

Dear customer

ROHM Co., Ltd. ("ROHM"), on the 1st day of April, 2024, has absorbed into merger with 100%-owned subsidiary of LAPIS Technology Co., Ltd.

Therefore, all references to "LAPIS Technology Co., Ltd.", "LAPIS Technology" and/or "LAPIS" in this document shall be replaced with "ROHM Co., Ltd." Furthermore, there are no changes to the documents relating to our products other than the company name, the company trademark, logo, etc.

Thank you for your understanding.

ROHM Co., Ltd. April 1, 2024

FEUL62Q2500-04



## ML62Q2500 Group User's Manual

Issue Date: Mar. 26, 2024



#### <u>Notes</u>

1) When using LAPIS Technology Products, refer to the latest product information and ensure that usage conditions (absolute maximum ratings\*1, recommended operating conditions, etc.) are within the ranges specified. LAPIS Technology disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of LAPIS Technology Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of LAPIS Technology Products, please take safety at your own risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures.

\*1: Absolute maximum ratings: a limit value that must not be exceeded even momentarily.

- 2) The Products specified in this document are not designed to be radiation tolerant.
- 3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits for mass production. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related information.
- 4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology or any third party with respect to LAPIS Technology Products or the information contained in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and application examples, etc.). Therefore, LAPIS Technology shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) LAPIS Technology intends our Products to be used in a way indicated in this document. Please be sure to contact a ROHM sales office if you consider the use of our Products in different way from original use indicated in this document. For use of our Products in medical systems, please be sure to contact a LAPIS Technology representative and must obtain written agreement. Do not use our Products in applications which may directly cause injuries to human life, and which require extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us without our prior written consent.
- 6) All information contained in this document is subject to change for the purpose of improvement, etc. without any prior notice. Before purchasing or using LAPIS Technology Products, please confirm the latest information with a ROHM sales office. LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document, however, LAPIS Technology shall have no responsibility for any damages, expenses or losses arising from inaccuracy or errors of such information.
- Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. LAPIS Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 8) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 9) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or LAPIS Technology's Products.
- 10) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.

(Note) "LAPIS Technology" as used in this document means LAPIS Technology Co., Ltd.

Copyright 2022 - 2024 LAPIS Technology Co., Ltd.

## LAPIS Technology Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan https://www.lapis-tech.com/en/

LTSZ08023 • 01 • 002

### Notes for product usage

Notes on this page are applicable to the all LAPIS Technology microcontroller products. For individual notes on each LAPIS Technology microcontroller product, refer to [Note] in the chapters of each user's manual.

The individual notes of each user's manual take priority over those contents in this page if they are different.

#### 1. HANDLING OF UNUSED INPUT PINS

Fix the unused input pins to the power pin or GND to prevent to cause the device performing wrong operation or increasing the current consumption due to noise, etc. If the handlings for the unused pins are described in the chapters, follow the instruction.

#### 2. STATE AT POWER ON

At the power on, the data in the internal registers and output of the ports are undefined until the power supply voltage reaches to the recommended operating condition and "L" level is input to the reset pin.

On LAPIS Technology microcontroller products that have the power on reset function, the data in the internal registers and output of the ports are undefined until the power on reset is generated.

Be careful to design the application system does not work incorrectly due to the undefined data of internal registers and output of the ports.

#### 3. ACCESS TO UNUSED MEMORY

If reading from unused address area or writing to unused address area of the memory, the operations are not guaranteed.

#### 4. CHARACTERISTICS DIFFERENCE BETWEEN THE PRODUCT

Electrical characteristics, noise tolerance, noise radiation amount, and the other characteristics are different from each microcontroller product.

When replacing from other product to LAPIS Technology microcontroller products, please evaluate enough the apparatus/system which implemented LAPIS Technology microcontroller products.

#### 5. USE ENVIRONMENT

When using LAPIS Technology microcontroller products in a high humidity environment and an environment where dew condensation, take moisture-proof measures.

### Preface

This manual describes the operation of the hardware of the 16-bit microcontroller ML62Q2500 Group.

See the relevant manuals listed in supplementary volume; "MCU Relevant Documents list" as necessary.

| Classification | Notation               | Description                                                                                                          |  |  |  |  |  |
|----------------|------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Numeric value  | XXh, XXH, 0xXX         | Indicates a hexadecimal number.                                                                                      |  |  |  |  |  |
| Unit           | word, W                | 1 word = 16 bits                                                                                                     |  |  |  |  |  |
|                | byte, B                | 1 byte = 8 bits                                                                                                      |  |  |  |  |  |
|                | nibble, N              | 1 nibble = 4 bits                                                                                                    |  |  |  |  |  |
|                | mega-, M               | 10 <sup>6</sup>                                                                                                      |  |  |  |  |  |
|                | kilo-, K               | 2 <sup>10</sup> = 1024                                                                                               |  |  |  |  |  |
|                | kilo-, k               | 10 <sup>3</sup> = 1000                                                                                               |  |  |  |  |  |
|                | milli-, m              | 10 <sup>-3</sup>                                                                                                     |  |  |  |  |  |
|                | micro-, μ              | 10 <sup>-6</sup>                                                                                                     |  |  |  |  |  |
|                | nano-, n               | 10 <sup>-9</sup>                                                                                                     |  |  |  |  |  |
|                | second, s (lower case) | second                                                                                                               |  |  |  |  |  |
| Terminology    | "H" level              | Indicates high level voltage $V_{IH}$ and $V_{OH}$ as specified by the electrical characteristics in the data-sheet. |  |  |  |  |  |
|                | "L" level              | Indicates low level voltage $V_{IL}$ and $V_{OL}$ as specified by the electrical characteristics in the data-sheet.  |  |  |  |  |  |
|                | SFR                    | Special function register. It is control register for system or peripherals.                                         |  |  |  |  |  |

### Notation

• Register description

"R/W" indicates that Read/Write attribute. "R" indicates that data can be read and "W" indicates that data can be written. "R/W" indicates that data can be read or written.

MSB: The highest bit of 16-bit register LSB: The lowest bit of 16-bit register

Registers that have a word symbol allow the word-access. If writing or reading the registers not using the word symbol, specify the even number addresses.

|                  | F    |                 |           | Invalio   | l bit: Tl | his bit re | eturns "  | 0" for re | eading   | and writ | ting to f | his bit i | is ignore | ed. |   |            |
|------------------|------|-----------------|-----------|-----------|-----------|------------|-----------|-----------|----------|----------|-----------|-----------|-----------|-----|---|------------|
|                  |      |                 |           |           |           |            | v         | Vord syı  | mbol na  | ame      |           |           |           |     |   |            |
|                  | į    |                 | В         | yte sym   | ibol na   | me         |           |           |          |          |           |           |           |     |   |            |
|                  |      | Bit symt        | ool nam   | ne i      |           |            |           |           |          |          |           |           |           |     |   |            |
|                  |      | :<br> <br> <br> | 40        | 10        |           | 10         | 0         |           | 7        | 0        | -         |           | 0         | 0   |   | 0          |
| <i>.</i> . Г     | 15   | 14              | 13        | 12        | 11        | 10         | 9         | 8         | 7        | 6        | 5         | 4         | 3         | 2   | 1 | 0          |
| Word             | <br> |                 |           |           |           |            |           | FHCK      | MOD      |          |           |           |           |     |   |            |
| Byte             |      |                 |           | FHCK      | NODH      |            |           |           | FHCKMODL |          |           |           |           |     |   |            |
| Bit              | ÷    | OUTC<br>2       | OUTC<br>1 | OUTC<br>0 | _         | SYSC<br>2  | SYSC<br>1 | SYSC<br>0 | _        | _        | -         | _         | _         | _   | _ | HOS<br>CM0 |
| R/W              | R    | R/W             | R/W       | R/W       | R         | R/W        | R/W       | R/W       | R        | R        | R         | R         | R         | R   | R | R/W        |
| Initial<br>value | 0    | 1               | 0         | 0         | 0         | 1          | 0         | 0         | 0        | 0        | 0         | 0         | 0         | 0   | 0 | 0          |
|                  |      |                 |           |           |           |            |           |           |          |          |           |           |           |     |   |            |
|                  |      |                 |           |           |           |            |           |           |          |          |           |           |           |     |   |            |

Initial value after the system reset

## **Chapter 1 Overview**

#### • Please see the "Notes" and the "Notes for product usage" in this document.

#### 1. Overview

ML62Q2500 Group is a high performance CMOS 16-bit microcontroller equipped with an 16-bit CPU nX-U16/100 and integrated with program memory(Flash memory), data memory(RAM), data Flash (Erase unit:128byte, Write unit:1byte) and rich peripheral functions such as the multiplier/divider, CRC generator, Clock generator, Timer, General Purpose Ports, UART, Synchronous serial port, I<sup>2</sup>C bus interface unit(Master, Slave), Voltage Level Supervisor(VLS), Successive approximation type 12bit A/D converter, Safety function (IEC60730/60335 Class B) and so on. The CPU nX-U16/100 is capable of efficient instruction execution in 1-instruction 1-clock mode by pipeline architecture

parallel processing. The built-in on-chip debug function enables debugging and programming the software. Also, ISP (In-System Programming) function supports the Flash programming in production line.

• Applications

Consumer and Industrial equipment (e.g., Household appliances, Housing equipment, Office equipment, Measurement instrumentation, etc)

#### [NOTE]

This product cannot be applicable for automotive use, automatic train control systems, and railway safety systems. Please contact ROHM sales office in advance if contemplating the integration of this product into applications that requires high reliability, such as transportation equipment for ships and railways, communication equipment for trunk lines, traffic signal equipment, power transmission systems, core systems for financial terminals and various safety control devices.

#### Product List

The ML62Q2500 Group has products as show in the Table 1-1 with multiple package and memory sizes combinations.

| Program memory | Data memory<br>(RAM) | Data Flash | 32pin<br>TQFP32<br>WQFN32 | 40pin<br>WQFN40 | 48pin<br>TQFP48<br>WQFN48 |  |  |  |  |  |  |
|----------------|----------------------|------------|---------------------------|-----------------|---------------------------|--|--|--|--|--|--|
| 128Kbyte       | 8Kbyte               | 4Kbyte     | ML62Q2504                 | ML62Q2524       | ML62Q2534                 |  |  |  |  |  |  |
| 64Kbyte        | orbyte               | 4NDyte     | ML62Q2502                 | ML62Q2522       | ML62Q2532                 |  |  |  |  |  |  |

#### Table 1-1 Product List

#### 1.1 Features

- CPU
  - 16-bit RISC CPU: nX-U16/100 (A35 core)
  - Instruction system: 16-bit length instructions
  - Instruction set: Transfer, arithmetic operations, comparison, logic operations, multiplication/division, bit manipulations, bit logic operations, jump, conditional jump, call return stack manipulations, arithmetic shift, and so on
  - Built-in On-chip debug function (connect to the LAPIS Technology on-chip-debug emulator)
  - Minimum instruction execution time : 1 count of system clock Approximately 30.5µs/62.5ns/41.6ns (at 32.768kHz/16 MHz/24MHz system clock)
  - Coprocessor for multiplication and division
    - Signed or Unsigned is selectable

| Parameter                                            | Expression            | Operation time [cycle] |
|------------------------------------------------------|-----------------------|------------------------|
| Multiplication                                       | 16bit × 16bit         | 4                      |
| Division                                             | 32bit ÷ 16bit         | 8                      |
|                                                      | 32bit ÷ 32bit         | 16                     |
| Multiply-accumulate (non-saturating, non-saturating) | 16bit × 16bit + 32bit | 4                      |

- Operating voltage and temperature
  - Operating voltage:  $V_{DD} = 1.8$  to 5.5 V
  - Operating temperature: -40 °C to +105 °C
- Flash memory

| Parameter               | Program memory area | Data Flash memory area |
|-------------------------|---------------------|------------------------|
| Erase/Write count       | 100 cycles          | 10,000 cycles          |
| Write unit              | 32bit(4byte)        | 8bit(1byte)            |
| Erase unit              | 16Kbyte/1Kbyte      | all area/128byte       |
| Erase/Write temperature | 0 °C to +40 °C      | -40 °C to +85 °C       |

- Background Operation (CPU can work while erasing and rewriting to the Data Flash memory area.)
- The built-in on-chip debug function and ISP (In-System Programming) function enable Flash programming This product uses Super Flash<sup>®</sup> technology licensed from Silicon Storage Technology, Inc.
   Super Flash<sup>®</sup> is a registered trademark of Silicon Storage Technology, Inc.
- Data RAM area
  - Rewrite unit: 8bit/16bit (1byte/2byte)
  - Parity check function is available (interrupt or reset is generatable at Parity error)
- Clock generation circuit
  - Low-speed clock (LSCLK) : Approximately 32.768 kHz
    - Internal low-speed RC oscillation (RC32K)
    - External low-speed clock input (EXT32K)
    - External low-speed crystal oscillation (XT32K)
       4 selectable crystal oscillation mode (Tough, Normal, Low power and Ultra low power mode)
       Tough mode is largest oscillation allowance to make highest resistance against leakage between the pins. Low power mode is smallest oscillation allowance to make lower power consumption.
  - High-speed clock (HSCLK)
    - PLL oscillation: 3 selectable oscillation frequency (24MHz ,16MHz and 1MHz) by code option
  - Watch Dog Timer (WDT): built-in independent clock for WDT (RC1K: Approximately 1.024kHz)
  - High-speed time base clock (HTBCLK)
  - Generates a clock with a period of 2 to 8 times that of HSCLK as a peripheral clock.
- Reset
  - System Resets by reset input pin, Power-On Reset, voltage level supervisor (VLS), WDT overflow, WDT invalid clear, RAM parity error, and PC error (unused ROM area access (instruction access))
  - Software reset by BRK instruction (reset CPU only)
  - Reset the peripherals individually/collectively by software

- Power management
  - Optimal power management with various standby modes
    - STOP/STOP-D mode(All clocks are stopped), HALT-D mode(clocks for System and part of the peripheral block are stopped), HALT/HALT-H mode(clocks for System are stopped)
    - HALT-D mode is suitable for long term standby, HALT-H mode is suitable for short term Intermittent operation standby
  - Individual clock input control to the peripheral blocks by software
  - High-speed clock frequency(HSCLK) is configurable (1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of PLL clock, Max 7steps)
  - Clock gear: High-speed system clock frequency is changeable dynamically
  - (1/1, 1/2, 1/4, 1/8, 1/16, 1/32 of HSCLK, Max 6steps)
- Interrupt controller
  - Non-maskable interrupt source: 1 (internal sources: WDT)
  - Maskable interrupt sources: 34 (included the external interrupt 8 sources)
  - Four step interrupt levels
  - External interrupt ports: 8 (selectable from max.24 pins) with sampling filter and edge (rise, fall, both) selection
- General-purpose ports (GPIO)
  - I/O port: Max. 40 (Including pins for shared functions)
  - Input port: Max. 3(Including one pin for shared on-chip debug and two pins for shared low speed crystal oscillation)

: 1 channel

- Carrier frequency output function (for IR communication)
- Watchdog timer (WDT)
  - Overflow period: 8selectable (7.8, 15.6, 31.3, 62.5, 125, 500, 2000, 8000[ms])
  - Selectable WDT operation: select enable or disable by code option
  - Selectable window function (enable or disable): configurable clear enable period (50% or 75% of overflow period) with invalid clear. When disable, Interrupts the first overflow and resets the second overflow. When enable, reset occurs for the first overflow.
  - Selectable operation in HALT/HALT-H mode and HALT-D mode(Continue counting/Stop counting)
  - Readable WDT counter: WDT counter monitor function
- Low-speed Time base counter(LTBC) : 2 channels
  - Generate 8 frequency (128, 64, 32, 16, 8, 4, 2, 1[Hz]) internal pulse signals by dividing the Low-speed clock (LSCLK)
  - 4 interrupts are generatable from 8 different frequencies internal pulse signals
  - One of internal pulse signals selected to interrupt can be output from general purpose port (TBCO)
- Functional timer

#### : 2 channels

- Various modes (Continuous, One shot, capture, PWM with the same period and different duties, and complementary PWM output with the dead time)
- Event trigger (external pin, 16bit timer, functional timer, LTBC, RC1K)
- Selectable counter clock from various sources (divided by 1 to 8 of LSCLK, HSCLK, HTBCLK, external clock)
- 16-bit General timers

#### : 6 channels

Timer output (toggled by overflow)
 Selectable counter clock from various sources (divided by 1 to 8 of LSCLK, HSCLK, HTBCLK, LTBC, RC1K, and external clock)

: 2 channels (with FIFO: 1 channel, without FIFO: 1 channel)

- Timer X is shared with waiting for the stability of low-speed crystal oscillation
- Synchronous Serial Port
  - FIFO: 4steps for each transmitting and receiving
  - Selectable from Master and Slave
  - Selectable from LSB first or MSB first
  - Selectable 8-bit length or 16-bit length
- UART (Full-duplex communication mode): 3 channels
  - Selectable from 5 to 8bit length, parity or no parity, odd parity or even parity, 1 stop bit or 2 stop bits, Positive logic or Negative logic, LSB first or MSB first
  - Sampling filter for receiving data and start bit
  - Built-in baud rate generator (HSCLK(16MHz): 300bps to 2Mbps, LSCLK: up to 4800bps)

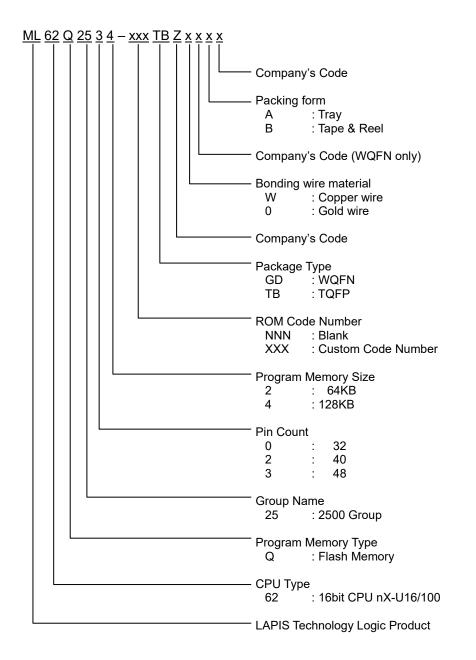
• I<sup>2</sup>C bus

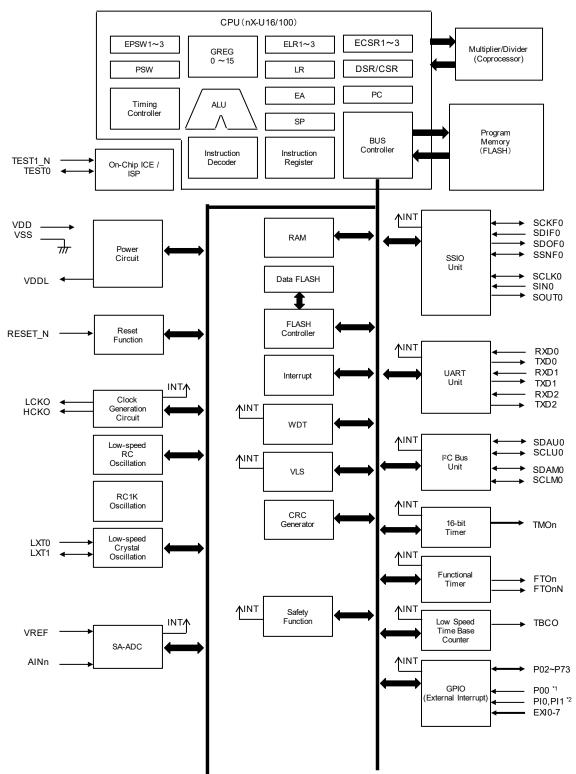
#### : 2 channels

- Selectable from Master mode or Slave mode: 1channel. Master mode only: 1channel
- Standard mode (100 kbps), fast mode (400 kbps) and 1Mbps mode(1Mbps)
- 7bit address format
- Master mode: Handshake (Clock synchronization), 10bit slave address format is supported
- Slave mode: Clock stretch function
- Successive approximation type 12bit A/D converter (SA-ADC): input 14 channels
  - Conversion time: Min. 1.375µs/ch (When the V<sub>DD</sub> is higher than 2.7V and the conversion clock is 16MHz)
  - Reference voltages are selectable from VDD pin input voltage or External reference voltage (VREF pin)
  - dedicated result register for each channel
  - Continuous conversion, Trigger start, Interrupt determining by upper limit or lower limit threshold of conversion result
- Voltage Level Supervisor (VLS) : 1 channel
  - Threshold voltage: selectable from 15 levels (1.85V to 4.00V)
  - Functional Voltage level detection reset (VLS reset) or Functional Voltage level detection interrupt (VLS0 interrupt) is generable
  - Equipped with single mode / with sampling filter / low consumption operation
- CRC (Cyclic Redundancy Check) generator
  - Generation equation:  $X^{16}+X^{12}+X^{5}+1$
  - Selectable from LSB first or MSB first
  - Built-in automatic program memory CRC calculation mode in HALT mode
- Safety Function
  - Automatic switching to the internal low-speed RC oscillation in case the low-speed crystal oscillation stopped
  - RAM/SFR guard
  - Automatic program memory CRC calculation
  - RAM parity error detection
  - ROM unused area access reset (instruction access)
  - Clock mutual monitoring, WDT counter monitoring
  - SA-ADC test
  - Communication loop back test (UART, Synchronous serial port, I<sup>2</sup>C bus(master))
  - GPIO test
- Shipping package

| Deskers        | Body size                     | Pin pitch | Packing form and Product name |                      |  |  |  |  |
|----------------|-------------------------------|-----------|-------------------------------|----------------------|--|--|--|--|
| Package        | (including lead)<br>[mm × mm] | [mm]      | Tray                          | Tape & Reel          |  |  |  |  |
| 32 pin plastic | 7.0 × 7.0                     | 0.80      | ML62Q2502-xxxTBZWAX           | ML62Q2502-xxxTBZWBX  |  |  |  |  |
| TQFP           | (9.0 × 9.0)                   |           | ML62Q2504-xxxTBZWAX           | ML62Q2504-xxxTBZWBX  |  |  |  |  |
| 48 pin plastic | 7.0 × 7.0                     | 0.50      | ML62Q2532-xxxTBZWAX           | ML62Q2532-xxxTBZWBX  |  |  |  |  |
| TQFP           | (9.0 × 9.0)                   |           | ML62Q2534-xxxTBZWAX           | ML62Q2534-xxxTBZWBX  |  |  |  |  |
| 32 pin plastic | 5.0 × 5.0                     | 0.50      | ML62Q2502-xxxGDZW5AX          | ML62Q2502-xxxGDZW5BX |  |  |  |  |
| WQFN           | (-)                           |           | ML62Q2504-xxxGDZW5AX          | ML62Q2504-xxxGDZW5BX |  |  |  |  |
| 40 pin plastic | 6.0 × 6.0                     | 0.50      | ML62Q2522-xxxGDZW5AX          | ML62Q2522-xxxGDZW5BX |  |  |  |  |
| WQFN           | (-)                           |           | ML62Q2524-xxxGDZW5AX          | ML62Q2524-xxxGDZW5BX |  |  |  |  |
| 48 pin plastic | 7.0 × 7.0                     | 0.50      | ML62Q2532-xxxGDZW5AX          | ML62Q2532-xxxGDZW5BX |  |  |  |  |
| WQFN           | ( - )                         |           | ML62Q2534-xxxGDZW5AX          | ML62Q2534-xxxGDZW5BX |  |  |  |  |

### 1.1.1 How To Read The Part Number





Figure 1-1 Part Number

### 1.1.2 Main Function List

|                        | Table     |           |                 |                  |                               |                                                      |                        |                           |                               | n Fur                              | nctio            | n Li                        | st                            |                     |                        |                                        |                                     |                       |                                                   |                                               |                                          |                               |
|------------------------|-----------|-----------|-----------------|------------------|-------------------------------|------------------------------------------------------|------------------------|---------------------------|-------------------------------|------------------------------------|------------------|-----------------------------|-------------------------------|---------------------|------------------------|----------------------------------------|-------------------------------------|-----------------------|---------------------------------------------------|-----------------------------------------------|------------------------------------------|-------------------------------|
|                        |           | Pin       |                 |                  |                               |                                                      | Interrupt Timer        |                           |                               |                                    |                  | Communication               |                               |                     |                        | Ana                                    | alog                                |                       |                                                   |                                               |                                          |                               |
| art number             | Total pin | Power pin | Reset Input pin | Debug Input port | General Purpose Input port *1 | General Puroise I/O port<br>(LED drive is supported) | External interrupt pin | External interrupt source | Non maskable interrupt source | Internal maskable interrupt source | 16bit Timer [ch] | 16bit Functional Timer [ch] | 16bit Functional Timer [Port] | Watchdog Timer [ch] | Time base counter [ch] | Synchronous serial (without FIFO) [ch] | Synchronous serial (with FIFO) [ch] | Full-duplex UART [ch] | I <sup>2</sup> C bus interface (Master only) [ch] | I <sup>2</sup> C bus unit (Master/Slave) [ch] | 12bit Successive type A/D converter [ch] | Voltage Level Supervisor [ch] |
| ML62Q2502<br>ML62Q2504 | 32        |           |                 |                  |                               | 24                                                   | 16                     |                           |                               |                                    |                  |                             |                               |                     |                        |                                        |                                     |                       |                                                   |                                               |                                          |                               |
| ML62Q2504              |           |           |                 |                  |                               |                                                      |                        |                           |                               |                                    |                  |                             |                               |                     |                        |                                        |                                     |                       |                                                   |                                               |                                          |                               |
| ML62Q2524              | 40        | 3         | 1               | 1                | 3                             | 32                                                   | 19                     | 8                         | 1                             | 26                                 | 6                | 2                           | 4                             | 1                   | 2                      | 1                                      | 1                                   | 3                     | 1                                                 | 1                                             | 14                                       | 1                             |
| ML62Q2532              | 48        |           |                 |                  |                               | 40                                                   | 24                     |                           |                               |                                    |                  |                             |                               |                     |                        |                                        |                                     |                       |                                                   |                                               |                                          |                               |
| ML62Q2534              |           |           |                 |                  |                               | _                                                    |                        |                           |                               | L                                  |                  |                             |                               |                     |                        |                                        |                                     |                       |                                                   |                                               |                                          |                               |

\*1: Shared with pins for crystal oscillation and debug input.

### 1.2 Block Diagram



\*1 : Not available as the input port when connecting to the on-chip debug emulator.

\*2 : Not available as the input port when connecting to the crystal resonator.

Figure 1-2 Block Diagram of ML62Q2500 group

1.3 Pin

1.3.1 Pin Layout

1.3.1.1 ML62Q2534/2532 : 48 pin TQFP

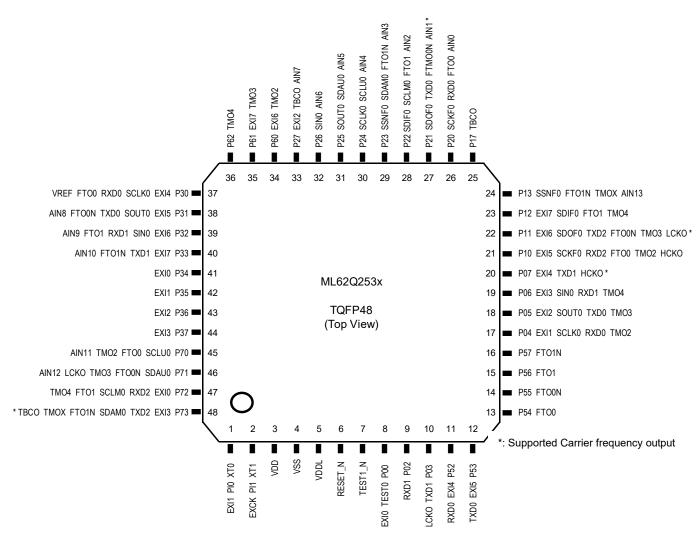



Figure 1-3-1 48 pin TQFP

### 1.3.1.2 ML62Q2534/2532 : 48 pin WQFN

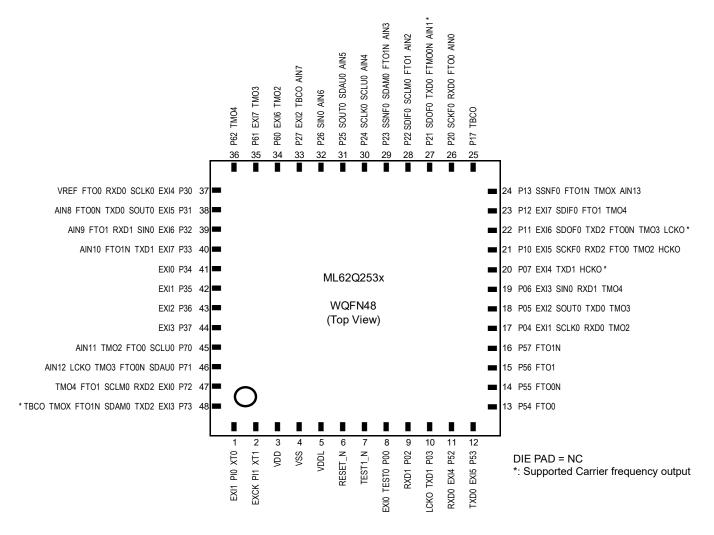



Figure 1-3-2 48 pin WQFN

### 1.3.1.3 ML62Q2524/2522 : 40 pin WQFN

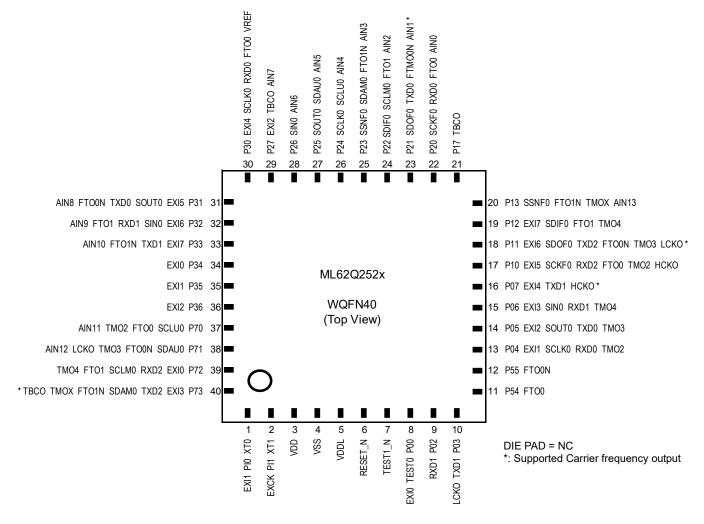



Figure 1-3-3 40 pin WQFN

### 1.3.1.4 ML62Q2504/2502 : 32 pin TQFP

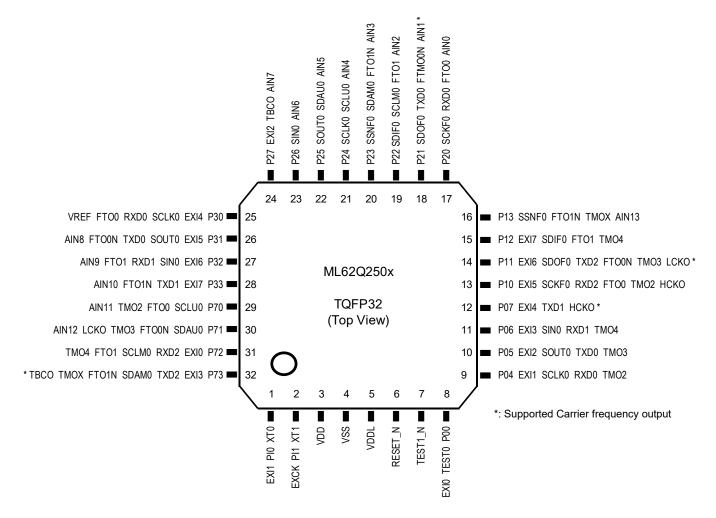



Figure 1-3-4 32 pin TQFP

### 1.3.1.5 ML62Q2504/2502 : 32 pin WQFN

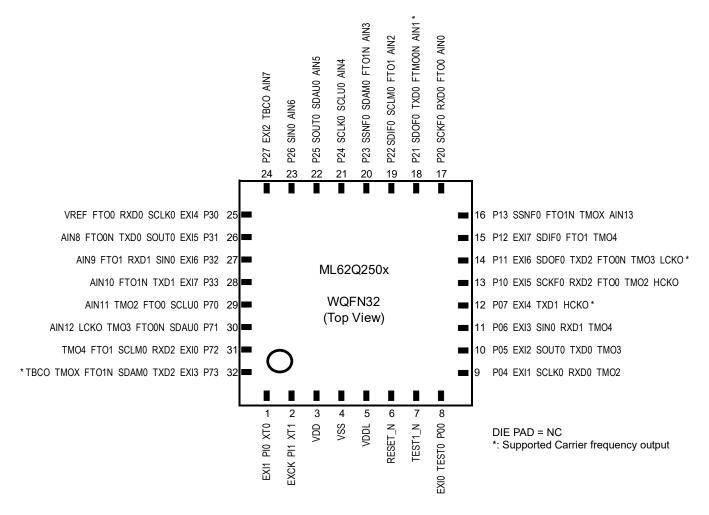



Figure 1-3-5 32 pin WQFN

### 1.3.2 Pin List

Table 1-3 shows the pin list of ML62Q2500 group.

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 <sup>th</sup> 7 <sup>th</sup> nction         function           imer         CLKOUT<br>LTBC**           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           MO2         —           MO3         —           MO4         —           —         HCKO           MO3         LCKO           MO4         —           —         HCKO           MO3         LCKO |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | imer         CLKOUT<br>LTBC**                                                                           MO2            MO4             HCKO           MO2         HCKO           MO3         LCKO           MO4                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Imer         LTBC**           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           MO2         —           MO3         —           MO4         —           —         HCKO           MO3         LCKO           MO3         LCKO                                                                                                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Imer         LTBC**           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           MO2         —           MO3         —           MO4         —           —         HCKO           MO3         LCKO           MO3         LCKO                                                                                                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Imer         LTBC**           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           MO2         —           MO3         —           MO4         —           —         HCKO           MO3         LCKO           MO3         LCKO                                                                                                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MO2            MO3            MO4             HCKO           MO3         LCKO           MO3         LCKO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           MO2         —           MO3         —           MO4         —           —         HCKO           MO2         HCKO           MO3         LCKO           MO3         LCKO                                                                                                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           MO2         —           MO3         —           MO4         —           —         HCKO           MO2         HCKO           MO3         LCKO           MO3         LCKO                                                                                                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           —         —           MO2         —           MO3         —           MO4         —           —         HCKO           MO2         HCKO           MO3         LCKO           MO3         LCKO                                                                                                                                                                                                                                                                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —         —           —         —           —         —           —         —           —         —           —         LCKO           MO2         —           MO3         —           MO4         —           —         HCKO           MO2         HCKO           MO3         LCKO           MO3         LCKO                                                                                                                                                                                                                                                                                                                                                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —         —           —         —           —         —           —         —           —         —           —         LCKO           MO2         —           MO3         —           MO4         —           —         HCKO           MO2         HCKO           MO3         LCKO           MO3         LCKO                                                                                                                                                                                                                                                                                                                                                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LCKO           MO2            MO3            MO4            -         HCKO           MO2         HCKO           MO3         LCKO           MO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6       6       6       RESET_N       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<                                                                                                                                                                   | LCKO           MO2            MO3            MO4            -         HCKO           MO2         HCKO           MO3         LCKO           MO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7       7       7       TEST1 N       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<                                                                                                                                                                   | LCKO           MO2            MO3            MO4            -         HCKO           MO2         HCKO           MO3         LCKO           MO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LCKO           MO2            MO3            MO4            -         HCKO           MO2         HCKO           MO3         LCKO           MO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LCKO           MO2            MO3            MO4            -         HCKO           MO2         HCKO           MO3         LCKO           MO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LCKO           MO2            MO3            MO4            -         HCKO           MO2         HCKO           MO3         LCKO           MO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MO2         —           MO3         —           MO4         —           —         HCKO           MO2         HCKO           MO3         LCKO           MO4         —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MO3         —           MO4         —           —         HCKO           MO2         HCKO           MO3         LCKO           MO4         —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MO4         —           —         HCKO           MO2         HCKO           MO3         LCKO           MO4         —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12       16       20       P07       •       EXI4       -       -       TXD1       -       -       -         13       17       21       P10       -       EXI5       -       SCKF0-0       RXD2       -       FT00       TN         14       18       22       P11       •       EXI6       -       SDOF0-0       TXD2       -       FT00N       TN         15       19       23       P12       -       EXI7       -       SDIF0-0       -       -       FT01       TN         16       20       24       P13       -       -       AIN13       SSNF0-0       -       -       FT01N       TN         -       21       25       P17       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>—HCKOMO2HCKOMO3LCKOMO4—</td>                                                                                                                       | —HCKOMO2HCKOMO3LCKOMO4—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MO2 HCKO<br>MO3 LCKO<br>MO4 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MO3 LCKO<br>MO4 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MO4 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -       21       25       P17       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td></td>                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17       22       26       P20       -       -       AIN0       SCKF0-1       RXD0       -       FT00         18       23       27       P21       •       -       AIN1       SDOF0-1       TXD0       -       FT00         19       24       28       P22       -       -       AIN2       SDIF0-1       -       SCLM0-0       FT01         20       25       29       P23       -       -       AIN3       SSNF0-1       -       SDAM0-0       FT01N         21       26       30       P24       -       -       AIN4       SCLK0-1       -       SCLU0-0       -         22       27       31       P25       -       -       AIN5       SOUT0-1       -       SDAU0-0       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - TBCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18       23       27       P21 <ul> <li>—</li> <li>AIN1</li> <li>SDOF0-1</li> <li>TXD0</li> <li>—</li> <li>FTO0N</li> <li>9</li> <li>24</li> <li>28</li> <li>P22</li> <li>—</li> <li>AIN2</li> <li>SDIF0-1</li> <li>—</li> <li>SCLM0-0</li> <li>FTO1</li> </ul> 20         25         29         P23         —         —         AIN3         SSNF0-1         —         SDAM0-0         FTO1N               21             26             30             P24             —             —             AIN4             SCLK0-1             —             SDAU0-0             —               22             27             31             P25             —             —             AIN5             SOUT0-1             —             SDAU0-0             —               22             27             31             P25             —             —             AIN5             SOUT0-1             —             SDAU0-0             —               27             31             P25             —             —             AIN5             SOUT0-1             —             SDAU0-0             —               30 <td< td=""><td></td></td<> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19       24       28       P22        AIN2       SDIF0-1        SCLM0-0       FT01         20       25       29       P23        AIN3       SSNF0-1        SDAM0-0       FT01N         21       26       30       P24        AIN4       SCLK0-1        SCLU0-0          22       27       31       P25        AIN5       SOUT0-1        SDAU0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20       25       29       P23         AIN3       SSNF0-1        SDAM0-0       FTO1N          21       26       30       P24         AIN4       SCLK0-1        SCLU0-0          22       27       31       P25         AIN5       SOUT0-1        SDAU0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 21       26       30       P24       —       —       AIN4       SCLK0-1       —       SCLU0-0       —         22       27       31       P25       —       —       AIN5       SOUT0-1       —       SDAU0-0       —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 22 27 31 P25 — AIN5 SOUT0-1 — SDAU0-0 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | — ТВСО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 28 33 40 P33 — EXI7 AIN10 — TXD1 — FTO1N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MO2 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MO3 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MO4 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MO2 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MO3 LCKO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MO4 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DIE     DIE     DIE     NC     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     —     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     …     <                                                                                                                                                                                                                                                                                                         | MO4 —<br>MOX TBCO<br>— —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 1-3 MI 62Q2500 Group Pin List

\*: The SSIO and I<sup>2</sup>C use with a combination of the same suffix pins. \*\*: Assign each function; SCLK0/SCKF0/FTOn/FTOnN/HCKO, to only one LSI pin.

### 1.3.3 Pin Description

Table 1-4 shows the pin list categorized by the function.

"-" : Power pin, "I": Input pin, "O" Output pin and "I/O" : input/output pin

|                                                  |                                                                           | Table                                                                     | 1-4 Pir  | Description (1/2)                                                                                                                                                                               |
|--------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function                                         | Functional pin<br>name                                                    | LSI pin name                                                              | I/O      | Description                                                                                                                                                                                     |
|                                                  | _                                                                         | VSS                                                                       | -        | Negative power supply pin (-)<br>Define this terminal potential as V <sub>SS</sub>                                                                                                              |
| Power                                            | _                                                                         | VDD                                                                       | _        | Positive power supply pin (+).<br>Connect a capacitor $C_V$ (more than 1uF) between this pin and VSS. Define this terminal potential as $V_{DD}$ .                                              |
|                                                  | _                                                                         | VDDL                                                                      | _        | Power supply for internal logic (internal regulator's output).<br>Connect a capacitor $C_L$ (1µF) between this pin and VSS.                                                                     |
| Debug<br>ISP                                     | TEST0                                                                     | P00/<br>TEST0                                                             | I/O      | Input/output for testing<br>This pin which is shared with P00 is used as on-chip debug<br>interface and ISP function and is initialized as pull-up input<br>mode by the system reset.           |
|                                                  | TEST1_N                                                                   | TEST1_N                                                                   | Ι        | Input for testing<br>This pin is used as on-chip debug interface and ISP function<br>and is initialized as pull-up input mode by the system reset.                                              |
| Reset                                            | RESET_N                                                                   | RESET_N                                                                   | Ι        | Reset input.<br>Appling this pin "L" level shifts MCU to system reset mode.<br>Appling this pin "H" level shifts MCU to program running mode.<br>No pull-up resistor is installed.              |
|                                                  | PI0, PI1                                                                  | XT0, XT1                                                                  | Ι        | General purpose input.<br>- High-impedance (initial value)<br>- Input without Pull-up                                                                                                           |
| General input port<br>(GPI)                      | P00                                                                       | P00/<br>TEST0                                                             | I        | General purpose input.<br>- Input with Pull-up (initial value)<br>- Input without Pull-up<br>Not available as general inputs when using the on-chip debug<br>interface or ISP function.         |
| General port<br>(GPIO)                           | P02~P07<br>P10~P17<br>P20~P27<br>P30~P37<br>P52~P57<br>P60~P62<br>P70~P73 | P02~P07<br>P10~P17<br>P20~P27<br>P30~P37<br>P50~P57<br>P60~P62<br>P70~P73 | I/O      | General purpose input/output<br>- High-impedance (initial value)<br>- Input with Pull-up<br>- Input without Pull-up<br>- CMOS output<br>- N channel (N-ch) open drain output                    |
| Clock Input                                      | XT0<br>XT1                                                                | XT0<br>XT1                                                                | I<br>I/O | Connect a Low speed(32.768kHz) crystal resonator<br>and connect capacitors between the pin and VSS. When<br>inputting a square wave clock, input from XT1 pin                                   |
| Clock Output<br>(7 <sup>th</sup> function)       | HCKO<br>LCKO                                                              | P07 P10<br>P03 P11 P71                                                    | 0        | High-speed clock output.<br>Low-speed clock output.                                                                                                                                             |
| Career frequency<br>output                       | TBCO<br>—                                                                 | P17 P27 P73<br>P07 P11<br>P21 P73                                         | 0        | Low-speed time base counter output.<br>Career frequency output                                                                                                                                  |
|                                                  | EXI0<br>EXI1<br>EXI2                                                      | P00 P72 P34<br>P04 XT0<br>P35<br>P05 P27 P36                              |          | External Maskable Interrupt 0 Input<br>External Maskable Interrupt 1 Input                                                                                                                      |
| External Interrupt<br>(1 <sup>st</sup> function) | EXI2<br>EXI3<br>EXI4<br>EXI5<br>EXI6                                      | P05 P27 P36<br>P06 P73 P37<br>P07 P30 P52<br>P10 P31 P53<br>P11 P32 P60   |          | External Maskable Interrupt 2 Input<br>External Maskable Interrupt 3 Input<br>External Maskable Interrupt 4 Input<br>External Maskable Interrupt 5 Input<br>External Maskable Interrupt 6 Input |
|                                                  | EXI7                                                                      | P12 P33 P61                                                               |          | External Maskable Interrupt 7 Input                                                                                                                                                             |

#### ML62Q2500 Group User's Manual Chapter 1 Overview

| Table 1-4 Pin Description (2/2)                                               |                        |                                      |     |                                                                                                                     |  |  |  |  |
|-------------------------------------------------------------------------------|------------------------|--------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Function                                                                      | Functional pin<br>name | LSI pin name                         | I/O | Description                                                                                                         |  |  |  |  |
|                                                                               | TMO2                   | P04 P10<br>P60 P70                   |     | 16bit General Timer 2 output                                                                                        |  |  |  |  |
| 16bit General<br>Timer                                                        | TMO3                   | P05 P11<br>P61 P71                   | 0   | 16bit General Timer 3 output                                                                                        |  |  |  |  |
| (6 <sup>th</sup> function)                                                    | TMO4                   | P06 P12<br>P62 P72                   |     | 16bit General Timer 4 output                                                                                        |  |  |  |  |
|                                                                               | TMOX                   | P13 P73                              |     | 16bit General Timer X output                                                                                        |  |  |  |  |
|                                                                               | FTO0                   | P10 P20 P30<br>P54 P70               |     | Functional Timer0 P output                                                                                          |  |  |  |  |
| Functional Timer                                                              | FTO0N                  | P11 P21 P31<br>P55 P71               | 0   | Functional Timer0 N output                                                                                          |  |  |  |  |
| (5 <sup>th</sup> func.)                                                       | FTO1                   | P12 P22 P32<br>P56 P72               | 0   | Functional Timer1 P output                                                                                          |  |  |  |  |
|                                                                               | FTO1N                  | P13 P23 P33<br>P57 P73               |     | Functional Timer1 N output                                                                                          |  |  |  |  |
|                                                                               | SCLU0                  | P24 P70                              |     | I <sup>2</sup> C Unit0 Clock input/output                                                                           |  |  |  |  |
| I <sup>2</sup> C Bus                                                          | SDAU0                  | P25 P71                              | I/O | I <sup>2</sup> C Unit0 Data input/output                                                                            |  |  |  |  |
| (4 <sup>th</sup> function)                                                    | SCLM0                  | P22 P72                              | 1/0 | I <sup>2</sup> C Master0 Clock input/output                                                                         |  |  |  |  |
|                                                                               | SDAM0                  | P23 P73                              |     | I <sup>2</sup> C Master0 Data input/output                                                                          |  |  |  |  |
|                                                                               | RXD0                   | P04 P20<br>P30 P52                   | I   | UART0 received data input                                                                                           |  |  |  |  |
|                                                                               | TXD0                   | P05 P21<br>P31 P53                   | 0   | UART0 transmission data output                                                                                      |  |  |  |  |
| UART<br>(3 <sup>rd</sup> function)                                            | RXD1                   | P02 P06<br>P32                       | Ι   | UART1 received data input                                                                                           |  |  |  |  |
| , , , , , , , , , , , , , , , , , , ,                                         | TXD1                   | P03 P07<br>P33                       | 0   | UART1 transmission data output                                                                                      |  |  |  |  |
|                                                                               | RXD2                   | P10 P72                              |     | UART2 received data input                                                                                           |  |  |  |  |
|                                                                               | TXD2                   | P11 P73                              | 0   | UART2 transmission data output                                                                                      |  |  |  |  |
|                                                                               | SCKF0                  | P10 P20                              | I/O | Synchronous serial0 (with FIFO) clock input/output                                                                  |  |  |  |  |
|                                                                               | SDIF0                  | P12 P22                              |     | Synchronous serial0 (with FIFO) data input                                                                          |  |  |  |  |
| Synchronous                                                                   | SDOF0                  | P11 P21                              | 0   | Synchronous serial0 (with FIFO) data output                                                                         |  |  |  |  |
| Serial Port                                                                   | SSNF0                  | P13 P23                              | I/O | Synchronous serial0 (with FIFO) slave select input/output                                                           |  |  |  |  |
| (2 <sup>nd</sup> function)                                                    | SCLK0                  | P04 P24 P30                          | I/O | Synchronous serial0 clock input/output                                                                              |  |  |  |  |
|                                                                               | SIN0                   | P06 P26 P32                          | I   | Synchronous serial0 data input                                                                                      |  |  |  |  |
|                                                                               | SOUT0                  | P05 P25 P31                          | 0   | Synchronous serial0 data output                                                                                     |  |  |  |  |
| Successive                                                                    | VREF                   | P30                                  |     | SA-ADC external reference voltage input<br>Define the potential of reference voltage for SA-ADC as V <sub>REF</sub> |  |  |  |  |
| approximation<br>type A/D converter<br>(SA-ADC)<br>(1 <sup>st</sup> function) | AIN0~AIN13             | P13<br>P27-P20<br>P33-P31<br>P71-P70 | I   | SA-ADC channel 0 to 13 analog input                                                                                 |  |  |  |  |

### 1.3.4 Termination of Unused Pins

Table 1-5 shows the processing of unused pins.

Table 1-5 Termination of unused pins

| Pin       | pin termination                                                 |
|-----------|-----------------------------------------------------------------|
| NC        | Open                                                            |
| RESET_N   | Connect to VDD                                                  |
| TEST1_N   | Connect to VDD                                                  |
| P00/TEST0 | Open the pin with the initial condition of pulled-up input mode |
| XT0, XT1  |                                                                 |
| P02 ~ P07 |                                                                 |
| P10 ~ P17 |                                                                 |
| P20 ~ P27 | Open the pins with the initial condition of Hi-impedance        |
| P30 ~ P37 | (input/output invalid) mode.                                    |
| P52 ~ P57 |                                                                 |
| P60 ~ P62 |                                                                 |
| P70 ~ P73 |                                                                 |

[Note]

Terminate unused input pins according to the Table 1-5 in order to avoid unexpected through-current in the pins.

# **Chapter 2 CPU and Memory Space**

### 2. CPU and Memory Space

#### 2.1 General Description

ML62Q2500 group has LAPIS Technology's original 16-bit CPU nX-U16/100 (A35 core), the multiplier/divider in the coprocessor, flash memory in the program memory space, and RAM and data flash in the data memory space. In addition, it has the built-in remap function that remaps a 4 Kbyte area in the program memory space. Table 2-1 to 2-3 show the memory size of the program memory space and the data memory space as well as the CPU memory model. For details of memory model, see "nX-U16/100 Core Instruction Manual".

|                                     |                                  | grann Mennory Space and L | Jula Memory Opuce |              |  |  |
|-------------------------------------|----------------------------------|---------------------------|-------------------|--------------|--|--|
| Product name                        | Program memory space             | Data memory space         | Data flash size   | Momony model |  |  |
| FIGUUCLITAIL                        | ROM size                         | RAM size                  | Data hash size    | Memory model |  |  |
| ML62Q2502<br>ML62Q2522<br>ML62Q2532 | 64 Kbyte                         | 8 Kbyte                   | 4 Kbyte           | SMALL        |  |  |
| ML62Q2504<br>ML62Q2524<br>ML62Q2534 | ML62Q2504<br>ML62Q2524 128 Kbyte |                           | 4 KDyte           | LARGE        |  |  |

#### Table 2-1 Program Memory Space and Data Memory Space

### 2.2 CPU nX-U16/100

nX-U16/100 has following features. See "nX-U16/100 Core Instruction Manual" for details.

- Various instruction sets
  - Instructions for data transfers, arithmetic, comparison, logic operations, multiplication/division, bit manipulation, bitwise logic operations, branches, conditional branches, call/return stack manipulation, and arithmetic shifts
  - Variety of addressing modes
  - Register addressing
  - Register indirect addressing
  - Stack pointer addressing
  - Control register addressing
  - EA register indirect addressing
  - General-purpose register indirect addressing
  - Direct addressing
  - Register indirect bit addressing
  - Direct bit addressing
- Memory space
- Program memory space
- Data memory space
- Interrupts
  - Dedicated emulator interrupt
  - Non-maskable interrupt
  - Maskable interrupt
  - Software interrupt

#### 2.2.1 Wait Mode and No-wait Mode

ML62Q2500 group has two CPU operation modes: wait mode and no-wait mode.

The mode can be chosen by Code Option. The maximum CPU operating frequency differs between the wait mode and no-wait mode depending on PLL reference frequency chosen by the Code Option. Table 2-2 shows maximum operating frequency of high-speed clock, peripheral circuit and CPU. See Chapter 30 "Code Option" for details on how to set the Code Option.

| PLL reference | Maximum operating frequency | Maximum operating frequency of CPU |              |  |  |  |
|---------------|-----------------------------|------------------------------------|--------------|--|--|--|
| frequency     | of peripheral circuit       | Wait mode                          | No-wait mode |  |  |  |
| 24MHz         | 24MHz                       | 24MHz                              | 6MHz         |  |  |  |
| 16MHz         | 16MHz                       | 16MHz                              | 8MHz         |  |  |  |
| 1MHz          | 1MHz                        | 1MHz                               | 1MHz         |  |  |  |

#### Table 2-2 Maximum Operating Frequency

• Wait mode

In this mode, instruction codes read from the program memory are stored into the built-in buffer. The CPU can work at high speed to read the instructions from the buffer. In contiguous address instruction processing, the instructions can be executed without a wait time for storing them in the buffer. In branch instruction processing, the number of execution cycles increases due to a wait time for storing the instructions in the buffer.

• No-wait mode

This mode allows the CPU to directly execute instruction codes read from the program memory without involving the buffer. This mode minimizes the number of instruction execution cycles.

See Appendix C "Instruction execution cycle" for the number of instruction execution cycles in wait and no-wait modes. The CPU operation mode (wait mode or no-wait mode) can be chosen by the Code Option is applied even when the low-speed clock (LSCLK) is used for the system clock.

### 2.2.2 Notes When Executing SB/RB Instruction

The bit access SB/RB instruction reads in bytes from a register containing the target bits, generates the byte data while rewriting only the values of the target bits, then writes it in bytes.

If an SB/RB instruction is executed to a register where multiple bits are placed, bits not targeted for the SB/RB instruction are rewritten with the values read at that time.

Note that the SB/RB instruction may rewrite the state of bits not targeted for the SB/RB instruction if it is executed to a register where values of some bits change depending on the hardware state.

#### 2.2.3 Notes on the Description of Read-modify-write

When reading values from SFR and changing only some of the values and writing them back (read-modify-write), C compiler may convert it to a bit-access instruction. (Even if the change is two bits, it may be converted to two bit-access instructions.) Therefore, there are cases where you think you are writing at the same time, but you are not, and cases where you think you are doing word-access, but it is converted to bit-access.

If you do not want to be converted to a bit-access instruction, you can avoid it by the following description.

Example of a description that is converted to a bit-access instruction:

| SFR &= 0xFFFE; | Converted to RB SFR.0;                |
|----------------|---------------------------------------|
| SFR  = 0x0081; | Converted to SB SFR.7 ;<br>SB SFR.0 ; |

Example of a description that is not converted to a bit-access instruction :

volatile unsigned short vald; vald = SFR; SFR = vald & 0xFFFE; vald = SFR; SFR = vald | 0x0081 ;

The conversion to bit-access instructions can be avoided by assigning the variable once to a volatile-qualified variable.

#### 2.3 Coprocessor

ML62Q2500 group has the built-in multiplier/divider in the coprocessor. The multiplier/divider is operated using coprocessor data transfer instructions of the CPU. For coprocessor data transfer instructions, see "nX-U16/100 Core Instruction Manual".

#### 2.3.1 Multiplier/Divider

The multiplier/divider has following arithmetic functions:

- Multiplication : 16 bit × 16 bit (operation time 4 cycles)
- Division : 32 bit ÷ 16 bit (operation time 8 cycles)
  - Division : 32 bit ÷ 32 bit (operation time 16 cycles)
- Multiply-accumulate (non-saturating)  $: 16 \text{ bit} \times 16 \text{ bit} + 32 \text{ bit}$  (operation time 4 cycles)
- Multiply-accumulate (saturating) : 16 bit × 16 bit + 32 bit (operation time 4 cycles)
- Signed or unsigned operation setting
- In a saturating multiply-accumulate operation, the result is fixed to 0x7FFF\_FFFF for a positive number and 0x8000\_0000 for a negative number when it is out of the expressible range.

See user's manual for the multiplication/division library using the multiplier/divider.

#### 2.3.2 List of Coprocessor General-purpose Registers

The coprocessor general-purpose registers are byte type and readable or writable as word type registers (CERn), double word type registers (CXRn), or quad word type registers (CQRn) combining the consecutive registers.

|         |                                         | List of coproce             | Symbol    |        | Initial      |     |       |  |
|---------|-----------------------------------------|-----------------------------|-----------|--------|--------------|-----|-------|--|
| Address | Coprocessor<br>general-purpose register | Byte                        | Byte Word |        | Quad<br>word | R/W | value |  |
| -       | A register L                            | CR0                         | CER0      |        |              | R/W | 0x00  |  |
| -       | A register H                            | CR1                         | CERU      | CXR0   |              | R/W | 0x00  |  |
| -       | B register L                            | CR2                         | CER2      | CARU   |              | R/W | 0x00  |  |
| -       | B register H                            | CR3                         | GERZ      |        | CQR0         | R/W | 0x00  |  |
| -       | C register L                            | CR4                         | CER4      |        | CQRU         | R/W | 0x00  |  |
| -       | C register H                            | CR5                         | CER4      | CXR4   |              | R/W | 0x00  |  |
| -       | D register L                            | CR6                         | CER6      |        |              | R/W | 0x00  |  |
| -       | D register H                            | CR7                         | CERO      |        |              | R/W | 0x00  |  |
| -       | Operation mode register                 | CR8                         | CER8      |        |              | R/W | 0x00  |  |
| -       | Operation status register               | CR9                         | CERO      | CXR8   |              | R/W | 0x00  |  |
| -       | -                                       | CR10                        | CER10     | UNRO   |              | R/W | 0x00  |  |
| -       | -                                       | CR11                        | CERIU     |        | 0000         | R/W | 0x00  |  |
| -       | -                                       | CR12                        | CER12     |        | CQR8         | R/W | 0x00  |  |
| -       | -                                       | CR13                        | GERIZ     | CXR12  |              | R/W | 0x00  |  |
| -       | -                                       | CR14                        | CER14     | UAR 12 |              | R/W | 0x00  |  |
| -       | Coprocessor ID register                 | oprocessor ID register CR15 |           |        |              | R   | 0x81  |  |

Table 2-3 List of coprocessor general-purpose registers

CR0 to CR7 are registers to store the setting of the input values of operations and operation results.

CR8 is a register to set each operation mode (signed, unsigned) and to enable/disable the operation.

CR9 is a register to store the status of each operation result.

CR15 is a register to indicate coprocessor ID.

CR10 to CR14 have no function. Reading them returns "0x00". These registers are not writable.

### 2.3.2.1 A, B, C, D Registers (CR0 to CR7)

These registers store the input values of operations and operation results.

These are byte type registers and can be accessed as a word type register (CERn), double word type register (CXRn), or quad word type register (CQRn) combining the consecutive registers. The bit symbols are unavailable to use in the software.

|                  | ess:<br>ess size<br>al value | e: 8/  | /W<br>(16 bit<br>x0000 |        |        |        |       |       |       |       |       |       |            |       |       |       |  |
|------------------|------------------------------|--------|------------------------|--------|--------|--------|-------|-------|-------|-------|-------|-------|------------|-------|-------|-------|--|
|                  | 15                           | 14     | 13                     | 12     | 11     | 10     | 9     | 8     | 7     | 6     | 5     | 4     | 3          | 2     | 1     | 0     |  |
| Word             | CER0                         |        |                        |        |        |        |       |       |       |       |       |       |            |       |       |       |  |
| Byte             |                              | 1      |                        | CF     |        |        |       |       |       |       |       | CI    | R0         | 1     |       |       |  |
| Bit              | areg15                       | U      |                        |        | areg11 |        | areg9 | areg8 | areg7 | areg6 | areg5 | areg4 | areg3      | areg2 | areg1 | areg0 |  |
| R/W              | R/W                          | R/W    | R/W                    | R/W    | R/W    | R/W    | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W        | R/W   | R/W   | R/W   |  |
| Initial<br>value | 0                            | 0      | 0                      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0          | 0     | 0     | 0     |  |
|                  | 15                           | 14     | 13                     | 12     | 11     | 10     | 9     | 8     | 7     | 6     | 5     | 4     | 3          | 2     | 1     | 0     |  |
| Word             |                              |        |                        |        |        |        |       | CE    | R2    |       |       |       |            |       |       |       |  |
| Byte             | CR3                          |        |                        |        |        |        |       |       |       | CR2   |       |       |            |       |       |       |  |
| Bit              | breg15                       | breg14 | breg13                 | breg12 | breg11 | breg10 | breg9 | breg8 | breg7 | breg6 | breg5 | breg4 | breg3      | breg2 | breg1 | breg0 |  |
| R/W              | R/W                          | R/W    | R/W                    | R/W    | R/W    | R/W    | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W        | R/W   | R/W   | R/W   |  |
| Initial<br>value | 0                            | 0      | 0                      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0          | 0     | 0     | 0     |  |
|                  | 15                           | 14     | 13                     | 12     | 11     | 10     | 9     | 8     | 7     | 6     | 5     | 4     | 3          | 2     | 1     | 0     |  |
| Word             |                              |        |                        |        |        |        |       | CE    | R4    |       |       |       |            |       |       |       |  |
| Byte             |                              |        |                        | CF     | २5     |        |       |       | CR4   |       |       |       |            |       |       |       |  |
| Bit              | creg15                       | creg14 | creg13                 | creg12 | creg11 | creg10 | creg9 | creg8 | creg7 | creg6 | creg5 | creg4 | creg3      | creg2 | creg1 | creg0 |  |
| R/W              | R/W                          | R/W    | R/W                    | R/W    | R/W    | R/W    | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W        | R/W   | R/W   | R/W   |  |
| Initial<br>value | 0                            | 0      | 0                      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0          | 0     | 0     | 0     |  |
|                  | 15                           | 14     | 13                     | 12     | 11     | 10     | 9     | 8     | 7     | 6     | 5     | 4     | 3          | 2     | 1     | 0     |  |
| Word             |                              |        |                        |        |        |        |       | CE    | R6    |       |       |       |            |       |       |       |  |
| Byte             |                              |        |                        | CF     | R7     |        |       |       |       |       |       | CI    | <b>R</b> 6 |       |       |       |  |
| Bit              | dreg15                       | dreg14 | dreg13                 | dreg12 | dreg11 | dreg10 | dreg9 | dreg8 | dreg7 | dreg6 | dreg5 | dreg4 | dreg3      | dreg2 | dreg1 | dreg0 |  |
| R/W              | R/W                          | R/W    | R/W                    | R/W    | R/W    | R/W    | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W        | R/W   | R/W   | R/W   |  |
| Initial<br>value | 0                            | 0      | 0                      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0          | 0     | 0     | 0     |  |

Table 2-4 shows assignment of an input and results.

As soon as the data is written in register CR7, operation is started.

In a saturating multiply-accumulate operation, the result is fixed to 0x7FFF\_FFFF for a positive number and 0x8000 0000 for a negative number when it is out of the expressible range.

In a signed operation, each of the most significant bits of input and output is a sign.

| Quad word symb                              | ol     | CQR0       |            |            |           |                            |                            |     |      |  |  |  |
|---------------------------------------------|--------|------------|------------|------------|-----------|----------------------------|----------------------------|-----|------|--|--|--|
| Double word sym                             |        |            | CX         | R4         |           | CXR0                       |                            |     |      |  |  |  |
| Word symbol                                 |        | CE         | R6         | CE         | R4        | CE                         | R2                         | CE  | CER0 |  |  |  |
| Byte symbol                                 |        | CR7        | CR6        | CR5        | CR4       | CR3                        | CR2                        | CR1 | CR0  |  |  |  |
| Multiplication                              | Input  | Multiplica | and [15:0] | Multiplie  | er [15:0] |                            |                            | -   |      |  |  |  |
| 16 bit x 16 bit                             | Result |            | -          | -          |           | Product [31:0]             |                            |     |      |  |  |  |
| Division                                    | Input  | Diviso     | r [15:0]   | -          |           | Dividend [31:0]            |                            |     |      |  |  |  |
| 32 bit ÷ 16 bit                             | Result |            | -          | Remaind    | er [15:0] | Quotient [31:0]            |                            |     |      |  |  |  |
| Division                                    | Input  |            | Diviso     | r [31:0]   |           | Dividend [31:0]            |                            |     |      |  |  |  |
| 32 bit ÷ 32 bit                             | Result |            | Remaind    | ler [31:0] |           | Quotient [31:0]            |                            |     |      |  |  |  |
| Multiply-accumulate                         | Input  | Multiplica | and [15:0] | Multiplie  | er [15:0] | Addend [31:0]              |                            |     |      |  |  |  |
| (non-saturating)<br>16 bit x 16bit + 32 bit | Result |            | -          | -          | -         |                            | Multiply-accumulate [31:0] |     |      |  |  |  |
| Multiply-accumulate                         | Input  | Multiplica | and [15:0] | Multiplie  | er [15:0] | Addend [31:0]              |                            |     |      |  |  |  |
| (saturating)<br>16 bit x 16bit + 32 bit     | Result |            | -          | -          |           | Multiply-accumulate [31:0] |                            |     |      |  |  |  |

#### Table 2-4 assignment of an input and results

"-" indicates that the previous value is retained.

### 2.3.2.2 Operation Mode Register (CR8), Operation Status Register (CR9)

The operation mode register (CR8) is a coprocessor general-purpose register to set the operation mode and enables/disables the operation.

The operation status register (CR9) is a register to store the status of each operation result.

CR8 and CR9 are byte type registers and they can be accessed as a word type register (CERn), double word type register (CXRn), or quad word type register (CQRn) combining the consecutive registers.

The bit symbols are unavailable to use in the software.

|                  | ess:<br>ess size<br>al value | e: 8/ | /W<br>16 bit<br><0000 |     |     |    |   |     |      |   |   |      |   |        |        |        |
|------------------|------------------------------|-------|-----------------------|-----|-----|----|---|-----|------|---|---|------|---|--------|--------|--------|
|                  | 15                           | 14    | 13                    | 12  | 11  | 10 | 9 | 8   | 7    | 6 | 5 | 4    | 3 | 2      | 1      | 0      |
| Word             |                              |       |                       |     |     |    |   | CE  | R8   |   |   |      |   |        |        |        |
| Byte             |                              |       |                       | CI  | R9  |    |   |     | CR8  |   |   |      |   |        |        |        |
| Bit              | С                            | Z     | s                     | ov  | q   | -  | - | use | clen | - | - | sign | - | clmod2 | clmod1 | clmod0 |
| R/W              | R/W                          | R/W   | R/W                   | R/W | R/W | R  | R | R/W | R/W  | R | R | R/W  | R | R/W    | R/W    | R/W    |
| Initial<br>value | 0                            | 0     | 0                     | 0   | 0   | 0  | 0 | 0   | 0    | 0 | 0 | 0    | 0 | 0      | 0      | 0      |

| Bit No. | Bit symbol name     | Description                                                                                                                                                                                                                                                                                                                                           |
|---------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15      | С                   | This becomes "1" if the operation result is carried or the divisor is 0 in the division mode. The value is updated in each operation. In addition, a value can be written.                                                                                                                                                                            |
| 14      | Z                   | This becomes "1" if the operation result is "0". The value is updated in each operation. In addition, a value can be written.                                                                                                                                                                                                                         |
| 13      | S                   | This becomes "1" if the operation result is a negative number. For a multiply-accumulate (saturating/non-saturating) operation, this indicates the state of the most significant bit in the operation result. The value is updated in each operation. In addition, a value can be written.                                                            |
| 12      | ov                  | This becomes "1" if the operation result exceeds the range expressible by two's complement.<br>The value is updated every time the operation is executed.<br>In addition, a value can be written.                                                                                                                                                     |
| 11      | q                   | This becomes "1" for the saturated result of a saturating multiply-accumulate operation. The value is held in the next operation. To initialize it to "0", it is necessary to write "0".                                                                                                                                                              |
| 8       | use                 | A bit to indicate that the operation is in progress.<br>0: Operation under suspension (initial value)<br>1: Operating                                                                                                                                                                                                                                 |
| 7       | clen                | <ul> <li>A bit to enable/disable the operation. If the clen bit is cleared to "0" during an operation, the next operation is disabled after completion of the current one.</li> <li>0: Operation disabled (initial value)</li> <li>1: Operation enabled</li> </ul>                                                                                    |
| 4       | sign                | A bit to set the sign operation.<br>0: Unsigned operation (initial value)<br>1: Signed operation                                                                                                                                                                                                                                                      |
| 2 to 0  | clmod2 to<br>clmod0 | Bits to choose the operation mode.000:Multiplication 16 bit × 16 bit (initial value)001:Division 32 bit ÷ 16 bit010:Multiply-accumulate (non-saturating) 16 bit × 16 bit + 32 bit011:Multiply-accumulate (saturating) 16 bit × 16 bit + 32 bit100:No operation function101:Division 32 bit ÷ 32 bit110:No operation function111:No operation function |

Table 2-5 shows values to be set to CR8 register for execution of each operation mode.

Table 2-6 shows flags changing during each operation.

| Value set to CR8                                                 | Signed | Unsigned |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------|--------|----------|--|--|--|--|--|--|--|--|--|
| Multiplication 16 bit ×16 bit (initial value)                    | 0x90   | 0x80     |  |  |  |  |  |  |  |  |  |
| Division 32 bit ÷ 16 bit                                         | 0x91   | 0x81     |  |  |  |  |  |  |  |  |  |
| Division 32 bit ÷ 32 bit                                         | 0x95   | 0x85     |  |  |  |  |  |  |  |  |  |
| Multiply-accumulate (non-saturating)<br>16 bit × 16 bit + 32 bit | 0x92   | 0x82     |  |  |  |  |  |  |  |  |  |
| Multiply-accumulate (saturating)<br>16 bit × 16 bit + 32 bit     | 0x93   | 0x83     |  |  |  |  |  |  |  |  |  |

Table 2-5 Configured CR8

#### Table 2-6 Flag of CR9 Operation mode sign ٥v С z s q 1 (signed) \_ \_ \_ • • Multiplication 16 bit × 16 bit 0 (unsigned) -• ---1 (signed) • • • • -Division 32 bit ÷ 16 bit 0 (unsigned) ٠ ٠ ---1 (signed) • • -Division • ٠ 32 bit ÷ 32 bit 0 (unsigned) \_ • • \_ \_ Multiply-accumulate 1 (signed) • • • ٠ -(non-saturating) 0 (unsigned) • • • • -16 bit ×16 bit + 32 bit Multiply-accumulate 1 (signed) ٠ • • ٠ ٠ (saturating) 0 (unsigned) • • • • • 16 bit × 16 bit + 32 bit

•: Varies depending on the result. -: Retains the previous value.

### 2.3.2.3 Coprocessor ID Register (CR15)

This is a read-only register to indicate coprocessor ID.

The value in CR15 register is fixed to "0x81".

It is a byte type register and it can be accessed as a word type register (CERn), double word type register (CXRn), or quad word type register (CQRn) combining the consecutive registers. The bit symbols are unavailable to use in the software.

|                  | ess:<br>ess sizo<br>al value |        | 16 bit<br>(8100 |        |        |        |        |        |      |   |   |   |   |   |   |   |
|------------------|------------------------------|--------|-----------------|--------|--------|--------|--------|--------|------|---|---|---|---|---|---|---|
|                  | 15                           | 14     | 13              | 12     | 11     | 10     | 9      | 8      | 7    | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Word             |                              |        |                 |        |        |        |        | CEF    | R14  |   |   |   |   |   |   |   |
| Byte             |                              |        |                 | CF     | R15    |        |        |        | CR14 |   |   |   |   |   |   |   |
| Bit              | copid7                       | copid6 | copid5          | copid4 | copid3 | copid2 | copid1 | copid0 | -    | - | - | - | - | - | - | - |
| R/W              | R                            | R      | R               | R      | R      | R      | R      | R      | R    | R | R | R | R | R | R | R |
| Initial<br>value | 1                            | 0      | 0               | 0      | 0      | 0      | 0      | 1      | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### 2.3.3 How to Use Multiplier/Divider


For the use of the multiplier/divider, the multiplication/division library is provided. See MULDIVU8LIB manual for details.

#### 2.4 Memory Space

The memory space refers to the address range of the memory that can be specified from the CPU. Figure 2-1 shows the general scheme of the memory space. The memory space of the nX-U16/100 is composed of the program memory space and data memory space. The memory space is managed as one segment consists of 64 Kbyte.

The program memory space can be read with a memory access instruction through the ROM window area or the mirror area. To read the data memory space, a memory access instruction is used.

The ROM window is an area provided to read the program memory space segment 0 through a memory access instruction. In reading the program memory space from this area, it is expected to gain the advantage of data compression and improvement in access speed because it is not required to specify DSR of the data memory space. In addition, the mirror area is provided to read program memory space segments 0 to 7 through a memory access instruction. There is no address limitation when reading the program memory space from this area.



### 2.5 Program Memory Space

The program memory space is an area to store the program code, vector table, and Code Options.

The program memory space is specified by 20 bits (CSR:PC) consisting of higher 4 bits as code segment register (CSR) and lower 16 bits as program counter (PC).

The vector table area is used as the reset vector, hardware interrupt vector, and software interrupt vector. Unused software interrupt vector area is available as a program code area.

The Code Option area can be used to choose the CPU operation mode, PLL reference frequency, watchdog timer (WDT) operation mode, unused ROM area access reset enabled/disabled, and remapping function enabled/disabled.

The program code, vector table, and Code Option areas can be read from the ROM window area or the mirror area of the data memory space by executing the memory access instruction.

Figures 2-2 show the program memory space configuration of each product of the ML62Q2500 series.

