | 22.3 Correction of 'Description of Operation'. |  |
|                |           | 22-7, 22-8          | 22-7, 22-8         | Figure 22-3, 22-4 Added symbol descriptions    |  |