#### [Note]

- CSR[3] is unused on the ML62Q2500 group. The data of CSR "0x8 to 0xF" are handled as "0x0 to 0x7".
- The Code Option area (64 bytes) is not available for the program code area. For details of Code Option settings, see Chapter 30 "Code Option" and make sure the setting data is correct.
- It is recommended to fill unused areas with data "0xFFFF" (BRK instruction) in the program memory space to ensure failsafe using the generation tool of the ROM code data. See its manual for details on how to use. See "nX-U16/100 Core Instruction Manual" for details of the BRK instruction.
- Do not read or program unused areas to prevent the CPU works incorrectly.

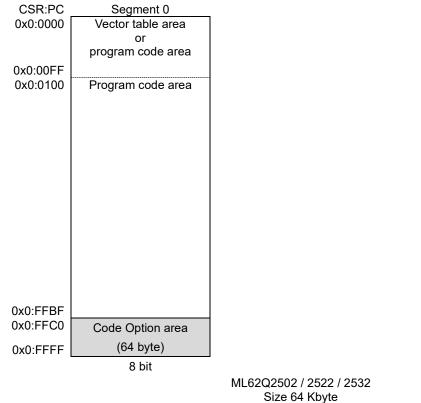



Figure 2-2-1 Configuration of Program Memory Space 1

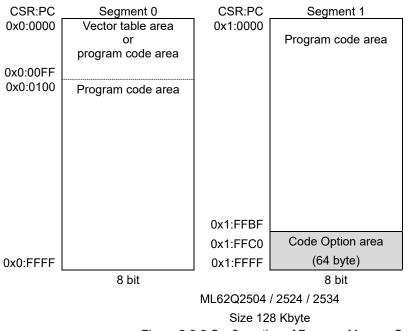



Figure 2-2-2 Configuration of Program Memory Space 2

#### 2.6 Data Memory Space

The data memory space consists of the segment 0 for ROM window area, RAM area, SFR area, segments 1 to 15 for mirror area, test area, and segment 31 for the data flash area.

The data memory stores 8-bit data and is specified by 21 bits consisting of higher 5 bits as the data segment register (DSR) and lower 16 bits as data address (address register: AR) specified by each instruction.

The segment 0 of program memory space and the segment of data memory space are in different space, but the segment 0 of program memory space is readable through the ROM window area of the data memory space.

The segment 1 to 7 are mirror area of segment 1 to 7 in the program memory space. The segment 8 to 15 are mirror area of segment 0 to 7 in the program memory space.

The 1K byte of test area includes device-specific data,

Figures 2-3 show the configuration of the data memory space of ML62Q2500 series products. Other segments not shown in the figures are unused areas.

#### [Note]

- The contents of the RAM area are undefined at power-on and system reset. Initialize this area by the software.
- Do not read/write unused areas to prevent the CPU works incorrectly.

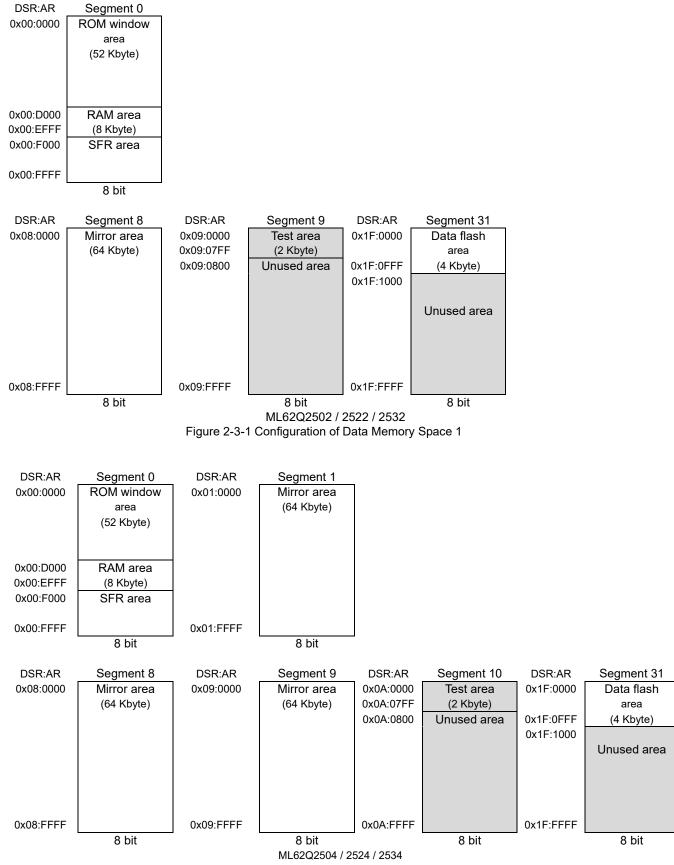



Figure 2-3-2 Configuration of Data Memory Space 2

### 2.7 Description of Registers

#### 2.7.1 List of Registers

| Address | Name                         | Symbol   | name | R/W     | Size | Initial |
|---------|------------------------------|----------|------|---------|------|---------|
| Address | Name                         | Byte     | Word | FX/ V V | Size | value   |
| 0xF000  | Data segment register        | DSR      | -    | R/W     | 8    | 0x00    |
| 0xF0A0  | Flash remap address register | REMAPADD | -    | R/W     | 8    | *1      |
| 0xF0A4  | Reserved                     | -        | -    | R/W     | 8    | 0x00    |
| 0xF0A6  | Reserved                     | -        | -    | R/W     | 8    | 0x00    |

\*1: The initial value depends on Code Option settings. See "30.2.4 Code Options 2 (CODEOP2)" for details of Code Option settings.

### 2.7.2 Data Segment Register (DSR)

DSR is a SFR used to specify a data segment. See "nX-U16/100 Core Instruction Manual" for details of DSR.

|                  |    | R<br>e: 8   | kF000(<br>/W<br>bit<br>k00 | DSR)                                                               |                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |                                                    |                                                         |      |      |      |      |
|------------------|----|-------------|----------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|------|------|------|------|
|                  | 15 | 14          | 13                         | 12                                                                 | 11                                                                                                                                       | 10                                                                                                                                                                                           | 9                                                                                                                                                                                 | 8                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                             | 5                                                  | 4                                                       | 3    | 2    | 1    | 0    |
| Word             |    |             |                            |                                                                    |                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                    |                                                         |      |      |      |      |
| Byte             |    |             |                            |                                                                    | -                                                                                                                                        |                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |                                                    | D                                                       | SR   |      |      |      |
| Bit              | -  | -           | -                          | -                                                                  | -                                                                                                                                        | -                                                                                                                                                                                            | -                                                                                                                                                                                 | -                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                             | -                                                  | DSR4                                                    | DSR3 | DSR2 | DSR1 | DSR0 |
| R/W              | R  | R           | R                          | R                                                                  | R                                                                                                                                        | R                                                                                                                                                                                            | R                                                                                                                                                                                 | R                                                                               | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R                                                                                                                             | R                                                  | R/W                                                     | R/W  | R/W  | R/W  | R/W  |
| Initial<br>value | 0  | 0           | 0                          | 0                                                                  | 0                                                                                                                                        | 0                                                                                                                                                                                            | 0                                                                                                                                                                                 | 0                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                             | 0                                                  | 0                                                       | 0    | 0    | 0    | 0    |
| Bit<br>No.       |    |             |                            |                                                                    |                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |                                                    |                                                         |      |      |      |      |
| 7 to 5           | -  |             |                            | Reser                                                              | ved bit                                                                                                                                  | s                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |                                                    |                                                         |      |      |      |      |
| 4 to 0           |    | R4 to<br>R0 |                            | 0000<br>000<br>001<br>001<br>001<br>001<br>010<br>010<br>010<br>01 | 01: Mi<br>10: Mi<br>11: Mi<br>00: Mi<br>01: Mi<br>10: Mi<br>11: Mi<br>00: Da<br>01: Da<br>11: Da<br>00: Da<br>01: Da<br>11: Da<br>11: Da | rror are<br>rror are<br>rror are<br>rror are<br>rror are<br>rror are<br>rror are<br>ata segr<br>ata segr<br>ata segr<br>ata segr<br>ata segr<br>ata segr<br>ata segr<br>ata segr<br>ata segr | ea of co<br>ea of co<br>ea of co<br>ea of co<br>ea of co<br>ea of co<br>ea of co<br>ment 8<br>ment 9<br>ment 10<br>ment 11<br>ment 12<br>ment 13<br>ment 14<br>ment 15<br>ment 14 | (mirror<br>) (mirro<br>I (mirro<br>2 (mirro<br>3 (mirro<br>4 (mirro<br>5 (mirro | ment 1<br>ment 2<br>ment 3<br>ment 4<br>ment 5<br>ment 6<br>ment 7<br>area of<br>r area of r area of<br>r area of r area of<br>r area of r area of | code s<br>code s<br>of code<br>of code<br>of code<br>of code<br>of code<br>of code<br>of code<br>of code<br>sed areas<br>rea) | egmer<br>segme<br>segme<br>segme<br>segme<br>segme | nt 1)<br>ent 2)<br>ent 3)<br>ent 4)<br>ent 5)<br>ent 6) |      |      |      |      |

#### 2.7.3 Flash Remap Address Register (REMAPADD)

REMAPADD is a SFR used to specify the 4 Kbyte area to be remapped.

|                  |    | R<br>9: 8 | xF0A0<br>/W<br>bit | (REMA | PADD) |    |   |   |          |      |      |      |       |       |       |       |
|------------------|----|-----------|--------------------|-------|-------|----|---|---|----------|------|------|------|-------|-------|-------|-------|
|                  | 15 | 14        | 13                 | 12    | 11    | 10 | 9 | 8 | 7        | 6    | 5    | 4    | 3     | 2     | 1     | 0     |
| Word             |    |           |                    |       |       |    |   |   | -        |      |      |      |       |       |       |       |
| Byte             |    |           |                    | -     | -     |    |   |   | REMAPADD |      |      |      |       |       |       |       |
| Bit              | -  | -         | -                  | -     | -     | -  | - | - | -        | RES2 | RES1 | RES0 | REA15 | REA14 | REA13 | REA12 |
| R/W              | R  | R         | R                  | R     | R     | R  | R | R | R        | R    | R    | R/W  | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0  | 0         | 0                  | 0     | 0     | 0  | 0 | 0 | 0        | 0    | 0    | *1   | *1    | *1    | *1    | *1    |

For example, when writing "0x1" to RES2-0 and "0xF" to REA15-12, then remapping them, the area of 0xF000-0xFFFF of code segment 1 is remapped with the area of 0x0000-0x0FFF of segment 0.

A CPU reset for break is happened if setting unused area to this register, and a PC error is not happened.

| Bit<br>No. | Bit symbol name   | Description                                                                                       |
|------------|-------------------|---------------------------------------------------------------------------------------------------|
| 7          | -                 | Reserved bit                                                                                      |
| 6 to 4     | RES2 to<br>RES0   | Bits to set the code segment of the area to remap.<br>The RES2 and RES1 bits are reserved.        |
| 3 to 0     | REA15 to<br>REA12 | Bits to set the higher 4 bits (bit 15 to 12) of the beginning address of the area to be remapped. |

\*1: The initial value depends on Code Option settings. See "30.2.4 Code Options 2 (CODEOP2)" for details of Code Option settings.

### 2.7.4 Reserved register 1

This register is reserved. Don't execute writing this.

| Acce<br>Acce     | ress:<br>ess:<br>ess size<br>al value | R<br>e: 8 | kF0A4<br>/W<br>bit<br>k00 |       |         |    |   |    |           |      |   |   |   |   |   |      |  |
|------------------|---------------------------------------|-----------|---------------------------|-------|---------|----|---|----|-----------|------|---|---|---|---|---|------|--|
|                  | 15                                    | 14        | 13                        | 12    | 11      | 10 | 9 | 8  | 7         | 6    | 5 | 4 | 3 | 2 | 1 | 0    |  |
| Word             |                                       |           |                           |       |         |    |   |    | -         |      |   |   |   |   |   |      |  |
| Byte             |                                       | -         |                           |       |         |    |   |    |           | rsvd |   |   |   |   |   |      |  |
| Bit              | -                                     | -         | -                         | -     | -       | -  | - | -  | -         | -    | - | - | - | - | - | rsvd |  |
| R/W              | R                                     | R         | R                         | R     | R       | R  | R | R  | R         | R    | R | R | R | R | R | R/W  |  |
| Initial<br>value | 0                                     | 0         | 0                         | 0     | 0       | 0  | 0 | 0  | 0         | 0    | 0 | 0 | 0 | 0 | 0 | 0    |  |
| Bit<br>No.       |                                       |           |                           |       |         |    |   | De | escriptio | on   |   |   |   |   |   |      |  |
| 7 to 1           | 1 - Reserved bits                     |           |                           |       |         |    |   |    |           |      |   |   |   |   |   |      |  |
| 0                | rsvd                                  |           |                           | Reser | ved bit |    |   |    |           |      |   |   |   |   |   |      |  |

### 2.7.5 Reserved register 2

This register is reserved. Don't execute writing this.

| Address:0xF0A6Access:R/WAccess size:8 bitInitial value:0x00 |                 |    |    |       |              |    |   |   |    |           |    |    |    |   |   |      |
|-------------------------------------------------------------|-----------------|----|----|-------|--------------|----|---|---|----|-----------|----|----|----|---|---|------|
|                                                             | 15              | 14 | 13 | 12    | 11           | 10 | 9 | 8 | 7  | 6         | 5  | 4  | 3  | 2 | 1 | 0    |
| Word                                                        |                 |    |    |       |              |    |   |   | -  |           |    |    |    |   |   |      |
| Byte                                                        |                 |    |    |       |              |    |   |   |    |           |    | rs | vd |   |   |      |
| Bit                                                         | -               | -  | -  | -     | -            | -  | - | - | -  | -         | -  | -  | -  | - | I | rsvd |
| R/W                                                         | R               | R  | R  | R     | R            | R  | R | R | R  | R         | R  | R  | R  | R | R | R/W  |
| Initial<br>value                                            | 0               | 0  | 0  | 0     | 0            | 0  | 0 | 0 | 0  | 0         | 0  | 0  | 0  | 0 | 0 | 0    |
| Bit<br>No.                                                  |                 |    |    |       |              |    |   |   | De | escriptio | on |    |    |   |   |      |
| 7 to 1                                                      | - Reserved bits |    |    |       |              |    |   |   |    |           |    |    |    |   |   |      |
| 0                                                           | rsvd            |    |    | Reser | Reserved bit |    |   |   |    |           |    |    |    |   |   |      |

### 2.8 Remapping Function

The remapping function replaces the addresses 0x0000 to 0x0FFF (initial boot area) in the program memory space with the specified arbitrary 4 Kbyte area.

Figure 2-4 shows the general scheme of the remapping function.

The program can be started to execute at the area different from the initial boot area using the remapping function, that enables updating(reprograming) the program code area including the initial boot area with the self-programming function.

The remap function and IAP(In-Application Programming) program enable your application to reprogram the firmware.

Two ways are available to start the remap function.

- Software Remap: Start remapping by resetting only the CPU after setting a remap address into the Flash Remap Address Register (REMAPADD).
- Code Option Remap: Start remapping at the system reset, available by setting the Code Option.

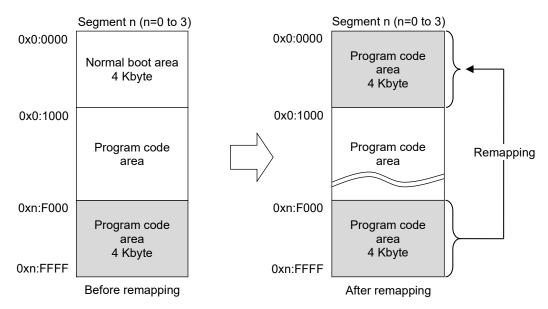



Figure 2-4 Memory Map Before and After Remapping of Program Memory Space

#### 2.8.1 Description of Remapping Function

The remapping function allows the normal boot area of addresses 0x0:0000 to 0x0:0FFF (4 Kbytes) to be replaced (remapped) with the arbitrary 4 Kbyte area set in the REMAPADD register.

To use the remapping function, enable it in advance by writing "0" to the REMAPMD bit of Code Option 0.

When using the remapping function, the vector table area (reset vector, hardware interrupt vector, and software interrupt vector) is also read from the area specified in the REMAPADD register. Prepare the vector table area for areas specified in the REMAPADD register.

After remapping, the remapped areas are read through the data segment 0. If reading the normal boot area (0x0:0000 to 0x0:0FFF) prior to remapping, read it through the data segment 8 in the data memory space (the mirror area of segment 0).

After remapping, if reprogramming the 4Kbyte area in the normal boot area, set "0x0:0000 to 0x0:0FFF" into the Flash Address Register (FLASHA).

Refer to IAP Sample Program supplied by LAPIS, for how to re-write the user application program on the flash memory using the remapping function.

#### 2.8.2 Software Remap

The remapping function is activated by software setting a value to the REMAPADD register to use the BRK instruction to only reset the CPU.

- Set "0" in advance to the REMAPMD bit of Code Option 0 (see Chapter 30 "Code Option" for details on how to set the Code Option).
- Set the code segment and higher 4 bits of the beginning address of the area to be remapped to the REMAPADD register.
- Set ELEVEL of CPU program status word to "2", then execute the BRK instruction (see "nX-U16/100 Core Instruction Manual" for details of ELEVEL and BRK instruction).
- Only the CPU is initialized and it executes the program from the area specified in the REMAPADD register.

Figure 2-5 below shows an example of the program script of software remapping.

<If the beginning address of the area to be remapped is 0x1:F000>

#asm

| mov     | r0, #03fh               |        |
|---------|-------------------------|--------|
| st      | r0, REMAPADD ; REMAPADD | = 0x3F |
| mov     | psw, #02h ; ELEVEL = 2  |        |
| nop     |                         |        |
| nop     |                         |        |
| brk     | ; BRK instruct          | ion    |
| #endasm |                         |        |
|         |                         |        |

Figure 2-5 Program Script Example of Software Remapping

#### [Note]

If the entire LSI is reset through a system reset, the remapping function is disabled as the REMAPADD
register is restored with the initial value.

### 2.8.3 Code Option Remap

at the system reset on the remap condition.

- If setting both REMAPMD and CREMAPMD to "0", the LSI starts running at the address set in CRES2-0 and CREA15-CREA12.
- After updating the address in the REMAPADD register, the address is not initialized by the CPU reset (BRK instruction) and the remap starts at the updated address. However, the REMAPADD register is initialized by the system reset, the LSI starts running at the address specified by the Code Option.

Table 2-7 shows the CPU address at releasing reset of each condition.

| Reset             | REMAPMD | CREMAPMD | CPU instruction execution start address                                   |  |  |  |  |  |
|-------------------|---------|----------|---------------------------------------------------------------------------|--|--|--|--|--|
|                   | 1       | 1        | 0x0000                                                                    |  |  |  |  |  |
| CPU reset         | 1       | 0        | 0x0000                                                                    |  |  |  |  |  |
| (BRK instruction) | 0       | 1        | Address set in the REMARADD register                                      |  |  |  |  |  |
|                   | 0       | 0        | Address set in the REMAPADD register                                      |  |  |  |  |  |
|                   | 1       | 1        |                                                                           |  |  |  |  |  |
|                   | 1       | 0        | 0x0000                                                                    |  |  |  |  |  |
| System reset      | 0       | 1        |                                                                           |  |  |  |  |  |
|                   | 0       | 0        | Initial data of the REMAPADD register<br>(data set by the Code Options 2) |  |  |  |  |  |

#### Table 2-7 CPU address at releasing reset

# **Chapter 3 Reset Function**

### 3. Reset Function

#### 3.1 General Description

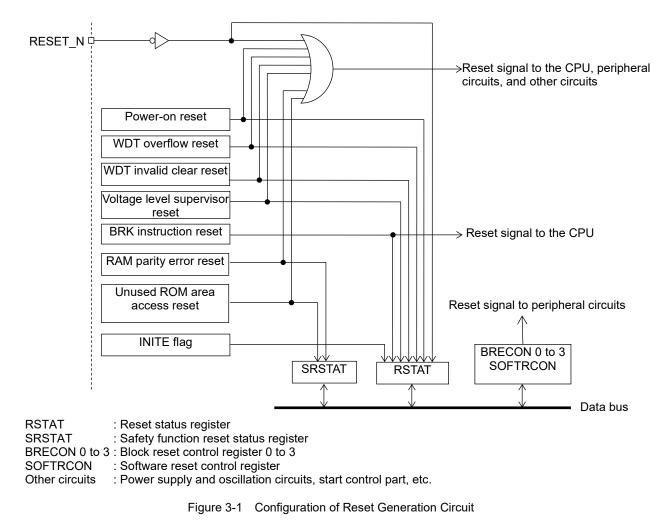
ML62Q2500 group has a function to reset the CPU, peripheral circuits and other hardware due to the causes described in Table 3-1.

This chapter describes the system reset mode, reset input pin reset and power-on reset (POR). See reference chapters for other causes of resets. See Table 3-1 for reference for each cause of resets. See Table 3-2 for the availability of resets for each cause.

| Cause                                                                           | Reference                               |
|---------------------------------------------------------------------------------|-----------------------------------------|
| Reset input pin reset (pin reset)                                               | This chapter                            |
| Power-On Reset (POR)                                                            | This chapter                            |
| Watchdog timer (WDT) overflow reset                                             | Chapter 10 Watchdog Timer               |
| Watchdog timer (WDT) invalid clear reset                                        | Chapter 10 Watchdog Timer               |
| Voltage Level Supervisor reset (VLS0 reset)                                     | Chapter 22 Voltage Level Supervisor     |
| RAM parity error reset                                                          | Chapter 29 Safety Function              |
| Unused ROM area access reset                                                    | Chapter 29 Safety Function              |
| CPU reset by BRK instruction execution (when ELEVEL is 2 or higher)             | "nX-U16/100 Core Instruction<br>Manual" |
| Individual reset to the peripheral circuits(Block reset)                        | Chapter 4 Power Management              |
| One-time reset to the all peripheral circuits and port controller (SOFTR reset) | Chapter 4 Power Management              |

#### Table 3-1 Reference for Details of Causes of Resets

#### 3.1.1 Features


Each reset can uniquely be managed depending on its cause as this function contains following features to identify the cause in an early stage.

- Reset status register (RSTAT) to indicate the cause of the reset
- Reset status register (SRSTAT) to indicate the cause of the safety function reset

In addition, it has the INITE flag function to detect abnormal start-up of the LSI.

#### 3.1.2 Configuration

Figure 3-1 shows the configuration of the reset generation circuit.



### 3.1.3 List of Pins

| Pin name | I/O | Function        |
|----------|-----|-----------------|
| RESET_N  | I   | Reset input pin |

### 3.2 Description of Registers

### 3.2.1 List of Registers

| Address | Namo                                  | Symbol | name  | R/W  | Size | Initial   |  |
|---------|---------------------------------------|--------|-------|------|------|-----------|--|
| Address | Name                                  | Byte   | Word  | r/// | Size | value     |  |
| 0xF058  | Reset status register                 | RSTATL | RSTAT | R/W  | 8/16 | Undefined |  |
| 0xF059  | Reset status register                 | RSTATH | ROTAT | R/W  | 8    | Undefined |  |
| 0xF05A  | Safety function reset status register | SRSTAT | -     | R/W  | 8    | Undefined |  |

#### 3.2.2 Reset Status Register (RSTAT)

This is a SFR to indicate the cause of occurrence of a reset.

When a reset occurs except power-on reset, only the bit that indicates the cause of the reset being set to "1". Other bits (excluding the INITE bit) retain values before occurrence of the reset. When the power-on reset occurs, all bits except POR bit will be "0". After identifying the cause of the reset, write "0xFFFF" to the RSTAT register to initialize the bits of cause of the reset in preparation for the next identification of the cause of the reset.

| Address:0xF058 (RSTATL/RSTAT), 0xF059 (RSTATH)Access:R/WAccess size:8/16 bitInitial value:Undefined |       |    |    |     |     |    |   |      |        |      |   |       |           |      |   |     |
|-----------------------------------------------------------------------------------------------------|-------|----|----|-----|-----|----|---|------|--------|------|---|-------|-----------|------|---|-----|
|                                                                                                     | 15    | 14 | 13 | 12  | 11  | 10 | 9 | 8    | 7      | 6    | 5 | 4     | 3         | 2    | 1 | 0   |
| Word                                                                                                | RSTAT |    |    |     |     |    |   |      |        |      |   |       |           |      |   |     |
| Byte                                                                                                |       |    |    | RST | ATH |    |   |      | RSTATL |      |   |       |           |      |   |     |
| Bit                                                                                                 | -     | -  | -  | -   | -   | -  | - | BRKR | INITE  | RSTR | - | VLS0R | WDTW<br>R | WDTR | - | POR |
| R/W                                                                                                 | R     | R  | R  | R   | R   | R  | R | R/W  | R      | R/W  | R | R/W   | R/W       | R/W  | R | R/W |
| Initial<br>value                                                                                    | 0     | 0  | 0  | 0   | 0   | 0  | 0 | 0/1  | 0      | 0/1  | 0 | 0/1   | 0/1       | 0/1  | 0 | 0/1 |

Common description of each bits except bit 7:

It indicates that target reset has occurred. It is initialized to "0" when "1" is written.

0: No target reset occurred. (Initial value)

1: Target reset occurred

| Bit No. | Bit symbol<br>name | Description (target reset)                                                                                                                                                                                                                                                                                            |
|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 9 | -                  | Reserved bits                                                                                                                                                                                                                                                                                                         |
| 8       | BRKR               | CPU reset by BRK instruction                                                                                                                                                                                                                                                                                          |
| 7       | INITE              | A read-only bit to indicate that an abnormality occurred in starting LSI.<br>If this bit is set to "1", restart the LSI by causing a reset to occur with the reset input pin reset,<br>WDT invalid reset, WDT overflow reset or power-on.<br>0: LSI started-up normally<br>1: Abnormality occurred in start-up of LSI |
| 6       | RSTR               | Reset input pin reset                                                                                                                                                                                                                                                                                                 |
| 5       | -                  | Reserved bit                                                                                                                                                                                                                                                                                                          |
| 4       | VLS0R              | VLS reset                                                                                                                                                                                                                                                                                                             |
| 3       | WDTWR              | WDT invalid clear reset                                                                                                                                                                                                                                                                                               |
| 2       | WDTR               | WDT overflow reset                                                                                                                                                                                                                                                                                                    |
| 1       | -                  | Reserved bit                                                                                                                                                                                                                                                                                                          |
| 0       | POR                | Power-on reset or command reset of the on-chip debug function.                                                                                                                                                                                                                                                        |

#### 3.2.3 Safety Function Reset Status Register (SRSTAT)

This is a SFR to indicate the cause of occurrence of a safety function reset.

When the safety function reset occurs, only the bit that indicates the cause of the reset occurred is set to "1". Other bits retain values before occurrence of the reset. After identifying the cause of the reset, write "0xFF" to the SRSTAT register to initialize it to "0x00" for preparing the next reset.

See Chapter 29 "Safety Function" for details of the safety function.

| Address:<br>Access:<br>Access size:<br>Initial value: |    | R/<br>8 k |    |    | Τ) |    |   |   |   |   |   |     |      |   |      |      |
|-------------------------------------------------------|----|-----------|----|----|----|----|---|---|---|---|---|-----|------|---|------|------|
|                                                       | 15 | 14        | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4   | 3    | 2 | 1    | 0    |
| Word                                                  |    |           |    |    |    |    |   |   | - |   |   |     |      |   |      |      |
| Byte                                                  |    |           |    |    | -  |    |   |   |   |   |   | SRS | STAT |   |      |      |
| Bit                                                   | -  | -         | -  | -  | -  | -  | - | - | - | - | - | -   | -    | - | RPER | FIAR |
| R/W                                                   | R  | R         | R  | R  | R  | R  | R | R | R | R | R | R   | R    | R | R/W  | R/W  |
| Initial<br>value                                      | 0  | 0         | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0   | 0    | 0 | 0/1  | 0/1  |

Common description of each bits except bit 7:

It indicates that target reset has occurred. It is initialized to "0" when "1" is written.

0: No target reset occurred. (Initial value)

1: Target reset occurred

| Bit No. | Bit symbol<br>name | Description (target reset)   |
|---------|--------------------|------------------------------|
| 7 to 2  | -                  | Reserved bits                |
| 1       | RPER               | RAM parity error reset       |
| 0       | FIAR               | Unused ROM area access reset |

### 3.3 Description of Operation

### 3.3.1 Operation of Reset Function

Table 3-2 shows the availability of resets for each cause.

|                  | Table 3-2 Availability of R       |     | acii Caus | e                                 |                             |                          |                   |
|------------------|-----------------------------------|-----|-----------|-----------------------------------|-----------------------------|--------------------------|-------------------|
| Category         | Cause                             | CPU | RAM       | Crystal Oscillation<br>Circuit *1 | Voltage Level<br>Supervisor | Other Peripheral Circuit | System Circuit *2 |
| System reset     | Reset input pin reset (pin reset) | •   | -         | ٠                                 | ٠                           | ٠                        | •                 |
|                  | Power-on reset (POR)              | ٠   | -         | ٠                                 | ٠                           | ٠                        | •                 |
|                  | WDT overflow reset                | ٠   | -         | -                                 | -                           | ٠                        | •                 |
|                  | WDT invalid clear reset           | ٠   | -         | -                                 | -                           | ٠                        | •                 |
|                  | Voltage level supervisor reset    | ٠   | -         | -                                 | -                           | •                        | •                 |
|                  | RAM parity error reset            | ٠   | -         | -                                 | -                           | ٠                        | •                 |
|                  | Unused ROM area access reset      | ٠   | -         | -                                 | -                           | •                        | •                 |
|                  | Command reset in On-chip debug    | •   | -         | -                                 | -                           | •                        | •                 |
| CPU reset        | BRK instruction reset             | ٠   | -         | -                                 | -                           | -                        | -                 |
| Peripheral reset | Block reset                       | -   | -         | -                                 | -                           | •                        | -                 |
|                  | SOFTR reset                       | -   | -         | -                                 | -                           | ٠                        | -                 |

Table 3-2 Availability of Resets for Each Cause

•: Reset available -: Reset unavailable

\*1: Target SFRs are FLMOD, FBUSTAT register. See Chapter 6 for details.

\*2: Power circuit, internal oscillation circuit, start control part, code option control part, etc.

#### [Note]

- The BRK instruction reset only initializes the CPU if ELEVEL is 2 or higher. Peripheral circuits and other circuits are not initialized. Use the pin reset or the watchdog timer (WDT) reset to surely initialize the LSI when an abnormality is detected.
- Command reset in on-chip debug does not reset to crystal oscillation circuit and VLS parts. Do initialization of these functions by writing SFRs on debug, if needed. See Chapter 28 for details.

#### 3.3.2 System Reset Mode

The LSI is transferred to the system reset mode when a reset occurs by any causes, except for resets caused by the block control register (BRECON 0 to 3) and the software reset control register (SOFTRCON) as well as a CPU reset by the BRK instruction.

The transition to the system reset mode has the highest priority over any other processing. Thus any process in progress up until then will be aborted.

In the system reset mode, the following processes are performed.

- The fundamental hardware for the LSI operation, such as the power supply circuit and oscillation circuit, is initialized. In addition, functions chosen by the code option are configured. The INITE bit of the reset status register (RSTAT) is set to "1" if an abnormality occurs during the initialization and configuration. See the Chapter 30 "Code Option" for details of the code option.
- Peripheral circuits, and special function registers (SFRs) with their initial values defined are initialized. See Appendix
   A "Registers" and chapters for respective functions for the initial values of the SFRs.
- 3. The CPU is initialized.
  - All the registers in the CPU are initialized.
  - The contents of addresses 0x0000, 0x0001 in segment 0 of the program memory are set to the stack pointer (SP).
  - The contents of addresses 0x0002, 0x0003 in segment 0 of the program memory are set to the program counter (PC).
- 4. The transition to the program run mode takes place when the reset is released.

See "nX-U16/100 Core Instruction Manual" for details of registers (SP, PC) in the CPU and the BRK instruction.

#### [Note]

• In system reset mode, the contents of data memory (RAM) and SFRs that have an undefined initial value are not initialized. Initialize them by the software.

#### 3.3.3 Reset Input Pin Reset

Asserting the "L" level to the reset input pin causes the reset state, as well as causing the RSTR bit of the reset status register (RSTAT) to be set to "1". Then, negating the reset input pin to the "H" level causes the reset to be released and the program begins to run.

To cause a reset to occur, assert the "L" level which is longer than the reset activation pulse width (P<sub>RST</sub>).

#### 3.3.4 Power-on Reset

The power-on reset occurs when the power  $(V_{DD})$  is turned on, or when the  $V_{DD}$  decreases and stay below the power-on reset trigger voltage  $(V_{PORF})$  for the power-on reset reaction time  $(P_{POR})$ . If the power-on reset occurs, the POR bit of the reset status register (RSTAT) is set to "1".

When the  $V_{DD}$  reaches the power-on reset threshold voltage ( $V_{PORR}$ ) or above, the reset is released and the CPU starts to run with low-speed clock.

See the data sheet of respective products for power-on reset specifications.

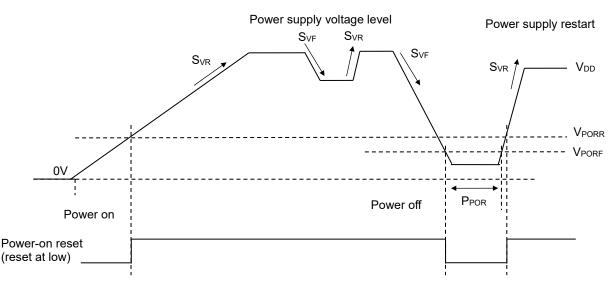



Figure 3-2 Power-on Reset Operation Waveforms

[Note]

 In case of instantaneous power failure and a pulse shorter than the power-on reset reaction time is asserted to V<sub>DD</sub>, MCU may not get reset and it may malfunction. In that case, please have preventive measures such as using bypass capacitor to avoid the instantaneous voltage drop or using pin reset to initialize MCU.

# **Chapter 4 Power Management**

### 4. Power Management

#### 4.1 General Description

ML62Q2500 group have five power management modes and block control function to save the current consumption. The block control function is to control clock supply and reset with respect to each peripheral.

Figure 4-1 shows the general scheme of the regulator.

The regulator generates a constant internal logic voltage ( $V_{DDL}$ ) independent of the variation of  $V_{DD}$  (1.8 V to 5.5 V) using an amplifier for the low power consumption. The  $V_{DDL}$  generated by the regulator is supplied to peripheral circuits such as the internal logic circuit, flash memory, RAM, and oscillation circuit. In order to stabilize the  $V_{DDL}$ , connect the VDDL pin to VSS via a capacitor (1  $\mu$ F).

 $V_{DD}=1.8V \text{ to } 5.5V$ Reference
voltage  $V_{DDL}= 1.15 / 1.45 / 1.55V$   $C_{L}=1\mu F$ 

Figure 4-1 General Scheme of Regulator

#### 4.1.1 Features

- 5 standby modes
  - HALT mode : The CPU stops executing instruction, peripheral circuits continue working.
  - HALT-H mode : The CPU stops executing instruction, high-speed clock oscillation stop and peripheral circuits continue working with low-speed clock only. A releasing time from standby mode is min. 60us.
  - HALT-D mode : The CPU stops executing instruction, high-speed clock oscillation stop and peripheral circuits continue working with low-speed clock. The internal logic voltage ( $V_{DDL}$ ) goes down to reduce the power consumption (RAM data is retained).
  - STOP mode : The CPU stops executing instruction and all internal clocks stop.
- STOP-D mode : The CPU stops executing instruction and all internal clocks stop. The internal logic voltage (V<sub>DDL</sub>) goes down to reduce the power consumption (RAM data is retained).
- Stop code acceptor qualifies for entering STOP/STOP-D mode
- Data of RAM and SFR are retained even in all standby modes
- Clock supply is control-able peripheral by peripheral to reduce the current consumption, by block clock control registers
- Reset is control-able peripheral by peripheral by block reset control registers
- Automatic controlling internal voltage by operating mode and code option.

| Mode                                                           | Vddl          |  |  |  |
|----------------------------------------------------------------|---------------|--|--|--|
| STOP mode                                                      | 1.55V / 1.45V |  |  |  |
| HALT mode                                                      | 1.55V / 1.45V |  |  |  |
| HALT-H mode                                                    | 1.55V / 1.45V |  |  |  |
| Program run mode                                               | 1.55V / 1.45V |  |  |  |
| HALT-D/STOP-D mode<br>(content of RAM and SFR can be retained) | 1.15V         |  |  |  |

### 4.1.2 Configuration

Figure 4-2 shows the transition diagram of the operating state. The bit symbols in the figure are assigned to the standby control register (SBYCON).

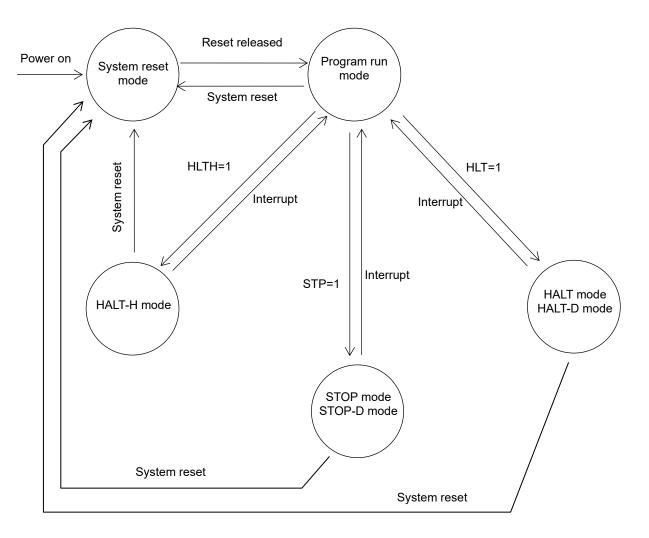



Figure 4-2 Operating State Transition Diagram

Figure 4-3 shows the configuration of the internal power supply.

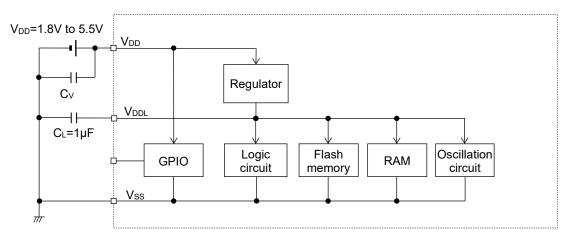



Figure 4-3 Internal Power Supply Configuration

#### 4.1.3 List of Pins

In order to stabilize  $V_{DDL}$ , connect the VDDL pin to VSS via a capacitor (1  $\mu$ F).

| Pin name | I/O | Function                                              |
|----------|-----|-------------------------------------------------------|
| VDDL     | -   | Positive power supply for the internal logic circuits |

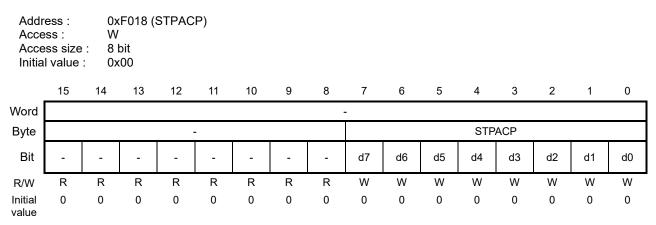
#### [Note]

- In order to improve the noise resistance, place the inter-power supply bypass capacitor (C<sub>ν</sub>) and the internal logic voltage (V<sub>DDL</sub>) capacitor (C<sub>L</sub> : 1 μF) in the vicinity of LSI on the user board using the shortest possible wiring without passing through via holes.
- The internal logic voltage (VDDL pin output) is unavailable to use for an external device voltage.

### 4.2 Description of Registers

### 4.2.1 List of Registers

| Address | Neme                                               | Syn      | nbol     | R/W | Size | Initial |  |
|---------|----------------------------------------------------|----------|----------|-----|------|---------|--|
| Address | Name                                               | Byte     | Word     | R/W | Size | value   |  |
| 0xF018  | Stop code acceptor                                 | STPACP   | -        | W   | 8    | 0x00    |  |
| 0xF019  | Reserved                                           | -        | -        | -   | -    | -       |  |
| 0xF01A  | Standby control register                           | SBYCONL  | CDVCON   | W   | 8/16 | 0x00    |  |
| 0xF01B  | <ul> <li>Standby control register</li> </ul>       | SBYCONH  | SBYCON   | R/W | 8    | 0x00    |  |
| 0xF01C  | Standby prohibition flag register                  | SBYEFLG  | -        | R   | 8    | 0x00    |  |
| 0xF01D  | Reserved                                           | -        | -        | -   | -    | -       |  |
| 0xF05C  | Software reset acceptor                            | SOFTRACP | -        | W   | 8    | 0x00    |  |
| 0xF05D  | Reserved                                           | -        | -        | -   | -    | -       |  |
| 0xF05E  | Software reset control register                    | SOFTRCON | -        | R/W | 8    | 0x00    |  |
| 0xF05F  | Reserved                                           | -        | -        | -   | -    | -       |  |
| 0xF070  | Disclusional register 0                            | BCKCON0L | DOKCONO  | R/W | 8/16 | 0x1F    |  |
| 0xF071  | <ul> <li>Block clock control register 0</li> </ul> | BCKCON0H | BCKCON0  | R/W | 8    | 0x01    |  |
| 0xF072  | Dia da ala ala arategi na sistem d                 | BCKCON1L | DOKOONIA | R/W | 8/16 | 0x03    |  |
| 0xF073  | <ul> <li>Block clock control register 1</li> </ul> | BCKCON1H | BCKCON1  | R/W | 8    | 0x11    |  |
| 0xF074  | Discly clock control register 2                    | BCKCON2L | DOKCONO  | R/W | 8/16 | 0x73    |  |
| 0xF075  | <ul> <li>Block clock control register 2</li> </ul> | BCKCON2H | BCKCON2  | R/W | 8    | 0x08    |  |
| 0xF076  | Dia da ala ala arategi na miatan 2                 | BCKCON3L | DOKOONO  | R/W | 8/16 | 0x01    |  |
| 0xF077  | <ul> <li>Block clock control register 3</li> </ul> | BCKCON3H | BCKCON3  | R/W | 8    | 0x00    |  |
| 0xF078  |                                                    | BRECON0L | DDECONIO | R/W | 8/16 | 0x1F    |  |
| 0xF079  | <ul> <li>Block reset control register 0</li> </ul> | BRECON0H | BRECON0  | R/W | 8    | 0x01    |  |
| 0xF07A  |                                                    | BRECON1L | DDECONI  | R/W | 8/16 | 0x03    |  |
| 0xF07B  | <ul> <li>Block reset control register 1</li> </ul> | BRECON1H | BRECON1  | R/W | 8    | 0x11    |  |
| 0xF07C  |                                                    | BRECON2L | DDECONIC | R/W | 8/16 | 0x73    |  |
| 0xF07D  | <ul> <li>Block reset control register 2</li> </ul> | BRECON2H | BRECON2  | R/W | 8    | 0x08    |  |
| 0xF07E  |                                                    | BRECON3L | DDECONIC | R/W | 8/16 | 0x01    |  |
| 0xF07F  | <ul> <li>Block reset control register 3</li> </ul> | BRECON3H | BRECON3  | R/W | 8    | 0x00    |  |


Table 4-1 shows Availability list of the SFR bit symbols.

| 5                      | 5                         |                        |                    |
|------------------------|---------------------------|------------------------|--------------------|
| T I I A A A 'I I 'I''  |                           |                        | DDEOON 'I          |
| Iable 4-1 Availability | of the SFR bit symbols in | RCT CONIN redister and | RRF(CONIN redister |
|                        |                           | DOLOONIN register and  | DIVEODIVITIOGISIO  |
|                        |                           |                        |                    |

|             | •          | egister / bit                     |          | Available/<br>Unavailable |  |  |  |
|-------------|------------|-----------------------------------|----------|---------------------------|--|--|--|
| Word symbol | Bit symbol | Bit symbol Word symbol Bit symbol |          |                           |  |  |  |
|             | DCKTM0     |                                   | RSETM0   | •                         |  |  |  |
|             | DCKTM1     |                                   | RSETM1   | •                         |  |  |  |
| DOKOONO     | DCKTM2     |                                   | RSETM2   | •                         |  |  |  |
| BCKCON0     | DCKTM3     | BRECON0                           | RSETM3   | •                         |  |  |  |
|             | DCKTM4     |                                   | RSETM4   | •                         |  |  |  |
|             | DCKTMX     |                                   | RSETMX   | •                         |  |  |  |
|             | DCKFTM0    |                                   | RSEFTM0  | •                         |  |  |  |
| BCKCON1     | DCKFTM1    | DDECONIA                          | RSEFTM1  | •                         |  |  |  |
| BCKCONT     | DCKI2CM0   | BRECON1                           | RSEI2CM0 | •                         |  |  |  |
|             | DCKI2CU0   |                                   | RSEI2CU0 | •                         |  |  |  |
|             | DCKSIOF0   |                                   | RSESIOF0 | •                         |  |  |  |
|             | DCKSIO0    |                                   | RSESIO0  | •                         |  |  |  |
|             | DCKUA0     |                                   | RSEUA0   | •                         |  |  |  |
| BCKCON2     | DCKUA1     | BRECON2                           | RSEUA1   | •                         |  |  |  |
|             | DCKUA2     |                                   | RSEUA2   | •                         |  |  |  |
|             | DCKCRC     |                                   | RSECRC   | •                         |  |  |  |
|             | DCKACC     |                                   | RSEACC   | •                         |  |  |  |
| BCKCON3     | DCKSAD     | BRECON3                           | RSESAD   | •                         |  |  |  |

### 4.2.2 Stop Code Acceptor (STPACP)

This is a write-only SFR to be used to change the operating state into the STOP/STOP-D mode. This returns "0x00" for reading.



How to enter the STOP/STOP-D mode:

| Procedure | How to specify the registers                                                   | Description                                      |
|-----------|--------------------------------------------------------------------------------|--------------------------------------------------|
| 1         | Write "0x5n" and "0xAn" (n=arbitrary in 0-F) in sequence into STPACP register. | Enables to enter the STOP/STOP-D mode only once. |
| 2         | Set STP bit of SBYCON register to"1".                                          | STP=1 : Enter the STOP/STOP-D mode               |

Any other instructions can be executed between the instruction that writes "0x5n" to STPACP and the instruction that writes "0xAn". However, if write data other than "0xAn" after writing "0x5n", the procedure gets invalid, so need write "0x5n" again.

#### [Note]

 Writing to the stop code acceptor is invalid on the condition both interrupts enable bits and interrupt request bits are "1", it will not get enabled for entering to the STOP/STOP-D mode.

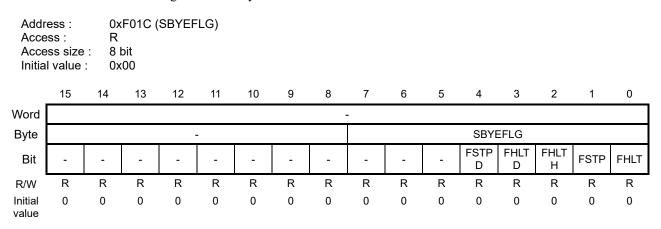
### 4.2.3 Standby Control Register (SBYCON)

This is a write-only SFR to choose a standby mode. This returns "0x0000" for reading.

| Address :       | 0xF01A(SBYCONL/SBYCON), 0xF01B(SBYCONH) |
|-----------------|-----------------------------------------|
| Access :        | R/W                                     |
| Access size :   | 8/16 bit                                |
| Initial value : | 0x0000                                  |
|                 |                                         |

|                  | 15      | 14     | 13 | 12 | 11 | 10 | 9   | 8       | 7 | 6 | 5 | 4 | 3 | 2    | 1   | 0   |
|------------------|---------|--------|----|----|----|----|-----|---------|---|---|---|---|---|------|-----|-----|
| Word             |         | SBYCON |    |    |    |    |     |         |   |   |   |   |   |      |     |     |
| Byte             | SBYCONH |        |    |    |    |    |     | SBYCONL |   |   |   |   |   |      |     |     |
| Bit              | -       | -      | -  | -  | -  | -  | DPM | -       | - | - | - | - | - | HLTH | STP | HLT |
| R/W              | R       | R      | R  | R  | R  | R  | R/W | R       | R | R | R | R | R | W    | W   | W   |
| Initial<br>value | 0       | 0      | 0  | 0  | 0  | 0  | 0   | 0       | 0 | 0 | 0 | 0 | 0 | 0    | 0   | 0   |

When the WDT interrupt or an interrupt enabled in the interrupt enable registers (IE0 to IE7) is generated, each standby mode gets canceled and returns to program run mode.


| Bit No.  | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 10 | -                  | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                               |
| 9        | DPM                | DPM is a bit used to select deep power-down.<br>Set "1" to this bit if using STOP-D or HALT-D mode. This bit does not influence HLTH bit<br>function.<br>It is available setting to DPM bit and HLT/STP bit at once.<br>0: Disabled (Initial value)<br>1: Enabled                                                                                                                                           |
| 8 to 3   | -                  | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                               |
| 2        | HLTH               | HLTH is a bit to stop forcibly the high-speed oscillation and change the operating state into<br>the HALT-H mode. Its wake-up time is shorter than HALT mode.<br>An entering this mode is available if SYSCLK is high speed clock.<br>When using HALT-H mode, set FHRDWN bit in the high-speed clock wake up time setting<br>register too. See "6.3.2.3 HALT-H mode" for wake-up time from the HALT-H mode. |
| 1        | STP                | STP is a bit to change the operating state into the STOP/STOP-D mode. When "1" is written in the STP bit after entering the STOP/STOP-D mode is allowed by using STPACP, the operating state enters the STOP/STOP-D mode.                                                                                                                                                                                   |
| 0        | HLT                | HLT is a bit to change the operating state into the HALT mode.                                                                                                                                                                                                                                                                                                                                              |

[Note]

- The operating state does not enter the standby mode under some conditions. See "4.3.2.6 Note of entering to the standby mode" for detail conditions.
- When an interrupt enabled in the interrupt enable registers (IE0 to IE7) is generated on the condition of MIE flag of the program status word (PSW) is "0", it cancels the standby mode only and the CPU does not go to the interrupt routine. For more details about MIE flag, see "nX-U16/100 Core Instruction Manual".
- Insert two NOP instructions in the next to the instruction of that sets HLT, STP, HLTH and STPD bit to "1". The operation without the two NOP instructions is not guaranteed.

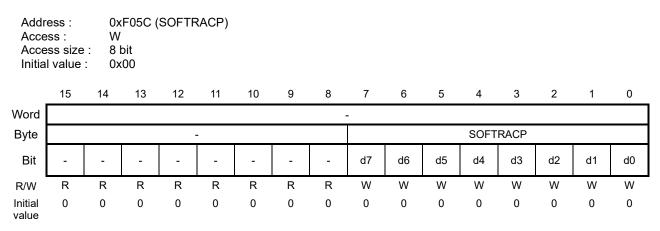
### 4.2.4 Standby Prohibition Flag Register (SBYEFLG)

This is a read-only SFR to indicate availability of entering to standby mode. See "4.3.2.6 Note of entering to the standby mode" for condition that each bit becomes to "1"



Common description of each bits :

It is a flag of an entering to a target standby mode


0: Available (Initial value)

1: Prohibited

| Bit No. | Bit symbol<br>name | Description   |
|---------|--------------------|---------------|
| 7 to 5  | -                  | Reserved bits |
| 4       | FSTPD              | STOP-D mode   |
| 3       | FHLTD              | HALT-D mode   |
| 2       | FHLTH              | HALT-H mode   |
| 1       | FSTP               | STOP mode     |
| 0       | FHLT               | HALT mode     |

### 4.2.5 Software Reset Acceptor (SOFTRACP)

This is a write-only SFR to enable writing to the SOFTCON register. This returns "0x00" for reading.



How to reset collectively the peripheral circuits:

| Procedure | How to specify the registers                                                               | Description                    |
|-----------|--------------------------------------------------------------------------------------------|--------------------------------|
| 1         | Write "0x3n" and "0xCn" (n=arbitrary<br>in 0-F) in sequence into the<br>SOFTRACP register. | Enables SOFTR reset only once. |
| 2         | Set SOFTR bit of the SOFTRCON register to "1".                                             | SOFTR reset state.             |

Any other instructions can be executed between the instruction that writes "0x3n" to SOFTRACP and the instruction that writes "0xCn". However, if write data other than "0xCn" after writing "0x3n", the procedure gets invalid, so need write "0x3n" again.

### 4.2.6 Software Reset Control Register (SOFTRCON)

This is a SFR to reset collectively the all peripheral circuits belong to the BRECONn register (n=0 to 3) and general ports.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/<br>e: 81     | W/ | (SOFTF  | RCON)   |    |   |          |    |           |    |   |   |   |   |          |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|---------|---------|----|---|----------|----|-----------|----|---|---|---|---|----------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14              | 13 | 12      | 11      | 10 | 9 | 8        | 7  | 6         | 5  | 4 | 3 | 2 | 1 | 0        |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |    |         |         |    |   |          | -  |           |    |   |   |   |   |          |
| Byte             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |    |         |         |    |   | SOFTRCON |    |           |    |   |   |   |   |          |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               | -  | -       | -       | -  | - | -        | -  | -         | -  | - | - | - | - | SOF<br>R |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                | R               | R  | R       | R       | R  | R | R        | R  | R         | R  | R | R | R | R | R/W      |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0               | 0  | 0       | 0       | 0  | 0 | 0        | 0  | 0         | 0  | 0 | 0 | 0 | 0 | 0        |
| Bit No.          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                | it symb<br>name | ol |         |         |    |   |          | De | escriptio | on |   |   |   |   |          |
| 7 to 1           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |    | Reserve | ed bits |    |   |          |    |           |    |   |   |   |   |          |
| 0                | SOFTRThis is a bit to reset collectively the all peripheral circuits belong to the BRECONn register<br>(n=0-3) and general ports. Setting "1" to the bit resets the all peripheral circuits and general<br>ports. The SOFTR is automatically reset to "0" after the reset is completed, so check "0"<br>before re-configuring the peripheral circuits.<br>Enable the reset by writing the SOFTRACP register before setting the SOFTR bit to "1". |                 |    |         |         |    |   |          |    |           |    |   |   |   |   |          |

[Note]

• Do not enter the standby mode when the SOFTR bit is "1". Ensure the SOFTR bit is "0" before entering the standby mode.

#### 4.2.7 Block Clock Control Register 0 (BCKCON0)

This is a SFR to control supplying the clock of system, high-speed and low-speed to the peripheral circuits. The power consumption can be reduced by stopping the clock supply for unused peripheral circuits.

|                  |    | R/<br>: 8/* | 0xF070 (BCKCON0L/BCKCON0), 0xF071 (BCKCON0H)<br>R/W<br>8/16 bit<br>0x011F |      |      |    |   |            |      |   |   |            |            |            |            |            |
|------------------|----|-------------|---------------------------------------------------------------------------|------|------|----|---|------------|------|---|---|------------|------------|------------|------------|------------|
|                  | 15 | 14          | 13                                                                        | 12   | 11   | 10 | 9 | 8          | 7    | 6 | 5 | 4          | 3          | 2          | 1          | 0          |
| Word             |    |             |                                                                           |      |      |    |   | BCKC       | CON0 |   |   |            |            |            |            |            |
| Byte             |    |             |                                                                           | BCKC | ON0H |    |   |            |      |   |   | BCKC       | ONOL       |            |            |            |
| Bit              | -  | -           | -                                                                         | -    | -    | -  | - | DCKT<br>MX | -    | - | - | DCKT<br>M4 | DCKT<br>M3 | DCKT<br>M2 | DCKT<br>M1 | DCKT<br>M0 |
| R/W              | R  | R           | R                                                                         | R    | R    | R  | R | R/W        | R    | R | R | R/W        | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0  | 0           | 0                                                                         | 0    | 0    | 0  | 0 | 1          | 0    | 0 | 0 | 1          | 1          | 1          | 1          | 1          |

Common description of each bits :

It is configured supplying clocks to a target peripheral circuit.

- 0: Supplied clock to a target peripheral circuit
- 1: Stop clock to a target peripheral circuit (Initial value)

| Bit No. | Bit symbol<br>name | Description (target peripheral) |
|---------|--------------------|---------------------------------|
| 15 to 9 | -                  | Reserved bits                   |
| 8       | DCKTMX             | 16-bit timer X                  |
| 7       | -                  | Reserved bit                    |
| 6       | -                  | Reserved bit                    |
| 5       | -                  | Reserved bit                    |
| 4       | DCKTM4             | 16-bit timer 4                  |
| 3       | DCKTM3             | 16-bit timer 3                  |
| 2       | DCKTM2             | 16-bit timer 2                  |
| 1       | DCKTM1             | 16-bit timer 1                  |
| 0       | DCKTM0             | 16-bit timer 0                  |

#### 4.2.8 Block Clock Control Register 1 (BCKCON1)

This is a SFR to control supplying the clock of system, high-speed and low-speed to the peripheral circuits. The power consumption can be reduced by stopping the clock supply for unused peripheral circuits.

|                  | 15 | 14 | 13 | 12           | 11   | 10 | 9 | 8            | 7    | 6 | 5 | 4    | 3    | 2 | 1           | 0           |
|------------------|----|----|----|--------------|------|----|---|--------------|------|---|---|------|------|---|-------------|-------------|
| Word             |    |    |    |              |      |    |   | BCKC         | CON1 |   |   |      |      |   |             |             |
| Byte             |    |    |    | BCKC         | ON1H |    |   |              |      |   |   | BCKC | ON1L |   |             |             |
| Bit              | -  | -  | -  | DCKI<br>2CU0 | -    | -  | - | DCKI<br>2CM0 | -    | - | - | -    | -    | - | DCKF<br>TM1 | DCKF<br>TM0 |
| R/W              | R  | R  | R  | R/W          | R    | R  | R | R/W          | R    | R | R | R    | R    | R | R/W         | R/W         |
| Initial<br>value | 0  | 0  | 0  | 1            | 0    | 0  | 0 | 1            | 0    | 0 | 0 | 0    | 0    | 0 | 1           | 1           |

Common description of each bits :

It is configured supplying clocks to a target peripheral circuit.

- 0: Supplied clock to a target peripheral circuit
- 1: Stop clock to a target peripheral circuit (Initial value)

| Bit No.  | Bit symbol<br>name | De                            | escription (target peripheral) |
|----------|--------------------|-------------------------------|--------------------------------|
| 15 to 13 | -                  | Reserved bits                 |                                |
| 12       | DCKI2CU0           | I <sup>2</sup> C Bus Unit 0   |                                |
| 11,10    | -                  | Reserved bits                 |                                |
| 9        | -                  | Reserved bit                  |                                |
| 8        | DCKI2CM0           | I <sup>2</sup> C Bus Master 0 |                                |
| 7        | -                  | Reserved bit                  |                                |
| 6        | -                  | Reserved bit                  |                                |
| 5        | -                  | Reserved bit                  |                                |
| 4        | -                  | Reserved bit                  |                                |
| 3        | -                  | Reserved bit                  |                                |
| 2        | -                  | Reserved bit                  |                                |
| 1        | DCKFTM1            | Functional Timer 1            |                                |
| 0        | DCKFTM0            | Functional Timer 0            |                                |

#### 4.2.9 Block Clock Control Register 2 (BCKCON2)

This is a SFR to control supplying the clock of system, high-speed and low-speed to the peripheral circuits. The power consumption can be reduced by stopping the clock supply for unused peripheral circuits.

|                  |    | R<br>: 8/ | 0xF074 (BCKCON2L/BCKCON2), 0xF075 (BCKCON2H)<br>R/W<br>8/16 bit<br>0x0873 |      |            |    |   |     |      |            |            |            |      |   |             |              |
|------------------|----|-----------|---------------------------------------------------------------------------|------|------------|----|---|-----|------|------------|------------|------------|------|---|-------------|--------------|
|                  | 15 | 14        | 13                                                                        | 12   | 11         | 10 | 9 | 8   | 7    | 6          | 5          | 4          | 3    | 2 | 1           | 0            |
| Word             |    |           |                                                                           |      |            |    |   | BCK | CON2 |            |            |            |      |   |             |              |
| Byte             |    |           |                                                                           | BCKC | ON2H       |    |   |     |      |            |            | BCKC       | ON2L |   |             |              |
| Bit              | -  | -         | DCKA<br>CC                                                                | -    | DCK<br>CRC | -  | - | -   | -    | DCK<br>UA2 | DCK<br>UA1 | DCK<br>UA0 | -    | - | DCKS<br>IO0 | DCKS<br>IOF0 |
| R/W              | R  | R         | R/W                                                                       | R    | R/W        | R  | R | R   | R    | R/W        | R/W        | R/W        | R    | R | R/W         | R/W          |
| Initial<br>value | 0  | 0         | 0                                                                         | 0    | 1          | 0  | 0 | 0   | 0    | 1          | 1          | 1          | 0    | 0 | 1           | 1            |

Common description of each bits :

It is configured supplying clocks to a target peripheral circuit.

- 0: Supplied clock to a target peripheral circuit
- 1: Stop clock to a target peripheral circuit (Initial value)

| Bit No. | Bit symbol<br>name | Description (target peripheral)                            |
|---------|--------------------|------------------------------------------------------------|
| 15      | -                  | Reserved bit                                               |
| 14      | -                  | Reserved bit                                               |
| 13      | DCKACC             | Multiplier/Divider<br>An initial value of this bit is "0". |
| 12      | -                  | Reserved bit                                               |
| 11      | DCKCRC             | CRC Calculator                                             |
| 10 to 8 | -                  | Reserved bits                                              |
| 7       | -                  | Reserved bit                                               |
| 6       | DCKUA2             | UART 2                                                     |
| 5       | DCKUA1             | UART 1                                                     |
| 4       | DCKUA0             | UART 0                                                     |
| 3       | -                  | Reserved bit                                               |
| 2       | -                  | Reserved bit                                               |
| 1       | DCKSIO0            | SSIO 0                                                     |
| 0       | DCKSIOF0           | SSIOF0                                                     |

#### [Note]

The DCKACC bit can be set to "0" when the multiplication/division library "muldivu8.lib" is specified. See a manual of the multiplication/division library for how to use.

#### 4.2.10 Block Clock Control Register 3 (BCKCON3)

This is a SFR to control supplying the clock of system, high-speed and low-speed to the peripheral circuits. The power consumption can be reduced by stopping the clock supply for unused peripheral circuits.

|                  | 15 | 14 | 13 | 12   | 11   | 10 | 9 | 8   | 7    | 6 | 5 | 4    | 3    | 2 | 1 | 0          |
|------------------|----|----|----|------|------|----|---|-----|------|---|---|------|------|---|---|------------|
| Word             |    |    |    |      |      |    |   | BCK | CON3 |   |   |      |      |   |   |            |
| Byte             |    |    |    | BCKC | ON3H |    |   |     |      |   |   | BCKC | ON3L |   |   |            |
| Bit              | -  | -  | -  | -    | -    | -  | - | -   | -    | - | - | -    | -    | - | - | DCKS<br>AD |
| R/W              | R  | R  | R  | R    | R    | R  | R | R   | R    | R | R | R    | R    | R | R | R/W        |
| Initial<br>value | 0  | 0  | 0  | 0    | 0    | 0  | 0 | 0   | 0    | 0 | 0 | 0    | 0    | 0 | 0 | 1          |

Common description of each bits :

It is configured supplying clocks to a target peripheral circuit.

- 0: Supplied clock to a target peripheral circuit
- 1: Stop clock to a target peripheral circuit (Initial value)

| Bit No. | Bit symbol<br>name | Description (target peripheral) |
|---------|--------------------|---------------------------------|
| 15 to 8 | -                  | Reserved bits                   |
| 7       | -                  | Reserved bit                    |
| 6       | -                  | Reserved bit                    |
| 5       | -                  | Reserved bit                    |
| 4       | -                  | Reserved bit                    |
| 3       | -                  | Reserved bit                    |
| 2       | -                  | Reserved bit                    |
| 1       | -                  | Reserved bit                    |
| 0       | DCKSAD             | SA-ADC                          |

#### 4.2.11 Block Reset Control Register 0 (BRECON0)

This is a SFR to control resetting the peripheral circuits.

| Addr<br>Acce<br>Acce<br>Initia | R/<br>: 8/        | 0xF078(BRECON0L/BRECON0), 0xF079(BRECON0H)<br>R/W<br>8/16 bit<br>0x011F |    |    |    |    |   |            |      |   |   |            |            |            |            |            |
|--------------------------------|-------------------|-------------------------------------------------------------------------|----|----|----|----|---|------------|------|---|---|------------|------------|------------|------------|------------|
|                                | 15                | 14                                                                      | 13 | 12 | 11 | 10 | 9 | 8          | 7    | 6 | 5 | 4          | 3          | 2          | 1          | 0          |
| Word                           |                   |                                                                         |    |    |    |    |   | BREC       | CON0 |   |   |            |            |            |            |            |
| Byte                           | BRECON0H BRECON0L |                                                                         |    |    |    |    |   |            |      |   |   |            |            |            |            |            |
| Bit                            | -                 | -                                                                       | -  | -  | -  | -  | - | RSET<br>MX | -    | - | - | RSET<br>M4 | RSET<br>M3 | RSET<br>M2 | RSET<br>M1 | RSET<br>M0 |
| R/W                            | R                 | R                                                                       | R  | R  | R  | R  | R | R/W        | R    | R | R | R/W        | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value               | 0                 | 0                                                                       | 0  | 0  | 0  | 0  | 0 | 1          | 0    | 0 | 0 | 1          | 1          | 1          | 1          | 1          |

Common description of each bits :

It is configured resetting to a target peripheral circuit.

0: Cancel to reset a target peripheral circuit

1: Remain to reset a target peripheral circuit (Initial value)

| Bit No. | Bit symbol name | Description (target peripheral) |
|---------|-----------------|---------------------------------|
| 15 to 9 | -               | Reserved bits                   |
| 8       | RSETMX          | 16-bit timer X                  |
| 7       | -               | Reserved bit                    |
| 6       | -               | Reserved bit                    |
| 5       | -               | Reserved bit                    |
| 4       | RSETM4          | 16-bit timer 4                  |
| 3       | RSETM3          | 16-bit timer 3                  |
| 2       | RSETM2          | 16-bit timer 2                  |
| 1       | RSETM1          | 16-bit timer 1                  |
| 0       | RSETM0          | 16-bit timer 0                  |

### 4.2.12 Block Reset Control Register 1 (BRECON1)

This is a SFR to control resetting the peripheral circuits.

| Address :<br>Access :<br>Access size :<br>Initial value : |    | R/<br>: 8/        | 0xF07A (BRECON1L/BRECON1), 0xF07B (BRECON1H)<br>R/W<br>8/16 bit<br>0x1103 |              |    |    |   |              |      |   |   |   |   |   |             |             |
|-----------------------------------------------------------|----|-------------------|---------------------------------------------------------------------------|--------------|----|----|---|--------------|------|---|---|---|---|---|-------------|-------------|
|                                                           | 15 | 14                | 13                                                                        | 12           | 11 | 10 | 9 | 8            | 7    | 6 | 5 | 4 | 3 | 2 | 1           | 0           |
| Word                                                      |    |                   |                                                                           |              |    |    |   | BREC         | CON1 |   |   |   |   |   |             |             |
| Byte                                                      |    | BRECON1H BRECON1L |                                                                           |              |    |    |   |              |      |   |   |   |   |   |             |             |
| Bit                                                       | -  | -                 | -                                                                         | RSEI<br>2CU0 | -  | -  | - | RSEI<br>2CM0 | -    | - | - | - | - | - | RSEF<br>TM1 | RSEF<br>TM0 |
| R/W                                                       | R  | R                 | R                                                                         | R/W          | R  | R  | R | R/W          | R    | R | R | R | R | R | R/W         | R/W         |
| Initial<br>value                                          | 0  | 0                 | 0                                                                         | 1            | 0  | 0  | 0 | 1            | 0    | 0 | 0 | 0 | 0 | 0 | 1           | 1           |

Common description of each bits :

It is configured resetting to a target peripheral circuit.

0: Cancel to reset a target peripheral circuit

1: Remain to reset a target peripheral circuit (Initial value)

| Bit No.  | Bit symbol name | Description (target peripheral) |
|----------|-----------------|---------------------------------|
| 15 to 13 | -               | Reserved bits                   |
| 12       | RSEI2CU0        | I <sup>2</sup> C Bus Unit 0     |
| 11,10    | -               | Reserved bits                   |
| 9        | -               | Reserved bit                    |
| 8        | RSEI2CM0        | I <sup>2</sup> C Bus Master 0   |
| 7        | -               | Reserved bit                    |
| 6        | -               | Reserved bit                    |
| 5        | -               | Reserved bit                    |
| 4        | -               | Reserved bit                    |
| 3        | -               | Reserved bit                    |
| 2        | -               | Reserved bit                    |
| 1        | RSEFTM1         | Functional Timer 1              |
| 0        | RSEFTM0         | Functional Timer 0              |

#### 4.2.13 Block Reset Control Register 2 (BRECON2)

This is a SFR to control resetting the peripheral circuits.

| Address :0xF07C(BRECON2L/BRECON2), 0xF07D(BRECON2H)Access :R/WAccess size :8/16 bitInitial value :0x0873 |    |    |            |      |            |    |   |      |      |            |            |            |      |   |             |              |
|----------------------------------------------------------------------------------------------------------|----|----|------------|------|------------|----|---|------|------|------------|------------|------------|------|---|-------------|--------------|
|                                                                                                          | 15 | 14 | 13         | 12   | 11         | 10 | 9 | 8    | 7    | 6          | 5          | 4          | 3    | 2 | 1           | 0            |
| Word                                                                                                     |    |    |            |      |            |    |   | BREG | CON2 |            |            |            |      |   |             |              |
| Byte                                                                                                     |    |    |            | BREC | ON2H       |    |   |      |      |            |            | BREC       | ON2L |   |             |              |
| Bit                                                                                                      | -  | -  | RSEA<br>CC | -    | RSEC<br>RC | -  | - | -    | -    | RSEU<br>A2 | RSEU<br>A1 | RSEU<br>A0 | -    | - | RSES<br>IO0 | RSES<br>IOF0 |
| R/W                                                                                                      | R  | R  | R/W        | R    | R/W        | R  | R | R    | R    | R          | R/W        | R/W        | R    | R | R/W         | R/W          |
| Initial<br>value                                                                                         | 0  | 0  | 0          | 0    | 1          | 0  | 0 | 0    | 0    | 1          | 1          | 1          | 0    | 0 | 1           | 1            |

Common description of each bits :

It is configured resetting to a target peripheral circuit.

0: Cancel to reset a target peripheral circuit

1: Remain to reset a target peripheral circuit (Initial value)

| Bit No. | Bit symbol name | Description (target peripheral)                            |
|---------|-----------------|------------------------------------------------------------|
| 15      | -               | Reserved bit                                               |
| 14      | -               | Reserved bit                                               |
| 13      | RSEACC          | Multiplier/Divider<br>An initial value of this bit is "0". |
| 12      | -               | Reserved bit                                               |
| 11      | RSECRC          | CRC Calculator                                             |
| 10 to 8 | -               | Reserved bits                                              |
| 7       | -               | Reserved bit                                               |
| 6       | RSEUA2          | UART 2                                                     |
| 5       | RSEUA1          | UART 1                                                     |
| 4       | RSEUA0          | UART 0                                                     |
| 3       | -               | Reserved bit                                               |
| 2       | -               | Reserved bit                                               |
| 1       | RSESIO0         | SSIO 0                                                     |
| 0       | RSESIOF0        | SSIOF0                                                     |

#### [Note]

The RSEACC bit can be set to "0" when the multiplication/division library "muldivu8.lib" is specified. See a manual of the multiplication/division library for how to use.

#### 4.2.14 Block Reset Control Register 3 (BRECON3)

This is a SFR to control resetting the peripheral circuits.

| Address :0xF07E(BRECON3L/BRECON3), 0xF07F(BRECON3H)Access :R/WAccess size :8/16 bitInitial value :0x0001 |    |    |    |      |      |    |   |     |      |   |   |      |      |   |   |            |
|----------------------------------------------------------------------------------------------------------|----|----|----|------|------|----|---|-----|------|---|---|------|------|---|---|------------|
|                                                                                                          | 15 | 14 | 13 | 12   | 11   | 10 | 9 | 8   | 7    | 6 | 5 | 4    | 3    | 2 | 1 | 0          |
| Word                                                                                                     |    |    |    |      |      |    |   | BRE | CON3 |   |   |      |      |   |   |            |
| Byte                                                                                                     |    |    |    | BREC | ON3H |    |   |     |      |   |   | BREC | ON3L |   |   |            |
| Bit                                                                                                      | -  | -  | -  | -    | -    | -  | - | -   | -    | - | I | -    | -    | - | - | RSES<br>AD |
| R/W                                                                                                      | R  | R  | R  | R    | R    | R  | R | R   | R    | R | R | R    | R    | R | R | R/W        |
| Initial<br>value                                                                                         | 0  | 0  | 0  | 0    | 0    | 0  | 0 | 0   | 0    | 0 | 0 | 0    | 0    | 0 | 0 | 1          |

Common description of each bits :

It is configured resetting to a target peripheral circuit.

0: Cancel to reset a target peripheral circuit

1: Remain to reset a target peripheral circuit (Initial value)

| Bit No. | Bit symbol name | Description (target peripheral) |
|---------|-----------------|---------------------------------|
| 15 to 8 | -               | Reserved bits                   |
| 7       | -               | Reserved bit                    |
| 6       | -               | Reserved bit                    |
| 5       | -               | Reserved bit                    |
| 4       | -               | Reserved bit                    |
| 3       | -               | Reserved bit                    |
| 2       | -               | Reserved bit                    |
| 1       | -               | Reserved bit                    |
| 0       | RSESAD          | SA-ADC                          |

#### 4.3 Description of Operation

#### 4.3.1 Program Run Mode

The program run mode is the state where the CPU executes instructions sequentially.

When a reset is released after the reset is generated, the operating state is transferred from the system reset mode to the program run mode.

In addition, if an interrupt request is generated during a standby mode, the mode shifts back to the program run mode. See Chapter 3 "Reset Function" for the system reset mode.

#### 4.3.2 Standby Mode

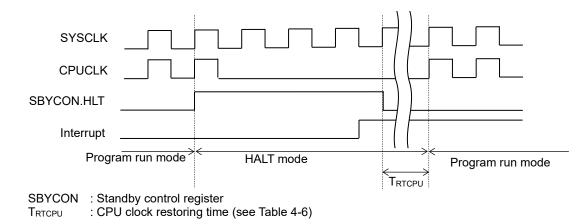
#### 4.3.2.1 HALT Mode

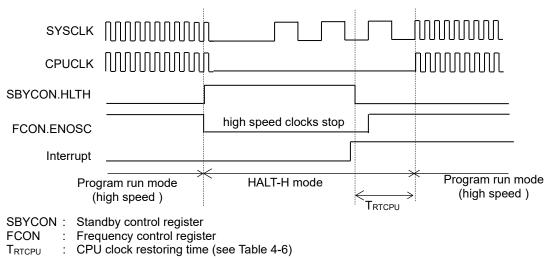
The HALT mode is the state where the CPU stops and only the peripheral circuits remain in operation with previous clock condition (LSCLK0 or HSCLK) for the system clock (SYSCLK) chosen before entering the HALT mode. See "4.3.2.8 Operation of Each Function in Standby Mode" for the operation of each function in the HALT mode.

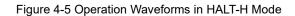
When "1" is written to the HLT bit of the SBYCON register with DRM bit = "0", the operating state enters the HALT mode. It is avilable to set DPM bit and HLT bit at once.

When a WDT interrupt or an interrupt enabled in registers IE0 to IE7 occurs, the HALT mode is released at the rising edge of the next SYSCLK, then the mode shifts back to the program run mode.

Figure 4-4 shows operation waveforms in the HALT mode.





Figure 4-4 Operation Waveforms in HALT Mode


#### 4.3.2.2 HALT-H Mode

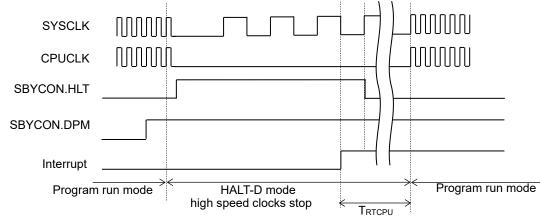
In the HALT-H mode, high speed clocks (HSCLK/HSOCLK/HCKO) is forcibly stopped, the CPU stops, and only peripheral circuits remain in operation with SYSCLK in the LSCLK0 state. Note that the peripheral circuits in operation with high speed clocks stop operating in the HALT-H mode. It can be used as a short standby for intermittent operation. See "4.3.2.8 Operation of Each Function in Standby Mode" for operation of each function in the HALT-H mode. When "1" is written in the HLTH bit of the SBYCON register, the operating state enters the HALT-H mode. When a WDT interrupt or an interrupt enabled in registers IE0 to IE7 occurs, the HALT-H mode is released at the rising edge of the next SYSCLK, HSCLK is forcibly enabled, and the mode shifts back to the program run mode with the SYSCLK in the HSCLK state.

If the low-speed clock (LSCLK) is selected (SELSCLK="0") before entering the HALT-H mode, an entrying HALT-H is ignored.

Figure 4-5 shows operation waveforms in the HALT-H mode.






#### 4.3.2.3 HALT-D Mode

In the HALT-D mode, high speed clocks (HSCLK/HSOCLK/HCKO) is forcibly stopped, the CPU stops, and only some peripheral circuits remain in operation with SYSCLK in the LSCLK0 state. Note that the peripheral circuits in operation with high speed clocks stop operating in the HALT-D mode. It can be used as a long standby. See "4.3.2.8 Operation of Each Function in Standby Mode" for operation of each function in the HALT-D mode.

When "1" is written in the HLT bit of the SBYCON register with DRM bit = "1", the operating state enters the HALT-D mode. It is avilable to set DPM bit and HLT bit at once.

When a WDT interrupt or an interrupt enabled in registers IE0 to IE7 occurs, the HALT-H mode is released at the rising edge of the next SYSCLK, HSCLK is forcibly enabled, and the mode shifts back to the program run mode with the SYSCLK chosen before entering the HALT-D mode.

Figure 4-6 shows operation waveforms in the HALT-D mode.



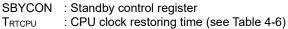



Figure 4-6 Operation Waveforms in HALT-D Mode

#### 4.3.2.4 STOP Mode

The STOP mode is the state where all clocks are forcibly stopped, and the CPU and the peripheral circuits which need the clock to operate stop. See "4.3.2.8 Operation of Each Function in Standby Mode" for operation of each function in the STOP mode.

To enter the STOP mode, write "0x5n" and "0xAn" (n = arbitrary) in this order to the STPACP register to enable the transition to the STOP/STOP-D mode, then write "1" to the STP bit of the SBYCON register with DRM bit = "0". It is avilable to set DPM bit and STP bit at once.

The STOP mode is released by the external interrupts, voltage level supervisor (VLS) or interrupt requests from the  $I^2C$  bus unit (slave). The operating state returns to the program run mode with the SYSCLK chosen before entering the STOP mode.

Figure 4-7 shows STOP mode operation waveforms.

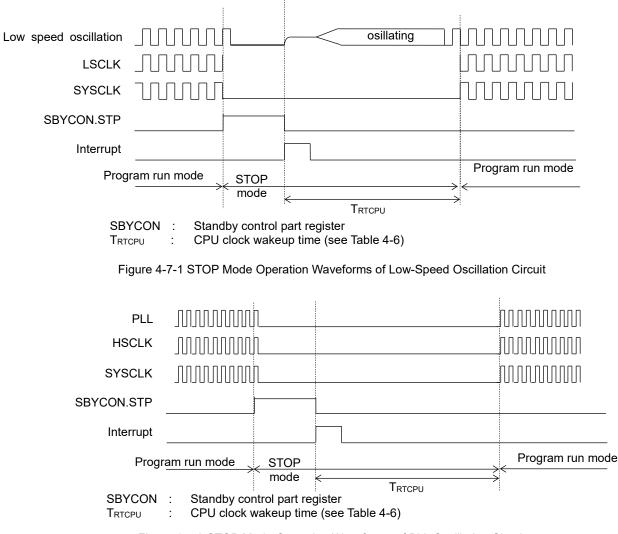



Figure 4-7-2 STOP Mode Operation Waveforms of PLL Oscillation Circuit

#### 4.3.2.5 STOP-D Mode

The STOP-D mode has, in addition to the functionality of the STOP mode described in the previous section, an additional control function to decrease the internal logic voltage ( $V_{DDL}$ ). See "4.3.2.8 Operation of Each Function in Standby Mode" for operation of each function in the STOP-D mode.

To enter the STOP-D mode, write "0x5n" and "0xAn" (n = arbitrary) in this order to the STPACP register to enable the transition to the STOP/STOP-D mode, then write "1" to the STP bit of the SBYCON register with DRM bit = "0". It is avilable to set DPM bit and STP bit at once.

The STOP-D mode is released by the external interrupts, voltage level supervisor (VLS) or interrupt requests from the  $I^2C$  bus unit (slave). The operating state returns to the program run mode with the SYSCLK chosen before entering the STOP mode.

The I<sup>2</sup>C bus unit (slave) operation differs from STOP mode. See Chapter 13 "I<sup>2</sup>C bus".

Figure 4-7 shows STOP mode operation waveforms.

#### 4.3.2.6 Note of entering to the standby mode

In the following condition, an entering standby mode is canceled, program run mode is continued. An availability of entering to standby mode is confirmed by monitoring a target bit in SBYEFLG register. Table 4-2 shows availability of entering to standby mode.

| Condition                                                                                                                                         | FSTPD | FHLTD | FHLTH | FSTP | FHLT |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|------|------|
| When setting some bits of SBYCONL register at the same time.                                                                                      | 0     | 0     | 0     | 0    | 0    |
| When System clock is selected LSCLK0.                                                                                                             | 0     | 0     | 1     | 0    | 0    |
| When occurring the interrupt request to CPU.<br>Its status is that both interrupt enable register and<br>interrupt request register are asserted. | 1     | 1     | 1     | 1    | 1    |
| When accepter is disabled by SBYACP.                                                                                                              | 1     | 0     | 0     | 1    | 0    |
| When A/D conversion of SA-ADC in progress.                                                                                                        | 1     | 0     | 0     | 1    | 0    |
| When operating single mode of VLS.                                                                                                                | 1     | 0     | 0     | 1    | 0    |
| When waiting for stability time of supervisor mode of VLS.                                                                                        | 1     | 0     | 0     | 1    | 0    |
| When erasing/programming for data flash memory.                                                                                                   | 1     | 1     | 1     | 1    | 0    |

#### Table 4-2 availability of entering to standby mode (1 : not available, 0 : available)

If the high-speed clock stops when some peripherals are operating with high-speed clock (SA-ADC conversion or PWM output by Functional timer), there is a possibility of unintending current flow, depending on the timing of the stop. This high-speed clock stopping includes HALT-H entry.

#### 4.3.2.7 Note on Return Operation from Standby Mode

The operation of returning the standby mode is caused by the interrupt level (ELEVEL) of the program status word (PSW), master interrupt enable flag (MIE), the contents of the register (IE0 to IE7), non-maskable interrupt, or maskable interrupt. The operation varies depending on the cause. See "nX-U16/100 Core Instruction Manual" for details of PSW and Chapter 5 "Interrupts" for IE and IRQ registers respectively. Tables 4-3 shows the return operations from the standby mode for non-maskable interrupt and maskable interrupt respectively.

| ELEVEL | MIE | IEn.m | IRQn.m | Return operation from standby mode                                                                                                                                                                                 |
|--------|-----|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Х      | Х   | -     | 0      | Not returned from the standby mode.                                                                                                                                                                                |
| 3      | x   | -     | 1      | After returning from the standby mode, the program operation restarts<br>from the instruction next to the instruction that enters the standby<br>mode. The program operation does not go to the interrupt routine. |
| 0,1,2  | x   | -     | 1      | After returning from the standby mode, the program operation restarts<br>from the instruction next to the instruction that enters the standby<br>mode. Then the program operation goes to the interrupt routine.   |

n=0 to 7, m=0 to 7. X: Value-independent

|        | Table 4-3-2 Return Operation from Standby Mode (for Maskable Interrupt) |       |        |                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| ELEVEL | MIE                                                                     | IEn.m | IRQn.m | Return operation from standby mode                                                                                                                                                                         |  |  |  |  |  |  |  |
| Х      | Х                                                                       | Х     | 0      | Not returned from the standby made                                                                                                                                                                         |  |  |  |  |  |  |  |
| Х      | Х                                                                       | 0     | 1      | Not returned from the standby mode.                                                                                                                                                                        |  |  |  |  |  |  |  |
| Х      | 0                                                                       | 1     | 1      | After returning from the standby mode, the program operation                                                                                                                                               |  |  |  |  |  |  |  |
| 2,3    | 1                                                                       | 1     | 1      | restarts from the instruction next to the instruction that enters the standby mode. The program operation does not go to the interrupt routine.                                                            |  |  |  |  |  |  |  |
| 0,1    | 1                                                                       | 1     | 1      | After returning from the standby mode, the program operation restarts from the instruction next to the instruction that enters the standby mode. Then the program operation goes to the interrupt routine. |  |  |  |  |  |  |  |

n=0 to 7, m=0 to 7. X: Value-independent

The ELEVEL of PSW has bits that indicate the state of interrupt process performed by the CPU It is set by the hardware when transferring to the interrupt process or returning from the interrupt.

| Table 4-4 State of CPU-Processed Interrupt Indicated by ELEVEL |                                                                                           |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| ELEVEL value State of CPU-processed interrupt                  |                                                                                           |  |  |  |  |  |  |  |  |
| 0                                                              | Indicates that the CPU is not processing any interrupt (non-maskable interrupt, maskable  |  |  |  |  |  |  |  |  |
| 0                                                              | interrupt, software interrupt).                                                           |  |  |  |  |  |  |  |  |
| 1                                                              | Indicates that the CPU is processing a maskable or software interrupt.                    |  |  |  |  |  |  |  |  |
| 2                                                              | Indicates that the CPU is processing a non-maskable interrupt.                            |  |  |  |  |  |  |  |  |
| 3                                                              | Indicates that the CPU is processing an emulator-dedicated interrupt. Usually this is not |  |  |  |  |  |  |  |  |
| 3                                                              | used in the software.                                                                     |  |  |  |  |  |  |  |  |

#### [Note]

Since up to two instructions are executed during the period between the release of standby mode and a transition to interrupt processing, place two NOP instructions next to the instruction set for the standby mode. When a master interrupt enable (MIE) flag of the program status word (PSW) in the nX-U16/100 CPU core is "1", following the execution of the two NOP instructions, the interrupt transition cycle will be executed and execution of the instruction for interrupt routine begins. If MIE is "0", following the execution of the two NOP instructions, the instruction execution is continued from the one that follows the NOP instruction without transition to the interrupt.

#### 4.3.2.8 Operation of Each Function in Standby Mode

Table 4-5 shows the state of each function block in the standby mode.

| Function blocks                                                  | HALT   | HALT-H | HALT-D | STOP        | STOP-D |
|------------------------------------------------------------------|--------|--------|--------|-------------|--------|
| Low speed oscillation (Internal RC oscillation)                  | •      | •      | •      | -           | -      |
| Low speed oscillation (crystal or external input)                | •      | •      | •      | -           | -      |
| High speed oscillation (PLL)                                     | •      | -      | -      | -           | -      |
| CPU                                                              | -      | -      | -      | -           | -      |
| RAM                                                              | Retain | Retain | Retain | Retain      | Retain |
| WDT; Watchdog timer                                              | •      | •      | •      | -           | -      |
| External interrupt                                               | •      | •*2    | •*2    | ●*1         | •*1    |
| Low-speed time base counter                                      | •      | •      | •      | -           | -      |
| 16-bit timer                                                     | •      | •      | •      | -*5         | -*5    |
| Functional timer                                                 | •      | •      | -*5    | -*5         | -*5    |
| UART                                                             | •      | •      | -      | -           | -      |
| SSIO (Master)                                                    | •      | •*3    | -      | -           | -      |
| SSIO (Slave)                                                     | •      | •      | -*5    | -*5         | -*5    |
| SSIO with FIFO (Master)                                          | •      | •*3    | -      | -           | -      |
| SSIO with FIFO (Slave)                                           | •      | •*3    | -      | -           | -      |
| I <sup>2</sup> C bus unit (Master) / I <sup>2</sup> C bus master | •      | •*3    | -      | -           | -      |
| I <sup>2</sup> C bus unit (Slave)                                | •      | •      | •*4    | •*4         | •*4    |
| SA-ADC; Successive approximation type A/D converter              | •      | •      | -      | -           | -      |
| VLS                                                              | •      | •      | •      | <b>●</b> *1 | ●*1    |
| BGO operation (erasing/programming for data flash memory)        | •      | -      | -      | -           | -      |
| CRC calculator                                                   | •      | •      | -      | -           | -      |
| Multiplier/Divider                                               | -      | -      | -      | -           | -      |

| Table 4-5 State of Each Function in Standby Mode |
|--------------------------------------------------|
| Operable - Not operable                          |

\*1 : If a sampling function is selected, it is forcibly disabled.

\*2 : If a sampling function with high speed clock is selected, it is forcibly disabled.

\*3 : System clock becomes low speed, so communication speed is influenced.

\*4 : It is available to wake up by coincidence of slave address. A system clock supply is needed for communication after wake up.

\*5 : Internal clocks is stop. If external clock is selected, the peripheral circuit operates. However its operation is not supported.

#### 4.3.2.9 Wake-up Time from Standby Mode

Table 4-6 shows the wake-up time (restoring time) from the standby modes. See Chapter 6 "Clock Generation Circuit" for details of the FHWUPT register.

| Table 4-6 Wake-up Time from Standby Mode (typ.) |                                                                       |                          |                                                    |                                                                  |           |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------|--------------------------|----------------------------------------------------|------------------------------------------------------------------|-----------|--|--|--|--|
| Function                                        | Condition                                                             | CPU clock restoring time | Low-speed clock<br>restoring time<br>(Low-speed RC | High-speed clock restoring time (PLI<br>oscillation)<br>[TRTPLL] |           |  |  |  |  |
|                                                 |                                                                       | [T <sub>RTCPU</sub> ]    | oscillation)<br>[T <sub>RTLS</sub> ]               | FHWUPT=0x01 FHWUPT=0                                             |           |  |  |  |  |
|                                                 | Low-speed CPU clock<br>High-speed clock OFF<br>No CRC calculation     | Approx.90µs              |                                                    | Stop                                                             | ped       |  |  |  |  |
| HALT<br>mode                                    | Low-speed CPU clock<br>High-speed clock ON<br>or with CRC calculation | Approx.60µs              | Operation<br>continued                             | Operation continued                                              |           |  |  |  |  |
|                                                 | High-speed CPU clock                                                  | -                        |                                                    |                                                                  |           |  |  |  |  |
| HALT-H                                          | No CRC calculation                                                    | T <sub>RTPLL</sub> +15us | Operation                                          | Approx.45µs                                                      | Max.2ms   |  |  |  |  |
| mode                                            | With CRC calculation                                                  | T <sub>RTPLL</sub> +15us | continued                                          | Approx.60µs                                                      | Max.2ms   |  |  |  |  |
| HALT-D                                          | Low-speed CPU clock                                                   | Approx.300µs             | Operation                                          | Approx 250up                                                     | NA 0.5    |  |  |  |  |
| mode                                            | High-speed CPU clock                                                  | T <sub>RTPLL</sub>       | continued                                          | Approx.350µs                                                     | Max.2.5ms |  |  |  |  |
| STOP/                                           | Low-speed CPU clock                                                   | T <sub>RTLS</sub>        |                                                    |                                                                  | Max.4ms   |  |  |  |  |
| STOP-D<br>mode                                  | High-speed CPU clock                                                  | TRTPLL                   | Approx.3ms                                         | Approx.3ms                                                       |           |  |  |  |  |

#### Table 4-6 Wake-up Time from Standby Mode (typ.)

#### [Note]

• When the FHWUPT register is set to "0x01", the frequency of PLL oscillation clock gradually increases and reaches the target frequency chosen by the code option before approx. 2 ms elapse. The PLL oscillation clock during this time period can be used for the SYSCLK, however, accuracy of the frequency is not guaranteed.

#### 4.3.3 Block Control Function

ML62Q2500 group has the block clock control function, which stops clock supply for each peripheral circuit to reduce current consumption, and the block reset control function to reset each peripheral circuit.

When setting each bit of the BCKCONn registers (n=0 to 3) to "1", the clock supply to the corresponding peripheral circuits stops, and the current consumption is reduced.

When setting each bit of the BRECONn registers (n=0 to 3) to "1", the corresponding peripheral circuits are reset and those SFRs are set with initial values.

Table 4-7 shows the list of peripheral circuits controllable with the block control function and control registers.

| Derinherel eireuit                          |                    | ontrol function   | Block reset co     | Software reset function |                   |
|---------------------------------------------|--------------------|-------------------|--------------------|-------------------------|-------------------|
| Peripheral circuit                          | SFR<br>word symbol | SFR<br>bit symbol | SFR<br>word symbol | SFR<br>bit symbol       | SFR<br>bit symbol |
| 16-bit timer 0                              |                    | DCKTM0            |                    | RSETM0                  |                   |
| 16-bit timer 1                              |                    | DCKTM1            |                    | RSETM1                  |                   |
| 16-bit timer 2                              | BCKCON0            | DCKTM2            | BRECON0            | RSETM2                  |                   |
| 16-bit timer 3                              | BCRCONU            | DCKTM3            | BRECONU            | RSETM3                  |                   |
| 16-bit timer 4                              |                    | DCKTM4            |                    | RSETM4                  |                   |
| 16 bit timer X                              |                    | DCKTMX            |                    | RSETMX                  |                   |
| Functional timer 0                          |                    | DCKFTM0           |                    | RSEFTM0                 |                   |
| Functional timer 1                          | BCKCON1            | DCKFTM1           | BRECON1            | RSEFTM1                 |                   |
| I <sup>2</sup> C bus master 0               | BCKCONT            | DCKI2CM0          |                    | RSEI2CM0                |                   |
| I <sup>2</sup> C bus unit 0                 |                    | DCKI2CU0          | -                  | RSEI2CU0                | SOFTR*1           |
| SSIOF 0                                     |                    | DCKSIOF0          |                    | RSESIO0                 |                   |
| SSIO 0                                      |                    | DCKSIO0           | -                  | RSESIOF0                |                   |
| UART 0                                      |                    | DCKUA0            |                    | RSEUA0                  |                   |
| UART 1                                      | BCKCON2            | DCKUA1            | BRECON2            | RSEUA1                  |                   |
| UART 2                                      |                    | DCKUA2            | ]                  | RSEUA2                  |                   |
| CRC calculator                              |                    | DCKCRC            | ]                  | RSECRC                  |                   |
| Multiplier/Divider                          |                    | DCKACC            |                    | RSEACC                  |                   |
| Successive approximation type A/D converter | BCKCON3            | DCKSAD            | BRECON3            | RSESAD                  |                   |

Table 4-7 List of Peripheral Circuits and Control Registers

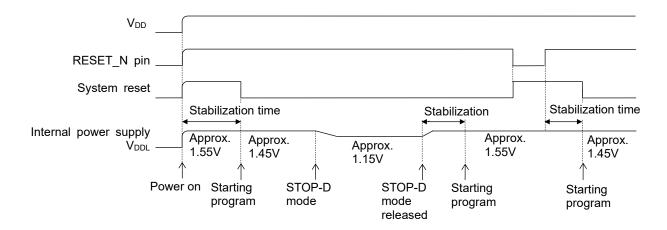
\*1 : SOFTR resets SFRs for general purpose ports setting too.

After the system reset is released, operation of each peripheral circuit becomes enabled.

To use the peripheral circuits, release the reset on the peripheral circuit by setting the bit of the BCKCONn register to "0", then setting the bit of the BRECONn register to "0".

Also, setting the bit of the BRECONn register to "1" only causes a reset to occur while retaining clock supply, enabling each peripheral circuit to be initialized.

In the state where clock supply to each peripheral circuit is suspended or in the reset state, writing to SFRs of corresponding peripheral circuits is disabled. The initial values are read for reading the SFRs of peripheral circuits in the reset state. However reafing the SFRs of UARTs in the clock stopping state returns always "0x00".


#### [Note]

If the clock supply is only stopped without resetting each peripheral circuit using the block control function, it may cause the output levels of the timer and communication pins to be fixed, causing the excess current to flow. Also, in the successive approximation type A/D converter, the circuits may stop their function with the current kept flowing.

#### 4.3.4 Internal Power Supply Voltage

After power-on,  $V_{DDL}$  becomes approximately 1.55 V, then becomes approximately 1.45 V at program run mode. The management circuit controls  $V_{DDL}$  and a current performance of regulator to reduce a power consumption. The codeoption VLMD can fix the  $V_{DDL}$  to 1.55V except in the STOP-D/HALT-D mode.

Figure 4-8 shows the operation waveforms of the regulator. Table 4-8 shows V<sub>DDL</sub> for operating mode.



| Figure 4-8              | Regulator | Operation | Waveforms |
|-------------------------|-----------|-----------|-----------|
| riguic <del>-</del> 0 i | logulator | operation | vavoionno |

|                                                    | VDDL                    |                                        |                                         |        |  |  |  |  |
|----------------------------------------------------|-------------------------|----------------------------------------|-----------------------------------------|--------|--|--|--|--|
| Mode                                               |                         | VLMD=1                                 |                                         |        |  |  |  |  |
|                                                    | High speed<br>clock off | High speed clock on<br>with PLL1M mode | High speed clock on with PLL16/24M mode | VLMD=0 |  |  |  |  |
| STOP mode                                          | 1.45V                   | 1.45V                                  | 1.55V                                   | 1.55V  |  |  |  |  |
| HALT mode                                          | 1.45V                   | 1.45V                                  | 1.55V                                   | 1.55V  |  |  |  |  |
| HALT-H mode                                        | 1.45V                   | 1.45V                                  | 1.45V                                   | 1.55V  |  |  |  |  |
| Program run mode                                   | 1.45V                   | 1.45V                                  | 1.55V                                   | 1.55V  |  |  |  |  |
| HALT-D/STOP-D mode                                 | 1.15V                   | 1.15V                                  | 1.15V                                   | 1.15V  |  |  |  |  |
| At erasing/programming FLASH<br>(FLASHSLF.FSELF=1) | -                       | 1.55V                                  | 1.55V                                   | 1.55V  |  |  |  |  |

| Table 4-8 VDDL | for opera | ating mode |
|----------------|-----------|------------|
|----------------|-----------|------------|

# **Chapter 5 Interrupts**

### 5. Interrupt

#### 5.1 General Description

ML62Q2500 group has the non-maskable interrupt, maskable interrupts and the software interrupt (SWI). For details of each interrupt, see the corresponding Chapters. See Chapter 29 "Safety Function" for the MCU status interrupt. See "Table 1-2 Main Function List" to confirm the presence/absence of function in each product.

#### 5.1.1 Features

- Master Interrupt Enable (MIE) flag enables or disables collectively the all maskable interrupts. For more details about MIE, see "nX-U16/100 Core Instruction Manual".
- Each maskable interrupt has the enable flag in the register IE0 to IE7.
- The occurrence of interrupt request is confirmable by checking the request flag in IRQ registers.
- The occurrence of interrupt is makable by setting each request flag by the software in IRQ registers.
- Four interrupt levels are available for each maskable interrupt.

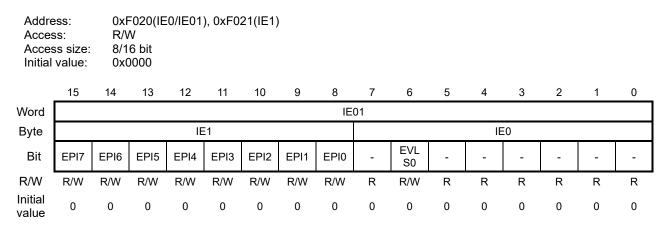
#### 5.2 Description of Registers

Writing to bits of unequipped interrupt is not available. They return 0x0 for reading. See to Table 5-1 for available interrupt.

#### 5.2.1 List of Registers

| A dalama a a | News                                                   | Symbo | ol name |     | 0:   | Initial |  |
|--------------|--------------------------------------------------------|-------|---------|-----|------|---------|--|
| Address      | Name                                                   | Byte  | Word    | R/W | Size | value   |  |
| 0xF020       | Interment on oble register 04                          | IE0   | 1504    | R/W | 8/16 | 0x00    |  |
| 0xF021       | <ul> <li>Interrupt enable register 01</li> </ul>       | IE1   | - IE01  | R/W | 8    | 0x00    |  |
| 0xF022       |                                                        | IE2   | 1500    | R/W | 8/16 | 0x00    |  |
| 0xF023       | <ul> <li>Interrupt enable register 23</li> </ul>       | IE3   | - IE23  | R/W | 8    | 0x00    |  |
| 0xF024       | Interment on oble register 45                          | IE4   | 15.45   | R/W | 8/16 | 0x00    |  |
| 0xF025       | <ul> <li>Interrupt enable register 45</li> </ul>       | IE5   | - IE45  | R/W | 8    | 0x00    |  |
| 0xF026       | Interrupt enable register 67                           | IE6   | 1567    | R/W | 8/16 | 0x00    |  |
| 0xF027       | <ul> <li>Interrupt enable register 67</li> </ul>       | IE7   | - IE67  | R/W | 8    | 0x00    |  |
| 0xF028       |                                                        | IRQ0  | 10004   | R/W | 8/16 | 0x00    |  |
| 0xF029       | <ul> <li>Interrupt request register 01</li> </ul>      | IRQ1  | - IRQ01 | R/W | 8    | 0x00    |  |
| 0xF02A       |                                                        | IRQ2  | 10000   | R/W | 8/16 | 0x00    |  |
| 0xF02B       | <ul> <li>Interrupt request register 23</li> </ul>      | IRQ3  | - IRQ23 | R/W | 8    | 0x00    |  |
| 0xF02C       |                                                        | IRQ4  | 10045   | R/W | 8/16 | 0x00    |  |
| 0xF02D       | <ul> <li>Interrupt request register 45</li> </ul>      | IRQ5  | - IRQ45 | R/W | 8    | 0x00    |  |
| 0xF02E       |                                                        | IRQ6  | 10007   | R/W | 8/16 | 0x00    |  |
| 0xF02F       | <ul> <li>Interrupt request register 67</li> </ul>      | IRQ7  | IRQ67   | R/W | 8    | 0x00    |  |
| 0xF030       | Interrupt level control enable register                | ILEN  | -       | R/W | 8    | 0x00    |  |
| 0xF031       | Reserved                                               | -     | -       | -   | -    | -       |  |
| 0xF032       | Current interrupt level management register            | CIL   | -       | R/W | 8    | 0x00    |  |
| 0xF033       | Interrupt level mask register                          | MCIL  | -       | R/W | 8    | 0x00    |  |
| 0xF034       |                                                        | ILC00 |         | R/W | 8/16 | 0x00    |  |
| 0xF035       | <ul> <li>Interrupt level control register 0</li> </ul> | ILC01 | - ILC0  | R/W | 8    | 0x00    |  |
| 0xF036       |                                                        | ILC10 |         | R/W | 8/16 | 0x00    |  |
| 0xF037       | <ul> <li>Interrupt level control register 1</li> </ul> | ILC11 | - ILC1  | R/W | 8    | 0x00    |  |
| 0xF038       |                                                        | ILC20 |         | R/W | 8/16 | 0x00    |  |
| 0xF039       | <ul> <li>Interrupt level control register 2</li> </ul> | ILC21 | - ILC2  | R/W | 8    | 0x00    |  |
| 0xF03A       | Interrupt lovel control register 2                     | ILC30 |         | R/W | 8/16 | 0x00    |  |
| 0xF03B       | <ul> <li>Interrupt level control register 3</li> </ul> | ILC31 | - ILC3  | R/W | 8    | 0x00    |  |
| 0xF03C       |                                                        | ILC40 |         | R/W | 8/16 | 0x00    |  |
| 0xF03D       | Interrupt level control register 4                     | ILC41 | - ILC4  | R/W | 8    | 0x00    |  |
| 0xF03E       |                                                        | ILC50 |         | R/W | 8/16 | 0x00    |  |
| 0xF03F       | <ul> <li>Interrupt level control register 5</li> </ul> | ILC51 | - ILC5  | R/W | 8    | 0x00    |  |
| 0xF040       |                                                        | ILC60 |         | R/W | 8/16 | 0x00    |  |
| 0xF041       | <ul> <li>Interrupt level control register 6</li> </ul> | ILC61 | ILC6    | R/W | 8    | 0x00    |  |
| 0xF042       |                                                        | ILC70 |         | R/W | 8/16 | 0x00    |  |
| 0xF043       | <ul> <li>Interrupt level control register 7</li> </ul> | ILC71 | - ILC7  | R/W | 8    | 0x00    |  |

Table 5-1 shows presence/absence of interrupt source in each product.


| • : present                   | re - · abse                 |                             | 5-1 List of Interrupt Source                                                   |                               |                    |
|-------------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------------------|-------------------------------|--------------------|
|                               | ister assigi                |                             |                                                                                |                               |                    |
| IRQ<br>(interrupt<br>request) | IE<br>(interrupt<br>enable) | ILC<br>(interrupt<br>level) | Interrupt source                                                               | Interrupt<br>source<br>symbol | ML62Q2500<br>Group |
| IRQ0[0]                       | _                           | -                           | WDT Interrupt                                                                  | WDTINT                        | •                  |
| -                             | -                           | -                           | _                                                                              | -                             | -                  |
| IRQ0[6]                       | IE0[6]                      | ILC0[13:12]                 | VLS0 Interrupt                                                                 | <b>VLS0INT</b>                | •                  |
| IRQ0[7]                       | IE0[7]                      | ILC0[15:14]                 | -                                                                              | -                             | -                  |
| IRQ1[0]                       | IE1[0]                      | ILC1[1:0]                   | External Interrupt 0                                                           | EXI0INT                       | •                  |
| IRQ1[1]                       | IE1[1]                      | ILC1[3:2]                   | External Interrupt 1                                                           | EXI1INT                       | •                  |
| IRQ1[2]                       | IE1[2]                      | ILC1[5:4]                   | External Interrupt 2                                                           | EXI2INT                       | •                  |
| IRQ1[3]                       | IE1[3]                      | ILC1[7:6]                   | External Interrupt 3                                                           | EXI3INT                       | •                  |
| IRQ1[4]                       | IE1[4]                      | ILC1[9:8]                   | External Interrupt 4                                                           | EXI4INT                       | •                  |
| IRQ1[5]                       | IE1[5]                      | ILC1[11:10]                 | External Interrupt 5                                                           | EXI5INT                       | •                  |
| IRQ1[6]                       | IE1[6]                      | ILC1[13:12]                 | External Interrupt 6                                                           | EXI6INT                       | •                  |
| IRQ1[7]                       | IE1[7]                      | ILC1[15:14]                 | External Interrupt 7                                                           | EXI7INT                       | •                  |
| IRQ2[0]                       | IE2[0]                      | ILC2[1:0]                   | Clock Backup Interrupt                                                         | CBUINT                        | •                  |
| IRQ2[1]                       | IE2[1]                      | ILC2[3:2]                   | -                                                                              | -                             | -                  |
| IRQ2[2]                       | IE2[2]                      | ILC2[5:4]                   | MCU Status Interrupt                                                           | MCSINT                        | •                  |
| IRQ2[3]                       | IE2[3]                      | ILC2[7:6]                   | UART00 Interrupt                                                               | UA00INT                       | •                  |
| IRQ2[4]                       | IE2[4]                      | ILC2[9:8]                   | UART01 Interrupt                                                               | UA01INT                       | •                  |
| IRQ2[5]                       | IE2[5]                      | ILC2[11:10]                 | -                                                                              | -                             | -                  |
| IRQ2[6]                       | IE2[6]                      | ILC2[13:12]                 | Successive Approximation type A-D<br>Converter Interrupt<br>(SA-ADC Interrupt) | SADINT                        | •                  |
| IRQ2[7]                       | IE2[7]                      | ILC2[15:14]                 | SSIOF0 Interrupt                                                               | SIOF0INT                      | •                  |
| IRQ3[0]                       | IE3[0]                      | ILC3[1:0]                   | SSIO0 Interrupt                                                                | SIO0INT                       | •                  |
| IRQ3[1]                       | IE3[1]                      | ILC3[3:2]                   | -                                                                              | -                             | -                  |
| IRQ3[2]                       | IE3[2]                      | ILC3[5:4]                   | I <sup>2</sup> C Bus Master 0 Interrupt                                        | I2CM0INT                      | •                  |
| IRQ3[3]                       | IE3[3]                      | ILC3[7:6]                   | -                                                                              | -                             | -                  |
| IRQ3[4]                       | IE3[4]                      | ILC3[9:8]                   | Functional Timer 0 Interrupt                                                   | FTM0INT                       | ٠                  |
| IRQ3[5]                       | IE3[5]                      | ILC3[11:10]                 | Functional Timer 1 Interrupt                                                   | FTM1INT                       | •                  |
| IRQ3[6]                       | IE3[6]                      | ILC3[13:12]                 | 16-bit Timer 0 Interrupt                                                       | TM0INT                        | •                  |
| IRQ3[7]                       | IE3[7]                      | ILC3[15:14]                 | 16-bit Timer 1 Interrupt                                                       | TM1INT                        | •                  |
| IRQ4[0]                       | IE4[0]                      | ILC4[1:0]                   | I <sup>2</sup> C Bus Unit 0 Interrupt                                          | I2CU0INT                      | •                  |
| IRQ4[1]                       | IE4[1]                      | ILC4[3:2]                   | UART10 Interrupt                                                               | UA10INT                       | •                  |
| IRQ4[2]                       | IE4[2]                      | ILC4[5:4]                   | UART11 Interrupt                                                               | UA11INT                       | •                  |
| IRQ4[3]                       | IE4[3]                      | ILC4[7:6]                   | -                                                                              | -                             | -                  |
| IRQ4[4]                       | IE4[4]                      | ILC4[9:8]                   | -                                                                              | -                             | -                  |
| IRQ4[5]                       | IE4[5]                      | ILC4[11:10]                 | -                                                                              | -                             | -                  |
| IRQ4[6]                       | IE4[6]                      | ILC4[13:12]                 | 16-bit Timer 2 Interrupt                                                       | TM2INT                        | •                  |
| IRQ4[7]                       | IE4[7]                      | ILC4[15:14]                 | 16-bit Timer 3 Interrupt                                                       | TM3INT                        | •                  |
| IRQ5[0]                       | IE5[0]                      | ILC5[1:0]                   | UART20 Interrupt                                                               | UA20INT                       | ٠                  |

| Register assignment           |                             |                             |                                            |                               | ~                  |
|-------------------------------|-----------------------------|-----------------------------|--------------------------------------------|-------------------------------|--------------------|
| IRQ<br>(interrupt<br>request) | IE<br>(interrupt<br>enable) | ILC<br>(interrupt<br>level) | Interrupt source                           | Interrupt<br>source<br>symbol | ML62Q2500<br>Group |
| IRQ5[1]                       | IE5[1]                      | ILC5[3:2]                   | UART21 Interrupt                           | UA21INT                       | •                  |
| IRQ5[2]                       | IE5[2]                      | ILC5[5:4]                   | -                                          | -                             | -                  |
| IRQ5[3]                       | IE5[3]                      | ILC5[7:6]                   | -                                          | -                             | -                  |
| IRQ5[4]                       | IE5[4]                      | ILC5[9:8]                   | -                                          | -                             | -                  |
| IRQ5[5]                       | IE5[5]                      | ILC5[11:10]                 | -                                          | -                             | -                  |
| IRQ5[6]                       | IE5[6]                      | ILC5[13:12]                 | 16-bit Timer 4 Interrupt                   | TM4INT                        | •                  |
| IRQ5[7]                       | IE5[7]                      | ILC5[15:14]                 | -                                          | -                             | -                  |
| IRQ6[0]                       | IE6[0]                      | ILC6[1:0]                   | -                                          | -                             | -                  |
| IRQ6[1]                       | IE6[1]                      | ILC6[3:2]                   | -                                          | -                             | -                  |
| IRQ6[2]                       | IE6[2]                      | ILC6[5:4]                   | -                                          | -                             | -                  |
| IRQ6[3]                       | IE6[3]                      | ILC6[7:6]                   | -                                          | -                             | -                  |
| IRQ6[4]                       | IE6[4]                      | ILC6[9:8]                   | -                                          | -                             | -                  |
| IRQ6[5]                       | IE6[5]                      | ILC6[11:10]                 | -                                          | -                             | -                  |
| IRQ6[6]                       | IE6[6]                      | ILC6[13:12]                 | -                                          | -                             | -                  |
| IRQ6[7]                       | IE6[7]                      | ILC6[15:14]                 | -                                          | -                             | -                  |
| IRQ7[0]                       | IE7[0]                      | ILC7[1:0]                   | -                                          | -                             | -                  |
| IRQ7[1]                       | IE7[1]                      | ILC7[3:2]                   | 16-bit Timer X Interrupt                   | TMXINT                        | •                  |
| IRQ7[2]                       | IE7[2]                      | ILC7[5:4]                   | Low-speed Time Base Counter 0<br>Interrupt | LTB0INT                       | •                  |
| IRQ7[3]                       | IE7[3]                      | ILC7[7:6]                   | Low-speed Time Base Counter 3<br>Interrupt | LTB3INT                       | •                  |
| IRQ7[4]                       | IE7[4]                      | ILC7[9:8]                   | Low-speed Time Base Counter 1<br>Interrupt | LTB1INT                       | •                  |
| IRQ7[5]                       | IE7[5]                      | ILC7[11:10]                 | Low-speed Time Base Counter 2<br>Interrupt | LTB2INT                       | •                  |
| IRQ7[6]                       | IE7[6]                      | ILC7[13:12]                 |                                            | -                             | -                  |
| IRQ7[7]                       | IE7[7]                      | ILC7[15:14]                 | -                                          | -                             | -                  |

#### 5.2.2 Interrupt Enable Register 01 (IE01)

IE01 is a SFR to enable or disable the interrupt for each interrupt request.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.



Common description of each bits :

It is configured enable/disable a target interrupt

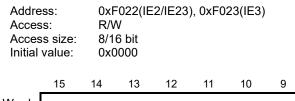
0: Disable a target interrupt (Initial value)

1: Enable a target interrupt

| Bit No. | Bit symbol name |                                | Description (target interrupt) |
|---------|-----------------|--------------------------------|--------------------------------|
| 15      | EPI7            | external interrupt 7 (EXI7INT) |                                |
| 14      | EPI6            | external interrupt 6 (EXI6INT) |                                |
| 13      | EPI5            | external interrupt 5 (EXI5INT) |                                |
| 12      | EPI4            | external interrupt 4 (EXI4INT) |                                |
| 11      | EPI3            | external interrupt 3 (EXI3INT) |                                |
| 10      | EPI2            | external interrupt 2 (EXI2INT) |                                |
| 9       | EPI1            | external interrupt 1 (EXI1INT) |                                |
| 8       | EPI0            | external interrupt 0 (EXI0INT) |                                |
| 7       | -               | Reserved bit                   |                                |
| 6       | EVLS0           | VLS0 interrupt (VLS0INT)       |                                |
| 5 to 0  | -               | Reserved bits                  |                                |

2

1


0

3

#### 5.2.3 Interrupt Enable Register 23 (IE23)

IE23 is a SFR to enable or disable the interrupt for each interrupt request.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.



| Word             |      |      |           |           |   |            |     |           | 23         |      |   |           |           |          |   |      |
|------------------|------|------|-----------|-----------|---|------------|-----|-----------|------------|------|---|-----------|-----------|----------|---|------|
| Byte             | IE3  |      |           |           |   |            | IE2 |           |            |      |   |           |           |          |   |      |
| Bit              | ETM1 | ETM0 | EFTM<br>1 | EFTM<br>0 | - | EI2C<br>M0 | -   | ESIO<br>0 | ESIO<br>F0 | ESAD | - | EUA0<br>1 | EUA0<br>0 | EMC<br>S | - | ECBU |
| R/W              | R/W  | R/W  | R/W       | R/W       | R | R/W        | R   | R/W       | R/W        | R/W  | R | R/W       | R/W       | R/W      | R | R/W  |
| Initial<br>value | 0    | 0    | 0         | 0         | 0 | 0          | 0   | 0         | 0          | 0    | 0 | 0         | 0         | 0        | 0 | 0    |

8

6

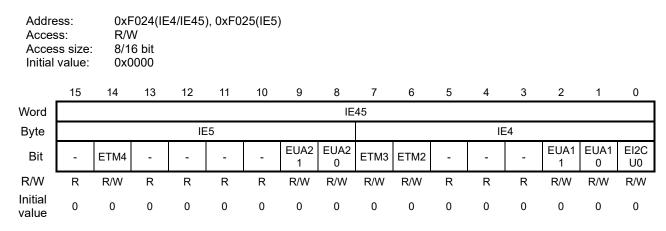
5

4

7

Common description of each bits :

It is configured enable/disable a target interrupt


- 0: Disable a target interrupt (Initial value)
- 1: Enable a target interrupt

| Bit No. | Bit symbol<br>name | Description (target interrupt)                                                                |
|---------|--------------------|-----------------------------------------------------------------------------------------------|
| 15      | ETM1               | 16-bit Timer 1 interrupt (TM1INT)                                                             |
| 14      | ETM0               | 16-bit Timer 0 interrupt (TM0INT)                                                             |
| 13      | EFTM1              | Functional Timer 1 interrupt (FTM1INT)                                                        |
| 12      | EFTM0              | Functional Timer 0 interrupt (FTM0INT)                                                        |
| 11      | -                  | Reserved bit                                                                                  |
| 10      | EI2CM0             | I <sup>2</sup> C Bus Master 0 interrupt (I2CM0INT)                                            |
| 9       | -                  | Reserved bit                                                                                  |
| 8       | ESIO0              | SSIO0 interrupt (SIO0INT)                                                                     |
| 7       | ESIOF0             | SSIOF0 interrupt (SIOF0INT)                                                                   |
| 6       | ESAD               | SA-ADC interrupt (SADINT)                                                                     |
| 5       | -                  | Reserved bit                                                                                  |
| 4       | EUA01              | UART01 interrupt (UA01INT)                                                                    |
| 3       | EUA00              | UART00 interrupt (UA00INT)                                                                    |
| 2       | EMCS               | MCU Status interrupt (MCSINT)<br>See Chapter 29 "Safety Function" for more details.           |
| 1       | -                  | Reserved bit                                                                                  |
| 0       | ECBU               | Clock Backup interrupt (CBUINT)<br>See Chapter 6 "Clock Generation Circuit" for more details. |

#### 5.2.4 Interrupt Enable Register 45 (IE45)

IE45 is a SFR to enable or disable the interrupt for each interrupt request.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.



Common description of each bits :

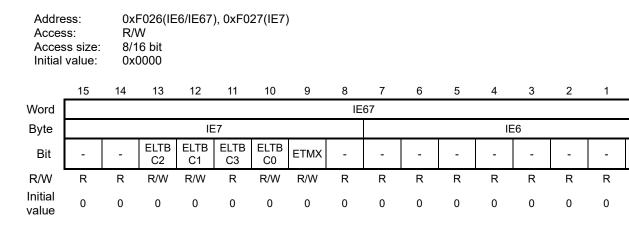
It is configured enable/disable a target interrupt

- 0: Disable a target interrupt (Initial value)
  - 1: Enable a target interrupt

| Bit No. | Bit symbol name | Description (target interrupt)                   |
|---------|-----------------|--------------------------------------------------|
| 15      | -               | Reserved bit                                     |
| 14      | ETM4            | 16-bit Timer 4 interrupt (TM4INT)                |
| 13      | -               | Reserved bit                                     |
| 12      | -               | Reserved bit                                     |
| 11      | -               | Reserved bit                                     |
| 10      | -               | Reserved bit                                     |
| 9       | EUA21           | UART21 interrupt (UA21INT)                       |
| 8       | EUA20           | UART20 interrupt (UA20INT)                       |
| 7       | ETM3            | 16-bit Timer 3 interrupt (TM3INT)                |
| 6       | ETM2            | 16-bit Timer 2 interrupt (TM2INT)                |
| 5       | -               | Reserved bit                                     |
| 4       | -               | Reserved bit                                     |
| 3       | -               | Reserved bit                                     |
| 2       | EUA11           | UART11 interrupt (UA11INT)                       |
| 1       | EUA10           | UART10 interrupt (UA10INT)                       |
| 0       | EI2CU0          | I <sup>2</sup> C Bus Unit 0 interrupt (I2CU0INT) |

0

\_


R

0

#### 5.2.5 Interrupt Enable Register 67 (IE67)

IE67 is a SFR to enable or disable the interrupt for each interrupt request.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.



Common description of each bits :

It is configured enable/disable a target interrupt

- 0: Disable a target interrupt (Initial value)
  - 1: Enable a target interrupt

| Bit No. | Bit symbol<br>name | Description (target interrupt)                    |
|---------|--------------------|---------------------------------------------------|
| 15      | -                  | Reserved bit                                      |
| 14      | -                  | Reserved bit                                      |
| 13      | ELTBC2             | Low speed Time base counter 2 interrupt (LTB2INT) |
| 12      | ELTBC1             | Low speed Time base counter 1 interrupt (LTB1INT) |
| 11      | ELTBC3             | Low speed Time base counter 3 interrupt (LTB3INT) |
| 10      | ELTBC0             | Low speed Time base counter 0 interrupt (LTB0INT) |
| 9       | ETMX               | 16-bit Timer X interrupt (TMXINT)                 |
| 8       | -                  | Reserved bit                                      |
| 7 to 0  | -                  | Reserved bits                                     |

2

R

0

0

1

R

0

0

QWD т

R/W

0

#### 5.2.6 Interrupt Request Register 01 (IRQ01)

This is a SFR to request interrupts.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.

|      |      | R/\<br>8/1 |      | RQ0/IR0 | Q01), 0 | xF029( | IRQ1) |      |     |           |   |    |    |
|------|------|------------|------|---------|---------|--------|-------|------|-----|-----------|---|----|----|
|      | 15   | 14         | 13   | 12      | 11      | 10     | 9     | 8    | 7   | 6         | 5 | 4  | 3  |
| Word |      |            |      |         |         |        |       | IRC  | 201 |           |   |    |    |
| Byte |      |            |      | IR      | Q1      |        |       |      |     |           |   | IR | Q0 |
| Bit  | QPI7 | QPI6       | QPI5 | QPI4    | QPI3    | QPI2   | QPI1  | QPI0 | -   | QVLS<br>0 | - | -  | -  |
| R/W  | R/W  | R/W        | R/W  | R/W     | R/W     | R/W    | R/W   | R/W  | R   | R/W       | R | R  | R  |

0

0

0

0

0

0

0

Common description of each bits :

0

Initial

value

0

It is a flag of a target interrupt request

0: Not request a target interrupt (Initial value)

0

0

1: Request a target interrupt

0

QWDT bit of the IRQ01 register becomes "1" when the non-maskable Watch Dog Timer (WDT) interrupt occurs and the CPU goes to the interrupt routine regardless the value of the Master Interrupt Enable flag (MIE bit).

Each request flag of IRQ01 except for the QWDT bit becomes "1" when the interrupt request is generated, regardless of the values of the interrupt enable register 01(IE01) and master interrupt enable flag (MIE). At that time, it requests the interrupt to the CPU if the applicable flag of IE01 is "1" and the CPU accepts the interrupt if the MIE is "1" to goes to the interrupt routine.

Also, an interrupt can be generated by writing "1" to the request flag of IRQ01. In this case, the CPU goes to the interrupt routine immediately after the next one instruction is executed.

The applicable flag of IRQ01 becomes "0" automatically when the interrupt request is accepted by the CPU.

| Bit No. | Bit symbol name | Description (target interrupt) |
|---------|-----------------|--------------------------------|
| 15      | QPI7            | external interrupt 7 (EXI7INT) |
| 14      | QPI6            | external interrupt 6 (EXI6INT) |
| 13      | QPI5            | external interrupt 5 (EXI5INT) |
| 12      | QPI4            | external interrupt 4 (EXI4INT) |
| 11      | QPI3            | external interrupt 3 (EXI3INT) |
| 10      | QPI2            | external interrupt 2 (EXI2INT) |
| 9       | QPI1            | external interrupt 1 (EXI1INT) |
| 8       | QPI0            | external interrupt 0 (EXI0INT) |
| 7       | -               | Reserved bit                   |
| 6       | QVLS0           | VLS0 interrupt (VLS0INT)       |
| 5 to 1  | -               | Reserved bits                  |
| 0       | QWDT            | external interrupt 7 (EXI7INT) |

#### [Note]

There is a risk of clearing other request flags of This IRQ register, if writing to the specific bit of this register. Use the bit symbol to write to the specific bit.

See Section [5.3.8 Writing to IRQ01/IRQ23/IRQ45/IRQ67] for more detail.

#### 5.2.7 Interrupt Request Register 23 (IRQ23)

This is a SFR to request interrupts.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.

| Address:<br>Access:<br>Access size<br>Initial value | R/\<br>e: 8/1 | `` | RQ2/IR | Q23), C | xF02B( | IRQ3) |  |
|-----------------------------------------------------|---------------|----|--------|---------|--------|-------|--|
| 15                                                  | 14            | 12 | 10     | 11      | 10     | 0     |  |

|                  | 15   | 14   | 13        | 12        | 11 | 10         | 9 | 8         | 7          | 6        | 5 | 4         | 3         | 2        | 1 | 0        |  |
|------------------|------|------|-----------|-----------|----|------------|---|-----------|------------|----------|---|-----------|-----------|----------|---|----------|--|
| Word             |      |      |           |           |    |            |   | IRC       | 223        |          |   |           |           |          |   |          |  |
| Byte             |      |      |           | IR        | Q3 |            |   | IRQ2      |            |          |   |           |           |          |   |          |  |
| Bit              | QTM1 | QTM0 | QFT<br>M1 | QFT<br>M0 | -  | QI2C<br>M0 | - | QSIO<br>0 | QSIO<br>F0 | QSA<br>D | - | QUA0<br>1 | QUA0<br>0 | QMC<br>S | - | QCB<br>U |  |
| R/W              | R/W  | R/W  | R/W       | R/W       | R  | R/W        | R | R/W       | R/W        | R/W      | R | R/W       | R/W       | R/W      | R | R/W      |  |
| Initial<br>value | 0    | 0    | 0         | 0         | 0  | 0          | 0 | 0         | 0          | 0        | 0 | 0         | 0         | 0        | 0 | 0        |  |

Common description of each bits :

It is a flag of a target interrupt request

- 0: Not request a target interrupt (Initial value)
- 1: Request a target interrupt

Each request flag of IRQ23 becomes "1" when the interrupt request is generated, regardless of the values of the interrupt enable register 01(IE23) and master interrupt enable flag (MIE). At that time, it requests the interrupt to the CPU if the applicable flag of IE23 is "1" and the CPU accepts the interrupt if the MIE is "1" to goes to the interrupt routine. Also, an interrupt can be generated by writing "1" to the request flag of IRQ23. In this case, the CPU goes to the interrupt routine immediately after the next one instruction is executed.

The applicable flag of IRQ23 becomes "0" automatically when the interrupt request is accepted by the CPU.

| Bit No. | Bit symbol<br>name | Description (target interrupt)                                                                |
|---------|--------------------|-----------------------------------------------------------------------------------------------|
| 15      | QTM1               | 16-bit Timer 1 interrupt (TM1INT)                                                             |
| 14      | QTM0               | 16-bit Timer 0 interrupt (TM0INT)                                                             |
| 13      | QFTM1              | Functional Timer 1 interrupt (FTM1INT)                                                        |
| 12      | QFTM0              | Functional Timer 0 interrupt (FTM0INT)                                                        |
| 11      | -                  | Reserved bit                                                                                  |
| 10      | QI2CM0             | I <sup>2</sup> C Bus Master 0 interrupt (I2CM0INT)                                            |
| 9       | -                  | Reserved bit                                                                                  |
| 8       | QSIO0              | SSIO0 interrupt (SIO0INT)                                                                     |
| 7       | QSIOF0             | SSIOF0interrupt (SIOF0INT)                                                                    |
| 6       | QSAD               | SA-ADC interrupt (SADINT)                                                                     |
| 5       | -                  | Reserved bit                                                                                  |
| 4       | QUA01              | UART01 interrupt (UA01INT)                                                                    |
| 3       | QUA00              | UART00 interrupt (UA00INT)                                                                    |
| 2       | QMCS               | MCU Status interrupt (MCSINT)<br>See Chapter 29 "Safety Function" for more details.           |
| 1       | -                  | Reserved bit                                                                                  |
| 0       | QCBU               | Clock Backup interrupt (CBUINT)<br>See Chapter 6 "Clock Generation Circuit" for more details. |

#### [Note]

There is a risk of clearing other request flags of This IRQ register, if writing to the specific bit of this register. Use the bit symbol to write to the specific bit. See Section [5.3.8 Writing to IRQ01/IRQ23/IRQ45/IRQ67] for more detail.

FEUL62Q2500

0

QI2C

U0

R/W

0

#### 5.2.8 Interrupt Request Register 45 (IRQ45)

This is a SFR to request interrupts.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.

| Addre<br>Acces<br>Acces<br>Initial | s: R/W<br>s size: 8/16 bit<br>value: 0x0000<br>15 14 13 12 11 10 9 8 7 6 5 4 3 2<br>IRQ5<br>IRQ5 |      |    |    |    |    |           |     |      |      |   |   |   |           |           |  |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------------|------|----|----|----|----|-----------|-----|------|------|---|---|---|-----------|-----------|--|--|--|
|                                    | 15                                                                                               | 14   | 13 | 12 | 11 | 10 | 9         | 8   | 7    | 6    | 5 | 4 | 3 | 2         | 1         |  |  |  |
| Word                               |                                                                                                  |      |    |    |    |    |           | IRC | Q45  |      |   |   |   |           |           |  |  |  |
| Byte                               |                                                                                                  |      |    | IR | Q5 |    |           |     | IRQ4 |      |   |   |   |           |           |  |  |  |
| Bit                                | -                                                                                                | QTM4 | -  | -  | -  | -  | QUA2<br>1 |     | QTM3 | QTM2 | - | - | - | QUA1<br>1 | QUA1<br>0 |  |  |  |
| R/W                                | R                                                                                                | R/W  | R  | R  | R  | R  | R/W       | R/W | R/W  | R/W  | R | R | R | R/W       | R/W       |  |  |  |
| Initial<br>value                   | 0                                                                                                | 0    | 0  | 0  | 0  | 0  | 0         | 0   | 0    | 0    | 0 | 0 | 0 | 0         | 0         |  |  |  |

Common description of each bits :

It is a flag of a target interrupt request

- 0: Not request a target interrupt (Initial value)
- 1: Request a target interrupt

Each request flag of IRQ45 becomes "1" when the interrupt request is generated, regardless of the values of the interrupt enable register 01(IE45) and master interrupt enable flag (MIE). At that time, it requests the interrupt to the CPU if the applicable flag of IE45 is "1" and the CPU accepts the interrupt if the MIE is "1" to goes to the interrupt routine. Also, an interrupt can be generated by writing "1" to the request flag of IRQ45. In this case, the CPU goes to the interrupt routine immediately after the next one instruction is executed.

The applicable flag of IRQ45 becomes "0" automatically when the interrupt request is accepted by the CPU.

| Bit No. | Bit symbol name | Description (target interrupt)                   |
|---------|-----------------|--------------------------------------------------|
| 15      | -               | Reserved bit                                     |
| 14      | QTM4            | 16-bit Timer 4 interrupt (TM4INT)                |
| 13      | -               | Reserved bit                                     |
| 12      | -               | Reserved bit                                     |
| 11      | -               | Reserved bit                                     |
| 10      | -               | Reserved bit                                     |
| 9       | QUA21           | UART21 interrupt (UA21INT)                       |
| 8       | QUA20           | UART20 interrupt (UA20INT)                       |
| 7       | QTM3            | 16-bit Timer 3 interrupt (TM3INT)                |
| 6       | QTM2            | 16-bit Timer 2 interrupt (TM2INT)                |
| 5       | -               | Reserved bit                                     |
| 4       | -               | Reserved bit                                     |
| 3       | -               | Reserved bit                                     |
| 2       | QUA11           | UART11 interrupt (UA11INT)                       |
| 1       | QUA10           | UART10 interrupt (UA10INT)                       |
| 0       | QI2CU0          | I <sup>2</sup> C Bus Unit 0 interrupt (I2CU0INT) |

#### [Note]

 There is a risk of clearing other request flags of This IRQ register, if writing to the specific bit of this register. Use the bit symbol to write to the specific bit.
 See Section [5.3.8 Writing to IRQ01/IRQ23/IRQ45/IRQ67] for more detail.

#### 5.2.9 Interrupt Request Register 67 (IRQ67)

This is a SFR to request interrupts.

The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. See to "Table 5-1 List of Interrupt Source" for available peripherals.

|                  |    | R/\<br>8/1 | F02E(IF<br>W<br>6 bit<br>0000 | RQ6/IR     | Q67), 0    | xF02F(     | IRQ7)    |     |      |   |   |   |   |   |   |   |  |
|------------------|----|------------|-------------------------------|------------|------------|------------|----------|-----|------|---|---|---|---|---|---|---|--|
|                  | 15 | 14         | 13                            | 12         | 11         | 10         | 9        | 8   | 7    | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
| Word             |    |            |                               |            |            |            |          | IRC | 267  |   |   |   |   |   |   |   |  |
| Byte             |    |            |                               | IR         | Q7         |            |          |     | IRQ6 |   |   |   |   |   |   |   |  |
| Bit              | -  | -          | QLTB<br>C2                    | QLTB<br>C1 | QLTB<br>C3 | QLTB<br>C0 | QTM<br>X | -   | -    | - | - | - | - | - | - | - |  |
| R/W              | R  | R          | R/W                           | R/W        | R          | R/W        | R/W      | R   | R    | R | R | R | R | R | R | R |  |
| Initial<br>value | 0  | 0          | 0                             | 0          | 0          | 0          | 0        | 0   | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |

Common description of each bits :

It is a flag of a target interrupt request

- 0: Not request a target interrupt (Initial value)
- 1: Request a target interrupt

Each request flag of IRQ45 becomes "1" when the interrupt request is generated, regardless of the values of the interrupt enable register 01(IE45) and master interrupt enable flag (MIE). At that time, it requests the interrupt to the CPU if the applicable flag of IE45 is "1" and the CPU accepts the interrupt if the MIE is "1" to goes to the interrupt routine. Also, an interrupt can be generated by writing "1" to the request flag of IRQ45. In this case, the CPU goes to the interrupt routine immediately after the next one instruction is executed.

The applicable flag of IRQ45 becomes "0" automatically when the interrupt request is accepted by the CPU.

| Bit No. | Bit symbol name | Description (target interrupt)                    |
|---------|-----------------|---------------------------------------------------|
| 15      | -               | Reserved bit                                      |
| 14      | -               | Reserved bit                                      |
| 13      | QLTBC2          | Low speed Time base counter 2 interrupt (LTB2INT) |
| 12      | QLTBC1          | Low speed Time base counter 1 interrupt (LTB1INT) |
| 11      | QLTBC3          | Low speed Time base counter 3 interrupt (LTB3INT) |
| 10      | QLTBC0          | Low speed Time base counter 0 interrupt (LTB0INT) |
| 9       | QTMX            | 16-bit Timer X interrupt (TMXINT)                 |
| 8 to 0  | -               | Reserved bits                                     |

#### [Note]

There is a risk of clearing other request flags of This IRQ register, if writing to the specific bit of this register. Use the bit symbol to write to the specific bit.

See Section [5.3.8 Writing to IRQ01/IRQ23/IRQ45/IRQ67] for more detail.

#### 5.2.10 Interrupt Level Control Enable Register (ILEN)

ILEN is a special function register (SFR) to enable or disable the interrupt level control.

|                  |                                                                                                                                                | R/V           | it | EN)    |        |    |   |   |    |          |   |     |    |   |   |     |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|--------|--------|----|---|---|----|----------|---|-----|----|---|---|-----|
|                  | 15                                                                                                                                             | 14            | 13 | 12     | 11     | 10 | 9 | 8 | 7  | 6        | 5 | 4   | 3  | 2 | 1 | 0   |
| Word             |                                                                                                                                                |               |    |        |        |    |   |   | -  |          |   |     |    |   |   |     |
| Byte             |                                                                                                                                                |               |    |        | -      |    |   |   |    |          |   | ILI | ΞN |   |   |     |
| Bit              | -                                                                                                                                              | -             | -  | -      | -      | -  | - | - | -  | -        | - | -   | -  | - | - | ILE |
| R/W              | R                                                                                                                                              | R             | R  | R      | R      | R  | R | R | R  | R        | R | R   | R  | R | R | R/W |
| Initial<br>value | 0                                                                                                                                              | 0             | 0  | 0      | 0      | 0  | 0 | 0 | 0  | 0        | 0 | 0   | 0  | 0 | 0 | 0   |
|                  |                                                                                                                                                |               |    |        |        |    |   |   |    |          |   |     |    |   |   |     |
| Bit No.          |                                                                                                                                                | symbo<br>name | I  |        |        |    |   |   | De | scriptio | n |     |    |   |   |     |
| 15 to 1          | -                                                                                                                                              |               | R  | eserve | d bits |    |   |   |    |          |   |     |    |   |   |     |
| 0                | ILE This bit controls to enable or disable the interrupt level control.<br>0: Disable the interrupt (Initial value)<br>1: Enable the interrupt |               |    |        |        |    |   |   |    |          |   |     |    |   |   |     |

[Note]

- Disable the interrupt level control function by resetting the ILE bit to "0" after resetting the Interrupt level control register 0 to 7 (ILC0 to ILC7) to "0x0000" and confirming the current interrupt request level register (CIL) is "0x00" when the interrupt is disabled (IE01 to IE67 registers are "0x00").
- Enable the interrupt level control function by setting the ILE bit to "1" when the interrupt is disabled(IE0 to IE7 registers are "0") or master interrupt enable flag(MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.

#### 5.2.11 Current Interrupt Level Management Register (CIL)

CIL is a SFR to manage the priority level of the interrupt currently being processed by the CPU. See the section "5.3.6 How to program the interrupt process when the interrupt level control is enabled".

|                  |    | R/\<br>8 b |    | IL) |    |    |   |   |      |   |   |   |           |           |           |           |
|------------------|----|------------|----|-----|----|----|---|---|------|---|---|---|-----------|-----------|-----------|-----------|
|                  | 15 | 14         | 13 | 12  | 11 | 10 | 9 | 8 | 7    | 6 | 5 | 4 | 3         | 2         | 1         | 0         |
| Word             |    |            |    |     |    |    |   |   | -    |   |   |   |           |           |           |           |
| Byte             |    |            |    |     | -  |    |   |   |      |   |   | C | IL        |           |           |           |
| Bit              | -  | -          | -  | -   | -  | -  | - | - | CILN | - | - | - | CILM<br>3 | CILM<br>2 | CILM<br>1 | CILM<br>0 |
| R/W              | R  | R          | R  | R   | R  | R  | R | R | R/W  | R | R | R | R/W       | R/W       | R/W       | R/W       |
| Initial<br>value | 0  | 0          | 0  | 0   | 0  | 0  | 0 | 0 | 0    | 0 | 0 | 0 | 0         | 0         | 0         | 0         |

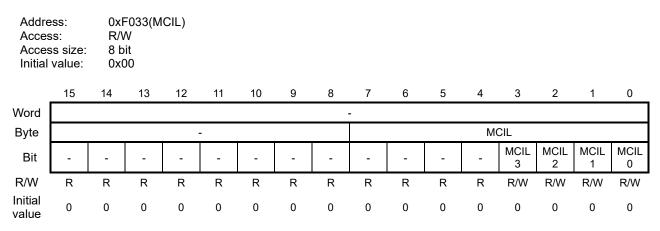
Common description of each bits :

- 0: A target interrupt is not being processed (Initial value)
- 1: A target interrupt is being processed

After maskable or non-maskable interrupts to which the priority levels are specified by the interrupt level control registers (ILC0 to 7) is accepted by the CPU, corresponding bits of CIL are automatically set to "1", indicate the currently processing interrupt level.

Interrupts request to the CPU below the currently processed interrupt level will be disabled.

When the multiple bits are "1" in the CIL, it indicates the CPU is processing the multiple interrupts.


Each bit of CIL is automatically set to "1", so it has to be cleared by the software when the interrupt process has been ended. Clear the bit once by writing an arbitrary data at the last in the interrupt process, which resets a flag of CIL corresponding to the highest level.

| Bit No. | Bit symbol<br>name | Des                             | cription (target interrupt) |
|---------|--------------------|---------------------------------|-----------------------------|
| 7       | CILN               | Non-maskable interrupt          |                             |
| 6 to 4  | -                  | Reserved bits                   |                             |
| 3       | CILM3              | maskable interrupt with level 4 |                             |
| 2       | CILM2              | maskable interrupt with level 3 |                             |
| 1       | CILM1              | maskable interrupt with level 2 |                             |
| 0       | CILM0              | maskable interrupt with level 1 |                             |

#### 5.2.12 Masking Interrupt Level Register (MCIL)

MCIL is a SFR to configure masking interrupt level.

It is writeable only when the interrupt level control is enabled by setting ILE bit of the interrupt level control enable register (ILEN) to "1".



The interrupt notification to the CPU is suspended if interrupt level specified by the ILC0 to ILC7 registers is equal or less than the level specified in the MCIL register.

The interrupt request is notified by lowering the setting value of MCIL register below the suspended interrupt level.

Common description of each bits :

- 0: A maskable interrupt of a target interrupt level is being processed (Initial value)
- 1: A maskable interrupt under a target interrupt level is being processed

| Bit No. | Bit symbol<br>name | Description (target interrupt level) |
|---------|--------------------|--------------------------------------|
| 7 to 4  | -                  | Reserved bits                        |
| 3       | MCIL3              | Interrupt level 4                    |
| 2       | MCIL2              | Interrupt level 3                    |
| 1       | MCIL1              | Interrupt level 2                    |
| 0       | MCIL0              | Interrupt level 1                    |

#### 5.2.13 Interrupt Level Control Register 0 (ILC0)

ILC0 is a SFR to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting ILE bit of the interrupt level control enable register (ILEN) to "1".

| Acces<br>Acces   | Address:0xF034(ILC00/ILC0), 0xF035(ILC01)Access:R/WAccess size:8/16 bitInitial value:0x0000 |          |             |             |    |    |   |     |    |   |   |     |     |   |   |   |
|------------------|---------------------------------------------------------------------------------------------|----------|-------------|-------------|----|----|---|-----|----|---|---|-----|-----|---|---|---|
|                  | 15                                                                                          | 14       | 13          | 12          | 11 | 10 | 9 | 8   | 7  | 6 | 5 | 4   | 3   | 2 | 1 | 0 |
| Word             |                                                                                             |          |             |             |    |    |   | ILO | C0 |   |   |     |     |   |   |   |
| Byte             |                                                                                             |          |             | ILC         | 01 |    |   |     |    |   |   | ILC | :00 |   |   |   |
| Bit              | -                                                                                           | -        | ILVL<br>S0H | ILVL<br>S0L | -  | -  | - | -   | -  | - | - | -   | -   | - | - | - |
| R/W              | R                                                                                           | R        | R/W         | R/W         | R  | R  | R | R   | R  | R | R | R   | R   | R | R | R |
| Initial<br>value | 0                                                                                           | 0        | 0           | 0           | 0  | 0  | 0 | 0   | 0  | 0 | 0 | 0   | 0   | 0 | 0 | 0 |
| Comr             | non des                                                                                     | scriptic | on of ea    | ch bits     | :  |    |   |     |    |   |   |     |     |   |   |   |

It is configured a target interrupt level.

- 00: level 1; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3

11: level 4; a priority is higher.

| Bit No. | Bit symbol<br>name  | Description (target interrupt level) |  |
|---------|---------------------|--------------------------------------|--|
| 15,14   | -                   | Reserved bits                        |  |
| 13,12   | ILVLS0H,<br>ILVLS0L | VLS0 interrupt (VLS0INT)             |  |
| 11 to 0 | -                   | Reserved bits                        |  |

#### [Note]

#### 5.2.14 Interrupt Level Control Register 1 (ILC1)

ILC1 is a special function register (SFR) to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting ILE bit of the interrupt level control enable register (ILEN) to "1".

|                  |            | R/W<br>ize: 8/16 bit |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|------------------|------------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | 15         | 14                   | 13         | 12         | 11         | 10         | 9          | 8          | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             |            |                      |            |            |            |            |            | ILO        | C1         |            |            |            |            |            |            |            |
| Byte             |            |                      |            | ILC        | C11        |            |            |            |            |            |            | ILC        | 210        |            |            |            |
| Bit              | ILPI<br>7H | ILPI<br>7L           | ILPI<br>6H | ILPI<br>6L | ILPI<br>5H | ILPI<br>5L | ILPI<br>4H | ILPI<br>4L | ILPI<br>3H | ILPI<br>3L | ILPI<br>2H | ILPI<br>2L | ILPI<br>1H | ILPI<br>1L | ILPI<br>0H | ILPI<br>0L |
| R/W              | R/W        | R/W                  | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0          | 0                    | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |

Common description of each bits :

It is configured a target interrupt level.

- 00: level 1; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3

11: level 4; a priority is higher.

| Bit No. | Bit symbol<br>name | Description (target interrupt level) |
|---------|--------------------|--------------------------------------|
| 15,14   | ILPI7H, ILPI7L     | external interrupt 7 (EXI7INT)       |
| 13,12   | ILPI6H, ILPI6L     | external interrupt 6 (EXI6INT)       |
| 11,10   | ILPI5H, ILPI5L     | external interrupt 5 (EXI5INT)       |
| 9,8     | ILPI4H, ILPI4L     | external interrupt 4 (EXI4INT)       |
| 7,6     | ILPI3H, ILPI3L     | external interrupt 3 (EXI3INT)       |
| 5,4     | ILPI2H, ILPI2L     | external interrupt 2 (EXI2INT)       |
| 3,2     | ILPI1H, ILPI1L     | external interrupt 1 (EXI1INT)       |
| 1,0     | ILPI0H, ILPI0L     | external interrupt 0 (EXI0INT)       |

#### [Note]

#### 5.2.15 Interrupt Level Control Register 2 (ILC2)

ILC2 is a special function register (SFR) to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting IEL bit of the interrupt level control enable register (ILEN) to "1".

|                  |              | : R/W<br>size: 8/16 bit |            |            |    |    |             |             |             |             |            |            |    |   |            |            |
|------------------|--------------|-------------------------|------------|------------|----|----|-------------|-------------|-------------|-------------|------------|------------|----|---|------------|------------|
|                  | 15           | 14                      | 13         | 12         | 11 | 10 | 9           | 8           | 7           | 6           | 5          | 4          | 3  | 2 | 1          | 0          |
| Word             |              |                         |            |            |    |    |             | ILO         | C2          |             |            |            |    |   |            |            |
| Byte             |              |                         |            | ILC        | 21 |    |             |             |             |             |            | ILC        | 20 |   |            |            |
| Bit              | ILSIO<br>F0H | ILSIO<br>F0L            | ILSA<br>DH | ILSA<br>DL | -  | -  | ILUA0<br>1H | ILUA0<br>1L | ILUA0<br>0H | ILUA0<br>0L | ILMC<br>SH | ILMC<br>SL | -  | - | ILCB<br>UH | ILCB<br>UL |
| R/W              | R/W          | R/W                     | R/W        | R/W        | R  | R  | R/W         | R/W         | R/W         | R/W         | R/W        | R/W        | R  | R | R/W        | R/W        |
| Initial<br>value | 0            | 0                       | 0          | 0          | 0  | 0  | 0           | 0           | 0           | 0           | 0          | 0          | 0  | 0 | 0          | 0          |

Common description of each bits :

It is configured a target interrupt level.

- 00: level 1 ; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3
- 11: level 4; a priority is higher.

| Bit No. | Bit symbol name       | Description (target interrupt level)                                                          |
|---------|-----------------------|-----------------------------------------------------------------------------------------------|
| 15,14   | ILSIOF0H,<br>ILSIOF0L | SSIOF0interrupt (SIOF0INT)                                                                    |
| 13,12   | ILSADH,<br>ILSADL     | SA-ADC interrupt (SADINT)                                                                     |
| 11,10   | -                     | Reserved bit                                                                                  |
| 9,8     | ILUA01H,<br>ILUA01L   | UART01 interrupt (UA01INT)                                                                    |
| 7,6     | ILUA00H,<br>ILUA00L   | UART00 interrupt (UA00INT)                                                                    |
| 5,4     | ILMCSH,<br>ILMCSL     | MCU Status interrupt (MCSINT)<br>See Chapter 29 "Safety Function" for more details.           |
| 3,2     | -                     | Reserved bit                                                                                  |
| 1,0     | ILCBUH,<br>ILCBUL     | Clock Backup interrupt (CBUINT)<br>See Chapter 6 "Clock Generation Circuit" for more details. |

#### [Note]

#### 5.2.16 Interrupt Level Control Register 3 (ILC3)

ILC3 is a special function register (SFR) to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting ILE bit of the interrupt level control enable register (ILEN) to "1".

|                  |            | : R/W size: 8/16 bit<br>alue: 0x0000 |            |            |             |             |             |             |    |   |              |              |    |   |             |             |
|------------------|------------|--------------------------------------|------------|------------|-------------|-------------|-------------|-------------|----|---|--------------|--------------|----|---|-------------|-------------|
|                  | 15         | 14                                   | 13         | 12         | 11          | 10          | 9           | 8           | 7  | 6 | 5            | 4            | 3  | 2 | 1           | 0           |
| Word             |            |                                      |            |            |             |             |             | ILO         | C3 |   |              |              |    |   |             |             |
| Byte             |            |                                      |            | ILC        | 31          |             |             |             |    |   |              | ILC          | 30 |   |             |             |
| Bit              | ILTM1<br>H | ILTM1<br>L                           | ILTM0<br>H | ILTM0<br>L | ILFT<br>M1H | ILFT<br>M1L | ILFT<br>M0H | ILFT<br>M0L | -  | - | ILI2C<br>M0H | ILI2C<br>M0L | -  | - | ILSIO<br>0H | ILSIO<br>0L |
| R/W              | R/W        | R/W                                  | R/W        | R/W        | R/W         | R/W         | R/W         | R/W         | R  | R | R/W          | R/W          | R  | R | R/W         | R/W         |
| Initial<br>value | 0          | 0                                    | 0          | 0          | 0           | 0           | 0           | 0           | 0  | 0 | 0            | 0            | 0  | 0 | 0           | 0           |

Common description of each bits :

It is configured a target interrupt level.

- 00: level 1; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3

11: level 4; a priority is higher.

| ビット<br>番号 | ビットシンボル名           | 説明(該当する interrupt)                                  |  |  |  |  |  |  |  |  |
|-----------|--------------------|-----------------------------------------------------|--|--|--|--|--|--|--|--|
| 15,14     | ILTM1H, ILTM1L     | 16-bit Timer 1 interrupt (TM1INT)                   |  |  |  |  |  |  |  |  |
| 13,12     | ILTM0H, ILTM0L     | 16-bit Timer 0 interrupt (TM0INT)                   |  |  |  |  |  |  |  |  |
| 11,10     | ILFTM1H, ILFTM1L   | /1H, ILFTM1L Functional timer 1 interrupt (FTM1INT) |  |  |  |  |  |  |  |  |
| 9,8       | ILFTM0H, ILFTM0L   | Functional timer 0 interrupt (FTM0INT)              |  |  |  |  |  |  |  |  |
| 7,6       | -                  | Reserved bits                                       |  |  |  |  |  |  |  |  |
| 5,4       | ILI2CM0H, ILI2CM0L | I <sup>2</sup> C bus master 0 interrupt (I2CM0INT)  |  |  |  |  |  |  |  |  |
| 3,2       | -                  | Reserved bits                                       |  |  |  |  |  |  |  |  |
| 1,0       | ILSIO0H, ILSIO0L   | SSIO0 interrupt (SIO0INT)                           |  |  |  |  |  |  |  |  |

#### [Note]

#### 5.2.17 Interrupt Level Control Register 4 (ILC4)

ILC4 is a special function register (SFR) to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting IEL bit of the interrupt level control enable register (ILEN) to "1".

|                  |            | : R/W<br>size: 8/16 bit |            |            |    |    |   |     |       |   |             |             |             |             |              |              |
|------------------|------------|-------------------------|------------|------------|----|----|---|-----|-------|---|-------------|-------------|-------------|-------------|--------------|--------------|
|                  | 15         | 14                      | 13         | 12         | 11 | 10 | 9 | 8   | 7     | 6 | 5           | 4           | 3           | 2           | 1            | 0            |
| Word             |            |                         |            |            |    |    |   | ILO | C4    |   |             |             |             |             |              |              |
| Byte             |            |                         |            | ILC        | 41 |    |   |     | ILC40 |   |             |             |             |             |              |              |
| Bit              | ILTM3<br>H | ILTM3<br>L              | ILTM2<br>H | ILTM2<br>L | -  | -  | - | -   | -     | - | ILUA1<br>1H | ILUA1<br>1L | ILUA1<br>0H | ILUA1<br>0L | ILI2C<br>U0H | ILI2C<br>U0L |
| R/W              | R/W        | R/W                     | R/W        | R/W        | R  | R  | R | R   | R     | R | R/W         | R/W         | R/W         | R/W         | R/W          | R/W          |
| Initial<br>value | 0          | 0                       | 0          | 0          | 0  | 0  | 0 | 0   | 0     | 0 | 0           | 0           | 0           | 0           | 0            | 0            |

Common description of each bits :

It is configured a target interrupt level.

- 00: level 1; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3

11: level 4; a priority is higher.

| Bit No. | Bit symbol name    | Description (target interrupt level)             |
|---------|--------------------|--------------------------------------------------|
| 15,14   | ILTM3H, ILTM3L     | 16-bit Timer 3 interrupt (TM3INT)                |
| 13,12   | ILTM2H, ILTM2L     | 16-bit Timer 2 interrupt (TM2INT)                |
| 11,10   | -                  | Reserved bit                                     |
| 9,8     | -                  | Reserved bit                                     |
| 7,6     | -                  | Reserved bit                                     |
| 5,4     | ILUA11H, ILUA11L   | UART11 interrupt (UA11INT)                       |
| 3,2     | ILUA10H, ILUA10L   | UART10 interrupt (UA10INT)                       |
| 1,0     | ILI2CU0H, ILI2CU0L | I <sup>2</sup> C Bus Unit 0 interrupt (I2CU0INT) |

[Note]

#### 5.2.18 Interrupt Level Control Register 5 (ILC5)

ILC5 is a special function register (SFR) to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting IEL bit of the interrupt level control enable register (ILEN) to "1".

|                  |    | R/\<br>8/1 |            | _C50/IL0   | C5), 0x | F03F(II | LC51) |     |       |   |   |   |             |             |             |             |  |
|------------------|----|------------|------------|------------|---------|---------|-------|-----|-------|---|---|---|-------------|-------------|-------------|-------------|--|
|                  | 15 | 14         | 13         | 12         | 11      | 10      | 9     | 8   | 7     | 6 | 5 | 4 | 3           | 2           | 1           | 0           |  |
| Word             |    |            |            |            |         |         |       | ILO | C5    |   |   |   |             |             |             |             |  |
| Byte             |    |            |            | ILC        | 51      |         |       |     | ILC50 |   |   |   |             |             |             |             |  |
| Bit              | -  | -          | ILTM4<br>H | ILTM4<br>L | -       | -       | -     | -   | -     | - | - | - | ILUA2<br>1H | ILUA2<br>1L | ILUA2<br>0H | ILUA2<br>0L |  |
| R/W              | R  | R          | R/W        | R/W        | R       | R       | R     | R   | R     | R | R | R | R/W         | R/W         | R/W         | R/W         |  |
| Initial<br>value | 0  | 0          | 0          | 0          | 0       | 0       | 0     | 0   | 0     | 0 | 0 | 0 | 0           | 0           | 0           | 0           |  |

Common description of each bits :

It is configured a target interrupt level.

- 00: level 1; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3

11: level 4; a priority is higher.

| Bit No. | Bit symbol name  | Description (target interrupt level) |
|---------|------------------|--------------------------------------|
| 15~12   | -                | Reserved bit                         |
| 13,12   | ILTM4H, ILTM4L   | 16-bit Timer 4 interrupt (TM4INT)    |
| 11,10   | -                | Reserved bit                         |
| 9,8     | -                | Reserved bit                         |
| 7,6     | -                | Reserved bit                         |
| 5,4     | -                | Reserved bit                         |
| 3,2     | ILUA21H, ILUA21L | UART21 interrupt (UA21INT)           |
| 1,0     | ILUA20H, ILUA20L | UART20 interrupt (UA20INT)           |

#### [Note]

#### 5.2.19 Interrupt Level Control Register 6 (ILC6)

ILC6 is a special function register (SFR) to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting ILE bit of the interrupt level control enable register (ILEN) to "1".

| ldress: 0xF040(IL<br>ccess: R/W<br>ccess size: 8/16 bit<br>tial value: 0x0000 |                                                      |                                                                                        | C60/IL                                                                                                                                                 | C6), 0x                                                                                                                 | F041(IL                                                                                                                          | .C61)                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                           |
|-------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 15                                                                            | 14                                                   | 13                                                                                     | 12                                                                                                                                                     | 11                                                                                                                      | 10                                                                                                                               | 9                                                                                                                                       | 8                                                                                                                                               | 7                                                                                                                                                                 | 6                                                                                                                                                                                   | 5                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                        | 2                                                                                                                                                                                                                          | 1                                                                                                                                                                                              | 0                                                                                                         |
|                                                                               |                                                      |                                                                                        |                                                                                                                                                        |                                                                                                                         |                                                                                                                                  |                                                                                                                                         | ILO                                                                                                                                             | C6                                                                                                                                                                |                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                           |
| ILC61                                                                         |                                                      |                                                                                        |                                                                                                                                                        |                                                                                                                         |                                                                                                                                  |                                                                                                                                         |                                                                                                                                                 | ILC60                                                                                                                                                             |                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                           |
| -                                                                             | -                                                    | -                                                                                      | -                                                                                                                                                      | -                                                                                                                       | -                                                                                                                                | -                                                                                                                                       | -                                                                                                                                               | -                                                                                                                                                                 | -                                                                                                                                                                                   | -                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                        | -                                                                                                                                                                                                                          | -                                                                                                                                                                                              | -                                                                                                         |
| R                                                                             | R                                                    | R                                                                                      | R                                                                                                                                                      | R                                                                                                                       | R                                                                                                                                | R                                                                                                                                       | R                                                                                                                                               | R                                                                                                                                                                 | R                                                                                                                                                                                   | R                                                                                                                                                                                                             | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R                                                        | R                                                                                                                                                                                                                          | R                                                                                                                                                                                              | R                                                                                                         |
| 0                                                                             | 0                                                    | 0                                                                                      | 0                                                                                                                                                      | 0                                                                                                                       | 0                                                                                                                                | 0                                                                                                                                       | 0                                                                                                                                               | 0                                                                                                                                                                 | 0                                                                                                                                                                                   | 0                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                        | 0                                                                                                                                                                                                                          | 0                                                                                                                                                                                              | 0                                                                                                         |
|                                                                               |                                                      |                                                                                        |                                                                                                                                                        |                                                                                                                         |                                                                                                                                  |                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                           |
| Bit No. Bit symbol Description (target int                                    |                                                      |                                                                                        |                                                                                                                                                        |                                                                                                                         |                                                                                                                                  | terrupt                                                                                                                                 | level)                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                           |
| 15 to 0 -                                                                     |                                                      |                                                                                        | Rese                                                                                                                                                   | erved b                                                                                                                 | ts                                                                                                                               |                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                           |
|                                                                               | s:<br>ss size:<br>value:<br>15<br>-<br>R<br>0<br>Vo. | ss: R/W<br>ss size: 8/1<br>value: 0x0<br>15 14<br><br>R R<br>0 0<br>No. Bit syn<br>nan | R/W       as size:     8/16 bit       value:     0x0000       15     14     13       -     -       R     R       0     0       No.     Bit symbol name | ss: R/W<br>ss size: 8/16 bit<br>value: 0x0000<br>15 14 13 12<br>ILC<br><br>R R R R<br>0 0 0 0<br>No. Bit symbol<br>name | As: R/W<br>As size: 8/16 bit<br>value: 0x0000<br>15 14 13 12 11<br>ILC61<br><br>R R R R R<br>0 0 0 0 0<br>No. Bit symbol<br>name | As: R/W<br>As size: 8/16 bit<br>value: 0x0000<br>15 14 13 12 11 10<br>ILC61<br><br>R R R R R R<br>0 0 0 0 0 0<br>No. Bit symbol<br>name | ss: R/W<br>ss size: 8/16 bit<br>value: 0x0000<br>15 14 13 12 11 10 9<br>ILC61<br><br>R R R R R R R<br>0 0 0 0 0 0 0 0<br>Jo. Bit symbol<br>name | ss: R/W<br>ss size: 8/16 bit<br>value: 0x0000<br>15 14 13 12 11 10 9 8<br>ILC61<br><br>R R R R R R R R<br>0 0 0 0 0 0 0 0 0<br>No. Bit symbol<br>name Description | As: R/W<br>siste: 8/16 bit<br>value: 0x0000<br>15 14 13 12 11 10 9 8 7<br>ILC6<br>ILC61<br><br>R R R R R R R R R<br>0 0 0 0 0 0 0 0 0 0<br>bit symbol<br>name<br>Description (tage) | As: R/W<br>sissize: 8/16 bit<br>value: 0x0000<br>15 14 13 12 11 10 9 8 7 6<br>ILC6<br>ILC61<br><br>R R R R R R R R R R R<br>0 0 0 0 0 0 0 0 0 0 0 0<br>bit symbol<br>name<br>Description (target integration) | ass:       R/W         assize:       8/16 bit         value:       0x0000         15       14       13       12       11       10       9       8       7       6       5         ILC6         ILC61         -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - | Ale Bit symbol name Description (target interrupt level) | AS: R/W<br>SSIZE: 8/16 bit<br>value: 0x0000<br>15 14 13 12 11 10 9 8 7 6 5 4 3<br>ILC6<br>ILC61<br>ILC60<br><br>R R R R R R R R R R R R R R R R<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br>Mo. Bit symbol<br>No. Bit symbol | AS: R/W<br>AS SIZE: 8/16 bit<br>value: 0x0000<br>15 14 13 12 11 10 9 8 7 6 5 4 3 2<br>ILC6<br>ILC61<br>ILC60<br><br>R R R R R R R R R R R R R R R R R<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | AS: R/W<br>AS SIZE: 8/16 bit<br>value: 0x0000<br>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1<br>ILC6<br>ILC60<br> |

[Note]

#### 5.2.20 Interrupt Level Control Register 7 (ILC7)

ILC7 is a special function register (SFR) to set the interrupt level for each maskable interrupt source. The bits of the unavailable peripheral circuits are not writeable. They return "0" for reading. It is writeable only when the interrupt level control is enabled by setting IEL bit of the interrupt level control enable register (ILEN) to "1".

|                  |    | R/V<br>8/1  | •  | .C70/IL | C7), 0x      | F043(II      | _C71)        |              |              |              |              |              |            |            |   |   |
|------------------|----|-------------|----|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|------------|---|---|
|                  | 15 | 14          | 13 | 12      | 11           | 10           | 9            | 8            | 7            | 6            | 5            | 4            | 3          | 2          | 1 | 0 |
| Word             |    |             |    |         |              |              |              | ILO          | C7           |              |              |              |            |            |   |   |
| Byte             |    | ILC71 ILC70 |    |         |              |              |              |              |              |              |              |              |            |            |   |   |
| Bit              | -  | -           | -  | -       | ILLTB<br>C2H | ILLTB<br>C2L | ILLTB<br>C1H | ILLTB<br>C1L | ILLTB<br>C3H | ILLTB<br>C3L | ILLTB<br>C0H | ILLTB<br>C0L | ILTMX<br>H | ILTMX<br>L | - | - |
| R/W              | R  | R           | R  | R       | R/W          | R/W        | R/W        | R | R |
| Initial<br>value | 0  | 0           | 0  | 0       | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0          | 0          | 0 | 0 |

Common description of each bits :

It is configured a target interrupt level.

- 00: level 1; a priority is lower. (Initial value)
- 01: level 2
- 10: level 3

11: level 4; a priority is higher.

| Bit No. | Bit symbol name       | Description (target interrupt level)              |
|---------|-----------------------|---------------------------------------------------|
| 15,14   | -                     | Reserved bit                                      |
| 13,12   | -                     | Reserved bit                                      |
| 11,10   | ILLTBC2H,<br>ILLTBC2L | Low speed Time base counter 2 interrupt (LTB2INT) |
| 9,8     | ILLTBC1H,<br>ILLTBC1L | Low speed Time base counter 1 interrupt (LTB1INT) |
| 7,6     | ILLTBC3H,<br>ILLTBC3L | Low speed Time base counter 3 interrupt (LTB3INT) |
| 5,4     | ILLTBC0H,<br>ILLTBC0L | Low speed Time base counter 0 interrupt (LTB0INT) |
| 3,2     | ILTMXH, ILTMXL        | 16-bit Timer X interrupt (TMXINT)                 |
| 1,0     | -                     | Reserved bit                                      |

[Note]

#### 5.3 Description of Operation

Enabling/disabling the maskable interrupt can be controlled by the master interrupt enable flag (MIE) of the CPU and each interrupt enable register (IE1 to 7).

A WDT interrupt (WDTINT) is unavailable to disable as it is a non-maskable interrupt.

When interrupt conditions are satisfied, the CPU calls a branching destination address from the vector table determined for each interrupt source and the interrupt transfer cycle starts to branch to the interrupt processing routine.

If multiple interrupts are generated concurrently when the interrupt level control function is disabled, they are processed starting from the interrupt with the highest priority (with a smallest interrupt source number). The lower- priority interrupts (with larger interrupt source numbers) remain pending.

If multiple interrupts are generated concurrently when the interrupt level control function is enabled, they are processed starting from the interrupt with both the highest interrupt level and the highest priority level. The lower- priority interrupts remain pending.

Table 5-2 lists the interrupt sources.

The interrupt vector address is an address of the interrupt vector defined in the program memory. See "nX-U16/100 Core Instruction Manual" for details of the interrupt vector address.

| Table 5-2 List of interrupt sources |                   |                  |                   |                   |          |           |                                         |                |
|-------------------------------------|-------------------|------------------|-------------------|-------------------|----------|-----------|-----------------------------------------|----------------|
| Interrupt<br>source                 |                   | egister assig    |                   |                   |          | External  |                                         |                |
| number                              | IRQ<br>(interrupt | IE<br>(interrupt | ILC<br>(interrupt | vector<br>address | Mask     | /internal | Interrupt source                        | Symbol         |
| (priority)                          | request)          | enable)          | level)            | audiess           |          | source    |                                         |                |
| 1(high)                             | IRQ0[0]           | -                | -                 | 0x0008            | Disabled |           | WDT interrupt                           | WDTINT         |
| 2                                   | -                 | -                | -                 | 0x000A            | DIsabled | Internal  | -                                       | -              |
| 3                                   | IRQ0[6]           | IE0[6]           | ILC0[13:12]       | 0x000C            | Enabled  | Internal  | VLS0 interrupt                          | VLS0INT        |
| 4                                   | IRQ0[7]           | IE0[7]           | ILC0[15:14]       | 0x000E            | Enabled  |           | -                                       | -              |
| 5                                   | IRQ1[0]           | IE1[0]           | ILC1[1:0]         | 0x0010            | Enabled  |           | External interrupt 0                    | EXI0INT        |
| 6                                   | IRQ1[1]           | IE1[1]           | ILC1[3:2]         | 0x0012            | Enabled  |           | External interrupt 1                    | EXI1INT        |
| 7                                   | IRQ1[2]           | IE1[2]           | ILC1[5:4]         | 0x0014            | Enabled  |           | External interrupt 2                    | EXI2INT        |
| 8                                   | IRQ1[3]           | IE1[3]           | ILC1[7:6]         | 0x0016            | Enabled  | External  | External interrupt 3                    | EXI3INT        |
| 9                                   | IRQ1[4]           | IE1[4]           | ILC1[9:8]         | 0x0018            | Enabled  | External  | External interrupt 4                    | EXI4INT        |
| 10                                  | IRQ1[5]           | IE1[5]           | ILC1[11:10]       | 0x001A            | Enabled  |           | External interrupt 5                    | EXI5INT        |
| 11                                  | IRQ1[6]           | IE1[6]           | ILC1[13:12]       | 0x001C            | Enabled  |           | External interrupt 6                    | EXI6INT        |
| 12                                  | IRQ1[7]           | IE1[7]           | ILC1[15:14]       | 0x001E            | Enabled  |           | External interrupt 7                    | EXI7INT        |
| 13                                  | IRQ2[0]           | IE2[0]           | ILC2[1:0]         | 0x0020            | Enabled  |           | Clock backup interrupt                  | CBUINT         |
| 14                                  | IRQ2[1]           | IE2[1]           | ILC2[3:2]         | 0x0022            | Enabled  |           | -                                       | -              |
| 15                                  | IRQ2[2]           | IE2[2]           | ILC2[5:4]         | 0x0024            | Enabled  |           | MCU status interrupt*1                  | MCSINT         |
| 16                                  | IRQ2[3]           | IE2[3]           | ILC2[7:6]         | 0x0026            | Enabled  | Internal  | UART00 interrupt                        | UA00INT        |
| 17                                  | IRQ2[4]           | IE2[4]           | ILC2[9:8]         | 0x0028            | Enabled  | internal  | UART01 interrupt                        | UA01INT        |
| 18                                  | IRQ2[5]           | IE2[5]           | ILC2[11:10]       | 0x002A            | Enabled  |           | -                                       | -              |
| 19                                  | IRQ2[6]           | IE2[6]           | ILC2[13:12]       | 0x002C            | Enabled  |           | SA-ADC interrupt                        | SADINT         |
| 20                                  | IRQ2[7]           | IE2[7]           | ILC2[15:14]       | 0x002E            | Enabled  |           | SSIOF0 interrupt                        | SIOF0INT       |
| 21                                  | IRQ3[0]           | IE3[0]           | ILC3[1:0]         | 0x0030            | Enabled  |           | SSIO0 interrupt                         | SIO0INT        |
| 22                                  | IRQ3[1]           | IE3[1]           | ILC3[3:2]         | 0x0032            | Enabled  |           | -                                       | -              |
| 23                                  | IRQ3[2]           | IE3[2]           | ILC3[5:4]         | 0x0034            | Enabled  |           | I <sup>2</sup> C bus master 0 interrupt | I2CM0IN<br>T   |
| 24                                  | IRQ3[3]           | IE3[3]           | ILC3[7:6]         | 0x0036            | Enabled  | Internal  | -                                       | -              |
| 25                                  | IRQ3[4]           | IE3[4]           | ILC3[9:8]         | 0x0038            | Enabled  |           | Functional Timer 0 interrupt            | <b>FTM0INT</b> |
| 26                                  | IRQ3[5]           | IE3[5]           | ILC3[11:10]       | 0x003A            | Enabled  |           | Functional Timer 1 interrupt            | FTM1INT        |
| 27                                  | IRQ3[6]           | IE3[6]           | ILC3[13:12]       | 0x003C            | Enabled  |           | 16-bit Timer 0 interrupt                | TM0INT         |
| 28                                  | IRQ3[7]           | IE3[7]           | ILC3[15:14]       | 0x003E            | Enabled  |           | 16-bit Timer 1 interrupt                | TM1INT         |
| 29                                  | IRQ4[0]           | IE4[0]           | ILC4[1:0]         | 0x0040            | Enabled  |           | I <sup>2</sup> C bus unit interrupt     | I2CU0INT       |
| 30                                  | IRQ4[1]           | IE4[1]           | ILC4[3:2]         | 0x0042            | Enabled  |           | UART10 interrupt                        | UA10INT        |
| 31                                  | IRQ4[2]           | IE4[2]           | ILC4[5:4]         | 0x0044            | Enabled  |           | UART11 interrupt                        | UA11INT        |
| 32                                  | IRQ4[3]           | IE4[3]           | ILC4[7:6]         | 0x0046            | Enabled  | Internal  | -                                       | -              |
| 33                                  | IRQ4[4]           | IE4[4]           | ILC4[9:8]         | 0x0048            | Enabled  | memai     | -                                       | -              |
| 34                                  | IRQ4[5]           | IE4[5]           | ILC4[11:10]       | 0x004A            | Enabled  |           | -                                       | -              |
| 35                                  | IRQ4[6]           | IE4[6]           | ILC4[13:12]       | 0x004C            | Enabled  |           | 16-bit Timer 2 interrupt                | TM2INT         |
| 36                                  | IRQ4[7]           | IE4[7]           | ILC4[15:14]       | 0x004E            | Enabled  |           | 16-bit Timer 3 interrupt                | TM3INT         |
| 37                                  | IRQ5[0]           | IE5[0]           | ILC5[1:0]         | 0x0050            | Enabled  |           | UART20 interrupt                        | UA20INT        |
| 38                                  | IRQ5[1]           | IE5[1]           | ILC5[3:2]         | 0x0052            | Enabled  |           | UART21 interrupt                        | UA21INT        |
| 39                                  | IRQ5[2]           | IE5[2]           | ILC5[5:4]         | 0x0054            | Enabled  | Internal  | -                                       | -              |
| 40                                  | IRQ5[3]           | IE5[3]           | ILC5[7:6]         | 0x0056            | Enabled  | mornar    | -                                       | -              |
| 41                                  | IRQ5[4]           | IE5[4]           | ILC5[9:8]         | 0x0058            | Enabled  |           | -                                       | -              |
| 42                                  | IRQ5[5]           | IE5[5]           | ILC5[11:10]       | 0x005A            | Enabled  |           | -                                       | -              |

| Table 5-2 List of interr | upt sources |
|--------------------------|-------------|
|--------------------------|-------------|

| Interrupt                      | Re                            | Register assignment         |                             |                                |         | External            |                                             |         |
|--------------------------------|-------------------------------|-----------------------------|-----------------------------|--------------------------------|---------|---------------------|---------------------------------------------|---------|
| source<br>number<br>(priority) | IRQ<br>(interrupt<br>request) | IE<br>(interrupt<br>enable) | ILC<br>(interrupt<br>level) | Interrupt<br>vector<br>address | Mask    | /internal<br>source | Interrupt source                            | Symbol  |
| 43                             | IRQ5[6]                       | IE5[6]                      | ILC5[13:12]                 | 0x005C                         | Enabled |                     | 16-bit Timer 4 interrupt                    | TM4INT  |
| 44                             | IRQ5[7]                       | IE5[7]                      | ILC5[15:14]                 | 0x005E                         | Enabled |                     | -                                           | -       |
| 45                             | IRQ6[0]                       | IE6[0]                      | ILC6[1:0]                   | 0x0060                         | Enabled |                     | -                                           | -       |
| 46                             | IRQ6[1]                       | IE6[1]                      | ILC6[3:2]                   | 0x0062                         | Enabled |                     | -                                           | -       |
| 47                             | IRQ6[2]                       | IE6[2]                      | ILC6[5:4]                   | 0x0064                         | Enabled |                     | -                                           | -       |
| 48                             | IRQ6[3]                       | IE6[3]                      | ILC6[7:6]                   | 0x0066                         | Enabled | Internal            | -                                           | -       |
| 49                             | IRQ6[4]                       | IE6[4]                      | ILC6[9:8]                   | 0x0068                         | Enabled | Internal            | -                                           | -       |
| 50                             | IRQ6[5]                       | IE6[5]                      | ILC6[11:10]                 | 0x006A                         | Enabled |                     | -                                           | -       |
| 51                             | IRQ6[6]                       | IE6[6]                      | ILC6[13:12]                 | 0x006C                         | Enabled |                     | -                                           | -       |
| 52                             | IRQ6[7]                       | IE6[7]                      | ILC6[15:14]                 | 0x006E                         | Enabled |                     | -                                           | -       |
| 53                             | IRQ7[0]                       | IE7[0]                      | ILC7[1:0]                   | 0x0070                         | Enabled |                     | -                                           | -       |
| 54                             | IRQ7[1]                       | IE7[1]                      | ILC7[3:2]                   | 0x0072                         | Enabled |                     | 16-bit Timer X interrupt                    | TMXINT  |
| 55                             | IRQ7[2]                       | IE7[2]                      | ILC7[5:4]                   | 0x0074                         | Enabled |                     | Low speed time base<br>counter 0 interrupt  | LTB0INT |
| 56                             | IRQ7[3]                       | IE7[3]                      | ILC7[7:6]                   | 0x0076                         | Enabled | Internal            | Low speed timer base<br>counter 3 interrupt | LTB3INT |
| 57                             | IRQ7[4]                       | IE7[4]                      | ILC7[9:8]                   | 0x0078                         | Enabled | memai               | Low speed timer base<br>counter 1 interrupt | LTB1INT |
| 58                             | IRQ7[5]                       | IE7[5]                      | ILC7[11:10]                 | 0x007A                         | Enabled |                     | Low speed timer base<br>counter 2 interrupt | LTB2INT |
| 59                             | IRQ7[6]                       | IE7[6]                      | ILC7[13:12]                 | 0x007C                         | Enabled |                     | -                                           | -       |
| 60(低)                          | IRQ7[7]                       | IE7[7]                      | ILC7[15:14]                 | 0x007E                         | Enabled |                     |                                             | -       |

\*1 The MCU status interrupt occurs when the following request is asserted.

RAM parity error

• Automatic CRC calculation completion

• Data flash erasing/programming completion

These request is configurable to enable/disable. See Chapter 29 "Safety Function" for detail.

### [Note]

- The WDT interrupt (WDTINT) is a non-maskable interrupt. If the non-maskable interrupt occurs while an interrupt processing is in progress, abort the interrupt processing and proceed with processing the non-maskable interrupt preferentially regardless of multiple interrupts enabled/disabled.
- For failsafe, define unused all interrupt vectors. If an unused interrupt occurs, it may indicate the
  possibility that the CPU went out of control. It is recommended to cause the WDT overflow reset to occur
  using the infinite loop to initialize the LSI.

### 5.3.1 Maskable Interrupt Processing

When an interrupt is generated with MIE set to "1", the following process is executed by hardware and the CPU goes to the interrupt routine.

- 1. Save the program counter (PC) in ELR1.
- 2. Save CSR in ECSR1 (not processed if the program memory size is 64 Kbytes or less).
- 3. Save PSW in EPSW1.
- 4. Set ELEVEL of PSW to "1".
- 5. Reset the MIE flag to "0".
- 6. Set CSR to "0" (not processed if the program memory size is 64 Kbytes or less).
- 7. Transfer the value of the interrupt vector address to the program counter (PC).

### 5.3.2 Non-Maskable Interrupt Processing

When an interrupt occurs, the following process is executed by hardware and the CPU goes to the interrupt routine regardless of the value of MIE.

- 1. Save the program counter (PC) in ELR2.
- 2. Save CSR in ECSR2 (not processed if the program memory size is 64 Kbytes or less).
- 3. Save PSW fin EPSW2.
- 4. Set ELEVEL of PSW to "2".
- 5. Set CSR to "0" (not processed if the program memory size is 64 Kbytes or less).
- 6. Transfer the value of the interrupt vector address to the program counter (PC).

### 5.3.3 Software Interrupt Processing

The software interrupt is arbitrarily produced in software.

When the SWI instruction is performed within the program, a software interrupt occurs, the following process is performed by hardware, and the CPU goes to the software interrupt routine. The vector table is specified with the SWI instruction.

- 1. Save the program counter (PC) in ELR1.
- 2. Save CSR in ECSR1 (not processed if the program memory size is 64 Kbytes or less).
- 3. Save PSW in EPSW1.
- 4. Set ELEVEL of PSW to "1".
- 5. Set the MIE flag to "0".
- 6. Set CSR to "0" (not processed if the program memory size is 64 Kbytes or less).
- 7. Transfer the value of the interrupt vector address to the program counter (PC).

See "nX-U16/100 Core Instruction Manual" for MIE, the program counter (PC), ELR1, CSR, ECSR1, PSW, EPSW1, ELEVEL, ELR2, ECSR2, EPSW2 and vector table.

### 5.3.4 Notes on Interrupt Routine (with Interrupt Level Control Disabled)

Writing "0" to the ILE bit of the interrupt level control enable register (ILEN) causes the interrupt level control to be disabled.

The description below shows notes on each of the following states when the interrupt level control is not in use.

- When the sub routine is called/not called in the interrupt routine while execution of the maskable interrupt is in progress (state A).
- When the sub routine is called/not called in the interrupt routine while execution of a non-maskable interrupt is in progress (state B).

State A: Maskable interrupt is being executed

A-1: When a subroutine is not called in an interrupt routine

A-1-1: When multiple interrupts are disabled

• When the script is written in the assembly language

• Processing immediately after the start of interrupt routine execution No specific notes.

• Processing at the end of interrupt routine execution

Specify the RTI instruction to return the contents of the ELR register to the PC and those of the EPSW register to PSW.

• When the script is written in C

Define the interrupt routine using the INTERRUPT pragma. Specify "1" in the category field. In this way, appropriate codes are produced through the C compiler.

Example of description: State A-1-1

For assembly language:

| i ei decembiy language. |                            |
|-------------------------|----------------------------|
| Intrpt_A-1-1;           | ; State of A-1-1           |
| DI                      | ; Disable interrupt        |
| :                       |                            |
| :                       |                            |
| :                       |                            |
| RTI                     | ; Return PC from ELR       |
|                         | ; Return PSW form EPSW     |
|                         | ; End of interrupt routine |
|                         |                            |

For C language:

| static void Intrpt_A_1_1(void);             |                                       |  |  |  |  |
|---------------------------------------------|---------------------------------------|--|--|--|--|
| #pragma interrupt                           | #pragma interrupt Intrpt A 1 1 0x10 1 |  |  |  |  |
| static void Intrpt A 1 1(void)              |                                       |  |  |  |  |
| {                                           | {                                     |  |  |  |  |
| _DI();                                      | /* Disable interrupt */               |  |  |  |  |
| :                                           |                                       |  |  |  |  |
| <pre>} /* End of interrupt routine */</pre> |                                       |  |  |  |  |
|                                             |                                       |  |  |  |  |

A-1-2: When multiple interrupts are enabled

- When the script is written in the assembly language
  - Processing immediately after the start of interrupt routine execution
    - Specify "PUSH ELR, EPSW" to save the interrupt return address and the PSW status in the stack.
  - Processing at the end of interrupt routine execution
  - Specify "POP PC, PSW" instead of the RTI instruction to return the contents of the stack to PC and PSW.
- When the script is written in C
  - Define the interrupt routine using the INTERRUPT pragma. Specify "2" in the category field. In this way, appropriate codes are produced through the C compiler.

Example of description: State A-1-2

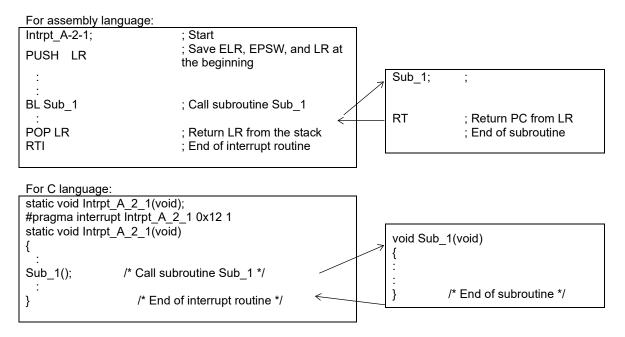
| For assembly | language: |
|--------------|-----------|
|--------------|-----------|

| Intrpt_A-1-2;  | ; Start                                 |  |
|----------------|-----------------------------------------|--|
| PUSH ELR, EPSW | ; Save ELR and EPSW at the<br>beginning |  |
| :              |                                         |  |
| :              |                                         |  |
| EI             | ; Enable interrupt                      |  |
| :              |                                         |  |
| POP PSW, PC    | ; Return PC from the stack              |  |
|                | ; Return PSW from the stack             |  |
|                | ; End of interrupt routine              |  |

For C language:

| static void Intrpt_A_1_2(void);<br>#pragma interrupt Intrpt_A_1_2 0x20 2<br>static void Intrpt_A_1_2(void) |                                |  |  |  |
|------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| {<br>_EI();                                                                                                | /* Enable interrupt */         |  |  |  |
| }                                                                                                          | /* End of interrupt routine */ |  |  |  |
|                                                                                                            |                                |  |  |  |

A-2: When a subroutine is called in an interrupt routine


A-2-1: When multiple interrupts are disabled

• When the script is written in the assembly language

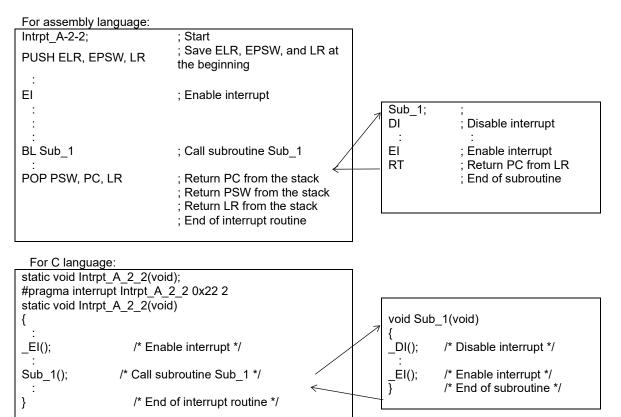
- · Processing immediately after the start of interrupt routine execution
  - Specify the "PUSH LR" instruction to save the subroutine return address in the stack.
- Processing at the end of interrupt routine execution
  - Specify "POP LR" immediately before the RTI instruction to return from the interrupt processing after returning the subroutine return address to LR.
- When the script is written in C

Define the interrupt routine using the INTERRUPT pragma. Specify "1" in the category field. In this way, appropriate codes are produced through the C compiler.

Example of description: State A-2-1



[Note]


Do not enable interrupts in a subroutine called from an interrupt routine for which multiple interrupts are disabled. Otherwise, the program may run out of control when multiple interrupts occur.

A-2-2: When multiple interrupts are enabled

• When the script is written in the assembly language

- Processing immediately after the start of interrupt routine execution Specify "PUSH LR, ELR, EPSW, LR" to save the interrupt return address, the subroutine return address, and the
- EPSW1 status in the stack.Processing at the end of interrupt routine execution
- Specify "POP PSW, PC, LR", instead of the RTI instruction, to return the saved data of the interrupt return address to PC, the saved data of EPSW1 to PSW, and the saved data of LR to LR.
- When the script is written in C
  - Define the interrupt routine using the INTERRUPT pragma. Specify "2" in the category field. In this way, appropriate codes are produced through the C compiler.

Example of description: Status A-2-2



State B: Non-maskable interrupt is being processed

B-1: When a subroutine is not called in an interrupt routine

- When the script is written in the assembly language
  - Processing immediately after the start of interrupt routine execution
    - Specify "PUSH ELR, EPSW" to save the interrupt return address and the PSW status in the stack.
  - Processing at the end of interrupt routine execution
  - Specify "POP PSW, PC" to return the contents of the stack to PC and PSW.
- When the script is written in C
  - Define the interrupt routine using the INTERRUPT pragma. Specify "2" in the category field. In this way, appropriate codes are produced through the C compiler.

Example of description: Status B-1

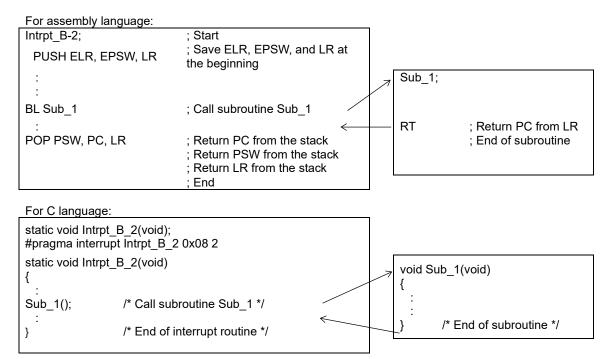
| For assembly language: |                                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Intrpt_B-1;            | ; Status B-1                                                                                                          |
| PUSH ELR, EPSW         | ; Save ELR and EPSW at the<br>beginning                                                                               |
| :                      |                                                                                                                       |
| :<br>POP PSW, PC       | ; Return PC from the stack<br>; Return PSW from the stack<br>; Return LR from the stack<br>; End of interrupt routine |

For C language:

static void Intrpt\_B\_1(void); #pragma interrupt Intrpt\_B\_1 0x08 2 static void Intrpt\_B\_1(void) { : } /\* End of interrupt routine \*/

B-2: When a subroutine is called in an interrupt routine

• When the script is written in the assembly language


- Processing immediately after the start of interrupt routine execution Specify "PUSH ELR, EPSW, LR" to save the interrupt return address, the subroutine return address, and EPSW status in the stack.
- Processing at the end of interrupt routine execution

Specify "POP PSW, PC, LR" to return the saved data of the interrupt return address to PC, the saved data of EPSW to PSW, and the saved data of LR to LR.

• Description for C language

Define the interrupt routine by using INTERRUPT pragma and specify "2" in the category field. The C compiler generates the proper codes.

Example of description: Status B-2



### 5.3.5 Flow Charts When Interrupt Level Control Is Enabled

Figure 5-1 shows flow charts of the software interrupt processing when multiple interrupts are disabled and enabled respectively with the interrupt level control enabled.

When multiple interrupts are enabled, save ELR1, ECSR (not processed for products with 64 Kbytes or less of program memory) and EPSW1 in the stack (RAM) so that they are not overwritten by the multiple interrupt. In addition, the EI and DI instructions enable the execution of multiple interrupts due to a high-level maskable interrupt request while "execution of the target process" is in progress.

If a non-maskable interrupt is occurred while the maskable interrupt is being processed, the transition to non-maskable interrupt takes place regardless of multiple interrupts enabled/disabled and the execution of the EI instruction.

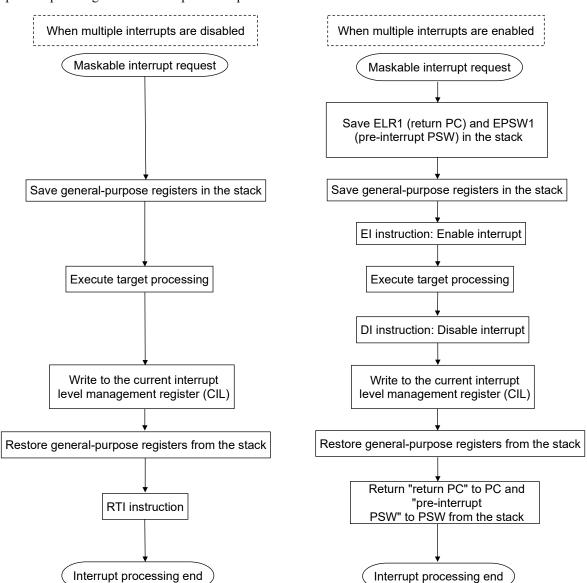



Figure 5-1 Maskable Interrupt Processing Flow

### [Note]

- For processing of non-maskable interrupt, follow the flow chart "When multiple interrupts are enabled". Registers that should be saved in the stack are ELR2 and EPSW2.
- When programming in C, it is not required to write program codes for saving/restoring registers because they are generated in the C compiler. However, program codes for enabling/disabling interrupts through EI and DI instructions and for writing to the current interrupt level management register (CIL) must be written. See Section 5.3.6 "How To Write Interrupt Processing When Interrupt Level Control Enabled" for the specific program description.

### 5.3.6 How To Write Interrupt Processing When Interrupt Level Control Enabled

This section describes examples of program scripts of interrupt function when ILE of the interrupt level control enable register (ILEN) is set to enable the interrupt level control. See the programming guide of the C compiler for the detailed scripting method of and notes on interrupt processing.

### 5.3.6.1 Description of Interrupt Function to Disable Multiple Interrupts

To describe the interrupt function to disable multiple interrupts, specify 1 in the category field of the INTERRUPT pragma and SWI pragma. When built-in function \_EI is called in the interrupt function to disable multiple interrupts, the C compiler displays an error.

After completion of the target interrupt processing, it is necessary to write to the CIL register and clear the highest current interrupt request level (CILMn bit) to "0". Otherwise, interrupts equivalent to or less than the current interrupt request level is unacceptable.

```
Example of description

static void intr_fn_0A (void);

#pragma interrupt intr_fn_0A 0x0A 1

volatile unsigned short TM1msec;

static void intr_fn_0A (void)

{

TM1msec++;

CIL = 0; /*Clear the highest current interrupt request level*/

}
```

When described as in the example, intr\_fn\_0A is handled as an interrupt processing function to disable multiple interrupts. the C compiler outputs the assembly code as shown below.

```
Example of output
  _intr_fn_0A
       push
               er0
  ;;
       TM1msec++;
       I
               er0,
                       NEAR TM1msec
       add
               er0.
                        #1
       st
               er0,
                        NEAR _TM1msec
  ;;}
       CIL = 0;
  ;;
               r0,
                        #00h
       mov
                  r0,
                           0f022h
       st
  ;;}
               er0
       pop
       rti
```

In the interrupt function, the register (here, only ER0) that may be used in the interrupt routine is saved in the stack. "RTI" instruction is used to return from the interrupt function to disable multiple interrupts. The example below shows how to call other functions from an interrupt function.

```
Example of description
  static void intr fn 10 (void);
 #pragma interrupt intr_fn_10 0x10 1
 void func (void);
 static void intr_fn_10 (void)
 {
          func ();
        CIL = 0; /*Clear the highest current interrupt request level*/
 }
Example of output
  _intr_fn_10
                  :
     push lr,
                  ea
     push
            xr0
                     DSR
             r0,
     push
            r0
     func();
  ;;
     bl
             _func
 ;;}
     CIL = 0;
 ;;
             r0,
                  #00h
     mov
             r0,
                  0f022h
     st
 ;;}
     pop
             r0
                  DSR
             r0,
     st
     рор
             xr0
     рор
             ea,
                  ١r
     rti
```

When another function is called from an interrupt function, the output code becomes redundant compared with the case where another function is not called from the interrupt function. Thus the processing time of the interrupt becomes also longer. This is because the C compiler does not know which registers the function func () should use and it save the all registers that may be changed by calling the func () in the stack.

### [Note]

Do not enable interrupts in a function called from a function for which multiple interrupts are disabled.
 Otherwise, the program may run out of control when the multiple interrupts occur.

### 5.3.6.2 Description of Interrupt Function to Enable Multiple Interrupts

When describing an interrupt function to enable multiple interrupts, specify "2" in the category field in INTERRUPT pragma and SWI pragma. Even if it is not specified in the category field, multiple interrupt are enabled. Built-in function \_EI can be called in an interrupt function to enable multiple interrupts.

```
Example of description

static void intr_fn_20 (void);

volatile unsigned short TM2msec;

#pragma interrupt intr_fn_20 0x20 2

static void intr_fn_20 (void)

{

_EI(); /*Enable multiple interrupts*/

TM2msec++;

_DI(); /*Disable multiple interrupts*/

CIL = 0; /*Clear the highest current interrupt request level*/

}
```

If described as in the example,  $intr_fn_20$  () is handled as an interrupt processing function to enable multiple interrupts. the C compiler outputs the assembly code as shown below.

```
Example of output
  _intr_fn_20
                  .
     push elr, epsw
     push
            er0
                    /*Enable multiple interrupts*/
 ;;
       _EI( );
     ei
 ;;
       TM1msec++;
            er0, NEAR _TM2msec
     Т
     add
            er0, #1
            er0, NEAR _TM2msec
     st
       _DI( );
                  /*Disable multiple interrupts*/
  ;;
     di
 ;;}
       CIL = 0;
 ;;
            r0,
                    #00h
     mov
                    0f022h
     st
            r0,
  ;;}
     pop
             er0
               psw, pc
     рор
```

In an interrupt function to enable multiple interrupts, ELR and EPSW are saved in the stack so that they should not be destroyed by multiple interrupts. This is the difference from the interrupt function to disable multiple interrupts. To return from the interrupt function, "POP PSW, PC" is used instead of "RTI".

### 5.3.7 Interrupt Disable State

The interrupt disable state refers to an operating state where no interrupt is accepted even if the interrupt conditions are satisfied.

The following describes the interrupt disabled state and operation of interrupts in the situation.

- State 1. Between the interrupt transfer cycle and the instruction at the beginning of the interrupt routine When the interrupt conditions are satisfied here, an interrupt is generated immediately after the execution of the instruction at the beginning of the interrupt routine that corresponds to the interrupt already enabled.
- State 2. Between the DSR prefix code and the next instruction When the interrupt conditions are satisfied here, an interrupt is generated immediately after execution of the instruction following the DSR prefix code.

See "nX-U16/100 Core Instruction Manual" for the DSR prefix instruction.

### 5.3.8 Writing to IRQ01/IRQ23/IRQ45/IRQ67

Use the bit symbol to write to IRQ01/IRQ23/IRQ45/IRQ67 register. The example below shows how to write "0" to the bit symbol QLTBC0.

Example of description #define clear\_bit(n) ((n)) = 0)

clear bit (QLTBC0);

\* "n" is the bit symbol name of user's manual.

# **Chapter 6 Clock generation Circuit**

### 6. Clock Generation Circuit

### 6.1 General Description

The clock generation circuit generates following kinds of clock and supplied them to the CPU or the peripheral circuits.

| Table 6-1 | Source | Clocks |
|-----------|--------|--------|
|           | Ource  | CIOCKS |

| Clock Name Symbol Frequency                               |        | Frequency    | Description                                                                                              |
|-----------------------------------------------------------|--------|--------------|----------------------------------------------------------------------------------------------------------|
| Internal low-speed clock RC32K 32.768kHz                  |        | 32.768kHz    | Internal generated RC oscillating low-speed clock.                                                       |
| Crystal oscillation low-<br>speed clock XT32K 32.768kHz I |        | 32.768kHz    | low-speed clock with an external crystal unit.                                                           |
| External low-speed<br>clock input                         | EXT32K | 32.768kHz    | External low-speed clock input from XT1                                                                  |
| Internal 1kHz clock                                       | RC1K   | 1.024kHz     | Internal generated RC oscillating clock that frequency is 1.024 kHz for WDTCLK and clock mutual monitor. |
|                                                           | PLL    | -            | high-speed clock multiplied LSCLK0. It is selected frequency 1/16/24MHz by the code option.              |
| Internal high-speed                                       | PLL24M | 24.002560MHz | Multiplied by 732.5                                                                                      |
| clock                                                     | PLL16M | 16.007168MHz | Multiplied by 488.5                                                                                      |
|                                                           | PLL1M  | 0.999424MHz  | Multiplied by 30.5                                                                                       |

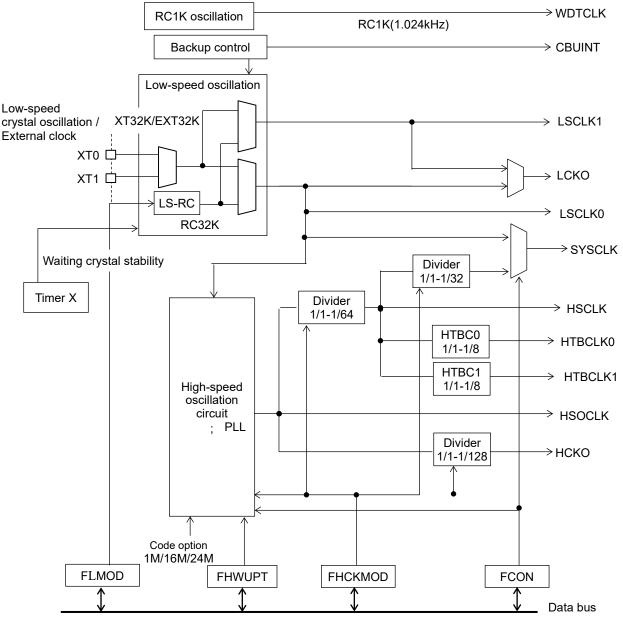
Table 6-2 Clocks generated by the clock generation circuit

| Clock Name                     | Symbol             | Frequency                    | Description                                                                                                        |
|--------------------------------|--------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Low speed clock 0              | LSCLK0             | 32.768kHz                    | For system and peripheral circuits.                                                                                |
| Low speed clock 1              | LSCLK1             | 32.768kHz                    | For timer and LTBC.                                                                                                |
| Low speed clock output         | LCKO               | 32.768kHz                    | port output LSCLK0 orLSCLK1                                                                                        |
| High speed source<br>clock     | HSOCLK             | 1/16/24MHz                   | For SA-ADC.                                                                                                        |
| High speed clock               | HSCLK              | 0.125 to 24MHz               | Divided HSOCLK. For system and peripheral circuits.                                                                |
| High speed time base clock 0/1 | HTBCLK0<br>HTBCLK1 | HSCLK/1 to 8                 | For peripheral circuits. Divided HSCLK by 1, 2, 3, 4, 5, 6, 7, 8. 2 channels.                                      |
| High speed clock output        | НСКО               | 0.125 to 6MHz                | Port output divided HSOCLK                                                                                         |
| System clock                   | SYSCLK             | 32.768kHz/<br>0.125 to 24MHz | A clock. selected from LSCLK0 and a divided HSCLK, for system and communication circuits. It is LSCLK at start-up. |
| CPU clock                      | CPUCLK             | SYSCLK                       | A system clock for CPU. It is stop in stand-by mode.                                                               |
| WDT clock                      | WDTCLK             | 1.024kHz                     | For counting watchdog timer.                                                                                       |

### 6.1.1 Features

- Low-speed clock generation circuit
  - Low-speed RC oscillation circuit
  - A crystal resonator is connectable
  - In case the low-speed crystal oscillation stopped, the clock is automatically switched to the low-speed RC oscillation; clock backup function.
  - A low-speed external clock is available to input to XT1 pin.
  - Selectable a clock different from system clock as timer clock.
  - Configurable stability time of crystal oscillation by the timer X.
- High-speed clock generation circuit
  - PLL oscillation mode (1/16/24 MHz is selectable for the PLL frequency by the code option)
  - High-speed clock wake-up time is selectable
  - High-speed time base clock circuit that is divided HSCLK by 1 to 8; it is with 2 channels.
- WDT clock
  - RC 1kHz oscillation circuit that is different from system clock.

Table 6-3 shows relation of high-speed clocks and PLL frequency.


The CPU operation mode and the PLL oscillation reference frequency are selectable by the code option. See Chapter 30 "Code Option" for more details.

|       |        | Maximum operating frequency |             |              |      |  |  |  |  |  |  |
|-------|--------|-----------------------------|-------------|--------------|------|--|--|--|--|--|--|
| PLL   | HSOCLK | HSCLK                       | SYS         | SCLK         | нско |  |  |  |  |  |  |
|       | HSUCLK | HOULK                       | Wait mode   | No wait mode | HUKU |  |  |  |  |  |  |
| 24MHz | 24MHz  | 0.375-24MHz                 | 0.125-24MHz | 0.125-6MHz   | 6MHz |  |  |  |  |  |  |
| 16MHz | 16MHz  | 0.250-16MHz                 | 0.125-16MHz | 0.125-8MHz   | 4MHz |  |  |  |  |  |  |
| 1MHz  | 1MHz   | 0.125-1MHz                  | 0.125-1MHz  | 0.125-1MHz   | 1MHz |  |  |  |  |  |  |

Table 6-3 Frequency range for high-speed clock operation

### 6.1.2 Configuration

Figure 6-1 shows the configuration of the clock generation circuit. Table 6-4 shows the list of operation clocks for each function.



FLMOD, FHCKMOD, FHWUPT, FCON : SFRs for control. CBUINT\*1 : Clock backup interrupt register Figure 6-1 Configuration of Clock Generation Circuit

| Function                                                 | SYSCLK | <b>TSCLK0</b> | LSCLK1 | HSCLK       | HSOCLK | HTBCLK0 | HTBCLK1 | WDTCLK |
|----------------------------------------------------------|--------|---------------|--------|-------------|--------|---------|---------|--------|
| CPU/Data bus/CRC                                         | ٠      | -             | -      | -           | -      | -       | -       | -      |
| RAM                                                      | ٠      | -             | -      | -           | -      | -       | -       | -      |
| Watchdog timer                                           | -      | -             | -      | -           | -      | -       | -       | •      |
| External interrupt control                               | -      | ●*1           | -      | <b>●</b> *1 | I      | -       | ●*1     | -      |
| Low-speed time base<br>counter                           | -      | •             | •      | -           | -      | -       | -       | -      |
| 16-bit timer 0-4                                         | -      | ٠             | •      | •           | -      | ٠       | •       | -      |
| 16-bit timer X                                           | -      | •             | •      | •           | -      | •       | •       | -      |
| Functional timer                                         | -      | •             | -      | •           | -      | •       | •       | -      |
| SSIO                                                     | •      | -             | -      | -           | -      | -       | -       | -      |
| SSIOF                                                    | ٠      | -             | -      | -           | I      | -       | -       | -      |
| UART                                                     | ٠      | ٠             | -      | •           | I      | -       | -       | -      |
| l <sup>2</sup> C bus unit<br>l <sup>2</sup> C bus master | •      | -             | -      | -           | -      | -       | -       | -      |
| SA type A/D converter                                    | -      | ٠             | -      | -           | •      | -       | -       | -      |
| VLS                                                      | -      | ●*1           | -      | -           | -      | -       | -       | -      |

#### Table 6-4 Operating clock list in each function

• : supplied. - : not supplied.

\*1 : for controlling to start or sampling.

### [Note]

• After the power-on or the system reset, LSCLK0 (32.768 kHz) is initially chosen as SYSCLK.

### 6.1.3 List of Pins

The output pins of the high-speed/low-speed clocks are assigned to the shared function of general purpose ports. Table 6-5 shows the list of the output ports and the register setting.

| Pin name | I/O | Function                                                                     |
|----------|-----|------------------------------------------------------------------------------|
| LCKO     | 0   | Low-speed clock output                                                       |
| НСКО     | 0   | High-speed clock output                                                      |
| XT0      | I   | Low-speed crystal resonator connect pin                                      |
| XT1      | O/I | Low-speed crystal resonator connect pin / Low-speed external clock input pin |

### Table 6-5 Clock output function port and the register setting

| Pin name | Sr               | ared port    | Setting register | Setting<br>value | ML62Q2500<br>group |
|----------|------------------|--------------|------------------|------------------|--------------------|
|          | P03              | 7th function | P0MOD3           | 0110_XXXX*1      | •                  |
| LCKO     | P11              | 7th function | P1MOD1           | 0110_XXXX*1      | •                  |
|          | P71              | 7th function | P7MOD1           | 0110_XXXX*1      | •                  |
| нско     | P07 7th function |              | P0MOD0           | 0110_XXXX*1      | •                  |
| HORO     | P10              | 7th function | P2MOD0           | 0110_XXXX*1      | •                  |

\*1 : XXXX determines the port output condition

| XXXX | X Port output condition          |  |  |  |  |  |  |
|------|----------------------------------|--|--|--|--|--|--|
| 0010 | CMOS output                      |  |  |  |  |  |  |
| 1010 | Nch open drain (without pull-up) |  |  |  |  |  |  |
| 1111 | Nch open drain (with pull-up)    |  |  |  |  |  |  |

### [Note]

• Assign HCKO function to only one LSI pin.

### 6.2 Description of Registers

### 6.2.1 List of Registers

| Address | Name                                           | Sym      | bol      | R/W  | Size | Initial |
|---------|------------------------------------------------|----------|----------|------|------|---------|
| Address | Name                                           | Byte     | Word     | r/// | Size | Value   |
| 0xF002  | High-speed clock mode register                 | FHCKMODL | FHCKMOD  | R/W  | 8/16 | 0x00    |
| 0xF003  | High-speed clock mode register                 | FHCKMODH | FICKINOD | R/W  | 8    | 0x43    |
| 0xF004  | Low-speed clock mode register                  | FLMODL   | FLMOD    | R/W  | 8/16 | 0x00    |
| 0xF005  | Low-speed clock mode register                  | FLMODH   | FLMOD    | R/W  | 8    | 0x00    |
| 0xF006  | Cleak central register                         | FCON     | FCONW    | R/W  | 8/16 | 0x00    |
| 0xF007  | Clock control register                         | FCON1    | -        | R/W  | 8    | 0x00    |
| 0xF008  | High-speed clock wake up time setting register | FHWUPT   | -        | R/W  | 8    | 0x00    |
| 0xF009  | Reserved                                       | -        | -        | -    | -    | -       |
| 0xF00A  | Reserved                                       | -        | -        | -    | -    | -       |
| 0xF00B  | Reserved                                       | -        | -        | -    | -    | -       |
| 0xF00C  | Rockup Clock Status register                   | FBUSTAT  | FBUSTATW | R/W  | 8/16 | 0x01    |
| 0xF00D  | Backup Clock Status register                   | FBUSTATH | -        | R    | 8    | 0x01    |
| 0xF080  | Reserved                                       | -        | -        | -    | -    | -       |
| 0xF086  | High speed time base clock setting register    | HTBDR    | -        | R/W  | 8    | 0x00    |
| 0xF087  | Reserved                                       | -        | -        | -    | -    | -       |
| 0xF0C4  | Clock backup test mode acceptor                | FBTACP   | -        | W    | 8    | 0x00    |
| 0xF0C5  | Reserved                                       | -        | -        | -    | -    | -       |
| 0xF0C6  | Clock backup test mode register                | FBTCON   | -        | R/W  | 8    | 0x00    |
| 0xF0C7  | Reserved                                       | -        | -        | -    | -    | -       |

### 6.2.2 High-Speed Clock Mode Register (FHCKMOD)

This is a SFR to choose the oscillation mode of the high-speed clock oscillation circuit and the frequency of high-speed clock.

|                  |          | 0xF00<br>R/W<br>8/16 I<br>0x430 |     | (MOD                                                                                                              | L/FHCk                                                                                            | (MOD),                                                                             | , 0xF00                                                                                              | 3(FHCł                                                                                                                                        | KMODH                                                                                                     | 1)                                                                                                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                    |          |        |
|------------------|----------|---------------------------------|-----|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------|----------|--------|
| _                | 15       | 14                              | 13  | 12                                                                                                                | 11                                                                                                | 10                                                                                 | 9                                                                                                    | 8                                                                                                                                             | 7                                                                                                         | 6                                                                                                                             | 5                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                 | 2                                  | 1        | 0      |
| Word             |          |                                 |     |                                                                                                                   |                                                                                                   |                                                                                    |                                                                                                      | FHCł                                                                                                                                          | KMOD                                                                                                      |                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                    |          |        |
| Byte             |          |                                 |     | FHCK                                                                                                              | /ODH                                                                                              |                                                                                    |                                                                                                      |                                                                                                                                               |                                                                                                           |                                                                                                                               |                                                             | FHCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NODL                                                                                              |                                    |          |        |
| Bit              | -        | OUTC2                           |     | 1OUTC0                                                                                                            | -                                                                                                 | SYSC2                                                                              | SYSC1                                                                                                | SYSC0                                                                                                                                         | -                                                                                                         | HSC2                                                                                                                          | HSC1                                                        | HSC0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                 | -                                  | -        | -      |
| R/W              | R        | R/W                             | R/W | R/W                                                                                                               | R                                                                                                 | R/W                                                                                | R/W                                                                                                  | R/W                                                                                                                                           | R                                                                                                         | R/W                                                                                                                           | R/W                                                         | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R                                                                                                 | R                                  | R        | R      |
| Initial<br>value | 0        | 1                               | 0   | 0                                                                                                                 | 0                                                                                                 | 0                                                                                  | 1                                                                                                    | 1                                                                                                                                             | 0                                                                                                         | 0                                                                                                                             | 0                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                 | 0                                  | 0        | 0      |
| Bit No.          | <u>.</u> | Bit sym<br>name                 |     | Description                                                                                                       |                                                                                                   |                                                                                    |                                                                                                      |                                                                                                                                               |                                                                                                           |                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                    |          |        |
| 5                | -        |                                 |     | Reserv                                                                                                            | ed bit                                                                                            |                                                                                    |                                                                                                      |                                                                                                                                               |                                                                                                           |                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                    |          |        |
|                  |          |                                 |     | This clc<br>000 :<br>001 :<br>010 :<br>101 :<br>100 :<br>101 :<br>110 :<br>111 :                                  |                                                                                                   | HSOCL<br>1/2 HS0<br>1/4 HS0<br>1/8 HS0<br>1/16 HS<br>1/32 HS<br>1/64 HS<br>1/128 F | K<br>DCLK<br>DCLK<br>DCLK<br>SOCLK<br>SOCLK<br>SOCLK                                                 | (Initial                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                    |          |        |
| 11               | -        |                                 |     | Reserv                                                                                                            | ed bits                                                                                           | 6                                                                                  |                                                                                                      |                                                                                                                                               |                                                                                                           |                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                    |          |        |
| 10 to 8          |          | ′SC2 to<br>′SC0                 |     | SYSC2<br>Choose<br>maximu                                                                                         | bit is<br>a pro<br>um/mir                                                                         | not writ<br>per divi                                                               | able at<br>sion ra<br>requer                                                                         | PLL1M<br>itio of th<br>icy of th                                                                                                              | l mode.<br>le frequ<br>le CPU                                                                             | iency, s<br>operati                                                                                                           | o that t<br>ng frec                                         | h high-s<br>he frequ<br>juency s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ency c                                                                                            |                                    |          |        |
|                  |          |                                 |     | If the se                                                                                                         |                                                                                                   | exceeds<br>he SFR                                                                  |                                                                                                      | ock fred                                                                                                                                      | quency                                                                                                    | range i                                                                                                                       | n Table                                                     | e 6-3, it v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vill be o                                                                                         | correcte                           | ed inter | nally. |
|                  |          |                                 |     | If the se<br>Howe                                                                                                 | ever, t                                                                                           |                                                                                    |                                                                                                      | ock fred                                                                                                                                      | quency                                                                                                    | range i<br>ten valu                                                                                                           | n Table<br>ue.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vill be o                                                                                         | correcte                           | ed inter | nally. |
|                  |          |                                 |     | If the set<br>Howe                                                                                                | ever, ti<br>YSC                                                                                   |                                                                                    | read v<br>24M                                                                                        | ock frec<br>alue is t<br>Hz/16N                                                                                                               | quency<br>the writ                                                                                        | range i                                                                                                                       | n Table<br>ue.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   | correcte                           | ed inter | nally. |
|                  |          |                                 |     | If the set<br>Howe                                                                                                | ever, ti<br>YSC                                                                                   |                                                                                    | read v<br>24M<br>H                                                                                   | ock frec<br>alue is f<br>Hz/16M<br>SCLK *                                                                                                     | quency<br>the writ<br>1Hz                                                                                 | range i<br>ten valu                                                                                                           | n Table<br>ue.                                              | e 6-3, it v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hz                                                                                                |                                    | ed inter | nally. |
|                  |          |                                 |     | If the set<br>Howe                                                                                                | ever, tl<br>YSC<br>000<br>001                                                                     |                                                                                    | read v<br>24M<br>H<br>1/2                                                                            | ock frec<br>alue is t<br>Hz/16M<br>SCLK *<br>HSCLK                                                                                            | quency<br>the writ                                                                                        | range i<br>ten valu                                                                                                           | n Table<br>ue.                                              | • 6-3, it v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hz<br>-<br>-                                                                                      |                                    | ed inter | nally. |
|                  |          |                                 |     | If the set<br>Howe                                                                                                | ever, tl<br>YSC<br>000<br>001<br>010                                                              | he SFR                                                                             | read v<br>24M<br>H<br>1/2<br>1/4                                                                     | ock frec<br>alue is 1<br>Hz/16M<br>SCLK *<br>HSCLK<br>4 HSCL                                                                                  | quency<br>the writ                                                                                        | range i<br>ten valu                                                                                                           | n Table<br>ue.                                              | : 6-3, it v<br>1Mi<br>←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hz<br>-<br>-                                                                                      |                                    | ed inter | nally. |
|                  |          |                                 |     | If the set<br>Howe                                                                                                | ever, tl<br>YSC<br>000<br>001<br>010<br>011                                                       | he SFR                                                                             | read v<br>24M<br>H<br>1/2<br>1/2<br>8 HSCI                                                           | ock fred<br>alue is f<br>Hz/16W<br>SCLK **<br>HSCLK<br>HSCL<br>LK(Initia                                                                      | quency<br>the writ                                                                                        | range i<br>ten valu                                                                                                           | n Table<br>ue.                                              | • 6-3, it v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hz<br>-<br>-<br>-                                                                                 |                                    |          | nally. |
|                  |          |                                 |     | If the set<br>Howe                                                                                                | ever, th<br>YSC<br>000<br>001<br>010<br>011<br>000                                                | he SFR                                                                             | read v<br>24M<br>H<br>1/2<br>1/2<br>8 HSCI<br>1/1                                                    | ock frec<br>alue is f<br>Hz/16M<br>SCLK *<br>HSCLK<br>HSCL<br>LK(Initia<br>6 HSCL                                                             | quency<br>the writ<br>IHz<br>(*1<br>K<br>K<br>al value<br>K                                               | range i<br>ten valu                                                                                                           | n Table<br>ue.                                              | : 6-3, it v<br>1Mi<br>←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H <u>z</u><br>-<br>-<br>-                                                                         |                                    | ed inter | nally. |
|                  |          |                                 |     | If the set<br>Howe                                                                                                | ever, tl<br>YSC<br>000<br>001<br>010<br>011                                                       | he SFR                                                                             | read v<br>24M<br>H<br>1/2<br>1/2<br>8 HSCI<br>1/1<br>1/3                                             | ock fred<br>alue is f<br>Hz/16W<br>SCLK **<br>HSCLK<br>HSCL<br>LK(Initia                                                                      | the writ                                                                                                  | range i<br>ten valu<br>PLL mo<br>)                                                                                            | n Table<br>ue.                                              | - 6-3, it v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hz<br>-<br>-<br>-                                                                                 |                                    | ed inten | nally. |
|                  |          |                                 |     | If the set<br>Howe                                                                                                | YSC<br>000<br>001<br>010<br>011<br>000<br>011                                                     | he SFR                                                                             | read v<br>24M<br>H<br>1/2<br>1/2<br>8 HSCI<br>1/1<br>1/3<br>not us                                   | ock frec<br>alue is t<br>Hz/16M<br>SCLK<br>HSCLK<br>HSCL<br>HSCL<br>LK(Initia<br>6 HSCL<br>2 HSCL                                             | the writ                                                                                                  | range i<br>ten valu<br>PLL mo<br>)                                                                                            | n Table<br>ue.                                              | - 6-3, it v<br>- 1Ml<br>- ←<br>- ←<br>- ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hz<br>-<br>-<br>-                                                                                 |                                    |          | nally. |
|                  |          |                                 |     | If the set<br>Howe                                                                                                | ever, th<br>YSC<br>000<br>001<br>010<br>011<br>000<br>101<br>110<br>111                           | he SFR                                                                             | read v<br>24M<br>H<br>1/2<br>1/2<br>8 HSCI<br>1/1<br>1/3<br>not us<br>not us                         | ock frec<br>alue is t<br>Hz/16M<br>SCLK *<br>HSCLK<br>HSCLK<br>HSCL<br>LK(Initia<br>6 HSCL<br>2 HSCL<br>2 HSCL<br>e (1/32<br>e (1/32          | the writ                                                                                                  | range in<br>ten valu<br>PLL mo<br>)<br>)<br>()                                                                                | n Table<br>Je.<br>Dde                                       | - 6-3, it v<br>- 1Ml<br>- ←<br>- ←<br>- ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hz<br>-<br>-                                                                                      |                                    |          |        |
|                  |          |                                 |     | If the set<br>Howe<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | ever, th<br>YSC<br>000<br>001<br>010<br>011<br>000<br>101<br>110<br>111                           | he SFR                                                                             | read v<br>24M<br>H<br>1/2<br>1/2<br>8 HSCI<br>1/1<br>1/3<br>not us<br>not us                         | ock frec<br>alue is t<br>Hz/16M<br>SCLK<br>HSCLK<br>HSCLK<br>HSCL<br>LK(Initia<br>6 HSCL<br>2 HSCL<br>2 HSCL<br>e (1/32<br>e (1/32<br>e (1/32 | the writ                                                                                                  | range i<br>ten valu<br>PLL mo<br>PLL mo<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()         | n Table<br>Je.<br>Dde                                       | • 6-3, it v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hz<br>-<br>-<br>-<br>o HSC<br>setting                                                             | setting                            |          |        |
|                  |          |                                 |     | If the set<br>Howe<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | ever, the<br>YSC<br>000<br>001<br>001<br>010<br>011<br>100<br>111<br>100<br>111<br>ual se<br>SYSC | he SFR                                                                             | read v<br>24M<br>H<br>1/2<br>1/4<br>8 HSCI<br>1/1<br>1/3<br>not us<br>not us<br>change<br>HSC        | ock frec<br>alue is t<br>Hz/16M<br>SCLK<br>HSCLK<br>HSCLK<br>HSCL<br>LK(Initia<br>6 HSCL<br>2 HSCL<br>2 HSCL<br>e (1/32<br>e (1/32<br>e (1/32 | the writ                                                                                                  | range in<br>ten valu<br>PLL mo<br>)<br>)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()              | n Table<br>je.<br>ode                                       | <ul> <li>6-3, it v</li> <li>1Mi</li> <li>-</li> <l< td=""><td>Hz<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-</td><td>setting<br/>I<br/>OCLK)</td><td></td><td></td></l<></ul>                | Hz<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | setting<br>I<br>OCLK)              |          |        |
|                  |          |                                 |     | If the set<br>Howe<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | ever, th<br>YSC<br>000<br>001<br>010<br>011<br>000<br>011<br>100<br>111<br>110<br>111<br>ual se   | he SFR                                                                             | read v<br>24M<br>H<br>1/2<br>1/2<br>8 HSCI<br>1/1<br>1/3<br>not us<br>not us<br>change<br>HSC<br>000 | ock frec<br>alue is t<br>Hz/16M<br>SCLK<br>HSCLK<br>HSCLK<br>HSCL<br>LK(Initia<br>6 HSCL<br>2 HSCL<br>2 HSCL<br>e (1/32<br>e (1/32<br>e (1/32 | Hz<br>Hz<br>K<br>Al value<br>K<br>HSCLF<br>HSCLF<br>HSCLF<br>HSCLF<br>1, 1/2, 1<br>PLL mo<br>24MH<br>16MH | range in<br>ten valu<br>PLL mo<br>D<br>D<br>D<br>D<br>C<br>D<br>C<br>D<br>C<br>D<br>C<br>D<br>C<br>D<br>C<br>D<br>C<br>D<br>C | n Table<br>je.<br>ode<br>CLK acc<br>1/4 H<br>1/2 H          | 2 6-3, it v<br>1Mi<br>←<br>←<br>←<br>←<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hz<br>-<br>-<br>-<br>-<br>setting<br>1/4 HS<br>1/2 HS                                             | setting<br>OCLK)<br>OCLK)          |          |        |
|                  |          |                                 |     | If the set<br>Howe<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | ever, the<br>YSC<br>000<br>001<br>001<br>010<br>011<br>100<br>111<br>100<br>111<br>ual se<br>SYSC | he SFR                                                                             | read v<br>24M<br>H<br>1/2<br>1/4<br>8 HSCI<br>1/1<br>1/3<br>not us<br>not us<br>change<br>HSC        | ock frec<br>alue is t<br>Hz/16M<br>SCLK<br>HSCLK<br>HSCLK<br>HSCL<br>LK(Initia<br>6 HSCL<br>2 HSCL<br>2 HSCL<br>e (1/32<br>e (1/32<br>e (1/32 | the writ                                                                                                  | range in<br>ten valu<br>PLL mo<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | n Table<br>je.<br>ode<br>CLK acc<br>1/4 H<br>1/2 H<br>1/2 H | <ul> <li>6-3, it v</li> <li>1Mi</li> <li>-</li> <l< td=""><td>Hz<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-</td><td>setting<br/>OCLK)<br/>OCLK)<br/>OCLK)</td><td></td><td>-</td></l<></ul> | Hz<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | setting<br>OCLK)<br>OCLK)<br>OCLK) |          | -      |

| Bit No. | Bit symbol<br>name |     | Description                                                                                       |
|---------|--------------------|-----|---------------------------------------------------------------------------------------------------|
| 6 to 4  | HSC2 to<br>HSC0    |     | used to set frequency of HSCLK. These bits are writable if ENOSC=0.<br>It writable at PLL1M mode. |
|         |                    | нес | PLL mode                                                                                          |

| HSC  | 24MHz/16MHz                  | 1MHz          |
|------|------------------------------|---------------|
| 000  | HSOCLK (Initial value)       | $\rightarrow$ |
| 001  | 1/2 HSOCLK                   | $\leftarrow$  |
| 010  | 1/4 HSOCLK                   | $\leftarrow$  |
| 011  | 1/8 HSOCLK                   | $\leftarrow$  |
| 100  | 1/16 HSOCLK                  | -             |
| 101  | 1/32 HSOCLK                  | -             |
| 110  | 1/64 HSOCLK                  | -             |
| 111  | Do not use<br>(1/128 HSOCLK) | -             |
| <br> |                              |               |

3 to 0 - Reserved bits

### Table 6-6 HSC/SYSC setting and SYSCLK frequency [MHz]

| PLL mode | SYSC/HSC | 000   | 001   | 010   | 011   | 100   | 101   | 110   |
|----------|----------|-------|-------|-------|-------|-------|-------|-------|
|          | 000      | 24(6) | 12(6) | 6     | 3     | 1.5   | 0.75  | 0.375 |
|          | 001      | 12(6) | 6     | 3     | 1.5   | 0.75  | 0.375 | 0.187 |
| 24144-   | 010      | 6     | 3     | 1.5   | 0.75  | 0.375 | 0.187 | 0.187 |
| 24MHz    | 011      | 3     | 1.5   | 0.75  | 0.375 | 0.187 | 0.187 | 0.187 |
|          | 100      | 1.5   | 0.75  | 0.375 | 0.187 | 0.187 | 0.187 | 0.187 |
|          | 101      | 0.75  | 0.375 | 0.187 | 0.187 | 0.187 | 0.187 | 0.187 |
|          | 000      | 16(8) | 8     | 4     | 2     | 1     | 0.5   | 0.25  |
|          | 001      | 8     | 4     | 2     | 1     | 0.5   | 0.25  | 0.125 |
| 16MHz    | 010      | 4     | 2     | 1     | 0.5   | 0.25  | 0.125 | 0.125 |
| TOIVINZ  | 011      | 2     | 1     | 0.5   | 0.25  | 0.125 | 0.125 | 0.125 |
|          | 100      | 1     | 0.5   | 0.25  | 0.125 | 0.125 | 0.125 | 0.125 |
|          | 101      | 0.5   | 0.25  | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 |
|          | 000      | 1     | 0.5   | 0.25  | 0.125 | -     | -     | -     |
| 1.1.1.→  | 001      | 0.5   | 0.25  | 0.125 | 0.125 | -     | -     | -     |
| 1MHz     | 010      | 0.25  | 0.125 | 0.125 | 0.125 | -     | -     | -     |
|          | 011      | 0.125 | 0.125 | 0.125 | 0.125 | -     | -     | -     |

A value in () is frequency when no-wait mode.

### 6.2.3 Low-speed Clock Mode Register (FLMOD)

This is a SFR to control the low speed clock.

This register( except OUTLS bit) is initialized by only the Power-on-reset and pin reset.

| Access : R/V<br>Access size : 8/10<br>Initial value : 0x0 |                                                                                                                                                |                 |    | oit                                                                                                                                                                                                                                                                                                                                                                                                                                | ODL/F                                         | LMOD),                                          | 0xF00                                 | 5(FLM                       | ODH)                 |                      |                  |                    |          |            |        |        |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|---------------------------------------|-----------------------------|----------------------|----------------------|------------------|--------------------|----------|------------|--------|--------|
|                                                           | 15                                                                                                                                             | 14              | 13 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                            | 10                                              | 9                                     | 8                           | 7                    | 6                    | 5                | 4                  | 3        | 2          | 1      | 0      |
| Word                                                      |                                                                                                                                                |                 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                                 |                                       | FLN                         | IOD                  |                      |                  |                    |          |            |        |        |
| Byte                                                      |                                                                                                                                                |                 |    | FLM                                                                                                                                                                                                                                                                                                                                                                                                                                | ODH                                           |                                                 |                                       |                             |                      |                      |                  | FLM                | ODL      | -          |        |        |
| Bit                                                       | OUTLS                                                                                                                                          | -               | -  | -                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                             | L1CEN                                           | LOSC<br>MD1                           | LOSC<br>MD0                 | LMOD1                | LMOD0                | -                | LFLTS<br>EL        | -        | L1SEL      | -      | L0SEI  |
| R/W                                                       | R/W                                                                                                                                            | R               | R  | R                                                                                                                                                                                                                                                                                                                                                                                                                                  | R                                             | R/W                                             | R/W                                   | R/W                         | R/W                  | R/W                  | R                | R/W                | R        | R/W        | R      | R/W    |
| Initial<br>value                                          | 0                                                                                                                                              | 0               | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                             | 0                                               | 0                                     | 0                           | 0                    | 0                    | 0                | 0                  | 0        | 0          | 0      | 0      |
| Bit No                                                    | o. E                                                                                                                                           | Bit sym<br>name |    | Description                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |                                                 |                                       |                             |                      |                      |                  |                    |          |            |        |        |
| 15                                                        | OUTLS This is used to choose clock output as LCKO.<br>This bit is initialized by all system reset.<br>0 : LSCLK0 (Initial value)<br>1 : LSCLK1 |                 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                                 |                                       |                             |                      |                      |                  |                    |          |            |        |        |
| 14 to                                                     | 11 -                                                                                                                                           |                 |    | Reserv                                                                                                                                                                                                                                                                                                                                                                                                                             | ved bit                                       | s                                               |                                       |                             |                      |                      |                  |                    |          |            |        |        |
| 10                                                        | L10                                                                                                                                            | CEN             |    |                                                                                                                                                                                                                                                                                                                                                                                                                                    | writat<br>LSCI                                | to set er<br>ble only v<br>_K1 osci<br>_K1 osci | vhen L<br>llation                     | 1SEL is<br>stop (           | s "0".<br>Initial va |                      |                  |                    |          |            |        |        |
| 9,8                                                       | LOSCMD1,<br>LOSCMD0                                                                                                                            |                 |    | <ul> <li>These bits are used to choose crystal oscillation or external input, and to enable crystal oscillation circuit.</li> <li>00: Disabled the crystal oscillation circuit. (Initial)</li> <li>01: Enabled the crystal oscillation circuit as crystal oscillation mode; XT32K mode</li> <li>10: Enabled the crystal oscillation circuit as external clock input mode; EXT32K mode</li> <li>11: Do not use; invalid.</li> </ul> |                                               |                                                 |                                       |                             |                      |                      |                  |                    |          |            |        |        |
|                                                           |                                                                                                                                                |                 |    | "01"/"1<br>Writing                                                                                                                                                                                                                                                                                                                                                                                                                 | 0", an<br>g only '                            | d then th<br>'00" to th                         | e cryst<br>iese bi                    | al oscil<br>ts is en        | lation ci<br>abled w | rcuit tur<br>hen the | ns off<br>se bit | s are "01          | "/"10"   |            |        |        |
| 7,6                                                       | LMOD1,<br>LMOD0                                                                                                                                |                 |    | low-sp<br>These<br>00: \$<br>01: L<br>10: 7                                                                                                                                                                                                                                                                                                                                                                                        | eed ex<br>bits ar<br>Standa<br>ow po<br>fough | kternal cl<br>re uncha<br>rd mode<br>ower con   | ock).<br>ngeabl<br>(Initial<br>sumpti | le when<br>value)<br>on mod | i the LO<br>le; LP m | SCM0 b               | oit is "         | rystal os<br>1".   | cillatio | on circuit | (exce  | pt for |
|                                                           |                                                                                                                                                |                 |    | The LP mode reduces the current consumption by lowering the oscillation margin than the standard mode. The power consumption in the ULP mode is lower than in the LP mode. The tough mode increases the oscillation margin and heightens the resistance against leakage between the pins, increases the current consumption.                                                                                                       |                                               |                                                 |                                       |                             |                      |                      |                  |                    |          |            |        |        |
| 5                                                         | -                                                                                                                                              |                 |    | Reserv                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                                                 |                                       |                             |                      |                      |                  |                    |          |            |        |        |
| 4                                                         | LFL                                                                                                                                            | TSEL            |    | speed<br>This bi<br>0: V                                                                                                                                                                                                                                                                                                                                                                                                           | extern<br>it is ch<br>Vithout                 | al clock<br>angeable<br>the nois                | e when<br>se filter                   | the LC                      | SCMD                 | -                    |                  | rystal oso<br>00". | cillatio | on clock   | or the | low-   |
|                                                           | 1: With the noise filter     Reserved bit                                                                                                      |                 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                                 |                                       |                             |                      |                      |                  |                    |          |            |        |        |

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                           |
|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2       | L1SEL              | This bit is configured a source clock of LSLK1.<br>It is unwritable when LOSCMD1-0 is "01 or 10" and "LOSCS=1 or LOSCB=1".<br>However it is writable when the backup function is disabled, even if LOSCB=1.<br>It is cleared when the LOSCMD1-0 become "00".<br>0 : RC32K (Initial value)<br>1 : XT32K/EXT32K (selected by LOSCMD1-0) |
| 1       | -                  | Reserved bits                                                                                                                                                                                                                                                                                                                         |
| 0       | LOSEL              | This bit is configured a source clock of LSLK0.<br>It is unwritable when LOSCMD1-0 is "01 or 10" and "LOSCS=1 or LOSCB=1".<br>It is cleared when the LOSCMD1-0 become "00".<br>0 : RC32K (Initial value)<br>1 : XT32K/EXT32K (selected by LOSCMD1-0)                                                                                  |

### 6.2.4 Clock Control Register (FCONW)

This is a SFR to control the clock generation circuit.

| Acc<br>Acc         | ress :<br>ess :<br>ess size<br>al value                                                                                                                                                                                                                                                                                                                                                                                                      | ss size : 8/16 bit                                                                                                                                                                                                                                                                                                                                                                                                    |    |                     |                              |                               |                      |                    |          |           |          |         |    |   |           |             |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------|------------------------------|-------------------------------|----------------------|--------------------|----------|-----------|----------|---------|----|---|-----------|-------------|
|                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                                                                                                                                                                                    | 13 | 12                  | 11                           | 10                            | 9                    | 8                  | 7        | 6         | 5        | 4       | 3  | 2 | 1         | 0           |
| Word               |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                     |                              |                               |                      | FCC                | NW       |           |          |         |    |   |           |             |
| Byte               |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       | •  | FCC                 | ON1                          |                               |                      |                    |          |           |          | FC      | ON |   | •         |             |
| Bit                | ENRC1<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                     | -  | -                   | -                            | -                             | -                    | -                  | LPLL     | -         | -        | -       | -  | - | ENOS<br>C | SELSC<br>LK |
| R/W                | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                          | R                                                                                                                                                                                                                                                                                                                                                                                                                     | R  | R                   | R                            | R                             | R                    | R                  | R        | R         | R        | R       | R  | R | R/W       | R/W         |
| Initial<br>value   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0  | 0                   | 0                            | 0                             | 0                    | 0                  | 0        | 0         | 0        | 0       | 0  | 0 | 0         | 0           |
| Bit No             | Bit symbol Description                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                     |                              |                               |                      |                    |          |           |          |         |    |   |           |             |
| 15<br>14 to 8<br>7 |                                                                                                                                                                                                                                                                                                                                                                                                                                              | ENRC1K       It is used to be forcibly turned on RC1K regardless of code-option. The RC1K oscillates in<br>the standby mode, when this bit is "1". However WDTCLK is supplied accordance with<br>code-option for WDT.<br>This function is of service to mutual monitoring for low-speed clock if the WDT is not in use.<br>0 : Depend on WDT code-option (Initial value)<br>1 : Enabled         8       Reserved bits |    |                     |                              |                               |                      |                    |          |           |          |         |    |   |           |             |
| ,<br>              |                                                                                                                                                                                                                                                                                                                                                                                                                                              | -L                                                                                                                                                                                                                                                                                                                                                                                                                    |    | LPLL h<br>0: T<br>s | ias the<br>he frec<br>topped | read-or<br>quency<br>(Initial | nly attril<br>of PLL | bute.<br>oscillati | on is ou | ut of the | e target | error o |    | - | error. Th |             |
| 6 to 2             | 2 - Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                     |                              |                               |                      |                    |          |           |          |         |    |   |           |             |
| 1                  | ENOSC       This bit is used to enable/start or disable/stop the oscillation of the high-speed clock oscillation circuit.         0:       Disabled/turn off the high-speed clock oscillation (Initial value)         1:       Enabled/turn on the high-speed clock oscillation                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                     |                              |                               |                      |                    |          |           |          |         |    |   |           |             |
| 0                  | SELSCLK       This bit is used to choose the system clock.         This bit is unwritable at ENOSC=0. This bit and ENOSC bit can be set "1" at once.         When the high-speed generation circuit is stopped (ENOSC bit = "0"), the SELSCLK bit is fixed to "0" and the low-speed clock (LSCLK) is chosen for the system clock.         0:       LSCLK0 (Initial value)         1:       High-speed clock chosen by the SYSC2 to SYSC0 bit |                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                     |                              |                               |                      |                    | bit is   |           |          |         |    |   |           |             |

### 6.2.5 High-Speed Clock Wake-up Time Setting Register (FHWUPT)

This is a SFR to choose a wakeup time of the high speed clock. This is writable only when ENOSC=0. See Table 4-6 "Wake-up Time from Standby Mode" in the Chapter 4 for details about the wake-up time from the standby modes.

| Acce<br>Acce     | ddress :0xF008 (FHWUPT)ccess :R/Wccess size :8 bititial value :0x00 |    |    |    |    |    |   |   |   |            |   |     |      |   |   |       |
|------------------|---------------------------------------------------------------------|----|----|----|----|----|---|---|---|------------|---|-----|------|---|---|-------|
|                  | 15                                                                  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6          | 5 | 4   | 3    | 2 | 1 | 0     |
| Word             |                                                                     |    |    |    |    |    |   |   | - |            |   |     |      |   |   |       |
| Byte             |                                                                     |    |    |    | -  |    |   |   |   |            |   | FHW | /UPT |   |   |       |
| Bit              | -                                                                   | -  | -  | -  | -  | -  | - | - | - | FHRD<br>WN | - | -   | -    | - | - | FHUT0 |
| R/W              | R                                                                   | R  | R  | R  | R  | R  | R | R | R | R/W        | R | R   | R    | R | R | R/W   |
| Initial<br>value | 0                                                                   | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0          | 0 | 0   | 0    | 0 | 0 | 0     |

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7       | -                  | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6       | FHRDWN             | This bit is used to control PLL at wake-up from HALT-H. This function controls PLL to avoid<br>abnormal frequency caused by temperature difference between stand-by enter and wake-<br>up.<br>Set this bit to "1", if FHUT0=1 and the temperature at the wake-up drops by or more than<br>the following value from stand-by entry.<br>PLL24M mode: 15°C<br>PLL16M mode: 20°C<br>However, this setting is not required in the PLL1M mode.<br>0 : Disabled (Initial value)<br>1 : Enabled |
| 5 to 1  | -                  | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0       | FHUT0              | <ul> <li>This bit is used to configured the timing of starting to supply the high-speed clock oscillation when ENOSC=1.</li> <li>0: After Locked; the frequency clock is stabilized. (Initial value)<br/>A system clock stops until the high-speed clock is locked, if SELSCLK is set to "1".</li> <li>1: Soon after ENOSC=1; approx. 30µs. The frequency is not guaranteed as the specification, however it is useable for the system clock.</li> </ul>                                |

### 6.2.6 High speed Time Base Clock Setting Register (HTBDR)

This is a SFR to set frequency of high speed time base clock.

| Acce<br>Acce     | ress :<br>ess :<br>ess siz<br>Il value                                                                                                                                                                                                                                                                                                                                 |                 | 0xF08<br>R/W<br>8 bit<br>0x00 | 36 (HTB                                | DR)                                                                                                                                                                                                                                                                                                                                                                                               |    |   |   |   |           |       |       |    |       |       |       |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|---|-----------|-------|-------|----|-------|-------|-------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                     | 14              | 13                            | 12                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                | 10 | 9 | 8 | 7 | 6         | 5     | 4     | 3  | 2     | 1     | 0     |
| Word             |                                                                                                                                                                                                                                                                                                                                                                        |                 |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |    |   |   | - |           |       |       |    |       |       |       |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                        |                 |                               | -                                      | -                                                                                                                                                                                                                                                                                                                                                                                                 |    |   |   |   |           |       | HTB   | DR |       |       |       |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                      | -               | -                             | -                                      | -                                                                                                                                                                                                                                                                                                                                                                                                 | -  | - | - | - | HT1D2     | HT1D1 | HT1D0 | -  | HT0D2 | HT0D1 | HT0D0 |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                      | R               | R                             | R                                      | R                                                                                                                                                                                                                                                                                                                                                                                                 | R  | R | R | R | R/W       | R/W   | R/W   | R  | R/W   | R/W   | R/W   |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                      | 0               | 0                             | 0                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                 | 0  | 0 | 0 | 0 | 0         | 0     | 0     | 0  | 0     | 0     | 0     |
| Bit No           |                                                                                                                                                                                                                                                                                                                                                                        | Bit sym<br>name |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |    |   |   | C | escriptio | on    |       |    |       |       |       |
| 7                | -                                                                                                                                                                                                                                                                                                                                                                      |                 |                               | Reserv                                 | ed bits                                                                                                                                                                                                                                                                                                                                                                                           | ;  |   |   |   |           |       |       |    |       |       |       |
| 6 to 4           |                                                                                                                                                                                                                                                                                                                                                                        | 1D2 to<br>1D0   |                               | 000<br>001<br>010<br>011<br>100<br>101 | Reserved bits           These are used to set frequency of HTBCLK1.           000 :         HSCLK (Initial value)           001 :         HSCLK / 2           010 :         HSCLK / 3           011 :         HSCLK / 4           100 :         HSCLK / 5           101 :         HSCLK / 5           101 :         HSCLK / 6           110 :         HSCLK / 7           111 :         HSCLK / 8 |    |   |   |   |           |       |       |    |       |       |       |
| 3                | -                                                                                                                                                                                                                                                                                                                                                                      |                 |                               | Reserv                                 | ed bits                                                                                                                                                                                                                                                                                                                                                                                           | ;  |   |   |   |           |       |       |    |       |       |       |
| 2 to 0           | HT0D2 to         These are used to set frequency of HTBCLK0.           HT0D0         000 :         HSCLK (Initial value)           001 :         HSCLK / 2           010 :         HSCLK / 3           011 :         HSCLK / 4           100 :         HSCLK / 5           101 :         HSCLK / 6           110 :         HSCLK / 7           111 :         HSCLK / 8 |                 |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                   |    |   |   |   |           |       |       |    |       |       |       |

### 6.2.7 Backup Clock Status Register (FBUSTATW)

This is a SFR to indicate status of low speed clock. This is initialized by only Power-on-reset and pin reset.

| Address :                 | 0xF00C (FBUSTAT/FBUSTATW), 0xF00D (FBUSTATH)<br>R/W |
|---------------------------|-----------------------------------------------------|
| Access :<br>Access size : | 8/16 bit                                            |
| Initial value :           | 0x0101                                              |

| _                | 15 | 14 | 13 | 12   | 11    | 10   | 9    | 8    | 7    | 6 | 5 | 4   | 3    | 2 | 1     | 0     |
|------------------|----|----|----|------|-------|------|------|------|------|---|---|-----|------|---|-------|-------|
| Word             |    |    |    |      |       |      |      | FBUS | TATW |   |   |     |      |   |       |       |
| Byte             |    |    |    | FBUS | STATH |      |      |      |      |   |   | FBU | STAT |   |       |       |
| Bit              | -  | -  | -  | -    | L1XT  | L1RC | LOXT | LORC | -    | - | - | -   | -    | - | LOSCB | LOSCS |
| R/W              | R  | R  | R  | R    | R     | R    | R    | R    | R    | R | R | R   | R    | R | R/W   | R     |
| Initial<br>value | 0  | 0  | 0  | 0    | 0     | 0    | 0    | 1    | 0    | 0 | 0 | 0   | 0    | 0 | 0     | 1     |

| Bit No.     | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to<br>12 | -                  | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11          | L1XT               | This is flag LSCLK1 is operating with XT32K/EXT32K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10          | L1RC               | This is flag LSCLK1 is operating with RC32K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9           | L0XT               | This is flag LSCLK0 is operating with XT32K/EXT32K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8           | LORC               | This is flag LSCLK0 is operating with RC32K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1           | LOSCB              | <ul> <li>This is a flag of the crystal oscillation stop detection.</li> <li>This is cleared to "0" when writing "1" to this bit.</li> <li>0: Not stop detection or after clearing flag (Initial value).</li> <li>1: Stop detection. Then LSCLK0 is changed to RC32K by backup function. The backup of LSCLK1 depends on setting to code option. At once, the clock backup interrupt; QCBU bit of IRQ23 register is asserted.</li> <li>This function is enabled at the following conditions:</li> <li>selected XT32K/EXT32K to LSCLK0; LOSEL=1,</li> <li>selected XT32K/EXT32K to LSCLK1; L1SEL=1</li> </ul>                                                                                                                                                                                                                                                      |
| 0           | LOSCS              | <ul> <li>This bit is used to indicate the status of low-speed crystal oscillation clock.</li> <li>When setting XT32K/EXT32K mode with LOSCMD1-0 bits of FLMOD register, this bit is changed to "0" after 16-bit timer X interrupt occurred. This interrupt occurs when the timer X count by XT32K/EXT32K clock coincides with TMHXD value.</li> <li>This bit becomes to "1" on the following conditions.</li> <li>When the crystal oscillation turn off by the software (LOSCMD1-0="00"). The interrupt does not occur in this time.</li> <li>At entry to the STOP/STOP-D mode. The interrupt does not occur in this time.</li> <li>At detected oscillation stopping. The interrupt; QCBU of IRQ23, occurs in this time.</li> <li>XT32K/EXT32K is enabled; stable.</li> <li>XT32K/EXT32K is disabled; not stable/malfunction stopping (Initial value)</li> </ul> |

### 6.2.8 Clock Backup Test Mode Acceptor (FBTACP)

This is a write-only SFR to enable writing to Clock Backup Test Mode register (FBTCON). This is used to prevent erroneous writing to the FBTCON register.

| Acce<br>Acce     | ress :<br>ess :<br>ess size<br>al value |    | 0xF0C<br>W<br>8 bit<br>0x00 | 24 (FBT | ACP) |    |   |   |    |    |    |     |     |    |    |    |
|------------------|-----------------------------------------|----|-----------------------------|---------|------|----|---|---|----|----|----|-----|-----|----|----|----|
|                  | 15                                      | 14 | 13                          | 12      | 11   | 10 | 9 | 8 | 7  | 6  | 5  | 4   | 3   | 2  | 1  | 0  |
| Word             |                                         |    |                             |         |      |    |   |   | -  |    |    |     |     |    |    |    |
| Byte             |                                         |    |                             |         | -    |    |   |   |    |    |    | FBT | ACP |    |    |    |
| Bit              | -                                       | -  | -                           | -       | -    | -  | - | - | d7 | d6 | d5 | d4  | d3  | d2 | d1 | d0 |
| R/W              | R                                       | R  | R                           | R       | R    | R  | R | R | W  | W  | W  | W   | W   | W  | W  | W  |
| Initial<br>value | 0                                       | 0  | 0                           | 0       | 0    | 0  | 0 | 0 | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  |

When "0xFA" and "0xF5" are written to the FBTACP register in this order, writing to the FBTCON is allowed only once. It requires writing "0xFA" and "0xF5" in this order every time to enable the continuous writes to the FBTCON. Any other instructions can be executed between the instruction that writes "0xFA" to STPACP and the instruction that writes "0xF5". However, if write data other than "0xF5" after writing "0xFA", the procedure gets invalid, so needs write "0xFA" again.

### 6.2.9 Clock Backup Test Mode Register (FBTCON)

This is a SFR to control the clock backup test mode. The clock backup test mode can make purposely the condition that stops the low-speed crystal oscillation (XT32K/EXT32K).

|                  |                                                                                                                                                                                                                                    |                 | 0xF00<br>R/W<br>8 bit<br>0x00 | C6 (FBT                                                                                                                                                                                                                                                                            | CON)     |    |   |   |    |           |    |     |     |   |       |       |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|---|---|----|-----------|----|-----|-----|---|-------|-------|
|                  | 15                                                                                                                                                                                                                                 | 14              | 13                            | 12                                                                                                                                                                                                                                                                                 | 11       | 10 | 9 | 8 | 7  | 6         | 5  | 4   | 3   | 2 | 1     | 0     |
| Word             |                                                                                                                                                                                                                                    |                 |                               |                                                                                                                                                                                                                                                                                    |          |    |   |   | -  |           |    |     |     |   |       |       |
| Byte             |                                                                                                                                                                                                                                    |                 |                               |                                                                                                                                                                                                                                                                                    | -        |    |   |   |    |           |    | FBT | CON |   |       |       |
| Bit              | -                                                                                                                                                                                                                                  | -               | -                             | -                                                                                                                                                                                                                                                                                  | -        | -  | - | - | -  | -         | -  | -   | -   | - | LOSCL | LOSCT |
| R/W              | R                                                                                                                                                                                                                                  | R               | R                             | R                                                                                                                                                                                                                                                                                  | R        | R  | R | R | R  | R         | R  | R   | R   | R | R/W   | R/W   |
| Initial<br>value | 0                                                                                                                                                                                                                                  | 0               | 0                             | 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                              |          |    |   |   |    |           |    |     |     | 0 |       |       |
| Bit No           | . I                                                                                                                                                                                                                                | Bit sym<br>name |                               |                                                                                                                                                                                                                                                                                    |          |    |   |   | De | escriptio | on |     |     |   |       |       |
| 7 to 2           | -                                                                                                                                                                                                                                  |                 |                               | Reserv                                                                                                                                                                                                                                                                             | /ed bits |    |   |   |    |           |    |     |     |   |       |       |
| 1                | LO                                                                                                                                                                                                                                 | SCL             |                               | This is used to select fixed level of low-speed crystal oscillation clock when LOSCT=1.<br>When the LOSCT bit is set to "1", the LOSCL bit determines the fixed level of low-speed<br>crystal oscillation clock.<br>0: Fixed to "L" level (Initial value)<br>1: Fixed to "H" level |          |    |   |   |    |           |    |     |     |   |       |       |
| 0                | LOSCT This bit enables the clock backup test mode. Use the clock backup test mode after setting<br>the low-speed crystal oscillation clock mode; XT32K/EXT32K mode.<br>0: Normal mode (Initial value)<br>1: Clock backup test mode |                 |                               |                                                                                                                                                                                                                                                                                    |          |    |   |   |    | tting     |    |     |     |   |       |       |

### 6.3 Description of Operation

### 6.3.1 Low-Speed Clock

The low-speed clock generation circuit supply LSCLK0/LSCLK1 that is selected the following clock source by the L0SEL/L1SEL bit of FLMOD register.

- Low-speed RC oscillation mode (RC32K)

- Low-speed crystal oscillation mode (XT32K) / external clock input mode (EXT32K)

A low-speed clock is output as LCKO. It is selected LSCLK0/LSCLK1 by the OUTLS bit of FLMOD register. See Table 1-3 pin list for assignment port function.

When a system reset is released, the low-speed clock (LSCLK0, LSCLK1, LCKO) is output and the CPU runs a program after 512 counts of clock chosen for LSCLK0.

The LSCLK0 is RC32K when the power on reset or pin reset is released.

Figure 6-2 shows the low-speed clock generation circuit configuration.

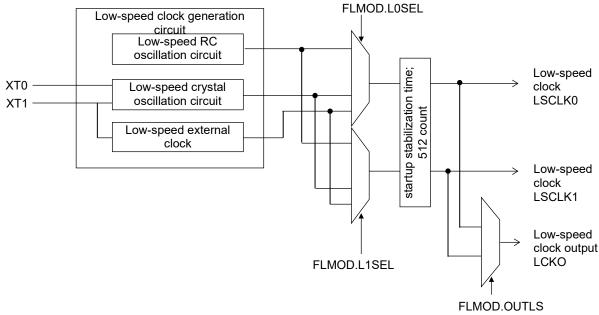



Figure 6-2 Configuration of Low-speed Clock Generation Circuit

#### [Note]

• The LCKO output operation is not guaranteed in the HALT-D mode.

### 6.3.1.1 Low-Speed RC Oscillation Circuit

The low-speed RC oscillation clock is chosen for the system clock at the power on.

When a system reset is released, the low-speed clock (LSCLK0, LSCLK1) is output and the CPU runs a program after 512 counts of clock chosen for LSCLK0. When the STOP/STOP-D mode is released, the low-speed clock is output and the CPU runs a program after the low-speed RC oscillation startup time ( $T_{RCL}$ ) and stability time.

Figure 6-3 shows the configuration of the low-speed RC oscillation circuit.

Figure 6-4 shows the operation waveforms at the start of the low-speed RC oscillation circuit and in the STOP/STOP-D mode.

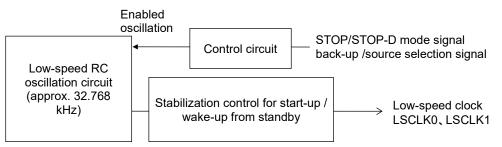



Figure 6-3 Configuration of Low-Speed RC Oscillation Circuit

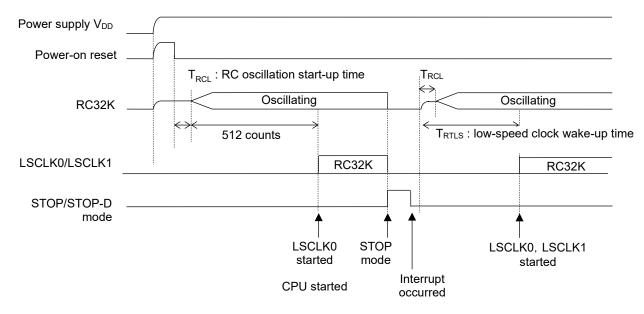
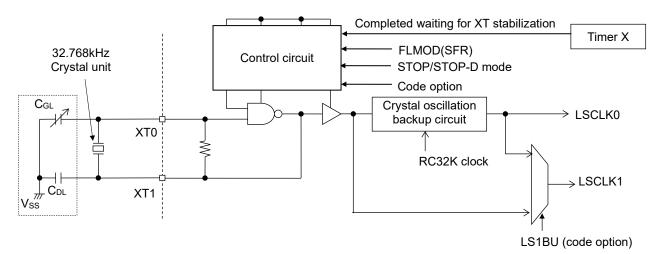


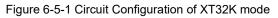

Figure 6-4 Low-speed Clock Operation Waveforms at Start of Low-speed RC Oscillation Circuit and in STOP/STOP-D Mode

### 6.3.1.2 Low-Speed Crystal Oscillation Circuit

Figure 6-5 shows a configuration of the low-speed crystal oscillation circuit.

The XT32K mode using 32.768 kHz crystal unit or EXT32K mode that clock input from XT1 pin can be chosen in the low-speed clock mode register (FLMOD).


In XT32K mode, the setting of PXTMOD01 register is ignored.


In EXT32K mode, the setting of PXTMOD1 is ignored.

It is necessary to use Timer X when XT32K/EXT32K is used as LSCLK0/1. It can be used as a normal timer when the oscillation stabilization waiting is completed.

The backup function is the function that always monitors the oscillation. If an oscillation stop is detected, it switches the low-speed clock to the low-speed RC oscillation clock.

The switching to RC oscillation for LSCLK1 can be invalid by code option, and it can only indicate the stop detection. This oscillation circuit stops when STOP/STOP-D mode entry.





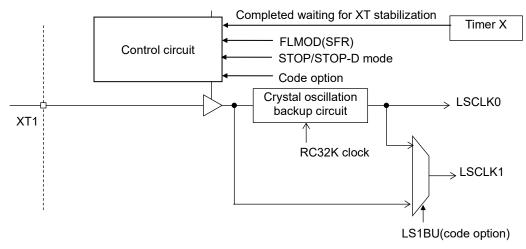



Figure 6-5-2 Circuit Configuration of EXT32K mode

### [Note]

- Place the crystal resonator as close to the LSI as possible and make sure that signals causing noise and power supply wiring are not near the crystal and its wiring.
- Note that oscillation may stop due to condensation.
- When switching to the low speed crystal oscillation clock, ensure to use the interrupt referring to the Section 6.3.1.3 "Low-Speed Clock Control".

Figure 6-6 shows backup mode waveforms at the startup of the low-speed crystal clock and in the STOP/STOP-D mode. The low-speed crystal oscillation circuit operates when choosing it through the low-speed clock mode register (FLMOD) following the start of low-speed RC oscillation circuit operation after the power supply is turned on. Since the FLMOD register is only initialized by the power-on reset and pin reset, the oscillation will continue even if

other system reset occurs after choosing the XT32K / EXT32K mode. The L0SEL/L1SEL should be set "1" after the crystal stable wait with timer X, and the LSCLK0/LSCLK1 is changed

The LOSEL/LISEL should be set "1" after the crystal stable wait with timer X, and the LSCLK0/LSCLK1 is changed XT32K/EXT32K clock. The stable waiting time is configured with TMHXD register.

In addition, the low-speed crystal oscillation circuit turns off when entering the STOP/STOP-D mode. When the STOP/STOP-D mode is released by external interrupts and etc., LSCLK0/1 oscillation is in the RC32K mode. See Chapter 4 "Power Management" for the STOP/STOP-D mode.

See the data sheet for the low-speed oscillation start time ( $T_{XTL}$ ).

| V <sub>DD</sub>     |                            |                           |                    |              |                                                                   |
|---------------------|----------------------------|---------------------------|--------------------|--------------|-------------------------------------------------------------------|
| Power-on-reset      |                            |                           |                    |              |                                                                   |
| _                   | T <sub>RCL</sub> : RC<br>↔ | oscillation sta           | artup time         | T            | R <sub>CL</sub> : RC oscillation startup time                     |
| RC32K               | 0                          | scillating                |                    |              | Oscillating                                                       |
|                     | ←> 51                      | l2 count<br>→CPU starts   |                    | €            | → T <sub>RTLS</sub> : low-speed clock wakeup time<br>→CPU resumed |
| LSCLK0              |                            | RC32K                     | 1                  |              | RC32K                                                             |
| LSCLK1 _            |                            | RC32K                     | XT32K              |              | RC32K                                                             |
|                     | SI                         | R setting                 |                    |              |                                                                   |
| LOSCMD1,0           | 0x0                        | 0x1                       |                    | 0x0          |                                                                   |
|                     |                            | ⇔ T <sub>XTL</sub> : Crys | stal oscillation s | tartup time  |                                                                   |
| XT32K _             |                            | 09                        | scillating         |              |                                                                   |
|                     |                            | → Wa                      | iting oscillation  | stabilizatio | on                                                                |
| Timer X<br>status _ |                            | RUN                       |                    |              |                                                                   |
| Fimer X interrupt _ |                            | <b>•</b>                  |                    |              |                                                                   |
| STOP                |                            |                           |                    |              |                                                                   |
| mode <sup>-</sup>   |                            |                           |                    | Interrup     | ot occurring                                                      |
| L0SEL               | 0x0                        |                           | 0x0                |              |                                                                   |
| L1SEL               | 0x0                        |                           | 0x1                | 0>           | x0                                                                |
| LOSCS               |                            |                           | :                  |              |                                                                   |
| LOSCB               |                            |                           |                    |              |                                                                   |

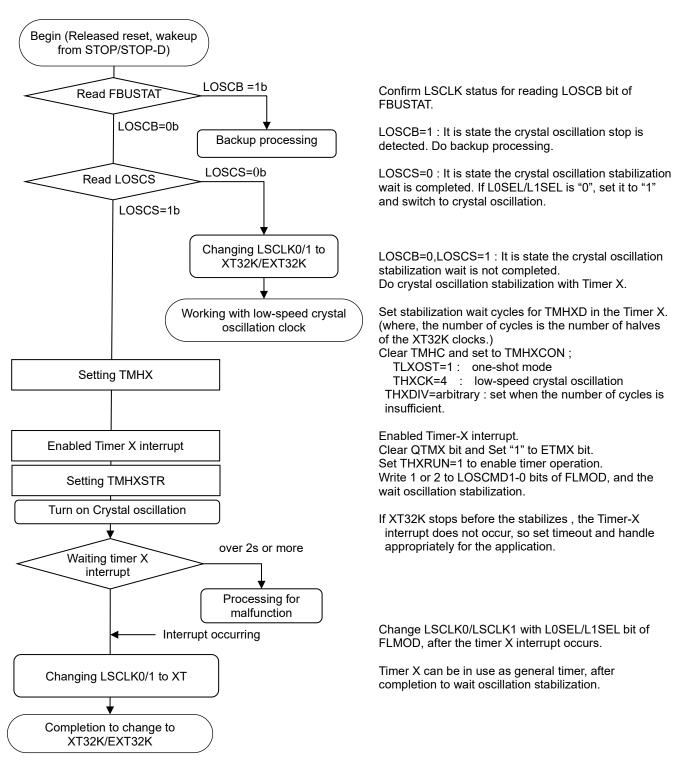
Figure 6-6 Low-speed Crystal Oscillation Circuit Operation (At startup and in the STOP mode)

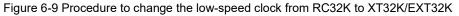
Figure 6-7 shows operation waveform in the backup mode after the startup of the low-speed crystal oscillation circuit. When the crystal oscillation clock stops after the low-speed crystal oscillation started, it shifts to the backup mode about 2ms(typ.) later, and then the clock backup interrupt (CBUINT) occurs.

| V <sub>DD</sub>                       | _           |                       |                    |                      |                                   |
|---------------------------------------|-------------|-----------------------|--------------------|----------------------|-----------------------------------|
| Power-on-reset                        | _           | T <sub>RCL</sub> : RC | oscillation startu | up time              |                                   |
| RC32K                                 |             | $\Leftrightarrow$     | Oscillating        |                      |                                   |
| LSCLK0                                | XT32K       |                       | CPU resumed RC32K  |                      | XT32K                             |
|                                       |             |                       |                    |                      |                                   |
| LOSCMD1,0                             | 0x1         |                       |                    |                      |                                   |
|                                       |             | Approx.2              |                    |                      |                                   |
| XT32K                                 | Oscillating | S                     | topping            |                      | Oscillating                       |
| Clock backup<br>interrupt<br>(CBUINT) |             | <b>↑</b>              |                    |                      | Waiting oscillation stabilization |
| LOSCS                                 |             |                       |                    |                      |                                   |
| LOSCB .                               |             |                       |                    |                      |                                   |
| Low speed                             |             |                       | Writing "1"        |                      |                                   |
| crystal oscillation<br>enable         |             |                       |                    | ⊖ T <sub>XTL</sub> : | Crystal oscillation startup time  |
| L0SEL                                 | 0x1         |                       | 0x0                |                      | 0x1                               |
| Timer X<br>status                     |             |                       |                    | RUN                  |                                   |
| Timer X interrup                      | t           |                       |                    |                      | ♠                                 |

Figure 6-7 Low-speed Oscillation Circuit Operation in the backup mode

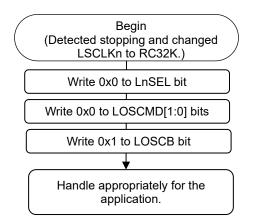
Figure 6-8 shows the operation waveforms when a reset occurs in the XT32K/EXT32K mode. The crystal oscillation circuit is not reset by anything other than power-on-reset and pin reset. See Chapter 3 "Reset Function" for details of resetting.


| Reset other than POR/RSTN Power-on-reset TrcL : RC oscillation startup time RC32K Oscillating SFR setting LOSCMD1,0 Ox0 Ox1 XT32K Value RUN LOSCS LOSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>DD</sub>   |               |                 |                        |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-----------------|------------------------|-------------|
| POR/RSTN Power-on-reset TrcL : RC oscillation startup time RC32K Oscillating SFR setting LOSCMD1,0 Ox0 Ox1 XT32K Oscillating Timer X status RUN LOSCS LOSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V DD              |               |                 |                        |             |
| POR/RSTN Power-on-reset TrcL : RC oscillation startup time RC32K Oscillating SFR setting LOSCMD1,0 Ox0 Ox1 XT32K Oscillating Valing oscillation stabilization Timer X status RUN LOSCS LOSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reset other than  |               |                 |                        |             |
| Power-on-reset       TrcL : RC oscillation startup time         RC32K       Oscillating $\rightarrow$ 512 count $\rightarrow$ 512 count $\rightarrow$ CPU starts       CPU starts         LSCLK0       RC32K       XT32K         SFR setting       Image: SFR setting         LOSCMD1,0       0x0       0x1         XT32K       Oscillation stabilization         Timer X status       RUN         LOSCS       Image: RUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |               |                 |                        |             |
| TrcL : RC oscillation startup time         RC32K         Oscillating         CPU starts         LSCLK0         RC32K         XT32K         SFR setting         LOSCMD1,0         0x0         0x1         Waiting oscillation stabilization         Timer X status         LOSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |                 |                        |             |
| RC32K       Oscillating $\leftrightarrow$ 512 count $\rightarrow$ CPU starts         LSCLK0       RC32K       XT32K         SFR setting       Image: SFR setting         LOSCMD1,0       0x0       0x1         XT32K       Oscillating         Image: X status       RUN         Timer X interrupt       Image: X interrupt         LOSCS       Image: X interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Power-on-reset    |               |                 |                        |             |
| RC32K       Oscillating $\leftrightarrow$ 512 count $\rightarrow$ CPU starts         LSCLK0       RC32K       XT32K         SFR setting       Image: SFR setting         LOSCMD1,0       0x0       0x1         XT32K       Oscillating         Image: X status       RUN         Timer X interrupt       Image: X interrupt         LOSCS       Image: X interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |               | oscillation sta | artup time             |             |
| RC32K       Oscillating $\rightarrow$ CPU starts $\rightarrow$ CPU starts         LSCLK0       RC32K       XT32K         SFR setting       Image: Construction of the start of the st                                                                                                                                                      |                   |               |                 |                        |             |
| LSCLK0  SFR setting LOSCMD1,0  Ox0  Ox0  Ox1  XT32K  Coscillating  Immer X status  Timer X interrupt  LOSCS  Coscillation  Cosci | DONNI             |               | aillating       |                        |             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RC32K             |               | -               |                        |             |
| LSCLK0 RC32K XT32K SFR setting LOSCMD1,0 Ox0 Ox1 XT32K Value |                   |               |                 |                        |             |
| SFR setting       LOSCMD1,0       0x0       0x1       XT32K       Oscillating       XT32K       Waiting oscillation stabilization       Timer X status       Timer X interrupt       LOSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | $\rightarrow$ |                 |                        | →CPU starts |
| LOSCMD1,0 0x0 0x1<br>XT32K Oscillating<br>Timer X status<br>Timer X interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LSCLK0            |               | RC32K           |                        | XT32K       |
| LOSCMD1,0 0x0 0x1<br>XT32K Oscillating<br>Timer X status<br>Timer X interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |               |                 |                        |             |
| XT32K Oscillating  XT32K Oscillating  Waiting oscillation stabilization  Timer X status  Timer X interrupt  LOSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | SF            | R setting       |                        |             |
| XT32K Oscillating  XT32K Oscillating  Waiting oscillation stabilization  Timer X status  Timer X interrupt  LOSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOSCMD1,0         | 0x0           |                 | 0x1                    |             |
| XT32K Oscillating Waiting oscillation Timer X status Timer X interrupt LOSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |               | $\diamond$      |                        |             |
| Timer X<br>status<br>Timer X interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               |                 |                        |             |
| Timer X status Timer X interrupt LOSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XT32K             |               |                 |                        | Oscillating |
| Timer X status Timer X interrupt LOSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               | → w             | aiting oscillation sta | abilization |
| status RUN<br>Timer X interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |                 |                        |             |
| status RUN<br>Timer X interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Timer X           |               |                 |                        |             |
| Timer X interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |               |                 |                        |             |
| LOSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               |                 |                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Timer X interrupt |               | <b></b>         |                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · <u> </u>        |               |                 |                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ·             |                 |                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |                 |                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |                 |                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOSCS             |               |                 |                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               | i               |                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOSCB             |               |                 |                        |             |


Figure 6-8 Low-speed Oscillation Circuit Operation (at System Reset after the crystal oscillation turned on)

### 6.3.1.3 Low-Speed Clock Control

Figure 6-9 shows a flow of the low-speed clock setting; from RC32K to XT32K/EXT32K. Use the flow at the wake up from STOP/STOP-D mode.


If using the high-speed clock a the system clock, change the low-speed clock to XT32K/EXT32K first. See Chapter 8 "16-bit Timer" for timer function.





Handle appropriately for the application at the backup processing in Figure 6-9. Figure 6-10 shows the procedure to rechange LSCLK to RC32K.

Clear the LOSCB bit with referring to Figure 6-10, when the L1SEL=1 and backup function is enabled, or when L0SEL=1. Then handle the procedure in the Figure 6-9 if it will use the XT32K/EXT32K mode again.



Clear LOSCMD bits in first to distinguish backup state or stabilization state when a system reset occurs.

Figure 6-10 Backup procedure

The clock backup interrupt occurs at stop detection, even if the LSCLK1 is used without backup function in the XT32K/EXT32K mode. Then newer interrupt does not occur until the LOSCB bit is cleared.

#### 6.3.1.4 Oscillation Stop Detection and Back-up Function

When the XT32K stop detected after LSCLK0/LSCLK1 is set to XT32K, the LSCLK0/LSCLK1 is switched to the RC32K. It is clock backup function.

The stop detection time is approx. 4ms (typ.) when not in the HALT-D mode, and approx. 5ms (typ.) in the HALT-D mode.

Figure 6-11 and 6-12 show the operation of XT32K stop detection under each condition. In case of LSCLK0=XT32K, LSCLK1=XT32K/OFF :

When the XT32K stops, the LSCLK0 also stops, and the high-speed clock frequency is not guaranteed. When the stop is detected for a certain peeriod of time, the RC32K is turned on and the stop detection process is performed. The LSCLK0 is supplied again with RC32K and recovers the high-speed clock frequency.

If the system clock is low-speed, the SYSCLK stops too; Figure 6-11(1).

If the system clock is high-speed, the SYSCLK does not stop; Figure 6-11(2)

| ХТ32К            | Oscillating              | Stopping                                   |
|------------------|--------------------------|--------------------------------------------|
| RC32K            |                          | Oscillating                                |
|                  |                          | Stop detection time + T <sub>RCL</sub>     |
| FBUSTAT.LOSCS    |                          |                                            |
| FBUSTAT.LOSCB    |                          |                                            |
| High-speed clock | PLL oscillation          |                                            |
| LSCLK0           | XT32K                    | RC32K                                      |
| SYSCLK           | LSCLK0                   |                                            |
| CBUINT           |                          | Î                                          |
|                  | (1) In case of SYSCLK    | Writing "1" to LOSCB                       |
| ХТ32К            | Oscillating              | Stopping                                   |
| RC32K            |                          | Oscillating                                |
|                  |                          | Stop detection time + T <sub>RCL</sub>     |
| FBUSTAT.LOSCS    |                          |                                            |
| FBUSTAT.LOSCB    |                          |                                            |
| High-speed clock | PLL oscillation          |                                            |
| LSCLK0           | XT32K                    | RC32K                                      |
| SYSCLK           | High-speed clock         |                                            |
| CBUINT           |                          |                                            |
|                  | (2) In case of SYSCLK=HS | Writing "1" to LOSCB<br>SCLK, LSCLK0=XT32K |

: The PLL frequency is not guaranteed between from stopping XT32K to locked PLL based RC32K.

Figure 6-11 Stop detection for the crystal oscillating: 1 (LSCLK0=XT32K, LSCLK1=XT32K)

In case of LSCLK1=XT32K, LSCLK0=RC32K :

The LSCLK1 stops when XT32K stops. The SYSCLK/High-speed clock do not stop. When the stopping continues in a certain time, the stop detection occurs.

If enabled backup, LSCLK1 becomes to RC32K; Figure 6-12-1(1).

If disabled backup, LSCLK1 is kept XT32K even if stop detection occurs; Figure 6-12-1(2). LSCLK1 stops when XT32K stops, also LSCK1 oscillates when XT32K oscillates again. The clock backup interrupt occurs when the stop detection occurs.

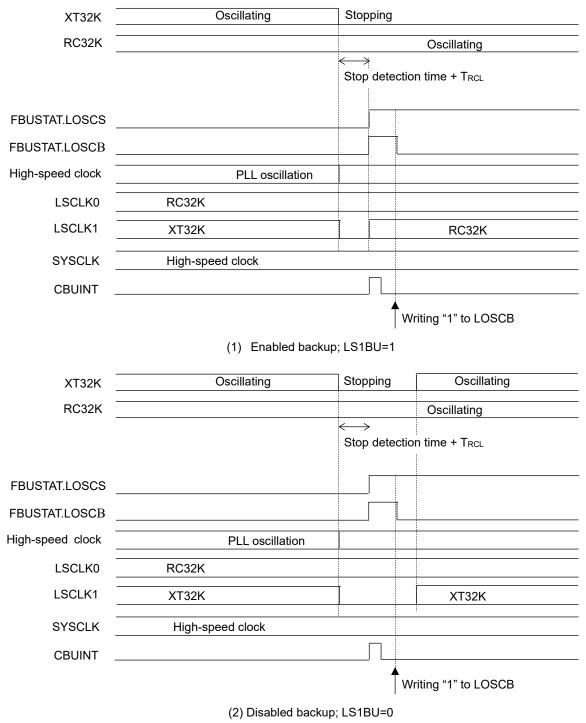



Figure 6-12-1 Stop detection for the crystal oscillating: 2 (SYSCLK=HSCLK, LSCLK0=RC32K, LSCLK1=XT32K)

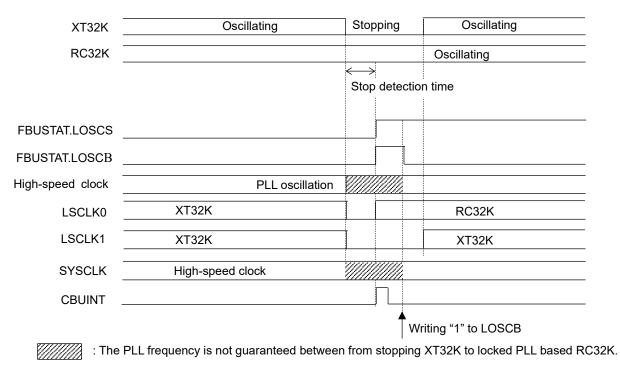



Figure 6-12-2 Stop detection for the crystal oscillating: 3 (SYSCLK=HSCLK, LSCLK0=XT32K, LSCLK1=XT32K)

#### 6.3.1.5 Status of XT32K/EXT32K Mode

Table 6-7 shows relationship of each setting and status in the XT32K mode. As for EXT32K mode, change the reading "LOSCMD0" to "LOSCMD1", "XT32K" to "EXT32K".

|                   |       |        |       |              |       |              | 50LK (XI 32K) |           |
|-------------------|-------|--------|-------|--------------|-------|--------------|---------------|-----------|
| LOSCMD0           | L1CEN | LS1BU  | L1SEL | <b>LOSEL</b> | LOSCB | <b>LOSCS</b> | LSCLK1        | LSCLK0    |
| 1                 | 1     | 1      | 0     | 0            | 0     | 0            | RC32K(CW)     | RC32K(CW) |
| 1                 | 1     | 1      | 0     | 0            | 0     | 1            | RC32K(SW)     | RC32K(SW) |
| 1                 | 1     | 1      | 0     | 0            | 1     | 1            | RC32K         | RC32K     |
| 1                 | 1     | 1      | 0     | 1            | 0     | 0            | RC32K         | XT32K     |
| 1                 | 1     | 1      | 0     | 1            | 1     | 1            | RC32K         | RC32K(BU) |
| 1                 | 1     | 1      | 1     | 0            | 0     | 0            | XT32K         | RC32K     |
| 1                 | 1     | 1      | 1     | 0            | 1     | 1            | RC32K(BU)     | RC32K     |
| 1                 | 1     | 1      | 1     | 1            | 0     | 0            | XT32K         | XT32K     |
| 1                 | 1     | 1      | 1     | 1            | 1     | 1            | RC32K(BU)     | RC32K(BU) |
| 1                 | 1     | 0      | 0     | 0            | 0     | 0            | off           | RC32K(CW) |
| 1                 | 1     | 0      | 0     | 0            | 0     | 1            | off           | RC32K(SW) |
| 1                 | 1     | 0      | 0     | 0            | 1     | 1            | off           | RC32K     |
| 1                 | 1     | 0      | 1     | 0            | 0     | 0            | XT32K         | RC32K     |
| 1                 | 1     | 0      | 1     | 0            | 1     | 1            | XT32K(SS)     | RC32K     |
| 1                 | 1     | 0      | 1     | 1            | 0     | 0            | XT32K         | XT32K     |
| 1                 | 1     | 0      | 1     | 1            | 1     | 1            | XT32K(SS)     | RC32K(BU) |
| $\frac{1}{1}$ mag |       | ¢ - 11 |       |              |       |              |               |           |

#### Table 6-7 Status of LSCLK (XT32K)

Character in () means the following:

BU=Backup state, SW=Waiting stability of XT32K, CW=Completion of waiting stability of XT32K, SS=Detected stop \* : LOSCB state is a state before clearing, so it does not show state in the backup procedure.

#### 6.3.2 High-speed Clock

The PLL oscillation circuit generates the high-speed clock; HSOCLK by multiplying the LSCLK0. The PLL frequency is configured to 24MHz/16MHz/1MHz by the code option. The high-speed output clock divided the HSOCLK ; HCKO is output from LSI pins. See Table 1-3 for pin assignment.

#### 6.3.2.1 PLL Oscillation Circuit

The PLL oscillation circuit generates the high-speed clock; HSOCLK by multiplying the LSCLK0. The multiplying by 732.5 is 24MHz of PLL frequency, and the multiplying by 488.5 is 16MHz of PLL frequency, and the multiplying by 30.5 is 16MHz of PLL frequency.

After high-speed clock oscillation is enabled, the high-speed clocks; HSCLK/HSCOCLK/HCKO is output by continuing count operation until the PLL oscillation clock is stabilized.

When set "1" to the FHUT0 bit of FHWUPT register, the clock supply is started approximately 30 µs after the high-speed clock oscillation is enabled. The clock frequency reaches to the target approximately 1 ms after the high-speed clock oscillation is enabled. Although the frequency within the 1 ms is not guaranteed, it can be used for the system clock. When set "0" to the FHUT0 bit, the clock supply is started approximately 1ms after it is enabled.

In addition, the PLL oscillation circuit stops oscillation when entering the HALT-H/HALT-D/STOP/STOP-D mode. Its oscillation is output, after wakeup from standby and waiting stabilization.

Figure 6-13 shows the PLL oscillation circuit configuration.

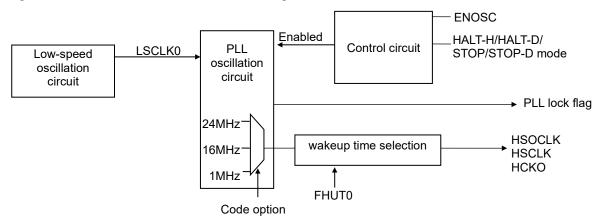
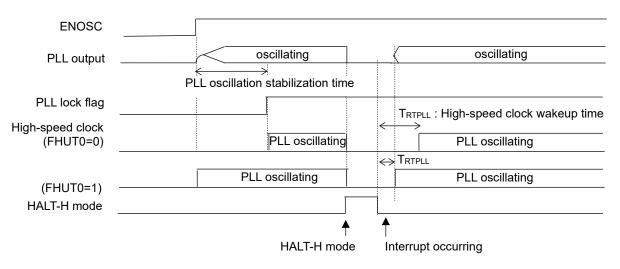
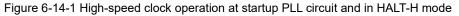





Figure 6-13 PLL Oscillation Circuit Configuration

Figure 6-14 show the high-speed clock operation waveforms at startup PLL circuit, in the standby mode. See Table 4-6 for the time for wakeup from the HALT-H mode. See Chapter 4 "Power Management" for details of the STOP/STOP-D mode.





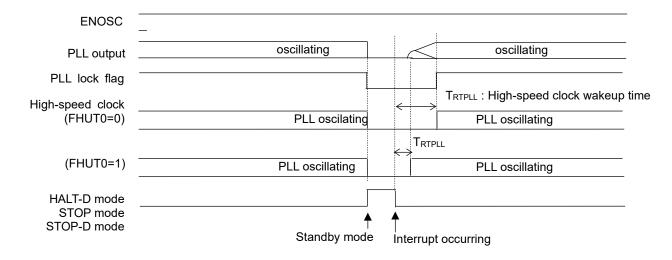



Figure 6-14-2 High-speed clock operation in the HALT-D/STOP/STOP-D mode

#### 6.3.2.2 High-speed Clock Control

The following is a procedure to control high-speed clock.

- (1) Set dividing HSCLK by FHCKMODL.
- (2) Set with or without waiting stabilization by FHWUPT.
- (3) Set enabled PLL oscillation by ENOSC=1. SELSCLK bit can be set to "1" at once.

The system clock stops until the high-speed clock oscillates when SELSCLK=1.

In the case of without waiting stabilization; FHUT0=1: Although the high-speed clock frequency is not guaranteed just after setting ENOSC=1, it can be used for the system clock and peripheral clocks. If specific frequency is required, wait stabilization time; LPLL=1.

In the case of with waiting stabilization; FHUT0=0: The clock is supplied after LPLL bit becomes to "1".

The control flow when the high-speed clock before stabilization with LSCLK0=RC32K, is used for the initialization processing and the high-speed clock after stabilization with LSCLK0=XT32K is used for the main processing as the system clock is shown below.

- (1) Set dividing HSCLK by FHCKMODL.
- (2) Set without waiting stabilization by FHWUPT. Because the high-speed clock output pauses when switching of (5) if FHUT0=0.
- (3) Set enabled PLL oscillation by ENOSC=1 and changing system clock by SELSCLK=1 at once.
- (4) Set enabled XT32K oscillation by FLMOD, and then execute a procedure to wait crystal oscillation stabilization and wait LOSCS=0 .Execute initialization for user program during waiting LOSCS=0.
- (5) Set "1" to the LOSEL bit of FLMOD, so that LSCLK0 is changed from RC32K to XT32K.
- (6) To wait the high-speed clock frequency stabilization, wait for LPLL=1 after 156µs elapse from (5).

Set "0" to ENOSC bit to turn off high-speed clock by the software. Then SELSCLK is cleared at once, and the system clock is switched to low-speed clock.

If high-speed clock is kept on, do not set "0" to ENOSC bit, and set "0" to SELSCLK bit only.

#### [Note]

When the XT32K is used for LSCLK0, the high-speed clock may become an unintended frequency due to
external factors such as noise, and the MCU may operates abnormally. Please evaluate enough the
apparatus/system which implemented this product.

#### 6.3.2.3 HALT-H mode

The high-speed clock is stopped when entry to HALT-H mode, and the clock is automatically turned on when wake-up. The PLL frequency stability time is due to temperature difference between the HALT-H mode enter and wake-up. It takes up to 2ms for the high-speed clock to be supplied if FTUT0=0.

The PLL frequency accuracy is about  $\pm 5\%$  in 300µs when the temperature difference is as follows in each mode.

| PLL mode | temperature difference range [°C] | Other conditions   |
|----------|-----------------------------------|--------------------|
| 24M mode | -22 ~ +16                         | Code option VLMD=0 |
| 16M mode | -17 ~ +13                         | Code option VLMD=0 |
| 1M mode  | -13 ~ + 10                        | -                  |

If no waiting locked PLL; FHUT0=1, the PLL frequency may exceed the operating range depending on the temperature difference. Therefore, control with FHRDWN bit to avoid it. See "6.2.5 High-Speed Clock Wake-up Time Setting Register" for the FHRDWN bit, and "30.2.3 Code Option 1" for code option VLMD.

#### 6.3.3 Internal 1kHz clock (RC1K)

The internal 1kHz clock is oscillation that frequency is 1.024kHz typ. It is supplied to the WDT, 16-bit timer, functional timer.

In the case of the WDT operation is enabled by setting code option; WDTMD=1 :

RC1K is oscillating after system reset is released. It turns off at entry to STOP/STOP-D mode, and then it turns on at wakeup from standby. In the HALT-D mode, it stops only when WDTPWMD1=0 is selected by setting code option. The clock wakeup time is approx. 2ms.

In the case of WDTMD = 0:

RC1K has stopping after system reset is released. RC1K oscillation is enable by the ENRC1K bit of FCONW register becomes "1", and the clock is supplied after approx. 2.5[ms].

The RC1K oscillation does not stop in the standby mode if ENRC1K=1. However a suppling WDTCLK depends on code options. Also, a suppling RC1K to 16-bit timer/functional timer stops in the STOP/STOP-D mode. Set ENRC1K=1 before the standby entry if the RC1K oscillating will be required quickly after wakeup from stand-by. See Chapter 30 "Code Option" for how to set code options.

Figure 6-15 shows configuration of internal RC1K oscillation. Figure 6-16 shows an operation of RC1K and WDTCLK at startup and wakeup from STOP mode.

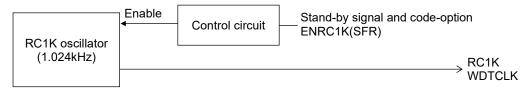



Figure 6-15 Configuration of internal 1kHz oscillator

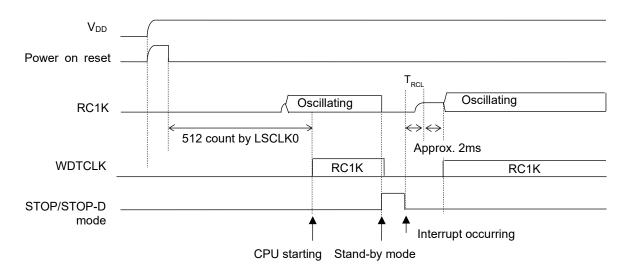
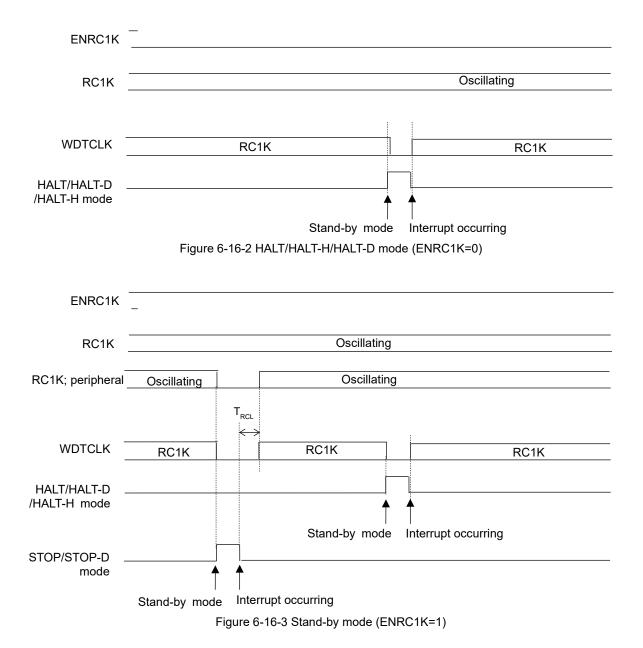




Figure 6-16-1 Startup and Wakeup from STOP mode of RC1K oscillator (ENRC1K=0)



#### 6.3.4 System Clock

A system clock is LSCLK0 with RC32K after power-on-reset/pin reset. The source clock of LSCLK0 is configured L0SEL after another system reset.

A system clock can be dynamically switched the high-speed system clock or LSCLK0 by SELSCLK bit. The high-speed system clock can be dynamically changed dividing value by SYSC bits.

There are 2 types as system clock; CPUCLK supplied to CPU and SYSCLK supplied to peripherals.

The CPUCLK stops in all stand-by mode. The SYSCLK normally supplies in the HALT/HALT-H mode, however it does not supply to some peripherals in the HALT-D mode. See Chapter 4 "Power Management" for detail.

#### [Note]

 While the CPU is running with the low-speed clock, if running the peripheral circuits with the high-speed clock which can frequently generate interrupts, the operation may fail to function properly due to the CPU becoming incapable of processing interrupts in time. If interrupts frequently occur for reasons such as short interrupt cycles of peripheral circuits, take into account the operating frequency of the CPU so that it can process interrupts in time.

#### 6.3.5 Interrupt

The clock back-up control circuit has a interrupt.

The clock buck-up interrupt is generated when the crystal oscillating or external clock input stop in the XT32K/EXT32K mode.

At this interrupt generated, LOSCB becomes to "1". Write "1" to LOSCB bit to clear this flag. New interrupt request does not occur until the LOSCB bit is cleared.

To wait crystal oscillation stability, use 16-bit timer X interrupt.

#### 6.3.6 Clock Back-up Test

The clock back-up test function can make purposely the condition that stops the low-speed crystal oscillation. Figure 6-17 shows the test procedure.

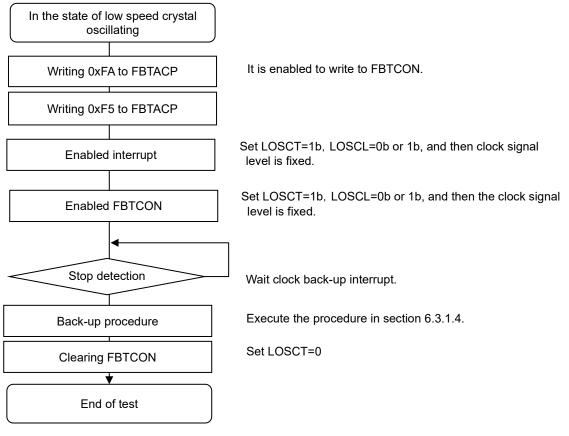


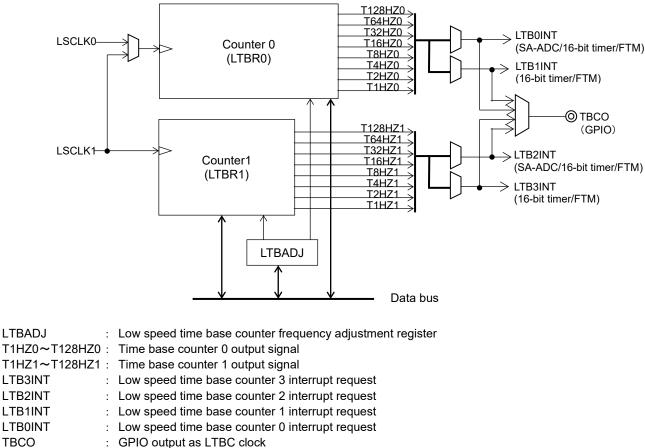

Figure 6-17 Clock Back-up Test Procedure

# **Chapter 7 Low Speed Time Base Counter**

### 7. Low Speed Time Base Counter

#### 7.1 General Description

The low speed time base counter enables following functions.


- Generate periodical interrupt requests
- Output periodical pulse signals to the general ports

#### 7.1.1 Features

- Generate eight frequency (128Hz, 64Hz, 32Hz, 16Hz, 8Hz, 4Hz, 2Hz and 1Hz) of pulse signals by dividing the low-speed clock (LSCLK0 or LSCLK1)
- Four interrupt requests can be chosen among eight periodical interrupt requests
- One of a pulse configured as interrupt requests can be output from general ports
- An interrupt request can be used for a trigger event source of the Successive Approximation type A-D Converter, 16-bit timer and functional timer.
- Allows to adjust in a range approx.-488ppm to +488ppm with the resolution approx.0.48ppm.

#### 7.1.2 Configuration

Figure 7-1 shows the configuration of the low speed time base counter



: GPIO output as LTBC clock

Figure 7-1 Configuration of Low Speed Time Base Counter

### 7.1.3 List of Pins

The output pins of the low speed time base counter are assigned to the shared function of general purpose ports.

| Signal<br>name | I/O | Function                                      |
|----------------|-----|-----------------------------------------------|
| TBCO           | 0   | The low speed time base counter output signal |

Table 7-1 shows the list of the output ports and the register setting.

|          | Table 7-1                    | Low speed time b         | base counter function | on port and the register | setting            |                |                |  |  |  |
|----------|------------------------------|--------------------------|-----------------------|--------------------------|--------------------|----------------|----------------|--|--|--|
|          |                              |                          |                       |                          | ML62Q2500<br>Group |                |                |  |  |  |
| Pin name | Sh                           | ared port                | Setting register      | Setting<br>value         | 32 pin product     | 40 pin product | 48 pin product |  |  |  |
|          | P17 7 <sup>th</sup> function |                          | P1MOD3                | 0110_XXXX*1              | -                  | •              | •              |  |  |  |
| TBCO     | P27 7 <sup>th</sup> function |                          | P2MOD7                | 0110_XXXX*1              | •                  | •              | •              |  |  |  |
|          | P73                          | 7 <sup>th</sup> function | P7MOD3                | 0110_XXXX*1              | •                  | •              | •              |  |  |  |

•: Available -: Unavailable

\*1 : XXXX determines the port output condition

| XXXX | Port output condition            |
|------|----------------------------------|
| 0010 | CMOS output                      |
| 1010 | Nch open drain (without pull-up) |
| 1111 | Nch open drain (with pull-up)    |

### 7.2 Description of Registers

### 7.2.1 List of Registers

| Address | Nama                                  | Syn     | nbol   |     | Size | Initial |
|---------|---------------------------------------|---------|--------|-----|------|---------|
| Address | Name                                  | Byte    | Word   | R/W | Size | Value   |
| 0xF3A0  | Low-speed Time Base Counter register  | LTBR0   | LTBR01 | R/W | 8/16 | 0x00    |
| 0xF3A1  | Low-speed fille base Counter register | LTBR1   | LIBRUI | R/W | 8    | 0x00    |
| 0xF3A2  | Low-speed Time Base Counter Control   | LTBCON0 | LTBCON | R/W | 8/16 | 0x03    |
| 0xF3A3  | register                              | LTBCON1 | LIBCON | R/W | 8    | 0x02    |
| 0xF3A4  | Reserved                              | -       | -      | -   | -    | -       |
| 0xF3A5  | Reserved                              | -       | -      | -   | -    | -       |
| 0xF3A6  | Low-speed Time Base Counter           | LTBADJL | LTBADJ | R/W | 8/16 | 0x00    |
| 0xF3A7  | Frequency Adjustment register         | LTBADJH | LIBADJ | R/W | 8    | 0x00    |
| 0xF3A8  | Low-speed Time Base Counter Interrupt | LTBINTL | ITBINT | R/W | 8/16 | 0x60    |
| 0xF3A9  | selection register                    | LTBINTH |        | R/W | 8    | 0x71    |

#### 7.2.2 Low Speed Time Base Counter Register (LTBR01)

This is a SFR to read the value of the low speed time base counter.

Writing any value to the LTBR0, the all bits of T128HZ0 to T1HZ0 are initialized to "0". Writing any value to the LTBR1, the all bits of T128HZ1 to T1HZ1 are initialized to "0". Writing any value to the LTBR01, the both are initialized to "0".

|                  |       | R/<br>e: 8/* | •     | .TBR0/ | LTBR0 <sup>-</sup> | 1), 0xF3   | 3A1(LT     |             |       |       |       |       |            |            |            |             |
|------------------|-------|--------------|-------|--------|--------------------|------------|------------|-------------|-------|-------|-------|-------|------------|------------|------------|-------------|
|                  | 15    | 14           | 13    | 12     | 11                 | 10         | 9          | 8           | 7     | 6     | 5     | 4     | 3          | 2          | 1          | 0           |
| Word             |       |              |       |        |                    |            |            | LTB         | R01   |       |       |       |            |            |            |             |
| Byte             |       |              |       | LTE    | BR1                |            |            |             | LTBR0 |       |       |       |            |            |            |             |
| Bit              | T1HZ1 | T2HZ1        | T4HZ1 | T8HZ1  | T16HZ<br>1         | T32HZ<br>1 | T64HZ<br>1 | T128H<br>Z1 | T1HZ0 | T2HZ0 | T4HZ0 | T8HZ0 | T16HZ<br>0 | T32HZ<br>0 | T64HZ<br>0 | T128H<br>Z0 |
| R/W              | R/W   | R/W          | R/W   | R/W    | R/W                | R/W        | R/W        | R/W         | R/W   | R/W   | R/W   | R/W   | R/W        | R/W        | R/W        | R/W         |
| Initial<br>value | 0     | 0            | 0     | 0      | 0                  | 0          | 0          | 0           | 0     | 0     | 0     | 0     | 0          | 0          | 0          | 0           |

T128HZ0 to T1HZ0 / T128HZ1 to T1HZ1 signals have "0" level in the first half cycle and "1" level in the second half cycle. For example, T1HZ0 signal gets reset to "0" by writing any data to LTBR0 and it get to "1" about 0.5sec later and returns to "0" about 1sec later from the reset. The low-speed time base counter interrupt occurs at the falling edge ("1" to "0") of the signal. See Figure 7-4 "Low speed time base counter interrupt timing and reset timing of reset by writing to LTBR0" for details of the T128HZ0 to T1HZ0 / T128HZ1 to T1HZ1 waveform.

#### [Note]

- A time base counter interrupt may occur depending on the timing to write to the LTBR01. See the program example for initializing described in Section 7.3.1 "Operation of the Low-speed Time Base Counter".
- Read the LTBR01 register twice to verify the data to prevent reading uncertain data while counting-up.

### 7.2.3 Low Speed Time Base Counter Control Register (LTBCON)

This is a SFR to control the function of the time base counter.

|                  |                                                                                | R/\<br>: 8/1                                                                       |               |                                                                                                                                                                             | NO/LTE                                                                                                   | CON0 <sup>-</sup> | 1), 0xF | 3A3(LTI    | BCON <sup>,</sup> | 1)      |       |      |      |   |            |            |  |
|------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------|---------|------------|-------------------|---------|-------|------|------|---|------------|------------|--|
| _                | 15                                                                             | 14                                                                                 | 13            | 12                                                                                                                                                                          | 11                                                                                                       | 10                | 9       | 8          | 7                 | 6       | 5     | 4    | 3    | 2 | 1          | 0          |  |
| Word             |                                                                                |                                                                                    |               |                                                                                                                                                                             |                                                                                                          |                   |         | LTBC       | CON               |         |       |      |      |   |            |            |  |
| Byte             |                                                                                |                                                                                    |               | LTB                                                                                                                                                                         | CON1                                                                                                     |                   |         |            |                   |         |       | LTBC | CON0 |   |            |            |  |
| Bit              | TBOSETBOSE<br>L1 L0 -                                                          |                                                                                    |               | -                                                                                                                                                                           | TB1AD<br>JEN                                                                                             | TB0AD<br>JEN      | TB1Ck   | ТВОСК      | -                 | -       | -     | -    | -    | - | TB1RU<br>N | TB0RU<br>N |  |
| R/W              | R/W                                                                            | R/W                                                                                | R             | R                                                                                                                                                                           | R/W                                                                                                      | R/W               | R       | R/W        | R                 | R       | R     | R    | R    | R | R/W        | R/W        |  |
| Initial<br>value | 0                                                                              | 0                                                                                  | 0             | 0                                                                                                                                                                           | 0                                                                                                        | 0                 | 1       | 0          | 0                 | 0       | 0     | 0    | 0    | 0 | 1          | 1          |  |
| Bit No.          | Bi                                                                             | t symbo<br>name                                                                    | bl            | Description                                                                                                                                                                 |                                                                                                          |                   |         |            |                   |         |       |      |      |   |            |            |  |
| 15,14            | ТВО                                                                            | SEL1 to                                                                            | 0 0           | This bit is used to choose a signal as TBCO output.         00:       LTB0INT (Initial value)         01:       LTB1INT         10:       LTB2INT         11:       LTB3INT |                                                                                                          |                   |         |            |                   |         |       |      |      |   |            |            |  |
| 13 to 12         | -                                                                              |                                                                                    |               | Reserved bits                                                                                                                                                               |                                                                                                          |                   |         |            |                   |         |       |      |      |   |            |            |  |
| 11               | TB1                                                                            | ADJEN                                                                              |               | <ul><li>This bit is used to enable or disable adjustment of LTBR1.</li><li>0: Disabled (Initial value)</li><li>1: Enabled</li></ul>                                         |                                                                                                          |                   |         |            |                   |         |       |      |      |   |            |            |  |
| 10               | TB0                                                                            | ADJEN                                                                              | <u> </u>      | 0: D                                                                                                                                                                        | nis bit is used to enable or disable adjustment of LTBR0.<br>0:  Disabled (Initial value)<br>1:  Enabled |                   |         |            |                   |         |       |      |      |   |            |            |  |
| 9                | TB1                                                                            | СК                                                                                 |               |                                                                                                                                                                             | is not c<br>SCLK1                                                                                        |                   | able. A | clock o    | f LTBR            | 1 is LS | CLK1. |      |      |   |            |            |  |
| 8                | TB0                                                                            | TB0CK This bit is used to choose a clock<br>0: LSCLK0 (Initial value)<br>1: LSCLK1 |               |                                                                                                                                                                             |                                                                                                          |                   |         | clock of I | _TBR0             |         |       |      |      |   |            |            |  |
| 7 to 2           | -                                                                              |                                                                                    | Reserved bits |                                                                                                                                                                             |                                                                                                          |                   |         |            |                   |         |       |      |      |   |            |            |  |
| 1                | TB1RUN This bit is used to control run/st<br>0: Stop<br>1: Run (Initial value) |                                                                                    |               |                                                                                                                                                                             |                                                                                                          |                   |         | i/stop co  | unter l           | TBR1.   |       |      |      |   |            |            |  |
| 0                | TB0                                                                            | RUN                                                                                |               | 0: S                                                                                                                                                                        | bit is used to control run/stop counter LTBR0.<br>Stop<br>Run (Initial value)                            |                   |         |            |                   |         |       |      |      |   |            |            |  |

#### [Note]

• Stop counter LTBR0 (i.e. set 0 to TB0RUN bit), before TB0CK bit is configured.

### 7.2.4 Low Speed Time base counter frequency adjustment register (LTBADJ)

This is a SFR to set adjustment value for the frequency of time bask clock.

|                  |                                                                                                                                | R/<br>: 8/* |    | (LTBAD、 | JL/LTB  | ADJ), C    | xF3A7( | (LTBAD | )JH)  |           |         |          |        |         |       |       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|----|---------|---------|------------|--------|--------|-------|-----------|---------|----------|--------|---------|-------|-------|
| _                | 15                                                                                                                             | 14          | 13 | 12      | 11      | 10         | 9      | 8      | 7     | 6         | 5       | 4        | 3      | 2       | 1     | 0     |
| Word             | Ľ                                                                                                                              |             |    |         |         |            |        |        | ADJ   |           |         |          |        |         |       |       |
| Byte             | LTBADJH                                                                                                                        |             |    |         |         |            |        |        |       |           |         | LTBA     | ADJL   |         |       |       |
| Bit              | -                                                                                                                              | -           | -  | -       | -       | LADJ1<br>0 | LADJ9  | LADJ8  | LADJ7 | LADJ6     | LADJ5   | LADJ4    | LADJ3  | LADJ2   | LADJ1 | LADJ0 |
| R/W              | R                                                                                                                              | R           | R  | R       | R       | R/W        | R/W    | R/W    | R/W   | R/W       | R/W     | R/W      | R/W    | R/W     | R/W   | R/W   |
| Initial<br>value | 0                                                                                                                              | 0           | 0  | 0       | 0       | 0          | 0      | 0      | 0     | 0         | 0       | 0        | 0      | 0       | 0     | 0     |
| Bit No.          | o. Bit symbol<br>name                                                                                                          |             |    |         |         |            |        |        | De    | escriptic | on      |          |        |         |       |       |
| 15 to 11         | -                                                                                                                              |             |    | Reserve | ed bits |            |        |        |       |           |         |          |        |         |       |       |
| 10 to 0          | 0 LADJ10 to<br>LADJ0 These bits are used to specify the t<br>See 7.3.2 "Time Base Counter Free<br>data and the adjustable ppm. |             |    |         |         |            |        |        |       |           | for the | relation | of the | setting |       |       |

### 7.2.5 Low Speed Time Base Counter Interrupt Selection Register (LTBINT)

This is a SFR to specify the low-speed time base clock to be used as an interrupt signal.

| Addre    | ss.                                          | Οx                     | F3A8(I                                                                                                      | TRINT                                  | /I TB | (NT) 01          | xF3A9('   | LTBINT     | H)      |          |                |              |       |          |          |         |
|----------|----------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|------------------|-----------|------------|---------|----------|----------------|--------------|-------|----------|----------|---------|
| Acces    |                                              | R/                     |                                                                                                             |                                        |       | ini), 07         |           |            | "       |          |                |              |       |          |          |         |
| Acces    |                                              |                        | 16 bit                                                                                                      |                                        |       |                  |           |            |         |          |                |              |       |          |          |         |
| Initial  | value                                        | : 0x                   | 7160                                                                                                        |                                        |       |                  |           |            |         |          |                |              |       |          |          |         |
|          | 15                                           | 14                     | 13                                                                                                          | 12                                     | 11    | 10               | 9         | 8          | 7       | 6        | 5              | 4            | 3     | 2        | 1        | 0       |
| Word     |                                              |                        |                                                                                                             |                                        |       |                  |           | LTB        | INT     |          |                |              |       |          |          |         |
| Byte     |                                              |                        |                                                                                                             | LTBI                                   | NTH   |                  |           |            |         |          |                | LTBI         | NTL   |          |          |         |
| Bit      | -                                            | LTI3S2                 | LTI3S1                                                                                                      | LTI3S0                                 | -     | LTI2S2           | LTI2S1    | LTI2S0     | -       | LTI1S2   | LTI1S1         | LTI1S0       | -     | LTI0S2   | LTI0S1   | LTI0S   |
| R/W      | R                                            | R/W                    | R/W                                                                                                         | R/W                                    | R     | R/W              | R/W       | R/W        | R       | R/W      | R/W            | R/W          | R     | R/W      | R/W      | R/W     |
| Initial  | 0                                            | 1                      | 1                                                                                                           | 1                                      | 0     | 0                | 0         | 1          | 0       | 1        | 1              | 0            | 0     | 0        | 0        | 0       |
| value    | 0                                            | I                      | I                                                                                                           | I                                      | 0     | 0                | 0         | I          | 0       | I        | I              | 0            | 0     | 0        | 0        | 0       |
| Bit No.  | Bit symbol                                   |                        |                                                                                                             |                                        |       |                  |           |            |         |          |                |              |       |          |          |         |
|          | name                                         |                        |                                                                                                             |                                        |       |                  |           |            |         |          |                |              |       |          |          |         |
| 15       | -                                            |                        | F                                                                                                           | Reserve                                | d bit |                  |           |            |         |          |                |              |       |          |          |         |
| 14 to 12 |                                              | 3S2 to                 |                                                                                                             |                                        |       | used to          | o choos   | se the si  | gnal to | be ass   | igned t        | o the tin    | ne ba | se count | er inter | rrupt 3 |
|          | LTI3S0 (LTB3INT).<br>000: T128HZ1 100: T8HZ1 |                        |                                                                                                             |                                        |       |                  |           |            |         |          |                |              |       |          |          |         |
|          |                                              | 001: T64HZ1 101: T4HZ1 |                                                                                                             |                                        |       |                  |           |            |         |          |                |              |       |          |          |         |
|          |                                              |                        |                                                                                                             | 010: T32HZ1 110: T2HZ1                 |       |                  |           |            |         |          |                |              |       |          |          |         |
|          |                                              |                        |                                                                                                             | 011: T16HZ1 111: T1HZ1 (Initial value) |       |                  |           |            |         |          |                |              |       |          |          |         |
| 11       | -                                            |                        | F                                                                                                           | Reserved bit                           |       |                  |           |            |         |          |                |              |       |          |          |         |
| 10 to 8  |                                              | 2S2 to                 |                                                                                                             |                                        |       | used to          | choos     | se the si  | gnal to | be ass   | igned t        | o the tin    | ne ba | se count | er inter | rrupt 2 |
|          | LTI2                                         | 2S0                    | (                                                                                                           | LTB2IN                                 |       |                  |           |            |         | 10       | о <del>т</del> |              |       |          |          |         |
|          |                                              |                        |                                                                                                             | 000:<br>001:                           | T128  |                  | tiol volu |            |         | 10       |                | 8HZ1         |       |          |          |         |
|          |                                              |                        |                                                                                                             | 001.                                   | T32F  | IZ1 (Init<br>IZ1 | .iai vaiu | ie)        |         | 10<br>11 |                | 4HZ1<br>2HZ1 |       |          |          |         |
|          |                                              |                        |                                                                                                             | 010.                                   | T16F  |                  |           |            |         | 11       |                | 1HZ1         |       |          |          |         |
| 7        | _                                            |                        | F                                                                                                           | Reserve                                |       |                  |           |            |         |          |                |              |       |          |          |         |
| 6 to 4   | LTI1                                         | IS2 to                 |                                                                                                             |                                        |       | used to          | o choos   | se the si  | anal te | be ass   | ianed t        | o the tin    | ne ba | se count | er inter | rrupt 1 |
|          | LTI1                                         |                        |                                                                                                             | LTB1IN                                 |       |                  |           |            | 0       |          | -              |              |       |          |          | '       |
|          |                                              |                        |                                                                                                             | 000:                                   | T128  |                  |           |            |         | 10       |                | 8HZ0         |       |          |          |         |
|          |                                              |                        |                                                                                                             | 001:                                   | T64F  |                  |           |            |         | 10       |                | 4HZ0         |       |          |          |         |
|          |                                              |                        |                                                                                                             | 010: T32HZ0 110: T2HZ0 (Initial value) |       |                  |           |            |         |          |                |              |       |          |          |         |
| 3        |                                              |                        | -                                                                                                           | 011:                                   |       | 120              |           |            |         | 11       | 1: 1           | 1HZ0         |       |          |          |         |
|          | -                                            | 000 to                 | Reserved bit<br>2 to These bits are used to choose the signal to be assigned to the time base counter inter |                                        |       |                  |           |            |         |          |                |              |       |          |          |         |
| 2 to 0   |                                              | )S2 to<br>)S0          |                                                                                                             | LTB0IN                                 |       | usea ta          | 2 CHOOS   | se trie Sl | ynai te | b be ass | ignea t        | o ເກຍ ເທ     | ne ba | se count | erintei  | rupt 0  |
|          |                                              |                        | (                                                                                                           | 000:                                   | ,     | HZ0 (In          | nitial va | lue)       |         | 10       | 0: T           | 8HZ0         |       |          |          |         |
|          |                                              |                        |                                                                                                             | 001:                                   | T64⊦  |                  |           |            |         | 10       |                | 4HZ0         |       |          |          |         |
|          |                                              |                        |                                                                                                             | 010:                                   | T32F  | IZ0              |           |            |         | 11       |                | 2HZ0         |       |          |          |         |
|          |                                              |                        |                                                                                                             | 011:                                   |       |                  |           |            |         |          | 1: T           | 1HZ0         |       |          |          |         |

#### [Note]

A time base counter interrupt may occur depending on a write timing to the LTBINT. See the program example for initializing described in "7.3.1 Operation of the Low-speed Time Base Counter".

### 7.3 Description of Operation

#### 7.3.1 Low Speed Time Base Counter Operation

The low speed time base counter (LTBC) starts counting up from 0x0000 at the falling edge of the low-speed clock after releasing the system reset, then generates T128HZ0 to T1HZ0 / T128HZ1 to T1HZ1 signals. Two factors can be chosen from T128HZ0 to T1HZ0 signals, and two factors can be chosen from T128HZ1 to T1HZ1 signals. There are to generate periodical low-speed time base counter interrupt requests.

Values of T128HZ0 to T1HZ0 / T128HZ1 to T1HZ1 signals can be read from the LTBR01 register. The low-speed time base counter interrupt request is generated at the falling edge of a signal chosen in the LTBINT register.

When changing the assignment of interrupt signals in the LTBINT register, low-speed time base counter interrupt requests (LTBnINT) may be generated depending on write timing to the register. Therefore, change the value in the LTBINT register with the interrupt disabled in the IE67 register before changing the assignment of interrupt signals, and clear the generated low-speed time base counter interrupt request bit (QLTBCn) to "0". (n = 0 to 3)

Figure 7-2 shows a sample program for changing the assignment of low-speed time base counter signals.

ELTBC0 = 0; // Disable LTBC0 interrupt ELTBC1 = 0: // Disable LTBC1 interrupt ELTBC2 = 0; // Disable LTBC2 interrupt ELTBC3 = 0; // Disable LTBC3 interrupt LTBINT = 0x0741;// Change assignment of interrupt signal asm("NOP"); // Waiting time  $\overline{QLTBC0} = 0;$ // Clear QLTBC0 QLTBC1 = 0: // Clear QLTBC1 QLTBC2 = 0;// Clear QLTBC2 QLTBC3 = 0;// Clear QLTBC3 ELTBC0 = 1; // Enable LTBC0 interrupt ELTBC1 = 1; // Enable LTBC1 interrupt ELTBC2 = 1; // Enable LTBC2 interrupt ELTBC3 = 1; // Enable LTBC3 interrupt

Figure 7-2 Sample Program for Changing Assignment of Low-speed Time Base Counter Signals

The time equivalent to one clock of the system clock is required for the low-speed time base counter interrupt request bit (QLTBCn bit of IRQ67 register, n=0 to 3) to become "1" after changing the LTBINT register . Therefore, place two NOP instruction after changing the LTBINT register.

When writing arbitrary data to the LTBR0 register, T128HZ0 to T1HZ0 signals of the LTBR01 register are all initialized to "0". When writing arbitrary data to the LTBR1 register, T128HZ1 to T1HZ1 signals of the LTBR01 register are all initialized to "0". When writing arbitrary data to the LTBR01 register, all bits of LTBR01 register are initialized to "0". Depending on timing to write to the LTBR register, the signal assigned to the LTBINT register may change from "1" to "0". Also a low-speed time base counter interrupt request may occur. Therefore, with the low-speed time base counter interrupt disabled in the IE67 register, following writing to the LTBR register, clear the generated low-speed time base counter interrupt request bit (the QLTBCn bit of the IRQ67 register) to "0". (n = 0 to 3)

Figure 7-3 shows a sample program for initializing the LTBR0 register.

| DI();                           | // Disable interrupt (MIE=0) |
|---------------------------------|------------------------------|
| LTBR0 = 0x00;                   | // Reset LTBR0               |
| asm("NOP");                     | // Waiting time              |
| asm("NOP");                     | // Waiting time              |
| $\overline{\text{QLTBC0}} = 0;$ | // Clear QLTBC0              |
| QLTBC1 = 0;                     | // Clear QLTBC1              |
| EI();                           | // Enable interrupt (MIE=1)  |

Figure 7-3 Sample Program for Initializing LTBR0 Register

It takes one cycle of the system clock for QLTBCn to become "1" from writing to the LTBR register. Therefore, place two NOP instruction after writing to the LTBR01 register.

Figure 7-4 shows the low-speed time base counter interrupt request generation timing when choosing T128HZ0, T16HZ0, and T2HZ0 as interrupt factors in the LTBINT register, and shows the reset timing by writing to LTBR0.

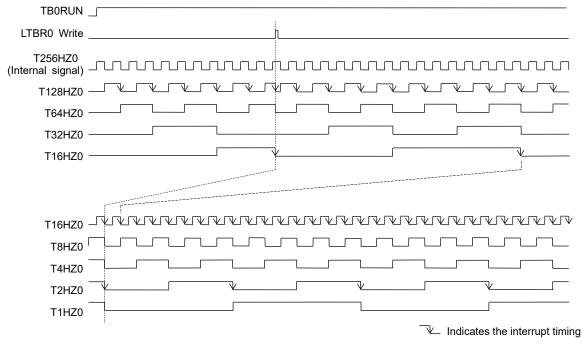



Figure 7-4 Low-speed Time Base Counter Interrupt Timing and Reset Timing by Writing to LTBR0 Register

#### [Note]

 After writing to the LTBR01 register, the time by which the first low-speed time base counter interrupt request is generated is not guaranteed. If measuring the time using the low-speed time base counter interrupt, do so with reference to the interrupt generation interval.

#### 7.3.2 Low-speed Time Base Counter Frequency Adjustment Function

For T128HZ0 to T1HZ0 / T128HZ1 and T1HZ1 of the low-speed time base counter, the frequency can be adjusted using the low-speed time base counter frequency adjustment register (LTBADJ). Measure the signal output from the TBCO pin, then adjust the frequency using the LTBADJ register. The adjustment range and resolution are as follows:

- Adjustment range : Approx. -488 ppm to +488 ppm
- Adjustment resolution : Approx. 0.477 ppm

The following is available to confirm the adjusted frequency:

| Frequency adjustment mode        | Description                                                                                                                                                                                               |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normal frequency adjustment mode | This is used to confirm that 64 seconds includes exactly 128 cycles (or 64 cycles) of T2HZ0/T2HZ1 (or T1HZ0/T1HZ1),which is output form pin as TBCO under operating with actual adjusted low-speed clock. |

Table 7-2 shows the frequency adjustment value set in the LTBADJ and adjustment ratio.

| LADJ10-0 |   |   |   |   |   |   |   |   | Hex. | Frequency<br>adjustment ratio<br>(ppm) |      |         |
|----------|---|---|---|---|---|---|---|---|------|----------------------------------------|------|---------|
| 0        | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1                                      | 3FFH | +487.80 |
| 0        | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 0                                      | 3FEH | +487.33 |
| :        | : | : | : | : | : | : | : | : | :    | :                                      | :    | :       |
| 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1    | 1                                      | 003H | +1.43   |
| 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1    | 0                                      | 002H | +0.95   |
| 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 1                                      | 001H | +0.48   |
| 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0                                      | 000H | 0       |
| 1        | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1                                      | 7FFH | -0.48   |
| 1        | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 0                                      | 7FEH | -0.95   |
| :        | : | : | : | : | : | : | : | : | :    | :                                      | :    | :       |
| 1        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 1                                      | 401H | -487.80 |
| 1        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0                                      | 400H | -488.28 |

Table 7-2 Frequency adjustment value set in the LTBADJ and Adjustment ratio

The correction values (LADJ10 to LADJ0) set in the LTBADJ register can be calculated using the following formula.

| Correction value | <ul><li>Frequency adjustment ratio x 2097152 (decimal)</li><li>Frequency adjustment ratio x 200000h (hexadecimal)</li></ul>                                                  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | adjusting +15.0 ppm (when the clock loses)<br>ue = +15.0 ppm x 2097152 (decimal)<br>$= +15.0 x 10^{-6} x 2097152$<br>= +31.45728 (decimal)<br>≈ 1Fh (hexadecimal)            |
|                  | n adjusting -25.5 ppm (when the clock gains)<br>ue = -25.5 ppm x 2097152 (decimal)<br>= -25.5 x 10 <sup>-6</sup> x 2097152<br>= -53.477376 (decimal)<br>≈ 7CBh (hexadecimal) |

[Note]

The frequency adjustment accuracy does not guarantee the accuracy including the frequency variation of the low-speed oscillation (32.768 kHz) due to temperature variations.

# **Chapter 8 16-Bit Timer**

### 8. 16-Bit Timer

#### 8.1 General Description

The 16-bit timer enables following functions.

- Generate periodical interrupts in an arbitrary period
- Generate one shot interrupts in an arbitrary period
- Output pulse signals with an arbitrary frequency to the general ports
- Output one shot pulse signals to the general ports

The timer X is shared function for stability controlling of crystal oscillation. When un-used crystal oscillation, it is used as normal 16-bit timer.

See Chapter 6 "Clock generation circuit" for function for stability controlling of crystal oscillation.

Table 8-1 shows the number of channels.

| Table 8-1 Number of 16-bit Timer channels |                 |  |  |  |  |  |  |  |  |
|-------------------------------------------|-----------------|--|--|--|--|--|--|--|--|
| Channel no.                               | ML62Q2500 group |  |  |  |  |  |  |  |  |
| 0                                         | •               |  |  |  |  |  |  |  |  |
| 1                                         | •               |  |  |  |  |  |  |  |  |
| 2                                         | •               |  |  |  |  |  |  |  |  |
| 3                                         | •               |  |  |  |  |  |  |  |  |
| 4                                         | •               |  |  |  |  |  |  |  |  |
| 5                                         | -               |  |  |  |  |  |  |  |  |
| 6                                         | -               |  |  |  |  |  |  |  |  |
| 7                                         | -               |  |  |  |  |  |  |  |  |
| Х                                         | •               |  |  |  |  |  |  |  |  |

#### 8.1.1 Features

| Operation mode | Description                                                                                 |
|----------------|---------------------------------------------------------------------------------------------|
| Repeat mode    | Count-able to the max. 0xffff<br>Repeat the specified operation until stop by the software. |
| One shot mode  | Count-able to the max. 0xffff<br>Run the specified operation once and stop it.              |

- Selectable counter clock from various sources (divided by 1 to 8 of LSCLK0, LSCLK1, HSCLK, HTBCLK0, HTBCLK1, RC1K, external clock, LTBC interrupt, functional timer triggers)
- A timer interrupt request is generated when the value of the timer counter register value coincides with that of the 16-bit timer n data register
- A port output is reversed when the value of the timer counter register value coincides with that of the 16-bit timer n data register
- The initial level of the port can be chosen by a register.

### 8.1.2 Configuration

Figure 8-1 shows configuration of the 16-bit timer

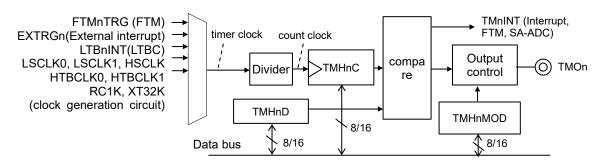



Figure 8-1 Configuration of the timer

| TMnINT<br>EXTRGn<br>TMHnD<br>TMHnC<br>TMHnMOD | <ul> <li>16-bit timer n interrupt request</li> <li>EXIn pin input (come through the noise filter of the external interrupt function)</li> <li>16-bit timer n data register</li> <li>16-bit timer n counter register</li> <li>16-bit timer n mode register</li> </ul> |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### 8.1.3 List of Pin

The I/O pins of the 16-bit timer are assigned to the shared function of the general ports.

| Pin name | I/O | Description                                                       |
|----------|-----|-------------------------------------------------------------------|
| EXIn     |     | External clock (used as EXTRGn). The max input frequency is 3MHz. |
| TMO2     | 0   | 16-bit timer channel 2 output                                     |
| TMO3     | 0   | 16-bit timer channel 3 output                                     |
| TMO4     | 0   | 16-bit timer channel 4 output                                     |
| TMOX     | 0   | 16-bit timer channel X output                                     |

Table 8-2 shows the list of the general ports used in the 16-bit timer and the register settings of the ports.

|              |     |                       |          |               | ML62Q2500<br>group |                   |                   |  |  |
|--------------|-----|-----------------------|----------|---------------|--------------------|-------------------|-------------------|--|--|
| Pin name     | Sha | red port              | Register | Setting value | 32 pin<br>product  | 40 pin<br>product | 48 pin<br>product |  |  |
| EXI0         |     |                       | I        | I             | •                  | •                 | •                 |  |  |
| EXI1         |     |                       |          |               | •                  | •                 | •                 |  |  |
| EXI2         |     |                       |          |               | •                  | •                 | ٠                 |  |  |
| EXI3         |     | Ports assi            | •        | •             | •                  |                   |                   |  |  |
| EXI4         |     | See Chap              | •        | •             | •                  |                   |                   |  |  |
| EXI5         |     |                       |          |               | •                  | •                 | ٠                 |  |  |
| EXI6         |     | •                     | •        | ٠             |                    |                   |                   |  |  |
| EXI7         |     |                       |          |               | •                  | •                 | ٠                 |  |  |
|              | P04 | 6 <sup>th</sup> Func. | P0MOD4   | 0101_XXXX*1   | •                  | •                 | •                 |  |  |
| TMOD         | P10 | 6 <sup>th</sup> Func. | P1MOD0   | 0101_XXXX*1   | •                  | •                 | •                 |  |  |
| TMO2         | P60 | 6 <sup>th</sup> Func. | P6MOD0   | 0101_XXXX*1   | -                  | -                 | •                 |  |  |
|              | P70 | 6 <sup>th</sup> Func. | P7MOD0   | 0101_XXXX*1   | •                  | •                 | •                 |  |  |
|              | P05 | 6 <sup>th</sup> Func. | P0MOD5   | 0101_XXXX*1   | •                  | •                 | •                 |  |  |
| TMOO         | P11 | 6 <sup>th</sup> Func. | P1MOD1   | 0101_XXXX*1   | •                  | •                 | ٠                 |  |  |
| TMO3         | P61 | 6 <sup>th</sup> Func. | P6MOD1   | 0101_XXXX*1   | -                  | -                 | •                 |  |  |
|              | P71 | 6 <sup>th</sup> Func. | P7MOD1   | 0101_XXXX*1   | •                  | •                 | ٠                 |  |  |
|              | P06 | 6 <sup>th</sup> Func. | P0MOD6   | 0101_XXXX*1   | •                  | •                 | •                 |  |  |
| <b>T1</b> 04 | P12 | 6 <sup>th</sup> Func. | P1MOD2   | 0101_XXXX*1   | •                  | •                 | •                 |  |  |
| TMO4         | P62 | 6 <sup>th</sup> Func. | P6MOD2   | 0101_XXXX*1   | -                  | -                 | •                 |  |  |
|              | P72 | 6 <sup>th</sup> Func. | P7MOD2   | 0101_XXXX*1   | •                  | •                 | •                 |  |  |
| TMOY         | P13 | 6 <sup>th</sup> Func. | P1MOD3   | 0101_XXXX*1   | •                  | •                 | •                 |  |  |
| TMOX         | P73 | 6 <sup>th</sup> Func. | P7MOD3   | 0101_XXXX*1   | •                  | •                 | •                 |  |  |

Table 8-2 Ports used in the 16-bit timer and the register settings

•: Available to use -: Unavailable

\*1 : "XXXX" determines the condition of the port output

| XXXX | Condition of the port output                |
|------|---------------------------------------------|
| 0010 | CMOS output                                 |
| 1010 | Nch open drain output (without the pull-up) |
| 1111 | Nch open drain output (with the pull-up)    |

### 8.2 Description of Registers

### 8.2.1 List of Registers

### Registers for unequipped channels are not available to use. They return 0x0000 for reading.

|                   |                                                     | Sym      |         |     |      | Initial |  |
|-------------------|-----------------------------------------------------|----------|---------|-----|------|---------|--|
| Address           | Name                                                | Byte     | Word    | R/W | Size | value   |  |
| 0xF300            |                                                     | TMH0DL   |         | R/W | 8/16 | 0xFF    |  |
| 0xF301            | 16-bit timer 0 data register                        | TMH0DH   | TMH0D   | R/W | 8    | 0xFF    |  |
| 0xF302            |                                                     | TMH0CL   |         | R/W | 8/16 | 0x00    |  |
| 0xF303            | 16-bit timer 0 counter register                     | TMH0CH   | TMH0C   | R/W | 8    | 0x00    |  |
| 0xF304            |                                                     | TMH0MODL |         | R/W | 8/16 | 0x00    |  |
| 0xF305            | 16-bit timer 0 mode register                        | TMH0MODH | TMH0MOD | R/W | 8    | 0x00    |  |
| 0xF306            |                                                     |          |         |     |      |         |  |
| 0xF307            | Reserved                                            | -        | -       | -   | -    | -       |  |
| 0xF308            |                                                     | TMH1DL   |         | R/W | 8/16 | 0xFF    |  |
| 0xF309            | 16-bit timer 1 data register                        | TMH1DH   | TMH1D   | R/W | 8    | 0xFF    |  |
| 0xF30A            |                                                     | TMH1CL   |         | R/W | 8/16 | 0x00    |  |
| 0xF30B            | 16-bit timer 1 counter register                     | TMH1CH   | TMH1C   | R/W | 8    | 0x00    |  |
| 0xF30C            |                                                     | TMH1MODL |         | R/W | 8/16 | 0x00    |  |
| 0xF30D            | - 16-bit timer 1 mode register                      | TMH1MODH | TMH1MOD | R/W | 8    | 0x00    |  |
| 0xF30E            |                                                     |          |         |     |      |         |  |
| 0xF30F            | - Reserved                                          | -        | -       | -   | -    | -       |  |
| 0xF310            |                                                     | TMH2DL   |         | R/W | 8/16 | 0xFF    |  |
| 0xF311            | 16-bit timer 2 data register                        | TMH2DH   | TMH2D   | R/W | 8    | 0xFF    |  |
| 0xF312            |                                                     | TMH2CL   |         | R/W | 8/16 | 0x00    |  |
| 0xF313            | 16-bit timer 2 counter register                     | TMH2CH   | TMH2C   | R/W | 8    | 0x00    |  |
| 0xF314            |                                                     | TMH2MODL |         | R/W | 8/16 | 0x00    |  |
| 0xF315            | 16-bit timer 2 mode register                        | TMH2MODH | TMH2MOD | R/W | 8    | 0x00    |  |
| 0xF316            |                                                     |          |         |     |      |         |  |
| 0xF317            | Reserved                                            | -        | -       | -   | -    | -       |  |
| 0xF318            |                                                     | TMH3DL   |         | R/W | 8/16 | 0xFF    |  |
| 0xF319            | <ul> <li>16-bit timer 3 data register</li> </ul>    | TMH3DH   | TMH3D   | R/W | 8    | 0xFF    |  |
| 0xF31A            |                                                     | TMH3CL   |         | R/W | 8/16 | 0x00    |  |
| 0xF31B            | 16-bit timer 3 counter register                     | TMH3CH   | ТМНЗС   | R/W | 8    | 0x00    |  |
| 0xF31C            |                                                     | TMH3MODL |         | R/W | 8/16 | 0x00    |  |
| 0xF31D            | 16-bit timer 3 mode register                        | TMH3MODH | TMH3MOD | R/W | 8    | 0x00    |  |
| 0xF31E            |                                                     |          |         |     | -    |         |  |
| 0xF31F            | Reserved                                            | -        | -       | -   | -    | -       |  |
| 0xF320            |                                                     | TMH4DL   |         | R/W | 8/16 | 0xFF    |  |
| 0xF321            | – 16-bit timer 4 data register                      | TMH4DH   | TMH4D   | R/W | 8    | 0xFF    |  |
| 0xF322            |                                                     | TMH4CL   |         | R/W | 8/16 | 0x00    |  |
| 0xF323            | <ul> <li>16-bit timer 4 counter register</li> </ul> | TMH4CH   | TMH4C   | R/W | 8    | 0x00    |  |
| 0xF324            |                                                     | TMH4MODL | <b></b> | R/W | 8/16 | 0x00    |  |
| 0xF325            | <ul> <li>16-bit timer 4 mode register</li> </ul>    | TMH4MODH | TMH4MOD | R/W | 8    | 0x00    |  |
| 0xF326~<br>0xF33F | Reserved                                            | -        | -       | -   | -    | -       |  |
| 0xF340            |                                                     | TMHSTRL  | THUSTO  | W   | 8/16 | 0x00    |  |
| 0xF341            | <ul> <li>16-bit timer start register</li> </ul>     | TMHSTRH  | TMHSTR  | W   | 8    | 0x00    |  |
| 0xF342            | 16-bit timer stop register                          | TMHSTPL  | TMHSTP  | W   | 8/16 | 0x00    |  |

| Address | Name                            | Sym      | bol     | R/W      | Size | Initial |  |
|---------|---------------------------------|----------|---------|----------|------|---------|--|
| Address | Indifie                         | Byte     | Word    | 1.7, 4.4 | 0126 | value   |  |
| 0xF343  |                                 | TMHSTPH  |         | W        | 8    | 0x00    |  |
| 0xF344  | 16 bit timer status register    | TMHSTATL | TMHSTAT | R        | 8/16 | 0x00    |  |
| 0xF345  | 16-bit timer status register    | TMHSTATH |         | R        | 8    | 0x00    |  |
| 0xF346  | Reserved                        |          |         |          |      |         |  |
| 0xF347  | Reserved                        | -        | -       | -        | -    | -       |  |
| 0xF350  | 16 hit timer V data register    | TMHXDL   | TMHXD   | R/W      | 8/16 | 0xFF    |  |
| 0xF351  | - 16-bit timer X data register  | TMHXDH   |         | R/W      | 8    | 0xFF    |  |
| 0xF352  | 16-bit timer X counter register | TMHXCL   | ТМНХС   | R/W      | 8/16 | 0x00    |  |
| 0xF353  |                                 | TMHXCH   | TNIEZC  | R/W      | 8    | 0x00    |  |
| 0xF354  | 16-bit timer X mode register    | TMHXMODL | TMHXMOD | R/W      | 8/16 | 0x00    |  |
| 0xF355  |                                 | TMHXMODH |         | R/W      | 8    | 0x00    |  |
| 0xF356  | Reserved                        |          |         | _        | _    |         |  |
| 0xF357  | Reserved                        | -        | -       | -        | -    | -       |  |
| 0xF358  | 16-bit timer X start register   | TMHXSTR  | -       | W        | 8    | 0x00    |  |
| 0xF359  | Reserved                        | -        | -       | -        | -    | -       |  |
| 0xF35A  | 16-bit timer X stop register    | TMHXSTP  | -       | W        | 8    | 0x00    |  |
| 0xF35B  | Reserved                        | -        | -       | -        | -    | -       |  |
| 0xF35C  | 16-bit timer X status register  | TMHXSTAT | -       | R        | 8    | 0x00    |  |
| 0xF35D  | Reserved                        | -        | -       | -        | -    | -       |  |
| 0xF35E  |                                 |          |         |          |      |         |  |
| 0xF35F  | Reserved                        | -        | -       | -        | -    | -       |  |

0xFFFF

#### 8.2.2 16-Bit Timer n Data Register (TMHnD :n=0 to 4, X)

This is a SFR to set the comparison value with the 16-bit timer n counter register (TMHnC).

 Address :
 0xF300 (TMH0DL/TMH0D), 0xF301 (TMH0DH), 0xF308 (TMH1DL/TMH1D), 0xF309 (TMH1DH)

 0xF310 (TMH2DL/TMH2D), 0xF311 (TMH2DH), 0xF318 (TMH3DL/TMH3D), 0xF319 (TMH3DH)

 0xF320 (TMH4DL/TMH4D), 0xF321 (TMH4DH), 0xF350 (TMHXDL/TMHXD), 0xF351 (TMHXDH)

 Access :
 R/W

 Access size :
 8/16 bit

|                  | 15         | 14         | 13         | 12         | 11         | 10         | 9     | 8     | 7      | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|------------------|------------|------------|------------|------------|------------|------------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| Word             |            | TMHnD      |            |            |            |            |       |       |        |       |       |       |       |       |       |       |
| Byte             |            | TMHnDH     |            |            |            |            |       |       | TMHnDL |       |       |       |       |       |       |       |
| Bit              | THnD1<br>5 | THnD1<br>4 | THnD1<br>3 | THnD1<br>2 | THnD1<br>1 | THnD1<br>0 | THnD9 | THnD8 | THnD7  | THnD6 | THnD5 | THnD4 | THnD3 | THnD2 | THnD1 | THnD0 |
| R/W              | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W   | R/W   | R/W    | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 1          | 1          | 1          | 1          | 1          | 1          | 1     | 1     | 1      | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

[Note]

Initial value :

- Set TMHnD when the 16-bit timer n is stopped (THnSTATL bits of TMHSTAT register are "0").
- When "0x0000" is written in TMHnD in the 16-bit timer mode, "0x0001" is set in TMHnD.
- Set TMHnD so that the timer output frequency is 1MHz or less, when timer output is used. The count clock frequency [MHz] / (TMHnD value + 1) x 2 ≤ 1 [MHz], so that TMHnD value ≥ ( count clock frequency [MHz] / 2) – 1.

#### 8.2.3 16-Bit Timer n Counter Register (TMHnC :n=0 to 4, X)

This is a SFR that functions as a 16-bit binary counter.

- This is reset to 0x0000 at the reset function and also when the following event occurred.
- When an arbitrary value is written in this register
- When the value of TMHnD register coincides with that of the TMHnC register

| Addr             | ess :               | 0x         | F312 (         | TMH2C      | /TMH2      | CL), 0>    | (F313 ( | ТМН0С<br>ТМН2С<br>ТМН4С | CH), 0x | F31A ( | ГМН3С | /TMH3 | CL), 0x | (F31B | тмнзс | CH)   |
|------------------|---------------------|------------|----------------|------------|------------|------------|---------|-------------------------|---------|--------|-------|-------|---------|-------|-------|-------|
| Acce             |                     | R/         |                |            |            |            | ,       |                         |         | ,      |       |       |         | ,     |       | ,     |
|                  | ess size<br>I value |            | 16 bit<br>0000 |            |            |            |         |                         |         |        |       |       |         |       |       |       |
| maa              | i valuo             | . 07       |                |            |            |            |         |                         |         |        |       |       |         |       |       |       |
|                  | 15                  | 14         | 13             | 12         | 11         | 10         | 9       | 8                       | 7       | 6      | 5     | 4     | 3       | 2     | 1     | 0     |
| Word             |                     |            |                |            |            |            |         | TM                      | HnC     |        |       |       |         |       |       |       |
| Byte             |                     |            |                | TMF        | InCH       |            |         |                         |         |        |       | TMH   | InCL    |       |       |       |
| Bit              | THnC1<br>5          | THnC1<br>4 | THnC1<br>3     | THnC1<br>2 | THnC1<br>1 | THnC1<br>0 | THnC9   | THnC8                   | THnC7   | THnC6  | THnC5 | THnC4 | THnC3   | THnC2 | THnC1 | THnC0 |
| R/W              | R/W                 | R/W        | R/W            | R/W        | R/W        | R/W        | R/W     | R/W                     | R/W     | R/W    | R/W   | R/W   | R/W     | R/W   | R/W   | R/W   |
| Initial<br>value | 0                   | 0          | 0              | 0          | 0          | 0          | 0       | 0                       | 0       | 0      | 0     | 0     | 0       | 0     | 0     | 0     |

This data is counted up synchronizing at the rising edge of the count clock. Reading value is always available if timer clock source is as same as system clock source.

#### An available condition:

| System clock           | Timer clock                                                 |
|------------------------|-------------------------------------------------------------|
| LSCLK0                 | LSCLK0                                                      |
|                        | LSCLK1 where the source clock is as same as one of LSCLK0.  |
|                        | LTBnINT where the source clock is as same as one of LSCLK0. |
| HSCLK or divided HSCLK | HSCLK                                                       |
|                        | HTBCLK0                                                     |
|                        | HTBCLK1                                                     |

#### [Note]

Read the TMHnC register twice to verify the valid data to prevent reading uncertain data while counting-up, if a source of timer clock is as different as one of system clock.

In case of SYSCLK frequency = 250kHz, the count clock frequency = 3MHz:

If first read value is 0x0007, second read value is more than 0x0012. Valid bits are 11 bits of THnC15-5. It depend on reading interval time.

### 8.2.4 16-Bit Timer n Mode Register (TMHnMOD :n=0 to 4, X)

This is a SFR to control the operation mode of 16-bit timer.

|                  | Address :       0xF304 (TMH0MODL/TMH0MOD), 0xF305 (TMH0MODH),         0xF30C (TMH1MODL/TMH1MOD), 0xF30D (TMH1MODH),         0xF314 (TMH2MODL/TMH2MOD), 0xF315 (TMH2MODH),         0xF31C (TMH3MODL/TMH3MOD), 0xF31D (TMH3MODH),         0xF324 (TMH4MODL/TMH4MOD), 0xF325 (TMH4MODH),         0xF354 (TMHXMODL/TMHXMOD), 0xF355 (TMHXMODH),         0xF354 (TMHXMODL/TMHXMOD), 0xF355 (TMHXMODH),         0xF354 (TMHXMODL/TMHXMOD), 0xF355 (TMHXMODH), |        |      |      |      |            |            |      |     |   |             |             |            |            |            |            |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|------|------------|------------|------|-----|---|-------------|-------------|------------|------------|------------|------------|
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s: R/W |      |      |      |            |            |      |     |   |             |             |            |            |            |            |
|                  | cess size : 8/16 bit                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |      |      |      |            |            |      |     |   |             |             |            |            |            |            |
| Initia           | l value :                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0x     | 0000 |      |      |            |            |      |     |   |             |             |            |            |            |            |
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14     | 13   | 12   | 11   | 10         | 9          | 8    | 7   | 6 | 5           | 4           | 3          | 2          | 1          | 0          |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |      |      |            |            | TMHr | MOD |   |             |             |            |            |            |            |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      | TMHn | MODH |            |            |      |     |   |             | TMHr        | MODL       |            |            |            |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -      | -    | -    | -    | THn<br>NEG | THn<br>OST | -    | -   | - | THn<br>DIV1 | THn<br>DIV0 | THnCK<br>3 | THnCK<br>2 | THnC<br>K1 | THnCK<br>0 |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R      | R    | R    | R    | R/W        | R/W        | R    | R   | R | R/W         | R/W         | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0      | 0    | 0    | 0    | 0          | 0          | 0    | 0   | 0 | 0           | 0           | 0          | 0          | 0          | 0          |

| Bit No.  | Bit symbol<br>name    | Description                                                                                                                                                                 |
|----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 11 | -                     | Reserved bits                                                                                                                                                               |
| 10       | THnNEG                | This bit is used to choose the output polarity of timer out (TMOn).<br>0: Positive logic (initial level is "L") (Initial value)<br>1: Negative logic (initial level is "H") |
| 9        | TLnOST                | This bit is used to choose the operation mode.<br>0: Repeat mode (Initial value)<br>1: One-shot mode                                                                        |
| 8 to 6   | -                     | Reserved bits                                                                                                                                                               |
| 5 to 4   | THnDIV1 to<br>THnDIV0 | These bits are used to choose frequency dividing ratio for the count clock<br>00: No dividing (Initial value)<br>01: Divided by 2<br>10: Divided by 4<br>11: Divided by 8   |
| 3 to 0   | THnCK3 to<br>THnCK0   | These bits are used to choose the timer clock source. See Table 8-3 for detail.<br>THXCK3 of timer X is reserved bit that is fixed 0.                                       |

| THnCLK3-0 | 0       | 1       | 2       | 3       | 4       | Х                       |
|-----------|---------|---------|---------|---------|---------|-------------------------|
| 0000      | LSCLK0  | LSCLK0  | LSCLK0  | LSCLK0  | LSCLK0  | LSCLK0                  |
| 0001      | HSCLK   | HSCLK   | HSCLK   | HSCLK   | HSCLK   | HSCLK                   |
| 0010      | LSCLK1  | LSCLK1  | LSCLK1  | LSCLK1  | LSCLK1  | LSCLK1                  |
| 0011      | HTBCLK0 | HTBCLK0 | HTBCLK0 | HTBCLK0 | HTBCLK0 | HTBCLK0                 |
| 0100      | HTBCLK1 | HTBCLK1 | HTBCLK1 | HTBCLK1 | HTBCLK1 | XT32K for<br>stability. |
| 0101      | LTB1INT | LTB1INT | LTB1INT | LTB1INT | LTB1INT | RC1K                    |
| 0110      | LTB2INT | LTB2INT | LTB2INT | LTB2INT | LTB2INT | rsvd                    |
| 0111      | LTB3INT | LTB3INT | LTB3INT | LTB3INT | LTB3INT | -                       |
| 1000      | EXTRG0  | EXTRG0  | FTM0TRG | FTM0TRG | FTM0TRG | -                       |
| 1001      | EXTRG1  | EXTRG1  | FTM1TRG | FTM1TRG | FTM1TRG | -                       |
| 1010      | EXTRG2  | EXTRG2  | EXTRG2  | EXTRG2  | EXTRG2  | -                       |
| 1011      | EXTRG3  | EXTRG3  | EXTRG3  | EXTRG3  | EXTRG3  | -                       |
| 1100      | EXTRG4  | rsvd    | rsvd    | EXTRG4  | EXTRG4  | -                       |
| 1101      | rsvd    | EXTRG5  | rsvd    | EXTRG5  | EXTRG5  | -                       |
| 1110      | rsvd    | rsvd    | EXTRG6  | EXTRG6  | EXTRG6  | -                       |
| 1111      | rsvd    | rsvd    | rsvd    | EXTRG7  | EXTRG7  | -                       |

Table 8-3 timer clock list

LTBnINT : Low speed time base counter interrupt

EXTRGn : External interrupt trigger output

FTMnTRG : Functional timer trigger output

RC1K : RC1K output

XT32K for stability : It is divided by 2 of XT32K/EXT32K. It is used to count for stability time only.

#### [Note]

• Set TMHnMOD when the timer n is stopped (THnSTAT bits of TMHSTAT/TMHXSTAT register are "0"). If it is changed while it is operating, the operation is not guaranteed.

### 8.2.5 16-Bit Timer Start Register (TMHSTR)

This is a SFR to control to start counting the 16-bit timer n. This is a write-only register and returns always "0x0000" for reading.

| Acce<br>Acce     | Address :<br>Access :<br>Access size :<br>Initial value : |    | :F340 (<br>16 bit<br>:0000 | TMHST | RL/TM | HSTR) | , 0xF3∠ | 11 (TMH | HSTRH | ) |   |            |            |            |            |            |
|------------------|-----------------------------------------------------------|----|----------------------------|-------|-------|-------|---------|---------|-------|---|---|------------|------------|------------|------------|------------|
|                  | 15                                                        | 14 | 13                         | 12    | 11    | 10    | 9       | 8       | 7     | 6 | 5 | 4          | 3          | 2          | 1          | 0          |
| Word             |                                                           |    |                            |       |       |       |         | ТМН     | ISTR  |   |   |            |            |            |            |            |
| Byte             |                                                           |    |                            | TMH   | STRH  |       |         |         |       |   |   | TMH        | STRL       |            |            |            |
| Bit              | -                                                         | -  | -                          | -     | -     | -     | -       | -       | -     | - | - | TH4RU<br>N | TH3RU<br>N | TH2RU<br>N | TH1RU<br>N | TH0RU<br>N |
| R/W              | R                                                         | R  | R                          | R     | R     | R     | R       | R       | R     | R | R | W          | W          | W          | W          | W          |
| Initial<br>value | 0                                                         | 0  | 0                          | 0     | 0     | 0     | 0       | 0       | 0     | 0 | 0 | 0          | 0          | 0          | 0          | 0          |
| C                | 1                                                         |    | c                          | 1 1 1 |       |       |         |         |       |   |   |            |            |            |            |            |

Common description of each bits :

It is used to start a target timer.

Writing "0": Invalid Writing "1": Start counting

| Bit No. | Bit symbol name | Description (target) |
|---------|-----------------|----------------------|
| 15 to 5 | -               | Reserved bits        |
| 4       | TH4RUN          | 16-bit timer 4       |
| 3       | TH3RUN          | 16-bit timer 3       |
| 2       | TH2RUN          | 16-bit timer 2       |
| 1       | TH1RUN          | 16-bit timer 1       |
| 0       | THORUN          | 16-bit timer 0       |

### 8.2.6 16-Bit Timer Stop Register (TMHSTP)

This is a SFR to control to stop counting the 16-bit timer n. This is a write-only register and returns always "0x0000" for reading.

|      |             | W<br>: 8/1  | F342 ( <sup>-</sup><br>16 bit<br>0000 | гмнѕт        | PL/TMI | HSTP),      | 0xF34       | 3 (TM⊦      | ISTPH)      |             |             |            |            |            |            |            |
|------|-------------|-------------|---------------------------------------|--------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|------------|------------|------------|
| _    | 15          | 14          | 13                                    | 12           | 11     | 10          | 9           | 8           | 7           | 6           | 5           | 4          | 3          | 2          | 1          | 0          |
| Word |             |             |                                       |              |        |             |             | TMH         | ISTP        |             |             |            |            |            |            |            |
| Dute |             |             |                                       | <b>T A U</b> | OTDU   |             |             |             |             |             |             |            |            |            |            |            |
| Byte |             |             |                                       | IMH          | STPH   |             |             |             |             |             |             | TMH        | STPL       |            |            |            |
| Bit  | -           | -           | -                                     | -<br>-       | -      | -           | -           | -           | -           | -           | -           |            |            | TH2ST<br>P | TH1ST<br>P | TH0ST<br>P |
| -    | -<br>R      | -<br>R      | -<br>R                                | -<br>R       | -<br>R | -<br>R      | -<br>R      | -<br>R      | -<br>R      | -<br>R      | -<br>R      | TH4ST      | TH3ST      |            |            |            |
| Bit  | -<br>R<br>0 | -<br>R<br>0 | -<br>R<br>0                           | -            | -      | -<br>R<br>0 | -<br>R<br>0 | -<br>R<br>0 | -<br>R<br>0 | -<br>R<br>0 | -<br>R<br>0 | TH4ST<br>P | TH3ST<br>P | Р          | Р          | Р          |

Common description of each bits :

It is used to stop a target timer.

Writing "0": Invalid Writing "1": Stop counting

| Bit No. | Bit symbol name | Description (target) |
|---------|-----------------|----------------------|
| 15 to 5 | -               | Reserved bits        |
| 4       | TH4STP          | 16-bit timer 4       |
| 3       | TH3STP          | 16-bit timer 3       |
| 2       | TH2STP          | 16-bit timer 2       |
| 1       | TH1STP          | 16-bit timer 1       |
| 0       | TH0STP          | 16-bit timer 0       |

### 8.2.7 16-Bit Timer Status Register (TMHSTAT)

This is a SFR to indicate the status of the 16-bit timer n.

|                  |    | R<br>: 8/ | 0xF344 (TMHSTATL/TMHSTAT), 0xF345 (TMHSTATH)<br>R<br>3/16 bit<br>0x0000 |      |       |    |   |     |      |   |   |             |             |             |             |             |
|------------------|----|-----------|-------------------------------------------------------------------------|------|-------|----|---|-----|------|---|---|-------------|-------------|-------------|-------------|-------------|
|                  | 15 | 14        | 13                                                                      | 12   | 11    | 10 | 9 | 8   | 7    | 6 | 5 | 4           | 3           | 2           | 1           | 0           |
| Word             |    |           |                                                                         |      |       |    |   | TMH | STAT |   |   |             |             |             |             |             |
| Byte             |    |           |                                                                         | TMHS | STATH |    |   |     |      |   |   | TMHS        | STATL       |             |             |             |
| Bit              | -  | -         | -                                                                       | -    | -     | -  | - | -   | -    | - | - | TH4ST<br>AT | TH3ST<br>AT | TH2ST<br>AT | TH1ST<br>AT | TH0ST<br>AT |
| R/W              | R  | R         | R                                                                       | R    | R     | R  | R | R   | R    | R | R | R           | R           | R           | R           | R           |
| Initial<br>value | 0  | 0         | 0                                                                       | 0    | 0     | 0  | 0 | 0   | 0    | 0 | 0 | 0           | 0           | 0           | 0           | 0           |

Common description of each bits :

It is used to indicate an operating status of a target timer

- 0: A counting of target timer is stopped (Initial value)
- 1: A counting of target timer is progress

| Bit No. | Bit symbol name | Description (target) |
|---------|-----------------|----------------------|
| 15 to 5 | -               | Reserved bits        |
| 4       | TH4STAT         | 16-bit timer 4       |
| 3       | TH3STAT         | 16-bit timer 3       |
| 2       | TH2STAT         | 16-bit timer 2       |
| 1       | TH1STAT         | 16-bit timer 1       |
| 0       | THOSTAT         | 16-bit timer 0       |

#### 8.2.8 16-Bit Timer X Start Register (TMHXSTR)

This is a SFR to control to start counting the 16-bit timer X. This is a write-only register and returns always "0x0000" for reading.

| Addre<br>Acces<br>Acces<br>Initial | ss :<br>ss size | W<br>8 : 8 I     |    | тмнхз   | STR)                            |       |   |   |    |           |    |     |      |   |   |            |
|------------------------------------|-----------------|------------------|----|---------|---------------------------------|-------|---|---|----|-----------|----|-----|------|---|---|------------|
|                                    | 15              | 14               | 13 | 12      | 11                              | 10    | 9 | 8 | 7  | 6         | 5  | 4   | 3    | 2 | 1 | 0          |
| Word                               |                 |                  |    |         |                                 |       |   |   | -  |           |    |     |      |   |   |            |
| Byte                               |                 |                  |    |         | -                               |       |   |   |    |           |    | ТМН | KSTR |   |   |            |
| Bit                                | -               | -                | -  | -       | -                               | -     | - | - | -  | -         | -  | -   | -    | - | - | THXR<br>UN |
| R/W                                | R               | R                | R  | R       | R                               | R     | R | R | R  | R         | R  | R   | R    | R | R | W          |
| Initial<br>value                   | 0               | 0                | 0  | 0       | 0                               | 0     | 0 | 0 | 0  | 0         | 0  | 0   | 0    | 0 | 0 | 0          |
| Bit No.                            | В               | it symbo<br>name | ol |         |                                 |       |   |   | De | escriptio | on |     |      |   |   |            |
| 7 to 1                             | -               |                  |    | Reserve | ed bits                         |       |   |   |    |           |    |     |      |   |   |            |
| 0                                  | THX             | RUN              |    |         | d to sta<br>g "0":In<br>g "1":S | valid |   |   |    |           |    |     |      |   |   |            |

#### 8.2.9 16-Bit Timer X Stop Register (TMHXSTP)

This is a SFR to control to stop counting the 16-bit timer X. This is a write-only register and returns always "0x0000" for reading.

| Addre<br>Acces<br>Acces<br>Initial | ss : | W<br>e: 81      |    | TMHX    | STP)                             |       |   |   |    |           |    |     |      |   |   |            |
|------------------------------------|------|-----------------|----|---------|----------------------------------|-------|---|---|----|-----------|----|-----|------|---|---|------------|
|                                    | 15   | 14              | 13 | 12      | 11                               | 10    | 9 | 8 | 7  | 6         | 5  | 4   | 3    | 2 | 1 | 0          |
| Word                               |      |                 |    |         |                                  |       |   |   | -  |           |    |     |      |   |   |            |
| Byte                               |      |                 |    |         | -                                |       |   |   |    |           |    | ТМН | XSTP |   |   |            |
| Bit                                | -    | -               | -  | -       | -                                | -     | - | - | -  | -         | -  | -   | -    | - | - | THXST<br>P |
| R/W                                | R    | R               | R  | R       | R                                | R     | R | R | R  | R         | R  | R   | R    | R | R | W          |
| Initial<br>value                   | 0    | 0               | 0  | 0       | 0                                | 0     | 0 | 0 | 0  | 0         | 0  | 0   | 0    | 0 | 0 | 0          |
| Bit No.                            | В    | it symb<br>name | ol |         |                                  |       |   |   | De | escriptio | on |     |      |   |   |            |
| 7 to 1                             | -    |                 |    | Reserve | ed bits                          |       |   |   |    |           |    |     |      |   |   |            |
| 0                                  | THX  | STP             |    |         | d to sto<br>g "0":In<br>g "1":Si | valid |   |   |    |           |    |     |      |   |   |            |

### 8.2.10 16-Bit Timer X Status Register (TMHXSTAT)

This is a SFR to indicate the status of the 16-bit timer X.

|                  |     | R<br>: 81        |    | (TMHXS  | STAT)   |          |   |           |         |           |    |      |              |   |   |             |
|------------------|-----|------------------|----|---------|---------|----------|---|-----------|---------|-----------|----|------|--------------|---|---|-------------|
|                  | 15  | 14               | 13 | 12      | 11      | 10       | 9 | 8         | 7       | 6         | 5  | 4    | 3            | 2 | 1 | 0           |
| Word             |     |                  |    |         |         |          |   |           | -       |           |    |      |              |   |   |             |
| Byte             |     |                  |    |         | -       |          |   |           |         |           |    | ТМΗΣ | <b>(STAT</b> |   |   |             |
| Bit              | -   | -                | -  | -       | -       | -        | - | -         | -       | -         | -  | -    | -            | - | - | THXS<br>TAT |
| R/W              | R   | R                | R  | R       | R       | R        | R | R         | R       | R         | R  | R    | R            | R | R | R           |
| Initial<br>value | 0   | 0                | 0  | 0       | 0       | 0        | 0 | 0         | 0       | 0         | 0  | 0    | 0            | 0 | 0 | 0           |
| Bit No.          | Bi  | it symbo<br>name | ol |         |         |          |   |           | De      | escriptio | on |      |              |   |   |             |
| 7 to 1           | -   |                  |    | Reserve | ed bits |          |   |           |         |           |    |      |              |   |   |             |
| 0                | THX | STAT             |    |         | countin | g of tar |   | er is sto | pped (I |           |    |      |              |   |   |             |

#### 8.3 Description of Operation

#### 8.3.1 Operation Mode

Writing "1" to the THnRUN bit causes the 16-bit counter n to start counting up in synchronization with the rising edges of the count clock.

If output of the general-purpose port is enabled by choosing the timer output (TMOn) through the shared function setting of the port, the output of the port is reversed when the timer count value matches with TMHnD register value. In addition, writing "1" to the THnSTP bit during counting causes the counting to stop in synchronization with the count clock and the output of the port is reset to the initial value. For the initial value of the port, "H" and "L" levels can be chosen through the THnNEG bit of the TMHnMOD register.

Following two operation modes are available:

- Repeat mode
- One-shot mode

#### 8.3.1.1 Repeat Mode

Figure 8-2 shows the repeat mode operation.

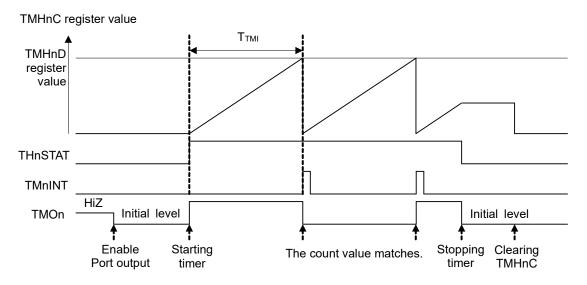



Figure 8-2 Repeat Mode Operation Timing

In the repeat mode, when the timer count value matches with the TMHnD register, 16-bit timer n interrupt request (TMnINT) is generated and the output of the port is reversed. Then, the timer count value automatically is reset to "0x0000" and the counting up operation is continued.

The TMnINT generation cycle and the port output reverse cycle can be expressed in the following formula:

$$TTMI = \frac{TMHnD + 1}{fTHnCK (Hz)}$$
(n=0 to 4, X)

TMHnD: TMHnD register setting value (0x0001 to 0xFFFF)fTHnCK: Count clock frequency chosen in the TMHnMOD register

See Section 8.3.2 "Start/Stop Timing" for the timing of the timer start/stop and counting up.

#### 8.3.1.2 One-shot Mode

Figure 8-3 shows the one-shot mode operation

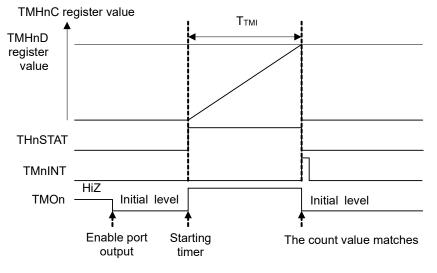
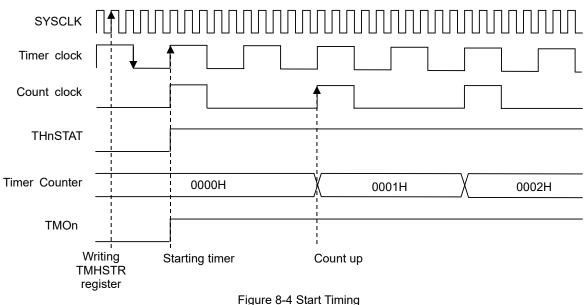



Figure 8-3 One-shot Mode Operation Timing


In the one-shot mode, when the timer count value matches with the TMHnD register, 16-bit timer n interrupt (TMnINT) is generated and the value of the port is reversed. Then, the timer count value is reset to "0x0000" and the counting is stopped.

The TMnINT generation cycle and the port output reverse cycle are the same as those in the repeat mode. The same applies to the timer start/stop timing and counting up timing.

#### 8.3.2 Start/Stop Timing

Writing "1" to the THnRUN bit of the TMHSTR register causes the counting operation to start at the rising edge of the timer clock after the falling edge of the timer clock.

Figure 8-4 shows the timer start timing when the timer clock is LSCLK0 and frequency dividing ratio of the count clock is 1/2 of the timer clock



Writing "1" to the THnSTP bit of the TMHSTP register causes the counting operation to stop at the rising edge of the timer clock that follows.

Figure 8-5 shows the timer stop timing when the timer clock is LSCLK0 and frequency dividing ratio of the count clock is 1/2 of the timer clock.

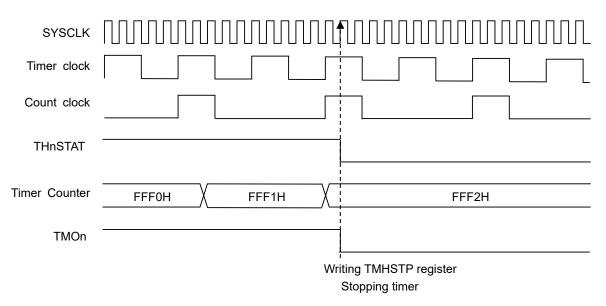



Figure 8-5 Stop Timing

#### [Note]

- After the THnRUN bit is set to "1", the first interrupt has a time error equivalent to maximum of one clock of the timer clock because the counting operation starts in synchronization with the timer clock. The 2<sup>nd</sup> timer interrupt or later interrupts have constant cycles.
- After the THnSTP bit is set to "1", a 16-bit timer n interrupt (TMnINT) may be generated depending on the stop timing because the counting operation stops in synchronization with the timer clock.

#### 8.3.3 Setting Example

Figure 8-6 shows a setting example.

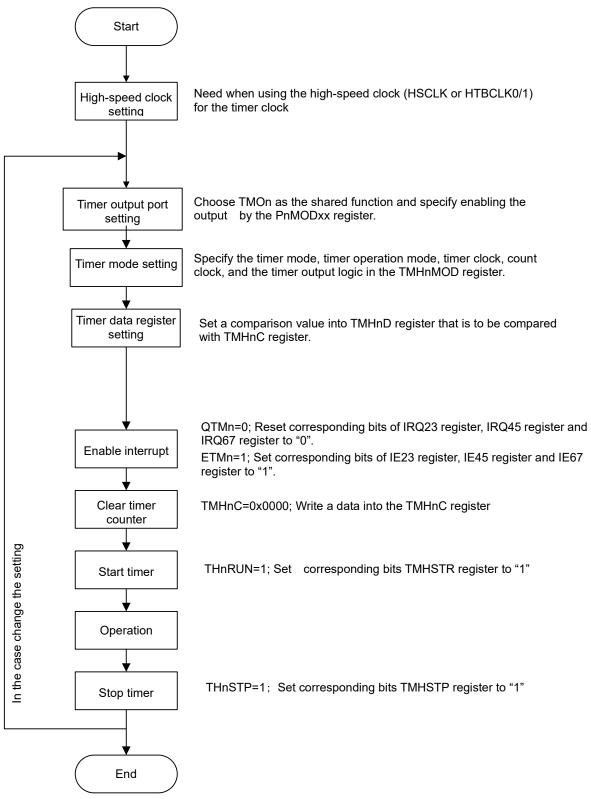


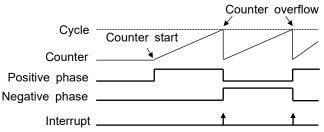

Figure 8-6 Setting Example

#### 8.3.4 Using 16-bit Timer X for Crystal Oscillation Stability

It is necessary to use Timer X when using a crystal oscillation/external clock input for the low-speed clock. It can be used as a normal timer when the oscillation stabilization waiting is completed.

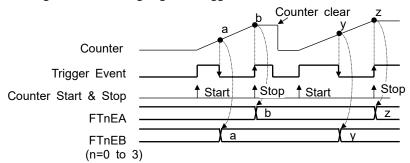
16-bit Timer X operates as counter of crystal oscillation stability time with THXCK2-0=4. In the mode, an interrupt timing is at LOSCS becomes "0". In other mode, the timing is at coinciding TMHXD value and TMHXC value. See Chapter 6 "Clock Generation Circuit" for how to use.

# **Chapter 9 Functional Timer (FTM)**


### 9. Functional Timer

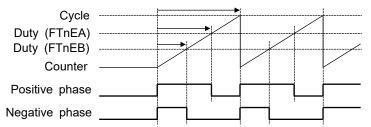
#### 9.1 General Description

The Functional timer enables following functions in four operation modes (TIMER/CAPTURE/PWM1/PWM2).


#### TIMER mode:

In this mode, the Functional Timer generates pulse signals, levels of which are reversed in sync with the counter start and the counter overflow. Also, it generates the interrupt when the counter overflows.




#### CAPTURE mode:

In this mode, the Functional Timer stores the value of counter into FTnEA register at the rising edge of a trigger event, into FTnEB register at the falling edge of a trigger event.



#### PWM1 mode:

In this mode, the Functional Timer generates two types of PWM waveform that have the same cycle and the start timing. The setting value of FTnEA register makes the duty of the positive phase output and the setting value of FTnEB register makes the duty of the negative phase output.



#### PWM2 mode:

In this mode, the Functional Timer generates the complimentary PWM waveform of which the positive phase output and the negative phase output works exclusively. The setting of FTnEA register makes the duty of the positive phase output. Also, a dead time can be configured by setting FTnDT register.

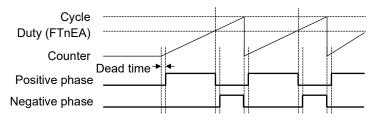
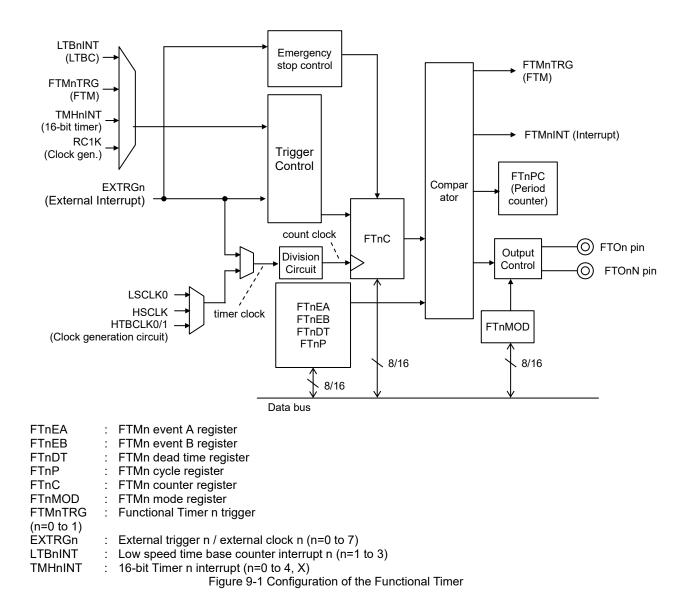



Table 9-1 shows the number of channels.

| Table | e 9-1 Numb     | er of Functional Timer char | nnels |
|-------|----------------|-----------------------------|-------|
|       | Channel<br>no. | ML62Q2500 group             |       |
|       | 0              | •                           |       |
|       | 1              | •                           |       |
|       | 2              | -                           |       |
|       | 3              | -                           |       |
|       | 4              | -                           |       |
|       | 5              | -                           |       |
|       | 6              | -                           |       |
|       | 7              | -                           |       |
|       |                | la di la avvalla la la      |       |


#### •: Available -: Unavailable

#### 9.1.1 Features

- The Timer/Capture/PWM functions using the 16-bit counter
- Selectable counter clock from various sources (divided by 1 to 128 of LSCLK0, HSCLK, HTBCLK0/1, external clock
- The timer output signal can be switched (Positive logic or Negative logic)
- Generate a cyclic interrupt, a duty interrupt and a coincident interrupt with the setting value
- One-shot mode
- Start/stop/clear the timer by an external trigger input or a timer interrupt request(event triggers)
- Emergency stop and emergency stop interrupt by an external trigger input
- Two types of PWM output with the same cycle and different duties, and complementary PWM output with the dead time
- Input signal duty/cycle measurement by the capture function
- Chosen interrupt source can be notified

#### 9.1.2 Configuration

Figure 9-1 shows the configuration of the FTM circuit.



#### 9.1.3 List of Pins

The I/O pins of the Functional timer are assigned to the shared function of the general ports.

| Pin name | I/O | Description                                                               |
|----------|-----|---------------------------------------------------------------------------|
| EXIn     | Ι   | External trigger/clock (used as EXTRGn). The max input frequency is 3MHz. |
| FTOn     | 0   | Functional timer channel n output P ; n= 0 to 1                           |
| FTOnN    | 0   | Functional timer channel n output N ; n= 0 to 1                           |

Table 9-2 shows the list of the general ports used for the Functional timer and the register settings of the ports.

|          |     |                       |                       | mer and the register set | - T              | IL62Q250<br>group | 0                |
|----------|-----|-----------------------|-----------------------|--------------------------|------------------|-------------------|------------------|
| Pin name | Sha | ared port             | Register              | Setting value            | 32pin<br>product | 40pin<br>product  | 48pin<br>product |
| EXI0     |     |                       |                       |                          | •                | •                 | •                |
| EXI1     |     |                       |                       |                          | •                | •                 | •                |
| EXI2     |     |                       |                       |                          | •                | •                 | •                |
| EXI3     |     | Ports ass             | igned for external i  | nterrupt.                | •                | •                 | •                |
| EXI4     |     | See Cha               | apter 18. External in | terrupt.                 | •                | •                 | •                |
| EXI5     |     |                       |                       |                          | •                | •                 | •                |
| EXI6     |     |                       |                       |                          | •                | •                 | •                |
| EXI7     |     |                       |                       |                          | •                | •                 | •                |
|          | P10 | 5 <sup>th</sup> Func. | P1MOD0                | 0100_XXXX*1              | •                | •                 | •                |
|          | P20 | 5 <sup>th</sup> Func. | P2MOD0                | 0100_XXXX*1              | •                | •                 | •                |
| FTO0     | P30 | 5 <sup>th</sup> Func. | P3MOD0                | 0100_XXXX*1              | •                | •                 | •                |
|          | P54 | 5 <sup>th</sup> Func. | P5MOD4                | 0100_XXXX*1              | -                | •                 | •                |
|          | P70 | 5 <sup>th</sup> Func. | P7MOD0                | 0100_XXXX*1              | •                | •                 | •                |
|          | P11 | 5 <sup>th</sup> Func. | P1MOD1                | 0100_XXXX*1              | •                | •                 | •                |
|          | P21 | 5 <sup>th</sup> Func. | P2MOD1                | 0100_XXXX*1              | •                | •                 | •                |
| FTO0N    | P31 | 5 <sup>th</sup> Func. | P3MOD1                | 0100_XXXX*1              | •                | •                 | •                |
|          | P55 | 5 <sup>th</sup> Func. | P5MOD5                | 0100_XXXX*1              | -                | •                 | •                |
|          | P71 | 5 <sup>th</sup> Func. | P7MOD1                | 0100_XXXX*1              | •                | •                 | •                |
|          | P12 | 5 <sup>th</sup> Func. | P1MOD2                | 0100_XXXX*1              | •                | •                 | •                |
|          | P22 | 5 <sup>th</sup> Func. | P2MOD2                | 0100_XXXX*1              | •                | •                 | •                |
| FTO1     | P32 | 5 <sup>th</sup> Func. | P3MOD2                | 0100_XXXX*1              | •                | •                 | •                |
|          | P56 | 5 <sup>th</sup> Func. | P5MOD6                | 0100_XXXX*1              | -                | -                 | •                |
|          | P72 | 5 <sup>th</sup> Func. | P7MOD2                | 0100_XXXX*1              | •                | •                 | •                |
|          | P13 | 5 <sup>th</sup> Func. | P1MOD3                | 0100_XXXX*1              | •                | •                 | •                |
|          | P23 | 5 <sup>th</sup> Func. | P2MOD3                | 0100_XXXX*1              | •                | •                 | •                |
| FTO1N    | P33 | 5 <sup>th</sup> Func. | P3MOD3                | 0100_XXXX*1              | •                | •                 | •                |
|          | P57 | 5 <sup>th</sup> Func. | P5MOD7                | 0100_XXXX*1              | -                | -                 | •                |
|          | P73 | 5 <sup>th</sup> Func. | P7MOD3                | 0100_XXXX*1              | •                | •                 | •                |

Table 9-2 Ports used in the Functional timer and the register settings

\*1 : "XXXX" determines the condition of the port output

| XXXX | Condition of the port output                 |
|------|----------------------------------------------|
| 0010 | CMOS output                                  |
| 1010 | N-ch open drain output (without the pull-up) |
| 1111 | N-ch open drain output (with the pull-up)    |

#### [Note]

• Assign FTOn, FTOnN to only one LSI pin each.

### 9.2 Description of Registers

#### 9.2.1 List of Registers

Registers for unequipped channels are not available to use. They return 0x0000 for reading.

| A d due e e      | News                                               | Syr      | nbol     |          | 0:     | Initial   |
|------------------|----------------------------------------------------|----------|----------|----------|--------|-----------|
| Address          | Name                                               | Byte     | Word     | R/W      | Size   | value     |
| 0xF380           | FTM common update register                         | FTCUD    | -        | W        | 8      | 0x00      |
| 0xF381           | Reserved                                           | -        | -        | -        | -      | -         |
| 0xF382           |                                                    | FTCCONL  | FTOOOL   | R/W      | 8/16   | 0x00      |
| 0xF383           | FTM common control register                        | FTCCONH  | FTCCON   | R/W      | 8      | 0x00      |
| 0xF384           |                                                    | FTCSTRL  |          | W        | 8/16   | 0x00      |
| 0xF385           | FTM common start register                          | FTCSTRH  | FTCSTR   | W        | 8      | 0x00      |
| 0xF386           |                                                    | FTCSTPL  |          | W        | 8/16   | 0x00      |
| 0xF387           | FTM common stop register                           | FTCSTPH  | FTCSTP   | W        | 8      | 0x00      |
| 0xF388           |                                                    | FTCSTATL |          | R        | 8/16   | 0x00      |
| 0xF389           | FTM common status register                         | FTCSTATH | FTCSTAT  | R        | 8      | 0x00      |
| 0xF38A           |                                                    |          |          | _        | _      | _         |
| 0xF38B           | Reserved                                           |          | -        | _        | _      | _         |
| 0xF38C           |                                                    | _        |          | <u> </u> | _      |           |
| 0xF38D           | Reserved                                           | _        | -        | _        | _      | _         |
| 0xF38E           |                                                    |          |          |          |        |           |
| 0xF38F           | Reserved                                           | -        | -        | -        | -      | -         |
| 0xF400           |                                                    | FT0PL    |          | -<br>R/W | - 8/16 | -<br>0xFF |
| 0xF400           | <ul> <li>FTM0 cycle register</li> </ul>            | FTOPE    | FT0P     | R/W      | 8      | 0xFF      |
| 0xF401<br>0xF402 |                                                    | FTOFH    |          | R/W      | 8/16   |           |
|                  | FTM0 event A register                              |          | FT0EA    |          |        | 0x00      |
| 0xF403           |                                                    | FTOEAH   |          | R/W      | 8      | 0x00      |
| 0xF404           | FTM0 event B register                              | FTOEBL   | FT0EB    | R/W      | 8/16   | 0x00      |
| 0xF405           |                                                    | FTOEBH   |          | R/W      | 8      | 0x00      |
| 0xF406           | FTM0 dead time register                            | FTODTL   | FT0DT    | R/W      | 8/16   | 0x00      |
| 0xF407           |                                                    | FT0DTH   |          | R/W      | 8      | 0x00      |
| 0xF408           | FTM0 counter register                              | FT0CL    | FT0C     | R/W      | 8/16   | 0x00      |
| 0xF409           |                                                    | FT0CH    |          | R/W      | 8      | 0x00      |
| 0xF40A           | FTM0 status register                               | FT0STAT  | -        | R        | 8      | 0x30      |
| 0xF40B           | Reserved                                           | -        | -        | -        | -      | -         |
| 0xF40C           | FTM0 mode register                                 | FT0MODL  | FT0MOD   | R/W      | 8/16   | 0x00      |
| 0xF40D           |                                                    | FT0MODH  | TTOMOD   | R/W      | 8      | 0x40      |
| 0xF40E           | <ul> <li>FTM0 clock register</li> </ul>            | FT0CLKL  | FT0CLK   | R/W      | 8/16   | 0x00      |
| 0xF40F           | T TIMO CIOCK TEGISTEI                              | FT0CLKH  | TTOOLK   | R/W      | 8      | 0x00      |
| 0xF410           | ETMO trigger register 0                            | FT0TRG0L | ETOTROO  | R/W      | 8/16   | 0x00      |
| 0xF411           | <ul> <li>FTM0 trigger register 0</li> </ul>        | FT0TRG0H | FT0TRG0  | R/W      | 8      | 0x00      |
| 0xF412           |                                                    | FT0TRG1L | ETOTDO4  | R/W      | 8/16   | 0x00      |
| 0xF413           | <ul> <li>FTM0 trigger register 1</li> </ul>        | FT0TRG1H | FT0TRG1  | R/W      | 8      | 0x00      |
| 0xF414           |                                                    | FT0INTEL | FTOWF    | R/W      | 8/16   | 0x00      |
| 0xF415           | FTM0 interrupt enable register                     | FT0INTEH | FT0INTE  | R/W      | 8      | 0x00      |
| 0xF416           |                                                    | FT0INTSL | FTON /TO | R        | 8/16   | 0x00      |
| 0xF417           | <ul> <li>FTM0 interrupt status register</li> </ul> | FT0INTSH | FTOINTS  | R        | 8      | 0x00      |
| 0xF418           |                                                    | FT0INTCL |          | W        | 8      | 0x00      |
| 0xF419           | FTM0 interrupt clear register                      | FT0INTCH | 1 -      | W        | 8      | 0x00      |
| 0xF41A           |                                                    | -        |          | -        | -      | -         |
| 0xF41B           | Reserved                                           | -        | -        | _        | -      | _         |
| 0xF41C           |                                                    |          |          | -        | _      | _         |
| 0xF41D           | Reserved                                           |          | -        | -        |        | _         |
| UXF41D           |                                                    | -        |          | -        | -      | -         |

| A daha a a | Nama                           | Syr      | mbol    |     | 0:   | Initial |
|------------|--------------------------------|----------|---------|-----|------|---------|
| Address    | Name                           | Byte     | Word    | R/W | Size | value   |
| 0xF41E     | Deserved                       | -        |         | -   | -    | -       |
| 0xF41F     | Reserved                       | -        | -       | -   | -    | -       |
| 0xF420     |                                | FT1PL    |         | R/W | 8/16 | 0xFF    |
| 0xF421     | FTM1 cycle register            | FT1PH    | FT1P    | R/W | 8    | 0xFF    |
| 0xF422     |                                | FT1EAL   |         | R/W | 8/16 | 0x00    |
| 0xF423     | FTM1 event A register          | FT1EAH   | FT1EA   | R/W | 8    | 0x00    |
| 0xF424     | ETM4 event D register          | FT1EBL   |         | R/W | 8/16 | 0x00    |
| 0xF425     | FTM1 event B register          | FT1EBH   | FT1EB   | R/W | 8    | 0x00    |
| 0xF426     |                                | FT1DTL   | FT4DT   | R/W | 8/16 | 0x00    |
| 0xF427     | FTM1 dead time register        | FT1DTH   | FT1DT   | R/W | 8    | 0x00    |
| 0xF428     |                                | FT1CL    | FT40    | R/W | 8/16 | 0x00    |
| 0xF429     | FTM1 counter register          | FT1CH    | FT1C    | R/W | 8    | 0x00    |
| 0xF42A     | FTM1 status register           | FT1STAT  | -       | R   | 8    | 0x30    |
| 0xF42B     | Reserved                       | -        | -       | -   | -    | -       |
| 0xF42C     |                                | FT1MODL  | FTULOD  | R/W | 8/16 | 0x00    |
| 0xF42D     | FTM1 mode register             | FT1MODH  | FT1MOD  | R/W | 8    | 0x40    |
| 0xF42E     |                                | FT1CLKL  |         | R/W | 8/16 | 0x00    |
| 0xF42F     | FTM1 clock register            | FT1CLKH  | FT1CLK  | R/W | 8    | 0x00    |
| 0xF430     |                                | FT1TRG0L |         | R/W | 8/16 | 0x00    |
| 0xF431     | FTM1 trigger register 0        | FT1TRG0H | FT1TRG0 | R/W | 8    | 0x00    |
| 0xF432     |                                | FT1TRG1L |         | R/W | 8/16 | 0x00    |
| 0xF433     | FTM1 trigger register 1        | FT1TRG1H | FT1TRG1 | R/W | 8    | 0x00    |
| 0xF434     |                                | FT1INTEL |         | R/W | 8/16 | 0x00    |
| 0xF435     | FTM1 interrupt enable register | FT1INTEH | FT1INTE | R/W | 8    | 0x00    |
| 0xF436     |                                | FT1INTSL |         | R   | 8/16 | 0x00    |
| 0xF437     | FTM1 interrupt status register | FT1INTSH | FT1INTS | R   | 8    | 0x00    |
| 0xF438     |                                | FT1INTCL |         | W   | 8    | 0x00    |
| 0xF439     | FTM1 interrupt clear register  | FT1INTCH | 1 -     | W   | 8    | 0x00    |
| 0xF43A     | Deserved                       | -        |         | -   | -    | -       |
| 0xF43B     | Reserved                       | -        | ] -     | -   | -    | -       |
| 0xF43C     | Deserved                       | -        |         | -   | -    | -       |
| 0xF43D     | Reserved                       | -        | 1 -     | -   | -    | -       |
| 0xF43E     | Deserved                       | -        |         | -   | -    | -       |
| 0xF43F     | Reserved                       | -        | 1 -     | -   | -    | -       |

#### 9.2.2 FTMn Cycle Register (FTnP :n=0 to 1)

This is a SFR to set the cycle (clock count) of FTMn. Set this register after setting the operation mode using FTnMD1 to 0 bits of FTnMOD register.

|                  |              | R/<br>e: 8/     | (F400 (<br>W<br>16 bit<br>(FFFF | FT0PL/             | FT0P),     | 0xF40      | 1 (FT0F | PH), 0x | F420 (F | T1PL/F    | -T1P),  | 0xF421 | I (FT1F | ΡΗ)     |       |       |
|------------------|--------------|-----------------|---------------------------------|--------------------|------------|------------|---------|---------|---------|-----------|---------|--------|---------|---------|-------|-------|
|                  | 15           | 14              | 13                              | 12                 | 11         | 10         | 9       | 8       | 7       | 6         | 5       | 4      | 3       | 2       | 1     | 0     |
| Word             |              |                 |                                 |                    |            |            |         | FT      | nΡ      |           |         |        |         |         |       |       |
| Byte             |              |                 |                                 | FTr                | ηPH        |            |         |         |         |           |         | FTr    | ιPL     |         |       |       |
| Bit              | FTnP1<br>5   | FTnP1<br>4      | FTnP1<br>3                      | FTnP1<br>2         | FTnP1<br>1 | FTnP1<br>0 | FTnP9   | FTnP8   | FTnP7   | FTnP6     | FTnP5   | FTnP4  | FTnP3   | FTnP2   | FTnP1 | FTnP0 |
| R/W              | R/W          | R/W             | R/W                             | R/W                | R/W        | R/W        | R/W     | R/W     | R/W     | R/W       | R/W     | R/W    | R/W     | R/W     | R/W   | R/W   |
| Initial<br>value | 1            | 1               | 1                               | 1                  | 1          | 1          | 1       | 1       | 1       | 1         | 1       | 1      | 1       | 1       | 1     | 1     |
| Bit No.          |              | : symbo<br>name | bl                              |                    |            |            |         |         | De      | scriptio  | n       |        |         |         |       |       |
| 15 to 0          | FTnF<br>FTnF | 215 to<br>20    |                                 | 0x000 <sup>2</sup> | 1 to 0xF   | FFF: S     | Set one | cycle a | s the s | etting va | alue in | FTnP r | egister | + 1 clo | cks.  |       |
|                  |              |                 |                                 |                    |            |            |         |         |         |           |         |        |         |         |       |       |

[Note]

\_

- When 0x0000 is written in this register, 0x0001 is set and the read value is also becomes 0x0001.
- Set FTnP so that the functional timer output frequency is 3MHz or less, when its output is used. The count clock frequency [MHz] / (FTnP value + 1) ≤ 3 [MHz], so that FTnP value ≥ ( count clock frequency [MHz] / 3) – 1.

#### 9.2.3 FTMn Event A Register (FTnEA :n=0 to 1)

This is a SFR to set the event timing of FTMn or display the capture data. Set this register after setting the operation mode using FTnMD1 to 0 bits of FTnMOD register. In the CAPTURE mode, the FTnEA is a read-only register and it is invalid to write to this register.

| Acce<br>Acce     | ress :<br>ess :<br>ess size<br>Il value | R/<br>: 8/                                   | F402 (I<br>W<br>16 bit<br>0000 | FT0EAI                                                                             | _/FT0E                                                                                  | 4), 0xF                                    | 403 (F                                              | TOEAH                                               | ), 0xF42                                                                  | 22 (FT <sup>-</sup>                                             | 1EAL/F                                             | T1EA),                         | 0xF423                        | 3 (FT1E                                  | EAH)                              |                      |
|------------------|-----------------------------------------|----------------------------------------------|--------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|--------------------------------|-------------------------------|------------------------------------------|-----------------------------------|----------------------|
|                  | 15                                      | 14                                           | 13                             | 12                                                                                 | 11                                                                                      | 10                                         | 9                                                   | 8                                                   | 7                                                                         | 6                                                               | 5                                                  | 4                              | 3                             | 2                                        | 1                                 | 0                    |
| Word             |                                         |                                              |                                |                                                                                    |                                                                                         |                                            |                                                     | FTr                                                 | ηEA                                                                       |                                                                 |                                                    |                                |                               |                                          |                                   |                      |
| Byte             |                                         |                                              |                                |                                                                                    | EAH                                                                                     |                                            |                                                     | 1                                                   |                                                                           |                                                                 |                                                    | FTn                            |                               |                                          |                                   | 1                    |
| Bit              | FTnEA<br>15                             | FTnEA<br>14                                  | FTnEA<br>13                    | FTnEA<br>12                                                                        | FTnEA<br>11                                                                             | FTnEA<br>10                                | FTnEA<br>9                                          | FTnEA<br>8                                          | FTnEA<br>7                                                                | FTnEA<br>6                                                      | FTnEA<br>5                                         | FTnEA<br>4                     | FTnEA<br>3                    | FTnEA<br>2                               | FTnEA<br>1                        | FTnE<br>0            |
| R/W              | R/W                                     | R/W                                          | R/W                            | R/W                                                                                | R/W                                                                                     | R/W                                        | R/W                                                 | R/W                                                 | R/W                                                                       | R/W                                                             | R/W                                                | R/W                            | R/W                           | R/W                                      | R/W                               | R/W                  |
| Initial<br>value | 0                                       | 0                                            | 0                              | 0                                                                                  | 0                                                                                       | 0                                          | 0                                                   | 0                                                   | 0                                                                         | 0                                                               | 0                                                  | 0                              | 0                             | 0                                        | 0                                 | 0                    |
| Bit No.          | Bi                                      | Bit symbol<br>name<br>FTnEA15 to -TIMER mode |                                | Description                                                                        |                                                                                         |                                            |                                                     |                                                     |                                                                           |                                                                 |                                                    |                                |                               |                                          |                                   |                      |
|                  |                                         |                                              | -                              | CAPTL<br>0x000<br>FTMn                                                             | status                                                                                  | de<br>FFFF:<br>register<br>cleared         | The ca<br>r (FTnS<br>d. In the                      | STAT) a<br>e CAPT                                   | count v<br>nd FTn<br>ŪRE m                                                | ISA bit                                                         | of FTM<br>riting to                                | n interr<br>FTnEA              | upt stat<br>A is inva         | tus regi<br>alid.                        |                                   | oit of               |
|                  |                                         |                                              |                                | Howe<br>FTnFL<br>PWM1<br>0x000<br>becon<br>0xFFF<br>FTnP<br>Do no<br>PWM2<br>0x000 | GA.<br>mode<br>0 to 0xl<br>mes [the<br>F. The<br>= 0xFF<br>t set va<br>mode<br>0 to 0xl | FFF:S<br>value<br>duty 10<br>FF.<br>lue mo | Set the<br>set in t<br>00% is<br>re than<br>Set the | duty of<br>his regi<br>configu<br>one of<br>duty of | y when<br>the pos<br>ster +1]<br>rable w<br>FTnP e<br>the neg<br>ster +1] | FTnTG<br>itive pl<br>I. The c<br>hen FT<br>except (<br>pative p | nase ou<br>luty 0%<br>nP = F<br>0xFFFF<br>ohase ou | tput. Tr<br>is conf<br>TnEA. T | ie duty<br>igurabl<br>The dut | in the I<br>e when<br>y beco<br>/ in the | PWM c<br>FTnE/<br>mes 0%<br>PWM ( | ycle<br>\ =<br>% whe |

[Note]

• In timer mode , a data set in the FTnEA register must be less than that set in the FTnP register.

In PWM1/2 mode, a data set in the FTnEA register must be 0xFFFF or less than that set in the FTnP register.

#### 9.2.4 FTMn Event B Register (FTnEB :n=0 to 1)

This is a SFR to set the event timing of FTMn or display the capture data. Set this register after setting the operation mode using FTnMD1 to 0 bits of FTnMOD register. In the CAPTURE mode, the FTnEA is a read-only register and it is invalid to write to this register.

|                  | ess :<br>ess :<br>ess size<br>l value | R/\<br>: 8/1    | •           | FT0EBI                                                                                         | _/F10E                                                                                                                | B), UXF                                                                            | 405 (F                                                                                   | I UEBH,                                                                 | ), UXF42                                                              | 24 (F11                                                                                        | EBL/F                                                                 | 11EB),                                                                | UXF42                                                                           | 5 (F I 1E                                                                  | <u>-</u> ВН)                                   |                                 |
|------------------|---------------------------------------|-----------------|-------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------|---------------------------------|
|                  | 15                                    | 14              | 13          | 12                                                                                             | 11                                                                                                                    | 10                                                                                 | 9                                                                                        | 8                                                                       | 7                                                                     | 6                                                                                              | 5                                                                     | 4                                                                     | 3                                                                               | 2                                                                          | 1                                              | 0                               |
| Word             |                                       |                 |             |                                                                                                |                                                                                                                       |                                                                                    |                                                                                          | FTr                                                                     | ηEB                                                                   |                                                                                                |                                                                       |                                                                       |                                                                                 |                                                                            |                                                |                                 |
| Byte             |                                       |                 |             | FTn                                                                                            |                                                                                                                       |                                                                                    |                                                                                          |                                                                         |                                                                       |                                                                                                |                                                                       |                                                                       | EBL                                                                             |                                                                            |                                                |                                 |
| Bit              | FTnEB<br>15                           | FTnEB<br>14     | FTnEB<br>13 | FTnEB<br>12                                                                                    | FTnEB<br>11                                                                                                           | FTnEB<br>10                                                                        | FTnEB<br>9                                                                               | FTnEB<br>8                                                              | FTnEB<br>7                                                            | FTnEB<br>6                                                                                     | FTnEB<br>5                                                            | FTnEB<br>4                                                            | FTnEB<br>3                                                                      | FTnEB<br>2                                                                 | FTnEB<br>1                                     | FTn<br>0                        |
| R/W              | R/W                                   | R/W             | R/W         | R/W                                                                                            | R/W                                                                                                                   | R/W                                                                                | R/W                                                                                      | R/W                                                                     | R/W                                                                   | R/W                                                                                            | R/W                                                                   | R/W                                                                   | R/W                                                                             | R/W                                                                        | R/W                                            | R/\                             |
| Initial<br>value | 0                                     | 0               | 0           | 0                                                                                              | 0                                                                                                                     | 0                                                                                  | 0                                                                                        | 0                                                                       | 0                                                                     | 0                                                                                              | 0                                                                     | 0                                                                     | 0                                                                               | 0                                                                          | 0                                              | 0                               |
| Bit No.          | Bi                                    | t symbo<br>name | bl          |                                                                                                |                                                                                                                       |                                                                                    |                                                                                          |                                                                         | De                                                                    | escriptic                                                                                      | on                                                                    |                                                                       |                                                                                 |                                                                            |                                                |                                 |
| 15 to 0          | FIN                                   | EB15 td<br>EB0  | -           | FTnEE<br>CAPTU<br>0x000<br>FTMn<br>(FTnIN<br>Howev<br>FTnFL<br>PWM1<br>0x000<br>becon<br>0xFFF | 0 to 0x<br>3 settin<br>RE mo<br>0 to 0x<br>status<br>Ver, FT<br>.GB.<br>mode<br>0 to 0x<br>nes [the<br>F. The<br>FTnP | g value<br>de<br>FFFF:<br>registe<br>cleare<br>nFLGB<br>FFFF:S<br>value<br>duty 10 | + 1.<br>The ca<br>r (FTnS<br>d. In the<br>is clear<br>Get the o<br>set in th<br>00% is o | ptured (<br>TAT) and CAPT<br>red only<br>duty of<br>his registiconfigui | count v<br>nd FTn<br>URE m<br>y when<br>the pos<br>ster +1<br>rable w | enerate<br>ralue is<br>ISA bit o<br>node, wo<br>FTnTG<br>FTnTG<br>. The d<br>hen FT<br>comes ( | stored.<br>of FTM<br>riting to<br>EN=1.<br>ase ou<br>uty 0%<br>nP = F | When<br>In interr<br>FTnEl<br>See se<br>Itput. Th<br>is cont<br>TnEB. | it is rea<br>rupt sta<br>B is inva<br>ection 9<br>he duty<br>figurabl<br>Do not | ad, FTn<br>tus regi<br>alid.<br>.3.4.2 a<br>in the l<br>e when<br>set valu | FLGB I<br>ister<br>as for cl<br>PWM c<br>FTnEI | oit of<br>learir<br>ycle<br>3 = |
|                  |                                       |                 | -           | PVVIVIZ                                                                                        | moae                                                                                                                  |                                                                                    |                                                                                          |                                                                         |                                                                       |                                                                                                |                                                                       |                                                                       |                                                                                 |                                                                            |                                                |                                 |

 In PWM1 mode, a data set in the FTnEB register must be 0xFFFF or less than that set in the FTnP register.

#### 9.2.5 FTMn Dead Time Register (FTnDT :n=0 to 1)

This is a SFR to set the dead time of output signal. Set this register after setting the operation mode using FTnMD1 to 0 bits of FTnMOD register.

| Acce<br>Acce     | ress :<br>ess :<br>ess size<br>al value   | R/<br>: 8/      | xF406 (<br>'W<br>16 bit<br>x0000 | FT0DT       | L/FT0       | DT), 0>     | cF407 (    | (FT0DT     | TH), 0x    | F426 (I    | FT1DT      | L/FT1I     | OT), 0x    | F427 (1    | FT1DT      | H)         |
|------------------|-------------------------------------------|-----------------|----------------------------------|-------------|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | 15                                        | 14              | 13                               | 12          | 11          | 10          | 9          | 8          | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             |                                           |                 |                                  |             |             |             |            | FTr        | ٦DT        |            |            |            |            |            |            |            |
| Byte             |                                           |                 |                                  | FTn         | DTH         |             |            |            |            |            |            | FTn        | DTL        |            |            |            |
| Bit              | FTnDT FTnDT FTn<br>15 14 13<br>R/W R/W R/ |                 |                                  | FTnDT<br>12 | FTnDT<br>11 | FTnDT<br>10 | FTnDT<br>9 | FTnDT<br>8 | FTnDT<br>7 | FTnDT<br>6 | FTnDT<br>5 | FTnDT<br>4 | FTnDT<br>3 | FTnDT<br>2 | FTnDT<br>1 | FTnDT<br>0 |
| R/W              |                                           |                 |                                  |             |             |             |            | R/W        |
| Initial<br>value | 0                                         | 0               | 0                                | 0           | 0           | 0           | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Bit No.          | Bi                                        | it symb<br>name | ol                               |             |             |             |            |            | De         | escriptio  | on         |            |            |            |            |            |
| 15 to 0          | name                                      |                 |                                  |             |             |             |            |            |            |            |            |            |            |            |            |            |
|                  |                                           |                 |                                  |             | s invalio   |             |            |            |            |            |            |            |            |            |            |            |
| otel             |                                           |                 |                                  | 1115 1      | sirivaiio   | 1.          |            |            |            |            |            |            |            |            |            |            |

[Note]

\_

- In the PWM2 mode, the data set in the FTnDT register must be less than that set in the FTnEA register.
- In the PWM2 mode, the sum of setting data in the FTnDT register and the FTnEA register must be less than that set in the FTnP register.

#### 9.2.6 FTMn Counter Register (FTnC :n=0 to 1)

This is a SFR to display the counter value of FTMn. When writing to this register, the counter is cleared to "0x0000" in one clock of the count clock.

|                  |            | R/<br>: 8/ | •          | FT0CL/     | ′FT0C),    | 0xF40      | 9 (FT00 | CH), 0x | F428 (I | FT1CL/ | FT1C), | 0xF429 | 9 (FT10 | CH)   |       |       |
|------------------|------------|------------|------------|------------|------------|------------|---------|---------|---------|--------|--------|--------|---------|-------|-------|-------|
|                  | 15         | 14         | 13         | 12         | 11         | 10         | 9       | 8       | 7       | 6      | 5      | 4      | 3       | 2     | 1     | 0     |
| Word             |            |            |            |            |            |            |         | FT      | nC      |        |        |        |         |       |       |       |
| Byte             |            |            |            | FTr        | nCH        |            |         |         |         |        |        | FTr    | nCL     |       |       |       |
| Bit              | FTnC1<br>5 | FTnC1<br>4 | FTnC1<br>3 | FTnC1<br>2 | FTnC1<br>1 | FTnC1<br>0 | FTnC9   | FTnC8   | FTnC7   | FTnC6  | FTnC5  | FTnC4  | FTnC3   | FTnC2 | FTnC1 | FTnC0 |
| R/W              | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W     | R/W     | R/W     | R/W    | R/W    | R/W    | R/W     | R/W   | R/W   | R/W   |
| Initial<br>value | 0          | 0          | 0          | 0          | 0          | 0          | 0       | 0       | 0       | 0      | 0      | 0      | 0       | 0     | 0     | 0     |

In case of the following table, Reading value is available. In other case, do reading this register twice and confirm those equivalence.

| System clock | Timer clock             |
|--------------|-------------------------|
| LSCLK0       | LSCLK0                  |
| HSCLK        | HSCLK, HTBCLK0, HTBCLK1 |

#### [Note]

Read FTnC register twice to verify the data to prevent reading uncertain data while counting-up
according to need.Read the FTnC register twice to verify the valid data to prevent reading uncertain data
while counting-up, if a source of timer clock is as different as one of system clock.
In case of SYSCLK frequency = 250kHz, the count clock frequency = 3MHz:

If first read value is 0x0007, second read value is more than 0x0012. Valid bits are 11 bits of FTnC15-5. It depend on reading interval time.

### 9.2.7 FTMn Status Register (FTnSTAT :n=0 to 1)

FTnSTAT is a read-only SFR to indicate the state of FTMn.

|                  |                                                                                                                                                                                                                                                                                                                                                                      | R<br>9: 8       | bit<br>30 | (FT0ST          | AT), UX                         | F42A (                       | F1151             | АТ)         |                                |             |                   |             |        |          |         |       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|-----------------|---------------------------------|------------------------------|-------------------|-------------|--------------------------------|-------------|-------------------|-------------|--------|----------|---------|-------|
| _                | 15                                                                                                                                                                                                                                                                                                                                                                   | 14              | 13        | 12              | 11                              | 10                           | 9                 | 8           | 7                              | 6           | 5                 | 4           | 3      | 2        | 1       | 0     |
| Word             |                                                                                                                                                                                                                                                                                                                                                                      |                 |           |                 |                                 |                              |                   |             | -                              |             |                   |             |        |          |         |       |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                      |                 | 1         |                 | -                               |                              |                   |             | <b>FT</b> . <b>O</b> T         |             | ET. EL            |             | STAT   |          |         |       |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                    | -               | -         | -               | -                               | -                            | -                 | -           | A                              | FTnFL<br>GC | FTnFL<br>GB       | FTnFL<br>GA | -      | -        | -       | FTnUE |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                    | R               | R         | R               | R                               | R                            | R                 | R           | R                              | R           | R                 | R           | R      | R        | R       | R     |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                    | 0               | 0         | 0               | 0                               | 0                            | 0                 | 0           | 0                              | 0           | 1                 | 1           | 0      | 0        | 0       | 0     |
| Bit No.          | В                                                                                                                                                                                                                                                                                                                                                                    | it symb<br>name | ol        |                 |                                 |                              |                   |             | D                              | escriptio   | on                |             |        |          |         |       |
| 7                | FTnSTAThis is used to indicate the operation state of FTMn.0: The counter is stopped (Initial value)1: The counter is running                                                                                                                                                                                                                                        |                 |           |                 |                                 |                              |                   |             |                                |             |                   |             |        |          |         |       |
| 6                | FTnFLGC       This is used to indicate whether the next event start is enable or disable while a counter chosen by FTnCST bit of FTnTRG0 register is begin stopped.         This is cleared by reading FTnC register automatically.       0: Starting by event trigger is enabled. (Initial value)         1: Starting by event trigger is disabled.                 |                 |           |                 |                                 |                              |                   |             |                                |             |                   |             |        |          |         |       |
| 5                |                                                                                                                                                                                                                                                                                                                                                                      |                 |           |                 |                                 |                              |                   |             |                                |             | <sup>,</sup> when |             |        |          |         |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                      |                 |           | -PWM2<br>Fixed  |                                 |                              |                   |             |                                |             |                   |             |        |          |         |       |
| 4                | FTn                                                                                                                                                                                                                                                                                                                                                                  | FLGA            |           | -TIMER<br>0: Co | /PWM1<br>ounter v               | /PWM<br>alue <               | 2 mode<br>value o | e<br>of FTM | event ti<br>n event<br>n event | A regis     | ter               | al value    | e)     |          |         |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                      |                 |           | 1: The<br>To    | ere is r<br>ere is c<br>be clea | no capt<br>aptured<br>red by | reading           | g the F     | TnEA re<br>4.2 as fo           |             |                   |             | FLGA i | s cleare | ed only | when  |
| 3 to 1           | -                                                                                                                                                                                                                                                                                                                                                                    |                 |           | Reserve         | ed bits                         |                              |                   |             |                                |             |                   |             |        |          |         |       |
| 0                | FTnUD       This bit is used to indicate the state of the completion after generating an update request of the FTnP or FTnEA/FTnEB/FTnDT register by writing "1" to FTCUDn bit of FTCUD register. When the transfer is completed, this bit is cleared automatically.         0:       The update is completed (Initial value)         1:       Requesting the update |                 |           |                 |                                 |                              |                   |             |                                |             |                   |             |        |          |         |       |

### 9.2.8 FTMn Mode Register (FTnMOD :n=0 to 1)

This is a SFR to set the FTOn and FTOnN pin output function and the operation mode.

| Acc<br>Acc       | ress :<br>ess :<br>ess size<br>al value                                                                                                                                                                                                                                                                                                                                                                                                                | 0x<br>/R<br>e: 8/ |             |                   |                  |                   |                      |             | DMODH<br>1MODH                  |      |              |              |     |   |            |            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|-------------------|------------------|-------------------|----------------------|-------------|---------------------------------|------|--------------|--------------|-----|---|------------|------------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                | 13          | 12                | 11               | 10                | 9                    | 8           | 7                               | 6    | 5            | 4            | 3   | 2 | 1          | 0          |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                   |                  |                   |                      | FTn         | MOD                             |      |              |              |     |   |            |            |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                   | IODH             |                   |                      |             |                                 |      |              | FTnM         | ODL |   |            |            |
| Bit              | FTnOS<br>L1                                                                                                                                                                                                                                                                                                                                                                                                                                            | FTnOS<br>L0       | FTnOS<br>NN | FTnOS<br>NP       | rsvd             | rsvd              | FTnST<br>SYN         | FTnST<br>PO | FTnOS<br>T                      | -    | FTnDT<br>ENN | FTnDT<br>ENP | -   | - | FTnMD<br>1 | FTnMD<br>0 |
| R/W              | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/W               | R/W         | R/W               | R/W              | R/W               | R/W                  | R/W         | R/W                             | R    | R/W          | R/W          | R   | R | R/W        | R/W        |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                 | 0           | 0                 | 0                | 0                 | 0                    | 0           | 0                               | 0    | 0            | 0            | 0   | 0 | 0          | 0          |
| Bit No           | name                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |             |                   |                  |                   |                      |             |                                 |      |              |              |     |   |            |            |
| 15               | FTnOSL1 This bit is used to choose the phase of signal output at FTOnN pin.<br>0: Output Negative phase (Initial value)<br>1: Output Positive phase                                                                                                                                                                                                                                                                                                    |                   |             |                   |                  |                   |                      |             |                                 |      |              |              |     |   |            |            |
| 14               | FTnOSL0<br>Output Positive phase<br>FTnOSL0<br>0: Output Negative phase<br>1: Output Negative phase<br>1: Output Positive phase<br>1: Output Positive phase<br>1: Output Positive phase                                                                                                                                                                                                                                                                |                   |             |                   |                  |                   |                      |             |                                 |      |              |              |     |   |            |            |
| 13               | FTn                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OSNN              |             | t revers<br>0: Do | es the<br>es not | output            | signal o<br>e the ou | chosen      | N pin ou<br>by FTn<br>nitial va | OSL1 |              | 5).          |     |   |            |            |
| 12               | FTn                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OSNP              |             | t revers<br>0: Do | es the<br>es not | output<br>reverse | signal ແ<br>e the oເ | chosen      | P pin ou<br>by FTn<br>nitial va | OSL0 |              | 4).          |     |   |            |            |
| 11, 10           | rsvd                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l                 | F           | Reserve           | ed bits.         | Set "0'           | ' to all b           | oits.       |                                 |      |              |              |     |   |            |            |
| 9                | FTnSTSYN       This bit is used to choose stop timing.         0: Just when writing stop register or receiving a stop trigger.         1: When an end of cycle after writing stop register or receiving a stop trigger.         This function is available for stopping from software or trigger. It is not active for the emergency stop trigger         If a start event occurs between the time the stop event occurs and the end of the cycle when |                   |             |                   |                  |                   |                      |             |                                 |      |              |              |     |   |            |            |
| 8                | 1: When an end of cycle after writing stop register or receiving a stop trigger.<br>This function is available for stopping from software or trigger. It is not active for the<br>emergency stop trigger                                                                                                                                                                                                                                               |                   |             |                   |                  |                   |                      |             |                                 |      |              |              |     |   |            |            |

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7       | FTnOST             | This bit is used to set the repeat/one-shot mode of FTMn.<br>-TIMER/PWM1/PWM2 mode<br>0: Repeat mode (Initial value)<br>1: One-shot mode                                                                                                                                                                                                                                                                                                      |
|         |                    | <ul> <li>-CAPTURE mode</li> <li>0: Auto mode</li> <li>Even if the capture is performed once, data of the FTnEA and FTnEB register are overwritten (updated) when the next capture is performed. When the counter goes round, it restarts from 0.</li> <li>1: Single mode</li> <li>Once captured into the FTnEA or FTnEB register, the next capture is not performed until reading the data. When the counter goes round, it stops.</li> </ul> |
| 6       | -                  | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5       | FTnDTENN           | This bit is used to enable the dead time of negative phase output.<br>-TIMER/PWM1/PWM2 mode<br>0: Dead time is disabled (Initial value)<br>1: Dead time is enabled<br>-CAPTURE mode<br>This bit is invalid                                                                                                                                                                                                                                    |
| 4       | FTnDTENP           | This bit is used to enable the dead time of positive phase output.<br>-TIMER/PWM1/PWM2 mode<br>0: Dead time is disabled (Initial value)<br>1: Dead time is enabled<br>-CAPTURE mode<br>This bit is invalid                                                                                                                                                                                                                                    |
| 3,2     | -                  | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1, 0    | FTnMD1,<br>FTnMD0  | These bits are used to choose the mode of FTMn.<br>00:TIMER mode (Initial value)<br>01:CAPTURE mode<br>10:PWM1 mode<br>11:PWM2 mode                                                                                                                                                                                                                                                                                                           |

#### [Note]

• Set the FTnMOD register when the FTMn is stopped.

• Initialize this peripheral with block reset before changing to another mode, if it is in the operation state once.

### 9.2.9 FTMn Clock Register (FTnCLK :n=0 to 1)

This is a SFR to set the timer clock and count clock of the FTMn.

|                  |                                         | R/<br>: 8/                                                                                                                                  |    | (FT0CL                                                                                                                                           | KL/FT0                                                                                 | CLK),                                                                                                                               | 0xF40F                                                                                                                                                                                                                                                                                                                                                                                    | (FT0C                                                                                                | LKH),                                                       | 0xF42E                     | (FT1C       | LKL/FT      | T1CLK) | , 0xF42    | F (FT1     | CLKH)      |
|------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|-------------|-------------|--------|------------|------------|------------|
|                  | 15                                      | 14                                                                                                                                          | 13 | 12                                                                                                                                               | 11                                                                                     | 10                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                    | 7                                                           | 6                          | 5           | 4           | 3      | 2          | 1          | 0          |
| Word             |                                         |                                                                                                                                             |    |                                                                                                                                                  |                                                                                        |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                           | FTr                                                                                                  | nCLK                                                        |                            |             |             |        |            |            |            |
| Byte             |                                         |                                                                                                                                             |    | FTn                                                                                                                                              | CLKH                                                                                   |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      |                                                             |                            |             | FTn         | CLKL   |            |            |            |
| Bit              | -                                       | -                                                                                                                                           | -  | -                                                                                                                                                | -                                                                                      | -                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                    | -                                                           | FTnCK<br>D2                | FTnCK<br>D1 | FTnCK<br>D0 | FTnCK  | FTnCK<br>2 | FTnCK<br>1 | FTnCK<br>0 |
| R/W              | R                                       | R                                                                                                                                           | R  | R                                                                                                                                                | R                                                                                      | R                                                                                                                                   | R                                                                                                                                                                                                                                                                                                                                                                                         | R                                                                                                    | R                                                           | R/W                        | R/W         | R/W         | R/W    | R/W        | R/W        | R/W        |
| Initial<br>value | l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                                                                                                                             |    |                                                                                                                                                  |                                                                                        |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | 0                                                           | 0                          |             |             |        |            |            |            |
| Bit No.          | Bi                                      | Bit symbol<br>name     Description       FTnCKD2 to     These bits are used to configure count clock frequency; divided timer source clock. |    |                                                                                                                                                  |                                                                                        |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      |                                                             |                            |             |             |        |            |            |            |
|                  | FTn                                     | CKD0                                                                                                                                        |    | 001:<br>010:<br>011:<br>100:<br>101:<br>110:                                                                                                     | Divideo<br>Divideo<br>Divideo<br>Divideo<br>Divideo<br>Divideo                         | d the tir<br>d the tir<br>d the tir<br>d the tir<br>d the tir<br>d the tir                                                          | nitial val<br>mer cloo<br>mer cloo<br>mer cloo<br>mer cloo<br>mer cloo<br>mer cloo                                                                                                                                                                                                                                                                                                        | x by 2<br>x by 4<br>x by 8<br>x by 1<br>x by 3<br>x by 6<br>x by 6                                   | 6<br>2<br>4                                                 |                            |             |             |        |            |            |            |
| 3 to 0           | FTn'<br>FTn'                            | CK3 to<br>CK0                                                                                                                               |    | This bits<br>0000:<br>0001:<br>0010:<br>0100:<br>0101:<br>0101:<br>0111:<br>1000:<br>1011:<br>1010:<br>1011:<br>1100:<br>1101:<br>1110:<br>1111: | LSC<br>HSC<br>HTB<br>Dor<br>Dor<br>Dor<br>Exte<br>Exte<br>Exte<br>Exte<br>Exte<br>Exte | LK0<br>CLK<br>CLK0<br>CLK1<br>not use<br>not use<br>not use<br>rnal clo<br>rnal clo<br>rnal clo<br>rnal clo<br>rnal clo<br>rnal clo | (Initial v<br>(ISCLI<br>(HSCL<br>(HTBC<br>(HTBC<br>(HTBC<br>(HTBC<br>(HTBC<br>(HTBC<br>(HTBC<br>(HTBC<br>(HTBC<br>()<br>(SCL)<br>(HTBC<br>()<br>(SCL)<br>()<br>(HTBC<br>()<br>(SCL)<br>()<br>(SCL)<br>()<br>(SCL)<br>()<br>(SCL)<br>()<br>(SCL)<br>()<br>(SCL)<br>()<br>(SCL)<br>()<br>(SCL)<br>()<br>(SCL)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() | alue)<br><1)<br>K)<br>LK0)<br>LK1)<br>put (E)<br>put (E)<br>put (E)<br>put (E)<br>put (E)<br>put (E) | (TRG0<br>(TRG1<br>(TRG2<br>(TRG3<br>(TRG4<br>(TRG5<br>(TRG6 | ))<br>))<br>;)<br>;)<br>;) |             |             |        |            |            |            |

### 9.2.10 FTMn Trigger Register 0 (FTnTRG0 :n=0 to 1)

This is a SFR to set the trigger function of FTMn.

| Addre<br>Acces<br>Acces<br>Initial | ss :<br>s :<br>s size | 0x<br>0x<br>R/<br>e: 8/                                                                                                                                                                                                                                                                                                                                                                               | F410<br>F430 | (FT0TR<br>(FT1TR                                                                                                                                                                                                      | G0L/F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ), 0xF₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |                                  |                   |            |       |            |                         |
|------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|------------|-------|------------|-------------------------|
|                                    | 15                    | 14                                                                                                                                                                                                                                                                                                                                                                                                    | 13           | 12                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                    | 5                                | 4                 | 3          | 2     | 1          | 0                       |
| Word                               |                       |                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FTn                                                                                     | rrg0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                      |                                  |                   |            |       |            |                         |
| Byte                               |                       |                                                                                                                                                                                                                                                                                                                                                                                                       |              | FTnT                                                                                                                                                                                                                  | RG0H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |                                  | FTn               | TRG0L      |       |            |                         |
| Bit                                | -                     | FTnES<br>T1                                                                                                                                                                                                                                                                                                                                                                                           | FTnES<br>T0  | S FTnST<br>SS                                                                                                                                                                                                         | FTnST<br>S3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FTnST<br>S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FTnST<br>S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FTnST<br>S0                                                                             | FTnDC<br>LD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FTnDC<br>LH                                                                                                          | FTnCS<br>T                       | -                 | FTnSF<br>C | FTnSP | FTnST<br>C | FTnST                   |
| R/W                                | R                     | R/W                                                                                                                                                                                                                                                                                                                                                                                                   | R/W          | R/W                                                                                                                                                                                                                   | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/W                                                                                     | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R/W                                                                                                                  | R/W                              | R                 | R/W        | R/W   | R/W        | R/W                     |
| Initial<br>value                   | 0                     | 0                                                                                                                                                                                                                                                                                                                                                                                                     | 0            | 0                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                    | 0                                | 0                 | 0          | 0     | 0          | 0                       |
| Bit No.                            | E                     | Bit symbo<br>name                                                                                                                                                                                                                                                                                                                                                                                     | ol           |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         | De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | escriptio                                                                                                            | on                               |                   |            |       |            |                         |
| 15                                 | -                     |                                                                                                                                                                                                                                                                                                                                                                                                       |              | Reserve                                                                                                                                                                                                               | ed bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |                                  |                   |            |       |            |                         |
| 14, 13                             |                       | FTnEST1,<br>FTnEST0These bits are used to choose the emergency stop trigger source of FTMn. They are enabled<br>only when FTnEMGEN bit of FTCCON register is "1".<br>00: External trigger 0 input (EXTRG0) (initial value)<br>01: External trigger 4 input (EXTRG4)<br>10: Reserved<br>11: ReservedFTnSTSS,These bits are used to choose the trigger event source of FTMn. Choose a source except for |              |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |                                  |                   |            |       |            |                         |
|                                    |                       | ISTS3 tr                                                                                                                                                                                                                                                                                                                                                                                              |              | 00001<br>00010<br>00010<br>00101<br>00100<br>00111<br>01000<br>01101<br>01100<br>01111<br>01100<br>01111<br>X : Do<br>10010<br>10010<br>10010<br>10010<br>10110<br>10110<br>10110<br>10011<br>10000<br>10011<br>10010 | /CAPT<br>): Exte<br>: | URE/P<br>ernal tri<br>ernal tri<br>ernal tri<br>ernal tri<br>ernal tri<br>ernal tri<br>ernal tri<br>ernal tri<br>erved<br>k<br>speed<br>speed<br>speed<br>speed<br>speed<br>or 1<br>I/PWM<br>bit timer<br>bit timer<br>b | WM1/P<br>gger 0 i<br>gger 1 i<br>gger 2 i<br>gger 3 i<br>gger 4 i<br>gger 5 i<br>gger 6 i<br>gger 7 i<br>time ba<br>time ba | WM2 m<br>input (E<br>input (E<br>input (E<br>input (E<br>input (E<br>ase cou<br>ase cou | Node<br>XTRG0<br>XTRG1<br>XTRG2<br>XTRG3<br>XTRG4<br>XTRG5<br>XTRG7<br>Nter int<br>nter int<br>nter int<br>nter int<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0IN1<br>MH0 | )) (Initia<br>))<br>2)<br>3)<br>4)<br>5)<br>6<br>7)<br>6<br>7)<br>7)<br>7)<br>7)<br>7)<br>7)<br>7)<br>7)<br>7)<br>7) | 1 (LTB1)<br>2 (LTB2)<br>3 (LTB3) | )<br>INT)<br>INT) |            |       |            | τ <sup>-</sup> τ ΝΙΟ ). |

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7       | FTnDCLD            | This bit is used to enable/disable the FTnDCLH bit function at dead-time zone.<br>•TIMER/PWM1/PWM2 mode<br>0: Enabled during dead time (Initial value)<br>1: Disabled during dead time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6       | FTnDCLH            | <ul> <li>This bit is used to disable the counter clear by a trigger event when positive phase output is "H" level.</li> <li>-TIMER/PWM1/PWM2 mode</li> <li>0: The counter clear is enabled regardless the positive phase output (initial value)</li> <li>1: The counter clear is disabled when the positive phase output is "H" level.</li> <li>-CAPTURE mode</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                               |
| 5       | FTnCST             | <ul> <li>This bit is invalid</li> <li>This bit is used to choose the operation mode for starting the count by a trigger event.</li> <li>0: A trigger event always can start the counter when the counter stops except for emergency stop (Initial value)</li> <li>1: A trigger event does not start the counter until reading FTnC register when the counter stops except for emergency stop</li> </ul>                                                                                                                                                                                                                                                                                                                                                                |
| 4       | -                  | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3       | FTnSPC             | <ul> <li>This bit is used to choose whether to enable clearing the counter when a trigger event for counter-stop occurs (only when the edge is chosen by the FTnTRM2-0 bits). The setting of this bit is valid regardless of the setting of the FTnSP bit.</li> <li>If an update request of FTnP, FTnEA, FTnEB and FTnDT by the FTCUDn bit of FTCUD register is generated when the trigger event occurs, the FTnP, FTnEA, FTnEB and FTnDT register gets updated at the same time as the counter clear.</li> <li>0: Disabled (Initial value)</li> <li>1: Enabled</li> <li>However, the counter is not cleared/updated regardless of this bit in the following cases. When the emergency stop occurs.</li> <li>When Setting FTnTRM2-0 bits to "000" or "011".</li> </ul> |
| 2       | FTnSP              | <ul> <li>When Setting TMHnINT or FTMnTRG as trigger event source.</li> <li>This bit is used to choose whether to enable stopping the counter by a trigger event.</li> <li>0: Disabled (Initial value)</li> <li>1: Enabled</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1       | FTnSTC             | This bit is used to choose whether to enable clearing the counter when a trigger event for counter-start occurs (only when the edge is chosen by the FTnTRM2-0 bits).<br>The setting of this bit is valid regardless of the setting of the FTnST bit.<br>If an update request of FTnP, FTnEA, FTnEB and FTnDT by the FTCUDn bit of FTCUD register is generated when the trigger event occurs, the FTnP, FTnEA, FTnEB and FTnDT register gets updated at the same time as the counter clear.<br>0: Disabled (Initial value)<br>1: Enabled                                                                                                                                                                                                                               |
|         |                    | However, the counter is not cleared regardless of this bit in the following cases.<br>When the emergency stop occurs.<br>When Setting FTnTRM2-0 bits to "000" or "011".<br>When Setting TMHnINT or FTMnTRG as trigger event source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0       | FTnST              | This bit is used to choose whether to enable starting the counter by a trigger event.<br>0: Disabled (Initial value)<br>1: Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

[Note]

- The input pulse width must have two timer clocks or longer if FTnSTSS=0.
- The counter forcibly stops and does not run when the emergency stop trigger source is the same as the trigger event source with the FTnETG = 1 and FTnEMGEN = 1.

#### 9.2.11 FTMn Trigger Register 1 (FTnTRG1 :n=0 to 1)

This is a SFR to set the trigger function of FTMn.

|                  |                                                                                                                                                                                                                                                                                                                                                                                     | 0x<br>R/<br>: 8/ | F432 | (FT0TR(<br>(FT1TR) |         |           |                     |     |          |           |         |              |       |             |             |             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|--------------------|---------|-----------|---------------------|-----|----------|-----------|---------|--------------|-------|-------------|-------------|-------------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                  | 14               | 13   | 12                 | 11      | 10        | 9                   | 8   | 7        | 6         | 5       | 4            | 3     | 2           | 1           | 0           |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                     |                  |      |                    |         |           |                     | FTn | FRG1     |           |         |              |       |             |             |             |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                     |                  |      | FTnT               | RG1H    |           |                     |     |          |           |         | FTnTF        | RG1L  |             |             |             |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                   | -                | -    | -                  | I       | -         | -                   | -   | -        | -         | -       | FTnEM<br>GES | -     | FTnTR<br>M2 | FTnTR<br>M1 | FTnTR<br>M0 |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                   | R                | R    | R                  | R       | R         | R                   | R   | R        | R         | R       | R/W          | R     | R/W         | R/W         | R/W         |
| Initial<br>value | 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                             |                  |      |                    |         |           |                     |     |          |           | 0       | 0            | 0     |             |             |             |
| Bit No.          | В                                                                                                                                                                                                                                                                                                                                                                                   | it symb<br>name  | ol   |                    |         |           |                     |     | De       | escriptio | on      |              |       |             |             |             |
| 15 to 5          | -                                                                                                                                                                                                                                                                                                                                                                                   |                  |      | Reserve            | ed bits |           |                     |     |          |           |         |              |       |             |             |             |
| 4                | FTn                                                                                                                                                                                                                                                                                                                                                                                 | EMGE             | 6    | 0: Ris             |         | ge (initi | ose the<br>al value |     | of the e | merger    | ncy sto | p trigger    | of FT | Mn.         |             |             |
| 3                | -                                                                                                                                                                                                                                                                                                                                                                                   |                  |      | Reserve            | ed bit  |           |                     |     |          |           |         |              |       |             |             |             |
| 2 to 0           | - Reserved bit to 0 FTnTRM2 to FTnTRM0 These bits are used to choose the edge or the level of the trigger These are enabled only when FTnSTSS bit is 0. In other cases, it Counter start Counter stop 000: Rising edge Rising edge 010: Rising edge Rising edge 010: Rising edge Falling edge 010: Rising edge Falling edge 1X0: "H" level 1X1: "L" level X: Don't care "0" or "1". |                  |      |                    |         |           |                     |     |          |           |         | edge.        |       |             |             |             |

[Note]

• If a level setting is chosen for the condition of the counter start and condition is matched, the count operation continues (restart the count-up from 0) even if a stop condition is satisfied in the one-shot mode.

• The trigger may occur immediately after setting the FTnTRG1 register in the trigger event enabled.

#### 9.2.12 FTMn Interrupt Enable Register (FTnINTE :n=0 to 1)

This is a SFR to control the interrupt and trigger output of FTMn.

When each bit of FTnINTEL is set to "1", the interrupt is enabled and notified to the interrupt controller. When each bit of FTnINTEH is set to "1", trigger output is enabled and notified to other channels of FTMn.

| Addr             | Address : 0xF414 (FT0INTEL/FT0INTE), 0xF415 (FT0INTEH),<br>0xF434 (FT1INTEL/FT1INTE), 0xF435 (FT1INTEH) |      |                     |      |      |            |            |            |     |   |   |             |             |        |        |        |
|------------------|---------------------------------------------------------------------------------------------------------|------|---------------------|------|------|------------|------------|------------|-----|---|---|-------------|-------------|--------|--------|--------|
|                  | ess :<br>ess size<br>I value                                                                            | : 8/ | W<br>16 bit<br>0000 |      |      |            |            |            |     |   |   |             |             |        |        |        |
|                  | 15                                                                                                      | 14   | 13                  | 12   | 11   | 10         | 9          | 8          | 7   | 6 | 5 | 4           | 3           | 2      | 1      | 0      |
| Word             |                                                                                                         |      |                     |      |      |            |            | FTnl       | NTE |   |   |             |             |        |        |        |
| Byte             |                                                                                                         |      |                     | FTnl | NTEH |            |            |            |     |   |   | FTnl        |             |        |        |        |
| Bit              | -                                                                                                       | -    | -                   | -    | -    | FTnIO<br>B | FTnIO<br>A | FTnIO<br>P | -   | - | - | FTnIET<br>R | FTnIET<br>S | FTnIEB | FTnIEA | FTnIEP |
| R/W              | R                                                                                                       | R    | R                   | R    | R    | R/W        | R/W        | R/W        | R   | R | R | R/W         | R/W         | R/W    | R/W    | R/W    |
| Initial<br>value | 0                                                                                                       | 0    | 0                   | 0    | 0    | 0          | 0          | 0          | 0   | 0 | 0 | 0           | 0           | 0      | 0      | 0      |

Common description of each bits :

It is used to set enable/disable a target function.

- 0: Disabled (Initial value)
- 1: Enabled

| Bit No.  | Bit symbol<br>name | Description (Target function)                                                                                                                                                                                                |
|----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 11 | -                  | Reserved bits                                                                                                                                                                                                                |
| 10       | FTnIOB             | This bit is used to enable FTMnTRG output in event timing B of FTMn.<br>When it's enabled, the FTMnTRG is output when the data of FTnC register and FTnEB<br>register matched or a data is captured into the FTnEB register. |
| 9        | FTnIOA             | This bit is used to enable FTMnTRG output in event timing A of FTMn.<br>When it's enabled, the FTMnTRG is output when the data of FTnC register and FTnEA<br>register matched or a data is captured into the FTnEA register. |
| 8        | FTnIOP             | This bit is used to enable FTMnTRG output related to the FTnP register.<br>When it's enabled, the FTMnTRG is output when the data of FTnC register and FTnP register matched.                                                |
| 7 to 5   | -                  | Reserved bits                                                                                                                                                                                                                |
| 4        | FTnIETR            | The trigger counter start interrupt                                                                                                                                                                                          |
| 3        | FTnIETS            | The trigger counter stop interrupt                                                                                                                                                                                           |
| 2        | FTnIEB             | -TIMER/PWM1/CAPTURE mode<br>The event timing B interrupt<br>-PWM2 mode<br>Write always "0"                                                                                                                                   |
| 1        | FTnIEA             | The event timing A interrupt                                                                                                                                                                                                 |
| 0        | FTnIEP             | The cyclic interrupt                                                                                                                                                                                                         |

#### 9.2.13 FTMn Interrupt Status Register (FTnINTS :n=0 to 1)

FTnINTS is a read-only SFR to indicate the interrupt status of FTMn. The bit 5 to bit 0 is reset to "0" by writing "1" to the same number of bit in the FTnINTC register.

| Address :       | 0xF416 (FT0INTSL/FT0INTS), 0xF417 (FT0INTSH),<br>0xF436 (FT1INTSL/FT1INTS), 0xF437 (FT1INTSH) |
|-----------------|-----------------------------------------------------------------------------------------------|
| Access :        | R                                                                                             |
| Access size :   | 8/16 bit                                                                                      |
| Initial value : | 0x0000                                                                                        |

| _                | 15 | 14 | 13 | 12   | 11   | 10 | 9 | 8    | 7   | 6 | 5           | 4           | 3           | 2      | 1      | 0      |
|------------------|----|----|----|------|------|----|---|------|-----|---|-------------|-------------|-------------|--------|--------|--------|
| Word             |    |    |    |      |      |    |   | FTnl | NTS |   |             |             |             |        |        |        |
| Byte             |    |    |    | FTnl | NTSH |    |   |      |     |   |             | FTnll       | NTSL        |        |        |        |
| Bit              | -  | -  | -  | -    | -    | -  | - | -    | -   | - | FTnISE<br>S | FTnIST<br>R | FTnIST<br>S | FTnISB | FTnISA | FTnISP |
| R/W              | R  | R  | R  | R    | R    | R  | R | R    | R   | R | R           | R           | R           | R      | R      | R      |
| Initial<br>value | 0  | 0  | 0  | 0    | 0    | 0  | 0 | 0    | 0   | 0 | 0           | 0           | 0           | 0      | 0      | 0      |

Common description of each bits :

It is used to indicate a target interrupt status.

- 0: Target interrupt has not occurred. (Initial value)
- 1: Target interrupt has occurred.

| Bit No. | Bit symbol name | Description (Target interrupt)                                                                                                                                                                                                                                          |
|---------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 6 | -               | Reserved bits                                                                                                                                                                                                                                                           |
| 5       | FTnISES         | The emergency stop interrupt<br>This is cleared when writing 1 to FTnICES bit of FTnINTC register.                                                                                                                                                                      |
| 4       | FTnISTR         | The trigger counter start interrupt<br>It is set when counter-starting by trigger event or counter-clear by trigger event for counter-<br>starting occur.<br>This is cleared when writing 1 to FTnICTR bit of FTnINTC register.                                         |
| 3       | FTnISTS         | The trigger counter stop interrupt<br>It is set when counter-stopping by trigger event or counter-clear by trigger event for counter-<br>stopping occur.<br>This is cleared when writing 1 to FTnICTS bit of FTnINTC register.                                          |
| 2       | FTnISB          | The event timing B interrupt<br>This is cleared when writing "1" to FTnICB bit of FTnINTC register.<br>It indicates that the captured data is stored to the FTnEB register in the CAPTURE mode.<br>This is cleared when reading the FTnEB register in the CAPTURE mode. |
| 1       | FTnISA          | The event timing A interrupt<br>This is cleared when writing "1" to FTnICA bit of FTnINTC register.<br>It indicates that the captured data is stored to the FTnEA register in the CAPTURE mode.<br>This is cleared when reading the FTnEA register in the CAPTURE mode. |
| 0       | FTnISP          | The cyclic interrupt<br>This is cleared when writing "1" to FTnICP bit of FTnINTC register.                                                                                                                                                                             |

[Note]

If the FTnINTS register is not zero, a request to interrupt controller is not given when a new interrupt occurs. Clear the FTnINTS register with the FTnINTC register before that time.

#### 9.2.14 FTMn Interrupt Clear Register L/H (FTnINTCL, FTnINTCH : n=0 to 1)

This is a SFR to clear the interrupt status of FTMn. If the bit 5 to bit 0 is set to "1", the interrupt request indicated by the same number of bit in the FTnINTS register gets cleared. This register always returns 0x0000 for reading.

| Address :       | 0xF418 (FT0INTCL), 0xF419 (FT0INTCH),<br>0xF438 (FT1INTCL), 0xF439 (FT1INTCH), |
|-----------------|--------------------------------------------------------------------------------|
| Access :        | W                                                                              |
| Access size :   | 8 bit                                                                          |
| Initial value : | 0x0000                                                                         |

|                  | 15    | 14 | 13 | 12   | 11   | 10 | 9 | 8 | 7 | 6 | 5           | 4           | 3           | 2      | 1      | 0          |
|------------------|-------|----|----|------|------|----|---|---|---|---|-------------|-------------|-------------|--------|--------|------------|
| Word             |       |    |    |      |      |    |   |   | - |   |             |             |             |        |        |            |
| Byte             |       |    |    | FTnl | NTCH |    |   |   |   |   |             | FTnl        | NTCL        |        |        |            |
| Bit              | FTnIR | -  | -  | -    | -    | -  | - | - | - | - | FTnICE<br>S | FTnICT<br>R | FTnICT<br>S | FTnICB | FTnICA | FTnIC<br>P |
| R/W              | W     | R  | R  | R    | R    | R  | R | R | R | R | W           | W           | W           | W      | W      | W          |
| Initial<br>value | 0     | 0  | 0  | 0    | 0    | 0  | 0 | 0 | 0 | 0 | 0           | 0           | 0           | 0      | 0      | 0          |

Common description of each bits (bit 5-0) :

It is used to clear target interrupt status flag.

Writing "0" : Invalid

Writing "1" : Clear a target interrupt status flag.

| Bit No. | Bit symbol name | Description (Target interrupt)                                                                                                                                                                                             |
|---------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15      | FTnIR           | An interrupt request bit of FTMn. Write "1" to this bit at the end of an interrupt routine.<br>Writing "0":Invalid<br>Writing "1":If there is any unhandled interrupt source, the interrupt request is generated<br>again. |
| 14 to 6 | -               | Reserved bits                                                                                                                                                                                                              |
| 5       | FTnICES         | The emergency stop interrupt                                                                                                                                                                                               |
| 4       | FTnICTR         | The trigger counter start interrupt                                                                                                                                                                                        |
| 3       | FTnICTS         | The trigger counter stop interrupt                                                                                                                                                                                         |
| 2       | FTnICB          | The event timing B interrupt                                                                                                                                                                                               |
| 1       | FTnICA          | The event timing A interrupt                                                                                                                                                                                               |
| 0       | FTnICP          | The cyclic interrupt                                                                                                                                                                                                       |

#### 9.2.15 FTM Common Update Register (FTCUD)

This is a SFR to update FTnP, FTnEA, FTnEB and FTnDT registers while they are running. The FTCUD is a common SFR to each channel. The bit n corresponds to channel n. It is unavailable to write to the bits for unequipped channels.

|                  |            | W<br>: 81        | oit         | FTCUD               | )                                         |                                         |                                 |                                |                  |           |         |          |         |       |                                    |            |
|------------------|------------|------------------|-------------|---------------------|-------------------------------------------|-----------------------------------------|---------------------------------|--------------------------------|------------------|-----------|---------|----------|---------|-------|------------------------------------|------------|
|                  | 15         | 14               | 13          | 12                  | 11                                        | 10                                      | 9                               | 8                              | 7                | 6         | 5       | 4        | 3       | 2     | 1                                  | 0          |
| Word             |            |                  |             |                     |                                           |                                         |                                 |                                | -                |           |         |          |         |       |                                    |            |
| Byte             |            |                  |             |                     | -                                         |                                         |                                 |                                |                  |           |         | FTC      | CUD     |       |                                    |            |
| Bit              | -          | -                | -           | -                   | -                                         | -                                       | -                               | -                              | -                | -         | -       | -        | -       | -     | FTCUD<br>1                         | FTCUD<br>0 |
| R/W              | R          | R                | R           | R                   | R                                         | R                                       | R                               | R                              | R                | R         | R       | R        | R       | R     | W                                  | W          |
| Initial<br>value | 0          | 0                | 0           | 0                   | 0                                         | 0                                       | 0                               | 0                              | 0                | 0         | 0       | 0        | 0       | 0     | 0                                  | 0          |
| Bit No.          | Bi         | it symbo<br>name | ol          |                     |                                           |                                         |                                 |                                | De               | escriptio | on      |          |         |       |                                    |            |
| 7 to 2           |            |                  | F           | Reserve             | ed bits                                   |                                         |                                 |                                |                  |           |         |          |         |       |                                    |            |
| 1 to 0           | FTC<br>FTC | UD1 to<br>UD0    | r<br>/<br>t | unning.<br>After se | tting th<br>ternal l<br>e corre<br>g "0": | e FTnP<br>ouffers<br>spondii<br>Invalic | , FTnE/<br>of FTnF<br>ng bit fo | A, FTnE<br>P, FTnE<br>or the F | EB and<br>A, FTn | FTnDT     | registe | ers, the | setting | value | s while t<br>is transf<br>cle by w | ferred     |

#### 9.2.16 FTM Common Control Register (FTCCON)

This is a SFR to set the function of FTMn. This is a common SFR to each channel. The bit n corresponds to channel n. It is unavailable to write to the bits for unequipped channels.

| Addre<br>Acces<br>Acces<br>Initial | s :<br>s size                                                                                                                                                                                                                                                                                     | R/<br>: 8/1      |    | (FTCCO                        | NL/FT  | CCON | l), 0xF38          | 3 (FTC     | CONH    | )         |        |     |      |   |              |              |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|-------------------------------|--------|------|--------------------|------------|---------|-----------|--------|-----|------|---|--------------|--------------|
|                                    | 15                                                                                                                                                                                                                                                                                                | 14               | 13 | 12                            | 11     | 10   | 9                  | 8          | 7       | 6         | 5      | 4   | 3    | 2 | 1            | 0            |
| Word                               |                                                                                                                                                                                                                                                                                                   |                  |    |                               |        |      |                    | FTC        | CON     |           |        |     |      |   |              |              |
| Byte                               |                                                                                                                                                                                                                                                                                                   |                  |    | FTCC                          | ONH    |      |                    |            |         |           |        | FTC | CONL |   |              |              |
| Bit                                | -                                                                                                                                                                                                                                                                                                 | -                | -  | -                             | -      | -    | FT1SD<br>N         | FT0SD<br>N | -       | -         | -      | -   | -    | - | FT1EM<br>GEN | FT0EM<br>GEN |
| R/W                                | R                                                                                                                                                                                                                                                                                                 | R                | R  | R                             | R      | R    | R/W                | R/W        | R       | R         | R      | R   | R    | R | R/W          | R/W          |
| Initial<br>value                   | 0                                                                                                                                                                                                                                                                                                 | 0                | 0  | 0                             | 0      | 0    | 0                  | 0          | 0       | 0         | 0      | 0   | 0    | 0 | 0            | 0            |
| Bit No.                            | Bi                                                                                                                                                                                                                                                                                                | it symbo<br>name | ol |                               |        |      |                    |            | D       | escriptio | on     |     |      |   |              |              |
| 15 to 10                           | -                                                                                                                                                                                                                                                                                                 |                  |    | Reserve                       | d bits |      |                    |            |         |           |        |     |      |   |              |              |
| 9 to 8                             | FT1SDN to       This bit is used to enable controlling the positive phase/negative phase output.         FT0SDN       -TIMER/PWM1/PWM2 mode         0:       Enabled (Initial value)         1:       Disabled (The output is fixed to "L" level)         -CAPTURE mode       This bit is invalid |                  |    |                               |        |      |                    |            |         |           |        |     |      |   |              |              |
| 7 to 2                             | -                                                                                                                                                                                                                                                                                                 |                  |    | Reserve                       | d bits |      |                    |            |         |           |        |     |      |   |              |              |
| 1 to 0                             |                                                                                                                                                                                                                                                                                                   | EMGEN<br>EMGEN   |    | This bit i<br>0: Dis<br>1: En | abled  |      | able the<br>value) | emerge     | ency st | op on tl  | he FTM | ln. |      |   |              |              |

#### 9.2.17 FTM Common Start Register (FTCSTR)

This is a SFR to set the function of FTMn. This is an SFR common to each channel. The bit n corresponds to channel n. It is unavailable to write to the bits for unequipped channels.

|                  | ss :<br>ss size                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |    |         |         |    |            |            |     |           |    |     |      |   |            |            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|---------|---------|----|------------|------------|-----|-----------|----|-----|------|---|------------|------------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14               | 13 | 12      | 11      | 10 | 9          | 8          | 7   | 6         | 5  | 4   | 3    | 2 | 1          | 0          |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |    |         |         |    |            | FTC        | STR |           |    |     |      |   |            |            |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |    | FTCS    | STRH    |    |            |            |     |           |    | FTC | STRL |   |            |            |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                | -  | -       | -       | -  | FT1ET<br>G | FT0ET<br>G | -   | -         | -  | -   | -    | - | FT1ST<br>R | FT0ST<br>R |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R                | R  | R       | R       | R  | W          | W          | R   | R         | R  | R   | R    | R | W          | W          |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                | 0  | 0       | 0       | 0  | 0          | 0          | 0   | 0         | 0  | 0   | 0    | 0 | 0          | 0          |
| Bit No.          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | it symbo<br>name | ol |         |         |    |            |            | De  | escriptio | on |     |      |   |            |            |
| 15 to 10         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |    | Reserve | ed bits |    |            |            |     |           |    |     |      |   |            |            |
| 9 to 8           | FT1ETG to       These bits are used to enable trigger operation; counting stop/start by a trigger event.         FT0ETG       Control by the FTCSTP register to disable it.         For clearing the counter by the trigger event, control it by FTnSTC bit and FTnSPC bit of FTnTRG0 register.         Trigger operation is disabled in the initial state at the power-on.         Writing "0":       Invalid         Writing "1":       Trigger operation is enabled |                  |    |         |         |    |            |            |     |           | of |     |      |   |            |            |
| 7 to 2           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |    | Reserve | d bits  |    |            |            |     |           |    |     |      |   |            |            |
| 1 to 0           | FT1STR to       These bits are used to start counting the FTMn by the software.         FT0STR       When "1" is written in these bits, the count starts.         In the initial state at the power-on, the counting is stopped.         Writing "0":       Invalid         Writing "1":       Counting is started by the software                                                                                                                                     |                  |    |         |         |    |            |            |     |           |    |     |      |   |            |            |

### 9.2.18 FTM Common Stop Register (FTCSTP)

This is a SFR to set the function of FTMn. This is a common SFR to each channel. The bit n corresponds to channel n. It is unavailable to write to the bits for unequipped channels.

| Addre<br>Acces<br>Acces<br>Initial | s :<br>s size                                                                                                                                                                                                                                                                                                                        | W<br>e: 8/*      | F386<br>16 bit<br>0000 | (FTCST                                                         | PL/FT(                      | CSTP),                                | 0xF387               | (FTCS                | STPH)                |                 |         |        |      |   |            |            |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|----------------------------------------------------------------|-----------------------------|---------------------------------------|----------------------|----------------------|----------------------|-----------------|---------|--------|------|---|------------|------------|
| _                                  | 15                                                                                                                                                                                                                                                                                                                                   | 14               | 13                     | 12                                                             | 11                          | 10                                    | 9                    | 8                    | 7                    | 6               | 5       | 4      | 3    | 2 | 1          | 0          |
| Word                               |                                                                                                                                                                                                                                                                                                                                      |                  |                        |                                                                |                             |                                       |                      | FTC                  | STP                  |                 |         |        |      |   |            |            |
| Byte                               |                                                                                                                                                                                                                                                                                                                                      |                  |                        | FTCS                                                           | STPH                        |                                       |                      |                      |                      |                 |         | FTC    | STPL |   |            |            |
| Bit                                | -                                                                                                                                                                                                                                                                                                                                    | -                | -                      | -                                                              | -                           | -                                     | FT1DT<br>G           | FT0DT<br>G           | -                    | -               | -       | -      | -    | - | FT1ST<br>P | FT0ST<br>P |
| R/W                                | R                                                                                                                                                                                                                                                                                                                                    | R                | R                      | R                                                              | R                           | R                                     | W                    | W                    | R                    | R               | R       | R      | R    | R | W          | W          |
| Initial<br>value                   | 0                                                                                                                                                                                                                                                                                                                                    | 0                | 0                      | 0                                                              | 0                           | 0                                     | 0                    | 0                    | 0                    | 0               | 0       | 0      | 0    | 0 | 0          | 0          |
| Bit No.                            | В                                                                                                                                                                                                                                                                                                                                    | it symbo<br>name | ol                     |                                                                |                             |                                       |                      |                      | De                   | escriptio       | on      |        |      |   |            |            |
| 15 to 10                           | -                                                                                                                                                                                                                                                                                                                                    |                  |                        | Reserve                                                        | ed bits                     |                                       |                      |                      |                      |                 |         |        |      |   |            |            |
| 9 to 8                             |                                                                                                                                                                                                                                                                                                                                      | DTG to<br>DTG    |                        | These b<br>Control<br>Trigger<br>Writing<br>Writing<br>a trigg | by the<br>operati<br>g "0": | FTCST<br>on is e<br>Invalie<br>Trigge | 「R regis<br>nabled i | ter to e<br>n the in | nable i<br>itial sta | t.<br>ate at th | ie powe | er-on. | Ĩ    |   |            |            |
| 7 to 2                             | -                                                                                                                                                                                                                                                                                                                                    |                  |                        | Reserve                                                        | ed bits                     |                                       |                      |                      |                      |                 |         |        |      |   |            |            |
| 1 to 0                             | FT1STP to       These bits are used to stop counting the FTMn by the software.         FT0STP       When "1" is written in these bits, the count stops.         In the initial state at the power-on, the counting is stopped.         Writing "0":         Invalid         Writing "1":         Counting is stopped by the software |                  |                        |                                                                |                             |                                       |                      |                      |                      |                 |         |        |      |   |            |            |

#### 9.2.19 FTM Common Status Register (FTCSTAT)

This is a SFR to indicate the state of FTMn. This is a common SFR to each channel. The bit n corresponds to channel n.

| Addre<br>Acces<br>Acces<br>Initial | ss :                                                                                                                                                                                                                                                                                           | R<br>: 8/2      | F388<br>16 bit<br>0000 | (FTCST  | ATL/FT  | CSTA | .T), 0xF3   | 389 (FT)    | CSTAT | ΓH)       |    |      |       |   |            |            |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------|---------|------|-------------|-------------|-------|-----------|----|------|-------|---|------------|------------|
|                                    | 15                                                                                                                                                                                                                                                                                             | 14              | 13                     | 12      | 11      | 10   | 9           | 8           | 7     | 6         | 5  | 4    | 3     | 2 | 1          | 0          |
| Word                               |                                                                                                                                                                                                                                                                                                |                 |                        |         |         |      |             | FTCS        | STAT  |           |    |      |       |   |            |            |
| Byte                               |                                                                                                                                                                                                                                                                                                |                 |                        | FTCS    | TATH    |      |             |             |       |           |    | FTCS | STATL |   |            |            |
| Bit                                | -                                                                                                                                                                                                                                                                                              | -               | -                      | -       | -       | -    | FT1TG<br>EN | FT0TG<br>EN | -     | -         | -  | -    | -     | - | FT1RU<br>N | FT0RU<br>N |
| R/W                                | R                                                                                                                                                                                                                                                                                              | R               | R                      | R       | R       | R    | R           | R           | R     | R         | R  | R    | R     | R | R          | R          |
| Initial<br>value                   | 0                                                                                                                                                                                                                                                                                              | 0               | 0                      | 0       | 0       | 0    | 0           | 0           | 0     | 0         | 0  | 0    | 0     | 0 | 0          | 0          |
| Bit No.                            | Bi                                                                                                                                                                                                                                                                                             | t symbo<br>name | ol                     |         |         |      |             |             | De    | escriptio | on |      |       |   |            |            |
| 15 to 10                           | -                                                                                                                                                                                                                                                                                              |                 |                        | Reserve | ed bits |      |             |             |       |           |    |      |       |   |            |            |
| 9 to 8                             | FT1TGEN to<br>FT0TGENThese bits are used to check the setting status of FTMn.FT0TGENThe trigger operation is disabled in the initial state at the power-on.<br>0: Trigger operation (counting stop/start) is disabled (initial value)<br>1: Trigger operation (counting stop/start) is enabled |                 |                        |         |         |      |             |             |       |           |    |      |       |   |            |            |
| 7 to 2                             | -                                                                                                                                                                                                                                                                                              |                 |                        | Reserve | ed bits |      |             |             |       |           |    |      |       |   |            |            |
| 1 to 0                             | FT1RUN to<br>FT0RUNThese bits are used to indicate the counting status of FTMn. This bit indicates the same<br>information as FTnSTA bit.<br>In the initial state at the power-on, counting is stopped.<br>0: Counting is stopped (initial value)<br>1: Counting is in progress                |                 |                        |         |         |      |             |             |       |           |    |      |       |   |            |            |

#### 9.3 Description of Operation

Four types of operation modes are available for the functional timer:

- TIMER mode
- CAPTURE mode
- PWM1 mode
- PWM2 mode

#### 9.3.1 Common Sequence (Initial setting Common to All Modes)

FTMn starts operating by setting the FTCSTR register after the setting steps from 1 to 6 below. During operation, the hardware states such as interrupt status can be checked and the cycle/event settings are updateable.

1: Mode setting (FTnMOD register) Choose the TIMER/CAPTURE/PWM1/PWM2 mode using the FTnMOD register. In addition, set the repeat mode/one-shot mode.

2: Clock setting (FTnCLK register)

Choose the timer clock and the count clock; dividing ratio can also be set.

- 3: Trigger setting (FTnTRG0 register, FTnTRG1 register)
  Use this setting when starting/stopping the counter by an event trigger.
  In the FTnTRG0 register, choose the event trigger source and the action. In the FTnTRG1 register, choose the edge of the event trigger/emergency stop.
- 4: Interrupt setting (FTnINTE register) Set the interrupt source. Choose from cycle/event (counter coincidence, duty, capture) and trigger start/stop interrupt.
- 5: Cycle/event setting (FTnP register, FTnEA register, FTnEB register, FTnDT register) Set the cycle, data for counter coincidence, duty, dead time, etc.

|                | Та                                    | ble 9-3 the register set | tings                         |                         |
|----------------|---------------------------------------|--------------------------|-------------------------------|-------------------------|
|                | TIMER mode                            | CAPTURE mode             | PWM1 mode                     | PWM2 mode               |
| FTnP register  | Cycle                                 | in repeat mode or time   | out period in one-shot        | mode                    |
| FTnEA register | Coincident interrupt<br>setting value | (Capturing data)         | Positive phase<br>output duty | Duty                    |
| FTnEB register | Coincident interrupt<br>setting value | (Capturing data)         | Negative phase<br>output duty | (Unused)                |
| FTnDT register | Dead time for<br>output               | (Unused)                 | Dead time for<br>output       | Dead time for<br>output |

The cycle is calculated as follows:

(FTnP: 0x0001 to 0xFFFF)

6: Choice of the external output signal

FTnOSL1 and FTnOSL0 bits of FTnMOD register are used to choose output driven to the FTOn pin or FTOnN pin. See "9.3.3. Output Control" for detail.

7: Control start/stop

Allow the software start, or event trigger reception, emergency stop setting.

The counter operates at the rising edge of the count clock.

Since the software start/stop is synchronized with the count clock, the FTnSTA bit becomes "1" at the start after four cycle of the timer clock and the counter operation starts.

When the operation is stopped, the count operation stops and the FTnSTA bit becomes "0". Then the count value is maintained.

If started again, it restarts after four cycle.

If clearing the counter, write an arbitrary value to the FTnC register.

#### 8: Operation process in progress

The state under operation can be checked by the FTnSTAT, FTCSTAT, and FTnINTS registers.

To change the waveform of PWM, etc., set the applicable bit of the FTMUD register after setting the cycle/event. The waveform will be updated in the next cycle.

In addition, setting the FTnSDN bit of the FTCCON register forces the output to be fixed to "L" level.

### 9.3.2 Counter Operation (Common to All Modes)

The operation of FTM's internal counter is common to each mode.

It counts up to the setting value of the FTnP register.

In the repeat mode; the FTnOST bit of the FTnMOD register is "0", the counter is cleared at the time of overflow, then continues the counting operation again.

In the one-shot mode; the FTnOST bit of the FTnMOD register is "1", the counter is cleared at the time of overflow, and then stops the counting operation.

Starting/stopping/Clearing the counting operation can be executed through the software or a trigger event.

### 9.3.2.1 Starting/Stopping Counting by Software

When writing "1" to the FTnSTR bit of the FTCSTR register, the FTnSTA bit of the FTnSTAT register showing the count status becomes "1", and the counting operation is started.

In the one-shot mode; the FTnOST bit of the FTnMOD register is "1", the counting operation is stopped by overflow. The FTnSTA bit of the FTnSTAT register showing the count status automatically becomes "0".

When writing "1" to the FTnSTP bit of the FTCSTP register while the counter operation is in progress (the FTnSTA bit of the FTnSTAT register showing the count status is "1"), the counter stops its operation. If the FTnSTSYN bit is "1", its counting stops at end of cycle.

To confirm the stop of the counter, check by the software that the FTnSTA bit of the FTnSTAT register is reset to "0". The counter value is maintained while the counter is not working.

After the counter is stopped, if "1" is written to the FTnSTR bit of the FTCSTR register again, it continues counting from the value at the time it stopped.

To clear the counter, execute writing to the FTnC register while it is stopped.

If subsequently restarting the counter, confirm that the FTnC register is reset to "0x0000", then write "1" to the FTnSTR bit of the FTCSTR register.

Update timing of the relevant registers:

If writing the registers when the timer stops and the counter is "0", they are updated at the timer start.

If writing the registers while the timer is running, they are updated in the next cycle of that the update is requested by FTCUDn bit of FTCUD register.

If writing the registers when the timer stops and the counter is not "0", the registers are not updated until the update is requested by FTCUDn bit. Update the registers by one of following two ways.

- Write the relevant registers after clearing the counter by setting the FTnCL register.
- Request updating the relevant registers by setting the FTCUDn bit of FTCUD register.

### 9.3.2.2 Starting/Stopping Counting by Trigger Event

Writing "1" to the FTnETG bit of the FTCSTR register enables the counter operation to be controlled by triggers. Trigger choice, etc. can be executed through the configuration of FTnTRG0 and FTnTRG1 registers. The source of a trigger event can be chosen from EXTRG0 to EXTRG7, LTB1INT to LTB3INT, TMH0INT to

TMH4INT, TMHXINT or FTM0TRG to FTMnTRG.

Depending on the chosen trigger event, an operation (counter start, counter stop, counter start/stop and counter clearing) can be chosen. If the FTnSTSYN bit is "1", its counting stops at end of cycle.

### 9.3.2.3 Clearing Counter

A counter can be cleared by the software or trigger-event. A clearing by software is writing any data to FTnC. A clearing by trigger-event is done when occurred start-trigger with FTnSTC=1 or stop-trigger with FTnSPC=1. See the bit-explanation for detail condition.

Set the clear invaild section by setting the FTnDCLH, FTnDCLD.

- FTnDCLH=1, FTnDCLD=x : no clear invalid section
- FTnDCLH=1, FTnDCLD=0 : clear invalid during positive phase outputs high-level. However it's valid during the dead-time.
- FTnDCLH=1, FTnDCLD=1 : clear invalid during positive phase outputs high-level.

### 9.3.3 Output Control

Two types of signals can be output from FTOn/FTOnN pins.

FTnOSL1 and FTnOSL0 bits of FTnMOD register are used to choose the phase of the output signal driven to the FTOn/FTOnN pins. FTnOSNP bit is for reversing the output to the FTMnP pin. FTnOSNN bit is for reversing the output to the FTOnN pin.

If the dead time is enabled, the "L" level output is maintained from the start of counting through the dead time period. Also a setting FTnSDN bit forces the positive/negative phase output to be "L" level. See the explain of each mode for output during operation.

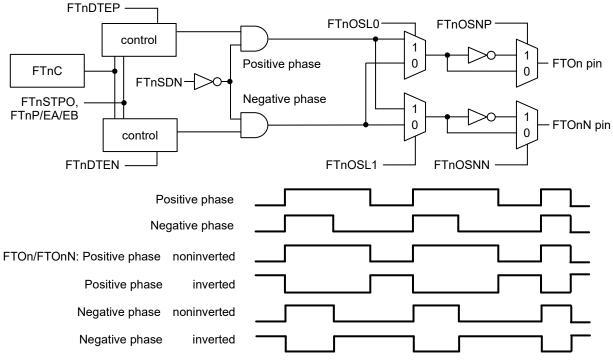
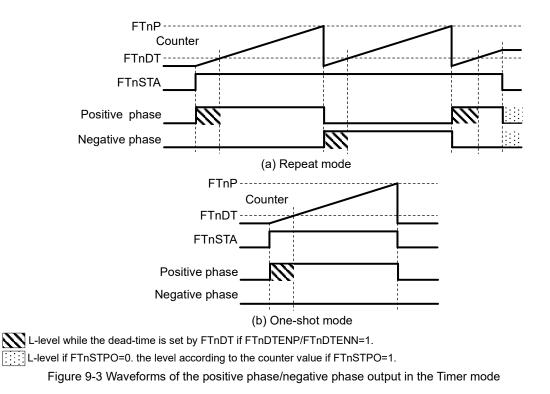



Figure 9-2 Output Control


### 9.3.3.1 TIMER Mode

The TIMER mode function generates interrupt of counter over-flow and controls output.

When writing "1" to the FTnSTR bit of the FTCSTR register with the counter set to "0x0000", the positive phase output starts with "H" level and the negative phase output starts with "L" level.

In the repeat mode, the output repeats to toggle the signal level synchronizing with the start of count and the overflow. In the one-shot mode, the positive phase output remains "H" level for one cycle of the timer and then the count stops. The negative phase output is fixed to "L".

Figure 9-3 shows waveforms of the positive phase/negative phase output.



#### 9.3.3.2 PWM1 Mode

The PWM1 mode generates pulse with the cycle configured by FTnP register. The duty of positive phase output is configured by FTnEA register. The duty of negative phase output is configured by FTnEB register. In the repeat mode, the initial values for each of Positive phase/Negative phase outputs are "L" level, and they become "H" level at start. Each of them becomes "L" level depending on the duty value. They resume "H" level in the next cycle. This pattern repeats until the operation is stopped. In the one-shot mode, they automatically stop after one cycle becoming "L" level. In addition, if the dead time is enabled, the "L" level output is maintained from the start of counting through the dead time period.

Figure 9-4 shows waveforms of the positive phase/negative phase output in the repeat PMW1 mode.

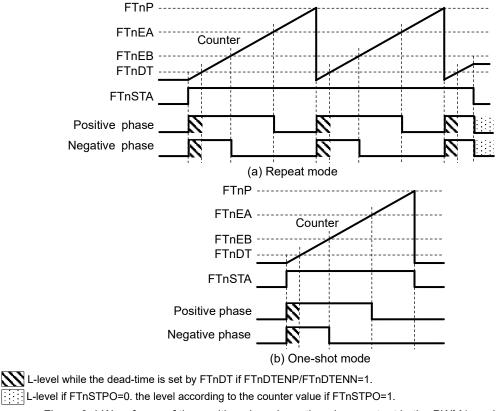
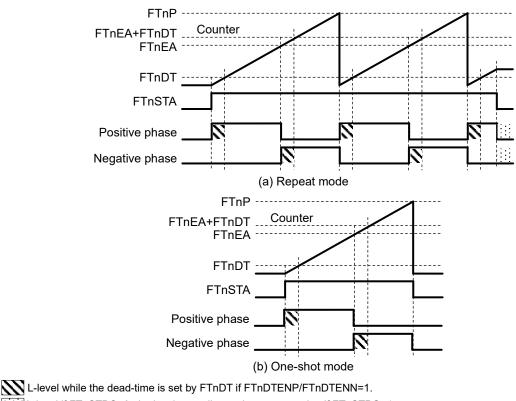



Figure 9-4 Waveforms of the positive phase/negative phase output in the PWM1 mode


### 9.3.3.3 PWM2 Mode

The PWM2 mode generates a complementary output pulse with the cycle configured by FTnP register. The duty of positive/negative phase output is configured by FTnEA register. The FTnEB register is not used. In the repeat mode, "L" level is the initial value for each of Positive phase/Negative phase output, and the positive phase becomes "H" level at start. The positive phase output becomes "L" level and the negative phase output becomes "H"

level depending on the duty value. In the next cycle, the positive phase output becomes "H" level and the negative phase output becomes "L" level again. This pattern repeats until the operation is stopped. In the one-shot mode, they automatically stop after one cycle becoming "L" level.

In addition, if the dead time is enabled, the "L" level output is maintained, from the start of counting for the positive phase output and from duty coincidence for the negative phase output, through the dead time period.

Figure 9-5 shows waveforms of the positive phase/negative phase output in the repeat PMW2 mode.



L-level if FTnSTPO=0. the level according to the counter value if FTnSTPO=1.

Figure 9-5 Waveforms of the positive phase/negative phase output in the PWM2 mode

#### 9.3.3.4 Output at Counter Stop

The state of Positive/Negative phase output when the counter is stopped by the software or the event trigger input is determined by the FTnSTPO bit setting of the FTnMOD register.

(1) If the FTnSTPO bit is "0":

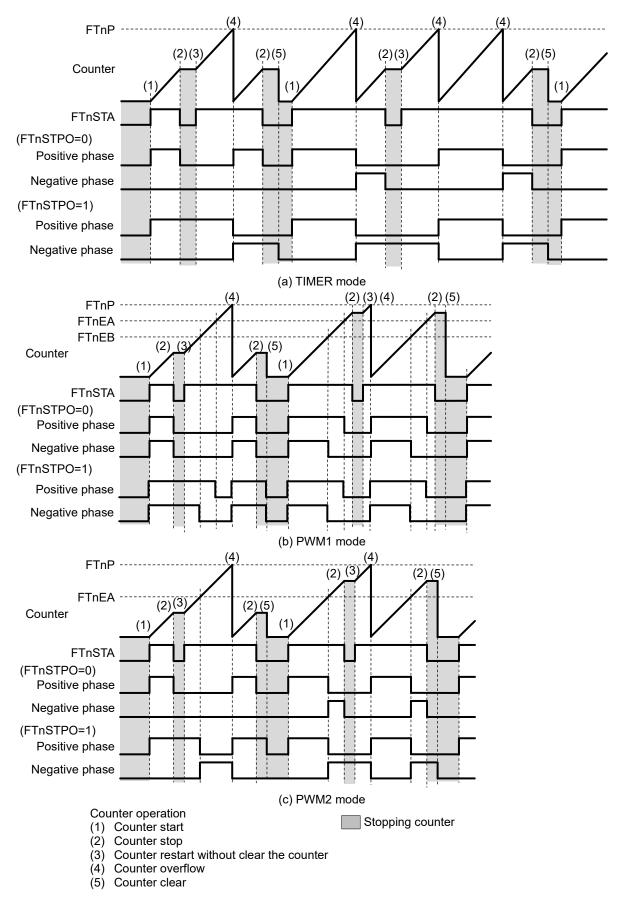
The Positive/Negative phase outputs become "L" level as soon as the counter is stopped. If the counter is restarted in this state, the Positive/Negative phase output remains at "L" level during the present cycle and changes according to the count value from the next cycle.

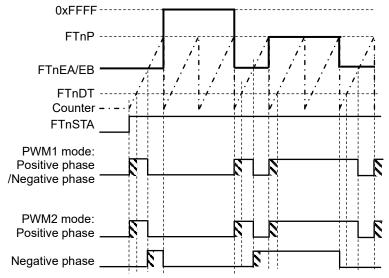
(2) If the FTnSTPO bit is "1":

The Positive/Negative phase output remains the state at the time the counter is stopped. When counting is restarted, the state changes according to the count value.

If writing "1" to the FTnSTC bit of the FTnTRG0 register or clearing the counter by the software after the counting operation is stopped, the counter value is counted up from "0x0000", and the output varies depending on the count value.

FTnSTPO bit of FTnMOD register is used to choose output conditions when the counter stops. Figure 9-6 shows output waveforms of each mode when the FTnSTPO bit of the FTnMOD register is "0" / "1".





Figure 9-6 Waveforms of the positive phase/negative phase output with counter stop

### 9.3.3.5 Output with DUTY=100%,0%

PWM output waveforms is configured to duty 0% and 100% by the FTnEA/EB registers setting in the PWM1/PWM2 mode.

When FTnEA/FTnEB value is the same as FTnP value, the duty is 100%. When FTnEA/FTnEB value is 0xFFFF, the duty is 0%. When both FTnP and FTnEA/EB is 0xFFFF, the duty is 0%.

When setting to the duty = 100% with deadtime enabled, the dead time apply at first cycle only. Figure 9-7 shows output waveforms with 0% and 100% in the PWM1 mode.



N L-level while the dead-time is set by FTnDT if FTnDTENP/FTnDTENN=1.

Figure 9-7 Waveforms of the positive phase/negative phase output with the duty is 0% and 100%

### 9.3.4 CAPTURE Mode

The CAPTURE mode stores the count value, which was obtained when an event trigger source was generated, in the FTnEA or FTnEB register.

The event trigger source for the capture is common to that used for counter start/stop.

| Stored data in FTnEA register | Count value at the time when an event trigger rising edge is generated  |
|-------------------------------|-------------------------------------------------------------------------|
| Stored data in FTnEB register | Count value at the time when an event trigger falling edge is generated |

#### 9.3.4.1 Operation Example in CAPTURE Mode

The following example shows the operation of one cycle and duty of the PWM signal input from the EXTRG0 pin in the CAPTURE mode using the counter start/stop through trigger events.

Set each register in the following steps before measuring.

Step 1: Write "01" to the FTnMD1 and FTnMD0 bits of the FTnMOD register to choose the CAPTURE mode. Step 2: When using an interrupt, write "1" to the FTnIETS bit of the FTnINTE register to enable the trigger counter stop interrupt.

Step 3: Write "0" to the FTnSTSS bit of the FTnTRG0 register, "0000" to FTnSTS3 to FTnSTS0 bits to set the source of the trigger event to "EXTRG0". Write "1" to the FTnST bit to enable the start function of the counter. Write "1" to the FTnSP bit to enable the stop function of the counter.

Step 4: Write "000" to FTnTRM2 to FTnTRM0 bits of the FTnTRG1 register to choose the trigger through the rising edge for both of counter start/stop.

Step 5: Write "1" to the FTnETG bit of the FTCSTR register to enable the trigger operation of capturing.

Figure 9-8 shows the time chart in this example.

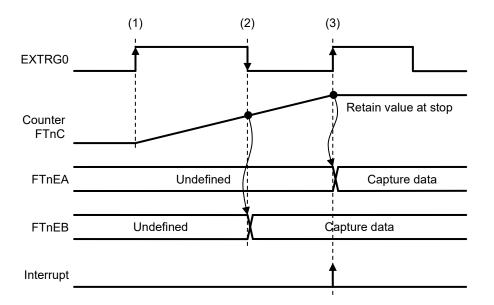



Figure 9-8 Operation Example to measure cycle and duty of PWM signal (one cycle)

- (1) The counter starts operating at the rising edge of the signal input from the EXTRG0 pin.
- (2) The value of the FTMn counter register FTnC is stored into the FTnEB register at the falling edge of the EXTRG0 pin.
- (3) The value of the FTMn counter register FTnC is stored into the FTnEA register at the rising edge of the EXTRG0 pin. The counter stop the operation and the interrupt is generated.
- (4) The counter stops and the interrupt occurs.

The value of the FTnEA register corresponds to the cycle of the PWM signal input from the EXTRG0 pin, and the value of the FTnEB register corresponds to the duty.

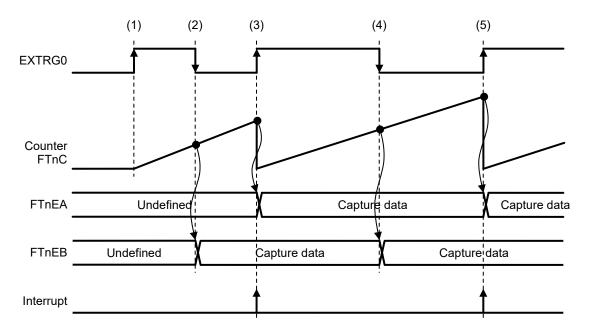
This is an example for measuring the cycle and duty of the PWM signal input from the EXTRG0 pin by the start/stop of a trigger event. Configure registers as follows before the measurement.

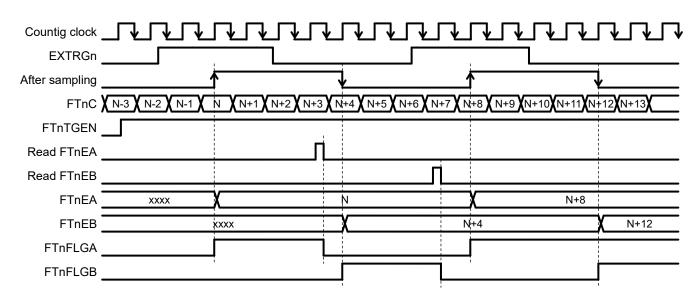
Step 1: Choose the CAPTURE mode by writing "01" to FTnMD1 and FTnMD0 bits of FTnMOD register. Step 2: When using the interrupt, set FTnIEA bit of FTnINTE register to "1" to enable the event timing A interrupt. Step 3: Set FTnSTSS bit of FTnTRG0 register to "0"and set FTnSTS3 to FTnSTS0 bits to "0000" to configure the EXTRG0 as the trigger event source. Set FTnST bit to "1" to enable the start function of the counter. Set FTnSTC bit to "1" to enable the counter clear when the trigger event of counter start occurs.

Step 4: Set FTnTRM2 to FTnTRM0 bits of FTnTRG1 register to "000" to choose the rising edge as the trigger for both the counter start and stop.

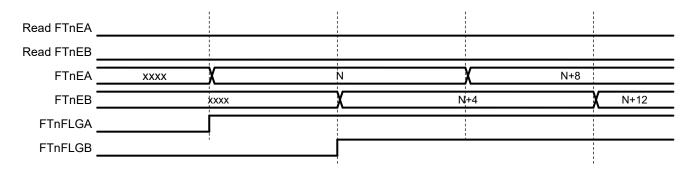
Step 5: Set FTnETG bit of FTCSTR register to "1" to enable the trigger operation.

Figure 9-9 shows the time chart in this example.

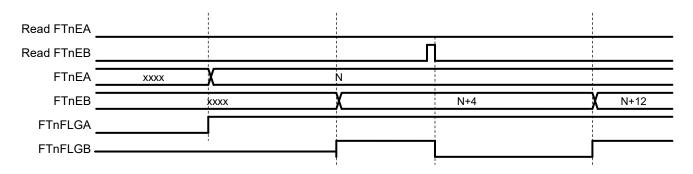




Figure 9-9 Operation Example to measure cycle and duty of PWM signal (repeat cycle)

- (1) The counter starts operating at the rising edge of the signal input from the EXTRG0 pin.
- (2) The value of the FTMn counter register; FTnC is stored into the FTnEB register at the falling edge of the EXTRG0 pin.
- (3) The value of the FTnC is stored into the FTnEA register at the rising edge of the EXTRG0 pin. The counter is cleared and the interrupt is generated. The count operation continues.
- (4) The value of the FTnC is stored into the FTnEB register at the falling edge of the EXTRG0 pin.
- (5) The value of the FTnC is stored into the FTnEA register at the rising edge of the EXTRG0 pin. The counter is cleared and the interrupt is generated. The count operation continues.


The value of the FTnEA register corresponds to the cycle of the PWM signal input from the EXTRG0 pin, and the value of the FTnEB register corresponds to the duty.

In addition, the operation following the capturing is depending on the setting value in the FTnOST bit of the FTnMOD register.


- In the auto mode (FTnOST=0)
- The value of the FTnEA register is updated when the counter is restarted with the signal rising again.
  In the single mode (FTnOST=1)
  - The value of the FTnEA register is not updated when the counter is restarted with the signal rising again.



(a) When read the register before the next trigger (common to FTnOST = 0,1)



(b) When not read the register before the next trigger (FTnOST = 0)



(c) When not read the register before the next trigger (FTnOST = 1)

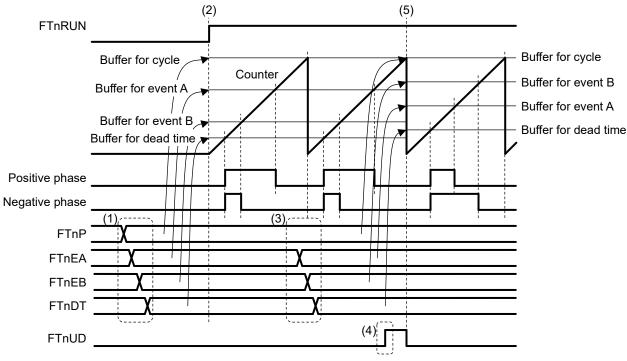
Figure 9-10 Operation Timing in CAPTURE Mode

### 9.3.4.2 Clearing FTnFLGA/FTnFLGB bit

In single mode(FTnOST=1), FTnEA/FTnEB data is not updated if FTnFLGA/FTnFLGB is 1 each. The FTnFLGA/FTnFLGB is cleared by reading FTnEA/FTnEB, respectively. However it is invalid when FTnTGEN=0. Even if FTnFLGA/FTnFLGB is cleared and FTnTGEN is set to 0, a trigger may be entered during control and FTnFLGA/FTnFLGB may be set to 1.

To avoid this, set FTnTGEN to 0 after making sure that FTnFLGA/FTnFLGB is 0 with no trigger input. For example, set FTnST to 0 and stop the trigger start. Or initialize this peripheral circuit by block reset after setting FTnTGEN to 0.

### 9.3.5 Changing Cycle, Event A/B, and Dead Time during Operation


The cycle, event A/B, and dead time can be updated by setting FTnP/ FTnEA/ FTnEB/ FTnDT registers. The update timing is depending on the counter operation status and the counter value when writing data to the registers.

| Counter operation<br>status when setting<br>the register | Counter value<br>when setting the<br>register | Update timing                                                                                     |  |  |  |
|----------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|
| Stop                                                     | 0x0000                                        | Updated at the counter start                                                                      |  |  |  |
| Stop                                                     | Other than<br>0x0000                          | Updated at the start of cycle while the counter has been restarting and FTCUDn bit is set to "1". |  |  |  |
| Operating                                                | Any value                                     | Updated at the start of cycle while the counter is operating and FTCUDn bit is set to "1".        |  |  |  |
| Trigger clear                                            | 0x0000                                        | Cleared with trigger when the counter is running and FTCUDn =1.                                   |  |  |  |

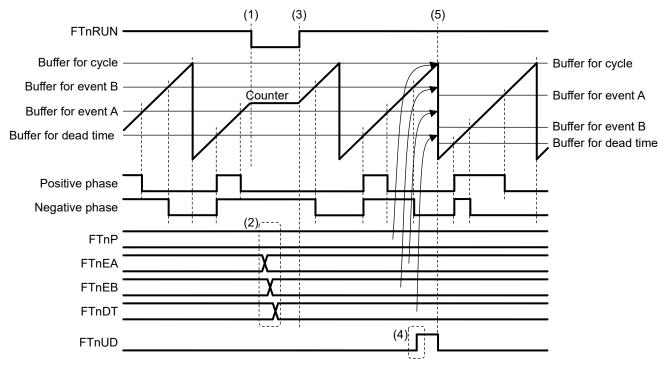
| Table | 9-4 | Update | timina |
|-------|-----|--------|--------|

Figure 9-11 shows the operating waveforms when the registers are updated while the counter stops (counter value is 0x0000) or the counter is operating.

Figure 9-12 shows the operating waveforms when the registers are updated while the counter stops (counter value is other than 0x0000).



(1) Update the registers while the counter stops ( counter value is 0x0000)


(2) Each buffer is update at the start of counter operation

(3) Update the registers while the counter is operating

(4) Set FTnCUDn bit to "1"

(5) Each buffer is updated at the start of cycle and the FTnUD bit gets cleared

Figure 9-11 Update timing while the counter stops (counter value is 0x0000) or the counter is operating



- (1) The counter stops
- (2) Update the registers while the counter stops ( counter value is other than 0x0000)
- (3) The counter operation restarts (Each buffer is not updated at this timing)
- (4) Set FTCUDn bit to "1"
- (5) Each buffer is updated at the start of cycle and the FTnUD bit gets cleared

Figure 9-12 Update timing while the counter stops(counter value is other than 0x0000)

### 9.3.6 External clock input/Event Trigger/Emergency Stop Trigger Control

The functional timer can accept external clock input and two types of trigger signal: event trigger and emergency stop trigger.

The external clock input selected in the EXTRG0 to EXTRG7 is used as the count clock.

The event trigger is used as counter start/stop or trigger for capture. The trigger source can be chosen from EXTRG0 to EXTRG7, LTB1INT to LTB3INT, TMH0INT to TMH4INT, TMHXINT, FTMnTRG or RC1K.

The emergency stop trigger stops the timer operation. It stops the counter and makes the Positive/Negative output "L" level. The trigger source can be chosen from EXTRG0 and EXTRG4.

The EXTRG0 to EXTRG7 are output of sampling controller of the external interrupt function. They are connected to functional timer as event trigger or external clock input.

These input signals are delayed 2 clocks of the timer clock.

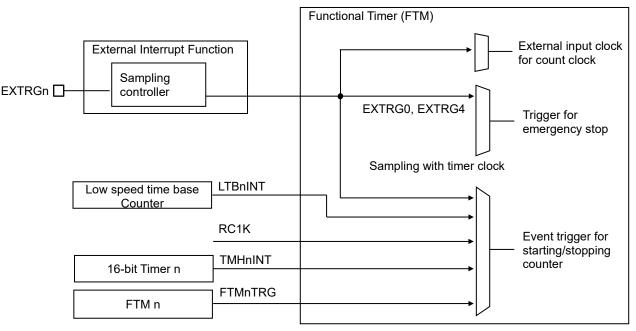



Figure 9-13 Input Path of Trigger Signal

### 9.3.6.1 Start/Stop Operations by Event Trigger

Here is the setting used to control the counter by event triggers. First, before controlling the counter, set the following configuration by FTnTRG0 and FTnTRG1 registers.

Choose "no division" as the timer clock.

If using HSCLK as the system clock, write "1" to the FTnCK0 bit of the FTnCLK register, and "000" to FTnCKD2 to FTnCKD0 bits.

Setting the FTnTRG0 register

- Enable/disable counter start/stop with event triggers
- Clear/not clear the counter when starting/stopping with event triggers
- Accept/not accept the next counter start after stopping with event triggers
- Accept/not accept the counter clear if the Positive phase output is "H" level when clearing the counter with event triggers.
- Event trigger source (EXTRG0 to EXTRG7, LTB1INT to LTB3INT, TMH0INT to TMH4INT, TMHXINT, FTMnTRG)

Setting the FTnTRG1 register

The edge/level of the event trigger causing counter start The edge/level of the event trigger causing counter stop

Setting the timer clock used

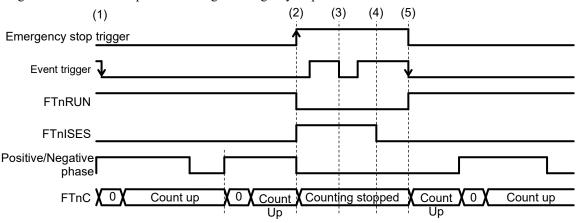
Choose the timer clock and count clock in the FTnCLK register.

Once the configuration above is completed, control the counter by the FTCSTR register. The procedure is as follows:

- (1) Make the waiting state for an event trigger Write "1" to the FTnETG bit to make the waiting state for an event trigger. If the level setting is applied for trigger start and the level is applicable, the counter operation is started as soon as the FTnTGEN bit of the FTCSTAT register becomes "1".
- (2) Start the timer counting by the software

If writing "1" to the FTnETG bit, and writing "1" to the FTnSTR bit with the trigger operation enabled, the timer counting is started by the software.

If writing "0" to the FTnSTP bit of the FTCSTP register while counter operation is in progress, the timer counting is stopped by the software.


#### 9.3.6.2 Emergency Stop Operation

The emergency stop function is enabled by writing "1" to the FTnEMGEN bit of the FTCCON register. Set the FTnEMGEN bit after the trigger source is chosen in the FTnEST bit of the FTnTRG0 register.

If the emergency stop trigger input (rising edge) is present, the counter is stopped, brings Positive/Negative phase output to "L" level, and generates an emergency stop interrupt.

To restart the counter operation, write "1" to the FTnICES bit of the FTnINTC register to clear the emergency stop interrupt status.

Figure 9-14 shows the operation timing at emergency stop.



- (1) The counter operation starts by the event trigger (falling edge).
- (2) The counter stops at by the emergency stop trigger (rising edge). The emergency stop interrupt occurs.
- (3) The event trigger is disabled due to the emergency stop in progress.
- (4) Clear the emergency stop interrupt to enable the operation.
- (5) The counter operation restarts by the event trigger (falling edge).
  - (The counter is not cleared in this example, so pulse output is restarted after one cycle)

Figure 9-14 Operation Timing Diagram at Emergency Stop

Once the emergency stop occurs, the counter is stopped after two clock of the timer clock, and the FTnISES bit of the FTnINTS register becomes "1" (see (2) in Figure 9-14).

When the FTnISES bit is "1", even if the event trigger of counter start is generated, it is not accepted. If the event trigger for the counter start is generated after the FTnISES bit is cleared (see (4) in Figure 9-14), counting up is restarted (see (5) in Figure 9-14).

To restart the counting operation by the software, make sure that the FTnISES bit becomes "0".

### 9.3.7 Interrupt

This section describes the interrupt source and how to clear it.

Writing "1" to the corresponding bit (FTnIE\*) of the FTnINTE register causes each interrupt request to be enabled. Note that permission of the emergency stop interrupt is not available. If the emergency stop function is enabled, the interrupt are also enabled.

For the source which caused the interrupt status to become "1", write "1" to each interrupt status clear bit (FTnIC\*) to clear each interrupt status bit (FTnIS\*).

If using an interrupt, clear each interrupt status bit (FTnIS\*) at the end of the interrupt routine.

Confirm that there is no unhandled interrupt before stopping FTM. The interrupt status is not cleared when you stop FTM while there are some unhandled interrupts.

|                             |                    | Table 9-5 Interr    | upt status                                    |                                                        |
|-----------------------------|--------------------|---------------------|-----------------------------------------------|--------------------------------------------------------|
| Name                        | Status             | Mode                | How to set                                    | How to clear                                           |
| Cyclic interrupt            | FTnISP bit         | All modes           | When FTnC = FTnP                              | Write "1" to FTnICP bit                                |
| Event timing A              | FTnISA bit         | TIMER/PWM1/<br>PWM2 | When FTnC = FTnEA                             | Write "1" to FTnICA bit                                |
| interrupt                   | FTnISA bit         | CAPTURE             | When stored capture data into FTnEA           | Write "1" to FTnICA bit,<br>or read the FTnEA register |
| Event timing B              | FTnISB bit         | TIMER/PWM1          | When FTnC = FTnEB                             | Write "1" to FTnICB bit                                |
| interrupt                   | FTnISB bit CAPTURE |                     | When stored capture data into FTnEB           | Write "1" to FTnICB bit,<br>or read the FTnEB register |
| Trigger stop interrupt      | FTnISTS bit        | All modes           | Counter stop/clear by<br>trigger-stop event   | Write "1" to FTnICTS bit                               |
| Trigger start interrupt     | FTnISTR bit        | All modes           | Counter start/clear by<br>trigger-start event | Write "1" to FTnICTR bit                               |
| Emergency stop<br>interrupt | FTnISES bit        | All modes           | Occurring emergency stop                      | Write "1" to FTnICES bit                               |

The cyclic interrupt/event timing A interrupt/event timing B interrupt can be chosen as the interrupt trigger output.

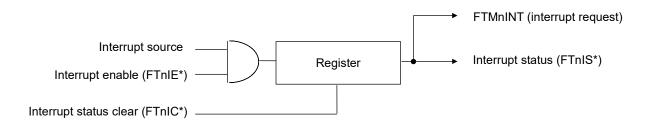



Figure 9-15 Interrupt Control Signal

# **Chapter 10 Watchdog Timer**

### 10. Watchdog Timer

### 10.1 General Description

The watchdog timer (WDT) is equipped with the following functions and can detect the runaway state of program or the undefined state of the CPU by generating an interrupt or reset when an abnormality occurs.

- If the counter is not cleared for more than a certain time period in program operation and overflows, the WDT interrupt is generated in the first overflow and the WDT reset in the second overflow (if the window function is disabled).
- If the counter is not cleared for more than a certain time period in program operation and overflow occurs, the WDT reset is generated in the first overflow (if the window function is enabled).
- If the counter is cleared in the unexpected time period, the WDT invalid clear reset is generated (if the window function is enabled).

The window function refers to the function through which "the time period during which WDT counter clear is enabled" = "the time period during which the window is opened" and

"the time period in which WDT counter clear is disabled" = "the time period in which the window is closed" can be set.

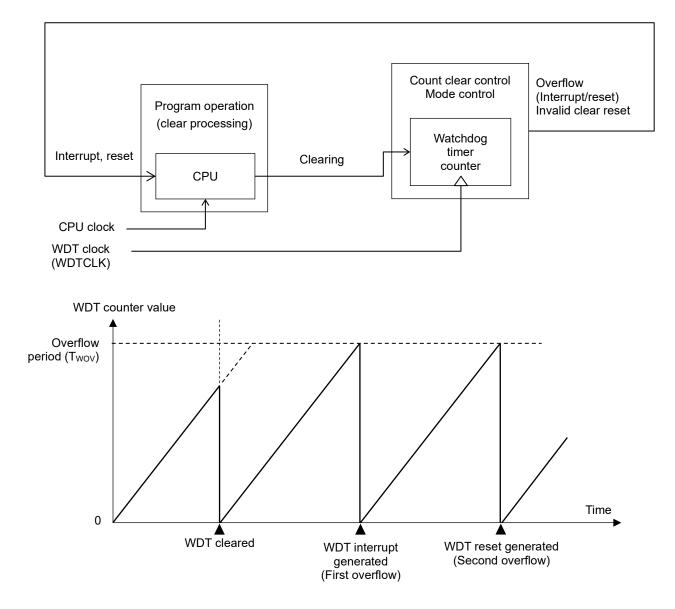



Figure10-1 Watchdog Timer Overview (With the Window Function Disabled)

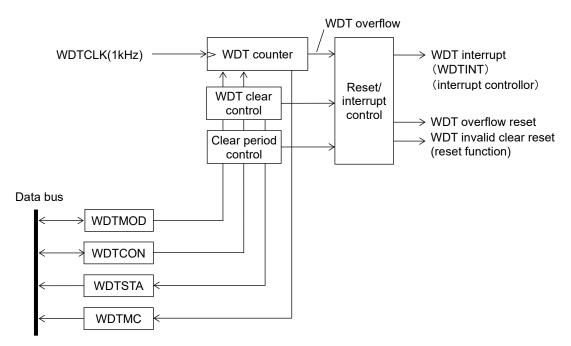
### 10.1.1 Features

- Eight types of overflow periods can be chosen (7.8 ms, 15.6 ms, 31.3 ms, 62.5 ms, 125 ms, 500 ms, 2 s, or 8 s)
- Two types of use are available:
  - Window function disabled mode
     The WDT counter can always be cleared. The WDT interrupt is generated when the first counter overflow occurs, and the WDT reset is generated when the second counter overflow occurs.
  - Window function enabled mode

The periods during which WDT counter clear is enabled and disabled respectively can be set. The WDT reset is generated when the first counter overflow occurs, and the WDT invalid clear reset is generated when the counter is cleared in the period during which WDT counter clear is disabled.

| Mode                          | ove       | rflow | WDT invalid clear reset |  |  |  |  |  |  |  |  |
|-------------------------------|-----------|-------|-------------------------|--|--|--|--|--|--|--|--|
| wode                          | First     |       |                         |  |  |  |  |  |  |  |  |
| Window function disabled mode | Interrupt | Reset | -                       |  |  |  |  |  |  |  |  |
| Window function enabled mode  | Reset     | -     | Reset                   |  |  |  |  |  |  |  |  |

| Table 10.1 | Watehdag Timer Operation Made | ~ |
|------------|-------------------------------|---|
|            | Watchdog Timer Operation Mode | 5 |

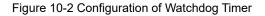

- The following items can be chosen by the code option. See the Chapter 30 "Code Option" for details of the code option.
  - Enabling/disabling the WDT timer operation
  - Operation clock of the WDT counter (32 dividing of low-speed clock LSCLK, WDTCLK RC1K oscillation)
- Using independent internal RC oscillating clock; a frequency accuracy is  $\pm 10\%$

#### [Note]

• The watchdog timer is undetectable to all the abnormal operations. Even if the CPU loses control, the watchdog timer is undetectable to the abnormality in the operation state in which the WDT counter is cleared. It is recommended that the WDT counter is cleared at one place in the main loop of the program as a fail-safe.

### 10.1.2 Configuration

The following diagram shows the configuration of the watchdog timer.




WDTCON : Watchdog timer control register

WDTMOD : Watchdog timer mode register

WDTMC : Watchdog timer counter register

WDTSTA : Watchdog timer status register



### 10.2 Description of Registers

### 10.2.1 List of Registers

| A dalar a s | Nama                            | Symbol | name    |     | 0:   | Initial |  |
|-------------|---------------------------------|--------|---------|-----|------|---------|--|
| Address     | Name                            | byte   | Word    | R/W | Size | value   |  |
| 0xF010      | Watchdog timer control register | WDTCON | -       | R/W | 8    | 0x00    |  |
| 0xF011      | Reserved                        | -      | -       | -   | -    | -       |  |
| 0xF012      | Watchdog timer mode register    | WDTMOD | -       | R/W | 8    | 0x06    |  |
| 0xF013      | Reserved                        | -      | -       | -   | -    | -       |  |
| 0xF014      | Watchdog timer counter register | WDTMCL | WDTMC   | R   | 8/16 | 0x00    |  |
| 0xF015      |                                 | WDTMCH | VUTIVIC | R   | 8    | 0x00    |  |
| 0xF016      | Watchdog timer status register  | WDTSTA | -       | R   | 8    | 0x01    |  |
| 0xF017      | Reserved                        | -      | -       | -   | -    | -       |  |

### 10.2.2 Watchdog timer control register (WDTCON)

This register is a special function register (SFR) to clear the WDT counter.

|                  |                                                                                                                                                                                                                                                                                     | F<br>:e: 8      | )xF010<br>R/W<br>3 bit<br>)x00 | ) (WDTC                      | ON)     |          |         |         |        |          |         |         |          |    |    |            |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------|------------------------------|---------|----------|---------|---------|--------|----------|---------|---------|----------|----|----|------------|
|                  | 15                                                                                                                                                                                                                                                                                  | 14              | 13                             | 12                           | 11      | 10       | 9       | 8       | 7      | 6        | 5       | 4       | 3        | 2  | 1  | 0          |
| Word             |                                                                                                                                                                                                                                                                                     |                 |                                |                              |         |          |         |         | -      |          |         |         |          |    |    |            |
| Byte             |                                                                                                                                                                                                                                                                                     |                 |                                |                              | -       |          |         |         |        |          |         | WDT     | CON      |    |    |            |
| Bit              | -                                                                                                                                                                                                                                                                                   | -               | -                              | -                            | -       | -        | -       | -       | d7     | d6       | d5      | d4      | d3       | d2 | d1 | WDP/d<br>0 |
| R/W              | R                                                                                                                                                                                                                                                                                   | R               | R                              | R                            | R       | R        | R       | R       | W      | W        | W       | W       | W        | W  | W  | R/W        |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                   | 0               | 0                              | 0                            | 0       | 0        | 0       | 0       | 0      | 0        | 0       | 0       | 0        | 0  | 0  | 0          |
| Bit No.          | E                                                                                                                                                                                                                                                                                   | Bit sym<br>name |                                |                              |         |          |         |         | D      | escripti | on      |         |          |    |    |            |
| 7 to 0           | d7 to d0 The WDT counter can be cleared by writing "0x5A" with the WDP bit set to "0", then writing "0xA5" with the WDP bit set to "1".<br>In the window mode, WDT invalid clear reset is generated if the WDT counter is cleared in the period during which WDT clear is disabled. |                 |                                |                              |         |          |         | Ū.      |        |          |         |         |          |    |    |            |
| 0                | WE                                                                                                                                                                                                                                                                                  | )P              |                                | This bi<br>when t<br>writing | he syst | em is re | eset as | well as | when t |          | T count | er over | flows. I |    |    |            |

#### [Note]

• In the WDT interrupt routine (when the interrupt level (ELEVEL) of the CPU program status word (PSW) is "2"), the WDT counter is unable to get cleared.

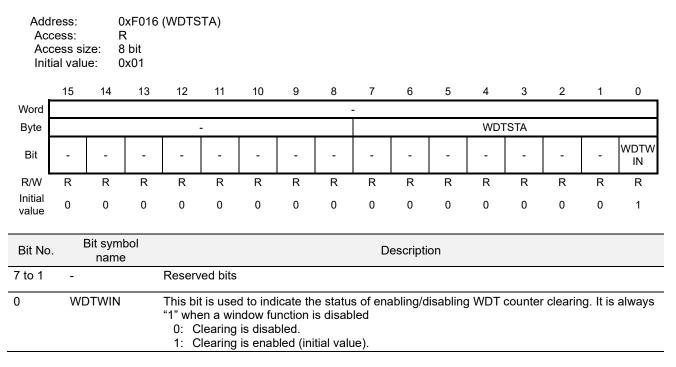
### 10.2.3 Watchdog Timer Mode Register (WDTMOD)

This register is a SFR to set the overflow period and the clear enabled period of the WDT counter.

|                  |                                                                                                                                                                                                                                                                                                                                         | F<br>:e: 8 | xF012<br>R/W<br>bit<br>x06 | 2 (WDTN       | 10D) |                                                               |                                            |                                                        |                                              |                                           |           |                                 |                         |                    |                       |                             |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|---------------|------|---------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|----------------------------------------------|-------------------------------------------|-----------|---------------------------------|-------------------------|--------------------|-----------------------|-----------------------------|
|                  | 15                                                                                                                                                                                                                                                                                                                                      | 14         | 13                         | 12            | 11   | 10                                                            | 9                                          | 8                                                      | 7                                            | 6                                         | 5         | 4                               | 3                       | 2                  | 1                     | 0                           |
| Word             |                                                                                                                                                                                                                                                                                                                                         |            |                            |               |      |                                                               | -                                          |                                                        |                                              | MOT                                       |           |                                 |                         |                    |                       |                             |
| Byte             |                                                                                                                                                                                                                                                                                                                                         |            | -                          |               |      |                                                               |                                            | WDT                                                    | MOD                                          |                                           |           |                                 |                         |                    |                       |                             |
| Bit              | -                                                                                                                                                                                                                                                                                                                                       | -          | -                          | -             | -    | -                                                             | -                                          | -                                                      | -                                            | -                                         | WOVF<br>1 | WOVF<br>0                       | -                       | WDT2               | WDT1                  | WDT0                        |
| R/W              | R                                                                                                                                                                                                                                                                                                                                       | R          | R                          | R             | R    | R                                                             | R                                          | R                                                      | R                                            | R                                         | R/W       | R/W                             | R                       | R/W                | R/W                   | R/W                         |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                       | 0          | 0                          | 0             | 0    | 0                                                             | 0                                          | 0                                                      | 0                                            | 0                                         | 0         | 0                               | 0                       | 1                  | 1                     | 0                           |
| Bit No.          | Bit symbol Description                                                                                                                                                                                                                                                                                                                  |            |                            |               |      |                                                               |                                            |                                                        |                                              |                                           |           |                                 |                         |                    |                       |                             |
| 7, 6, 3          | -                                                                                                                                                                                                                                                                                                                                       |            |                            | Reserved bits |      |                                                               |                                            |                                                        |                                              |                                           |           |                                 |                         |                    |                       |                             |
| 5, 4             | WOVF0 ()                                                                                                                                                                                                                                                                                                                                |            |                            |               |      | functio<br>functio<br>period<br>functio<br>period<br>disableo | )<br>n enabl<br>)<br>d (settin<br>of the ' | led (init<br>led moo<br>led moo<br>ng of wit<br>WDT co | tial valu<br>de 1 (th<br>de 2 (th<br>ndow fu | e clear<br>e clear<br>inction<br>s set to |           | d period<br>d mode<br>is or les | l is ap<br>2)<br>s in W | proxima<br>/DT2 to | tely 50'<br>0 bits, 1 | % of the<br>% of the<br>the |
| 2 to 0           | WDT2 to<br>WDT0These bits are used to set the overflow period (Twov) of the WDT counter.<br>000: Approx. 7.8 ms<br>001: Approx. 15.6 ms<br>010: Approx. 31.3 ms<br>011: Approx. 62.5 ms<br>100: Approx. 125 ms<br>101: Approx. 500 ms<br>110: Approx. 2 s (initial value)<br>111: Approx. 8 s<br>where frequency of WDTCLK is 1.024kHz. |            |                            |               |      |                                                               |                                            |                                                        |                                              |                                           |           |                                 |                         |                    |                       |                             |

#### [Note]

• See the data-sheet for frequency accuracy of RC1K.


### 10.2.4 Watchdog Timer Counter Register (WDTMC)

This register is a SFR to read the WDT counter value.

| Address: 0xF014<br>Access: R<br>Access size: 8/16 bit<br>Initial value: 0x0000 |                        |       |     | (WDTM                                                                                                                                                                             | CL/WE | )TMC), | 0xF015 | 5 (WDT | MCH) |    |    |     |     |    |    |    |
|--------------------------------------------------------------------------------|------------------------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|--------|------|----|----|-----|-----|----|----|----|
| _                                                                              | 15                     | 14    | 13  | 12                                                                                                                                                                                | 11    | 10     | 9      | 8      | 7    | 6  | 5  | 4   | 3   | 2  | 1  | 0  |
| Word                                                                           |                        | WDTMC |     |                                                                                                                                                                                   |       |        |        |        |      |    |    |     |     |    |    |    |
| Byte                                                                           |                        |       |     | WDT                                                                                                                                                                               | МСН   |        |        |        |      |    |    | WDT | MCL |    |    |    |
| Bit                                                                            | d15                    | d14   | d13 | d12                                                                                                                                                                               | d11   | d10    | d9     | d8     | d7   | d6 | d5 | d4  | d3  | d2 | d1 | d0 |
| R/W                                                                            | R                      | R     | R   | R                                                                                                                                                                                 | R     | R      | R      | R      | R    | R  | R  | R   | R   | R  | R  | R  |
| Initial<br>value                                                               | 0                      | 0     | 0   | 0                                                                                                                                                                                 | 0     | 0      | 0      | 0      | 0    | 0  | 0  | 0   | 0   | 0  | 0  | 0  |
| Bit No                                                                         | Bit symbol Description |       |     |                                                                                                                                                                                   |       |        |        |        |      |    |    |     |     |    |    |    |
| 15 to 0                                                                        | d1:<br>d0              | 5 to  |     | These bits are used to read the WDT counter value.<br>The normal counting operation of the WDT counter can be confirmed If values periodically<br>read from the WDT counter vary. |       |        |        |        |      |    |    |     |     |    |    |    |

### 10.2.5 Watchdog Timer Status Register (WDTSTA)

This register is a read-only special function register (SFR) to indicate the WDT counter clearing state.



### 10.3 Description of Operation

The WDT counter starts counting up at the rising edge of the WDT counter operation clock (WDTCLK) chosen by the code option when the system reset is released with operation enabled also by the code option.

The WDT counter can be cleared by writing "0x5A" to the WDTCON register with the WDP bit set to "0", then writing "0xA5" to the WDTCON register with the WDP bit set to "1" while WDT counter clearing is enabled. The WDP bit is reset to "0" when the system is reset as well as when the WDT counter overflows. It is reversed every time data is written to the WDTCON register.

Two types of use are available: window function disabled mode and window function enabled mode.

- Window function disabled mode The WDT counter can always be cleared. The WDT interrupt is generated when the counter overflows for the first time, and the WDT reset is generated when the counter overflows a second time.
- Window function enabled mode The periods during which WDT counter clear is enabled and disabled respectively can be set. The WDT reset is generated when the counter overflows for the first time, and the WDT invalid clear reset is generated when the counter is cleared in the period during which WDT counter clear is disabled.

|                               | Table 10-2 Watchdog Timer Operation Modes |                         |       |  |  |  |  |  |  |  |  |
|-------------------------------|-------------------------------------------|-------------------------|-------|--|--|--|--|--|--|--|--|
| Mada                          | Ove                                       | WDT invalid clear reset |       |  |  |  |  |  |  |  |  |
| Mode                          | First                                     | First Second            |       |  |  |  |  |  |  |  |  |
| Window function disabled mode | Interrupt                                 | Reset                   | -     |  |  |  |  |  |  |  |  |
| Window function enabled mode  | Reset                                     | -                       | Reset |  |  |  |  |  |  |  |  |

The WDT counter overflow period ( $T_{WOV}$ ) and the WDT counter clear enabled period ( $T_{WCL}$ ) can be chosen through the WDTMOD register.

The following items can be chosen with the code option. See Chapter 30 "Code Option" for details on how to set the code option.

- Enabling/disabling the WDT timer operation
- Enabling/disabling the WDT timer operation in the HALT/HALT-H mode
- Enabling/disabling the WDT timer operation in the HALT-D mode

### 10.3.1 How to Clear WDT Counter

The WDT counter can be cleared by writing "0x5A" to the WDTCON register with the WDP bit set to "0", then writing "0xA5" to the WDTCON register with the WDP bit set to "1" while WDT counter clearing is enabled. The WDP bit is reset to "0" when the system is reset as well as when the WDT counter overflows. It is reversed every time data is written to the WDTCON register.

The following diagram shows the WDT counter clearing timing chart.

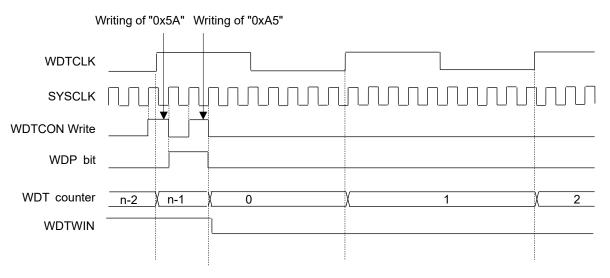



Figure 10-3 WDT Counter Clearing Timing Chart

The following description shows a sample program script of the watchdog timer.

```
void wdt clear(void)
  ł
    unsigned char pswval;
    if(WDTCLR1 == 1) {
                                      // Checking presence of pending clearing process
       return;
    };
    if(WDTCLR2== 1) {
                                      // Checking whether clearing process is pending or completed
       return;
    };
    pswval = s drvcommon getPSW(); // Saving PSW
     DI();
                                  // Interrupt disabled (clearing MIE bit)
    do {
         WDTCON = 0x5A;
                                      // WDT counter clearing
       } while (WDP != 1 );
    WDTCON = 0xA5;
                                      // Confirming MIE bit
    if ((pswval & 0x08) != 0) {
        EI();
                                    // Interrupt enabled (setting MIE bit)
    }
    static unsigned char's drvcommon getPSW(void){
       #pragma asm
       mov r0,psw
       rt
       #pragma endasm
    }
```

```
Figure 10-4 Sample Program Script of Watchdog Timer
```

#### [Note]

In the STOP/STOP-D mode, the WDT timer is stopped.

#### 10.3.2 Window Function Disabled Mode

In the window function disabled mode, if the WDT counter is not available to clear within the WDT counter overflow period ( $T_{WOV}$ ) and the counter overflows for the first time, a WDT interrupt is generated. If the WDT counter is not cleared even by the software processing after the WDT interrupt, and overflows again, a WDT reset occurs. The WDTR bit of the RSTAT register is set to "1" when the WDT reset occurs, and the state on the LSI is transferred to the system reset mode. See Chapter 3 "Reset Function" for details of the RSTAT register.

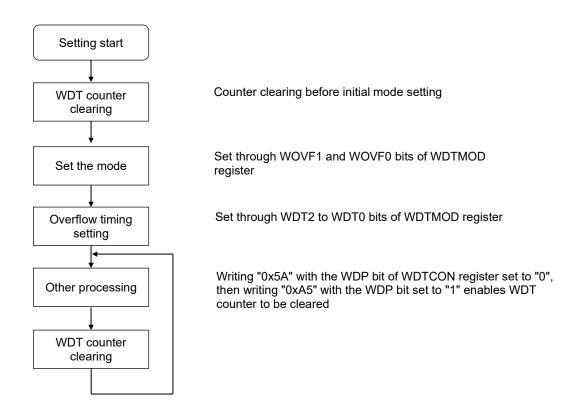
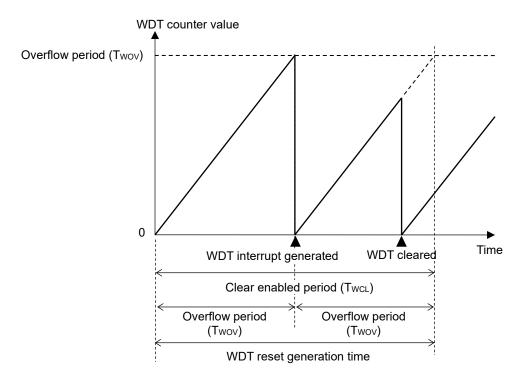
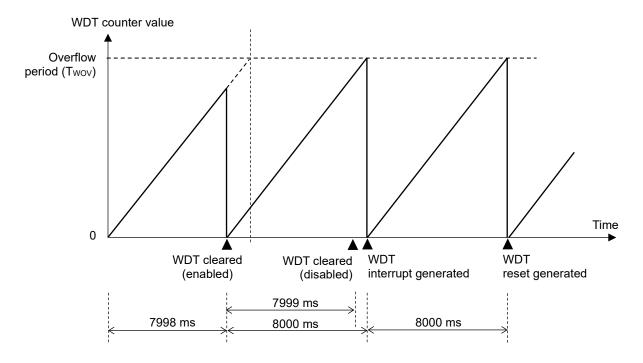



Figure 10-5 Procedure to Use WDT (in Window Function Disabled Mode)

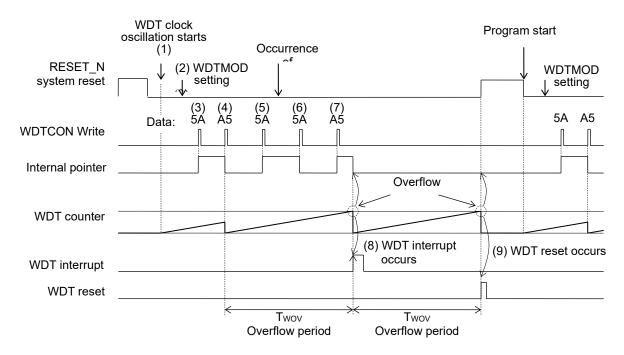
The following figure shows an operation timing overview of the window function disabled mode.



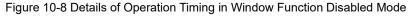


Figure 10-6 Overview of Operation Timing in Window Function Disabled Mode

The following table shows the WDT counter clear enabled period in the window function disabled mode.

| Table 10-3 WDT Counter Clear Enabled Period in Window Function Disabled Mode |      |      |                                            |                                               |                                                           |  |  |  |  |  |
|------------------------------------------------------------------------------|------|------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| WDT2                                                                         | WDT1 | WDT0 | Overflow<br>period<br>(Twov) <sup>*1</sup> | WDT reset<br>generation<br>time <sup>*1</sup> | WDT counter clear enabled period<br>(T <sub>WCL</sub> )*1 |  |  |  |  |  |
| 0                                                                            | 0    | 0    | 7.8 ms                                     | 15.6 ms                                       | ≈ Overflow period                                         |  |  |  |  |  |
| 0                                                                            | 0    | 1    | 15.6 ms                                    | 31.3 ms                                       | ≈ Overflow period                                         |  |  |  |  |  |
| 0                                                                            | 1    | 0    | 31.3 ms                                    | 62.5 ms                                       | ≈ Overflow period                                         |  |  |  |  |  |
| 0                                                                            | 1    | 1    | 62.5 ms                                    | 125 ms                                        | ≈ Overflow period                                         |  |  |  |  |  |
| 1                                                                            | 0    | 0    | 125 ms                                     | 250 ms                                        | ≈ Overflow period                                         |  |  |  |  |  |
| 1                                                                            | 0    | 1    | 500 ms                                     | 1000 ms                                       | ≈ Overflow period                                         |  |  |  |  |  |
| 1                                                                            | 1    | 0    | 2000 ms                                    | 4000 ms                                       | ≈ Overflow period                                         |  |  |  |  |  |
| 1                                                                            | 1    | 1    | 8000 ms                                    | 16000 ms                                      | ≈ Overflow period                                         |  |  |  |  |  |


| Table 10-3 WDT Counter Clear Enabled Period in Window Fund | ction Disabled Mode |
|------------------------------------------------------------|---------------------|
|------------------------------------------------------------|---------------------|

<sup>\*1</sup>: where the WDTCLK frequency is 1.024kHz(typ.) that is not included a significant error.




Design the WDT clear timing with time to spare.

Figure 10-7 Example of Operation Timing in Window Function Disabled mode (When Overflow Period=8000 ms)



The following figure shows details of operation timing in the window function disabled mode.



- (1) After the system reset is released, the WDT counter starts counting up.
- (2) The WDT counter overflow period (TWOV) is set to the WDTMOD register.
- (3) "0x5A" is written to the WDTCON register. (Internal pointer WDP:  $0 \rightarrow 1$ )
- (4) "0xA5" is written to the WDTCON register to clear the WDT counter. (Internal pointer WDP:  $1 \rightarrow 0$ )
- (5) "0x5A" is written to the WDTCON register. (Internal pointer WDP:  $0 \rightarrow 1$ )
- (6) When "0x5A" is written to the WDTCON register after an abnormality occurred, it is not accepted because the internal pointer WDP is "1". (Internal pointer WDP: 1 →0)
- (7) Although "0xA5" is written to the WDTCON register, the WDT counter is not cleared because the internal pointer WDP is "0" and writing of "0x5A" is not accepted in (6). (Internal pointer WDP:  $0 \rightarrow 1$ )
- (8) The WDT counter overflows and a WDT interrupt request is generated. (Internal pointer WDP:  $1 \rightarrow 0$ ) Following cleared due to the overflow, the WDT counter continues counting up.
- (9) If the WDT counter is not cleared even by the software processing after the WDT interrupt and it overflows again, a WDT reset occurs and the shift to the system reset mode takes place.

### 10.3.3 Window Function Enabled Mode

In the window function enabled mode, if the WDT counter is not available to clear within the WDT clear enabled period and the counter overflows first time, the WDT overflow reset is generated. In addition, if the WDT counter is cleared in the period the counter clear is not enabled, the WDT invalid clear reset is generated.

The WDTR bit of the RSTAT register is set to "1" when the WDT overflow reset occurs, and the state on the LSI is transferred to the system reset mode.

The WDTWR bit of the RSTAT register is set to "1" when the WDT invalid clear reset occurs, and the state on the LSI is transferred to the system reset mode. See Chapter 3 "Reset Function" for details of the RSTAT register.

In the window function enabled mode, two types of modes can be chosen through the WDTMOD register:

- Window function enabled mode 1 (the clear enabled period is approximately 75% of the overflow period)
- Window function enabled mode 2 (the clear enabled period is approximately 50% of the overflow period)

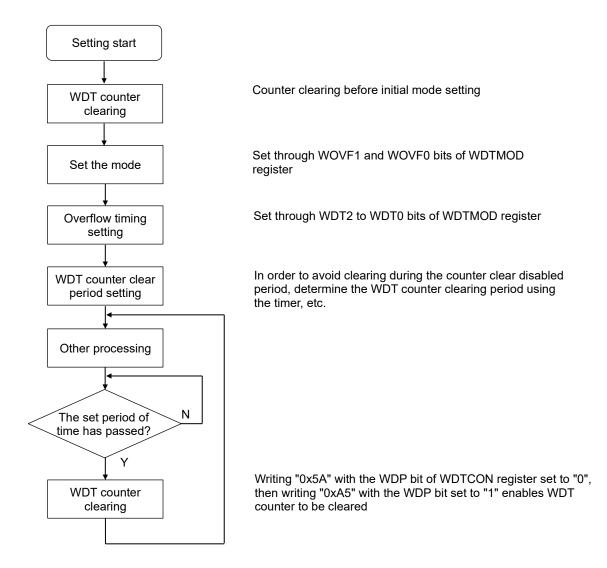



Figure 10-9 Procedure to Use WDT (in Window Function Enabled Mode)

Overviews of the operation of each mode are shown below.

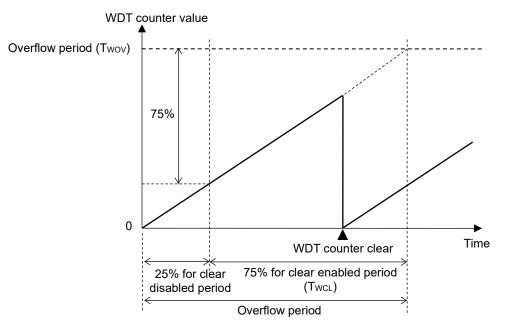



Figure 10-10 Window Function Enabled Mode 1 Operation Overview

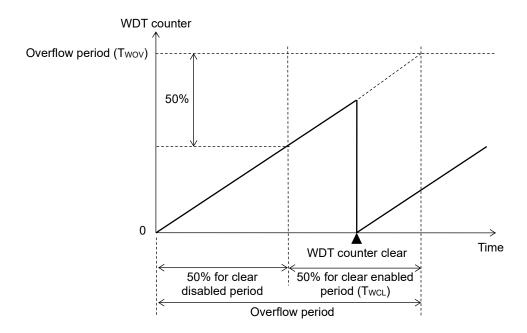



Figure 10-11 Window Function Enabled Mode 2 Operation Overview

The following table shows WDT counter clear enabled periods.

If the overflow period of the WDT counter is set to 62.5 ms or less in WDT2 to 0 bits, the window function is disabled regardless of setting values of WOVF1 and WOVF0 bits.

| WDT2 | WDT1 | WDT0 | Overflow<br>period (Twov) <sup>*1</sup> | WDT reset generation time <sup>*1</sup> | WDT clear enabled period $(T_{WCL})^{*1}$ |
|------|------|------|-----------------------------------------|-----------------------------------------|-------------------------------------------|
| 0    | 0    | 0    | Approx. 7.8 ms                          | Approx. 7.8 ms                          | ≈ Overflow period                         |
| 0    | 0    | 1    | Approx. 15.6 ms                         | Approx. 15.6 ms                         | ≈ Overflow period                         |
| 0    | 1    | 0    | Approx. 31.3 ms                         | Approx. 31.3 ms                         | ≈ Overflow period                         |
| 0    | 1    | 1    | Approx. 62.5 ms                         | Approx. 62.5 ms                         | ≈ Overflow period                         |
| 1    | 0    | 0    | Approx. 125 ms                          | Approx. 125 ms                          | ≈ 75% of overflow period                  |
| 1    | 0    | 1    | Approx. 500 ms                          | Approx. 500 ms                          | ≈ 75% of overflow period                  |
| 1    | 1    | 0    | Approx. 2000 ms                         | Approx. 2000 ms                         | ≈ 75% of overflow period                  |
| 1    | 1    | 1    | Approx. 8000 ms                         | Approx. 8000 ms                         | ≈ 75% of overflow period                  |

| Table 10-4 WDT | Clear Enabled Period | in Window Function | Enabled Mode 1 |
|----------------|----------------------|--------------------|----------------|

<sup>\*1</sup>: where the WDTCLK frequency is 1.024kHz(typ.) that is not included a significant error.

#### Table 10-5 WDT Counter Clear Enabled Period in Window Function Enabled Mode 2

| WDT2 | WDT1 | WDT0 | Overflow<br>period (Twov) <sup>*1</sup> | WDT reset generation time <sup>*1</sup> | WDT clear enabled period $(T_{WCL})^{*1*2}$ |
|------|------|------|-----------------------------------------|-----------------------------------------|---------------------------------------------|
| 0    | 0    | 0    | Approx. 7.8 ms                          | Approx. 7.8 ms                          | ≈ Overflow period                           |
| 0    | 0    | 1    | Approx. 15.6 ms                         | Approx. 15.6 ms                         | ≈ Overflow period                           |
| 0    | 1    | 0    | Approx. 31.3 ms                         | Approx. 31.3 ms                         | ≈ Overflow period                           |
| 0    | 1    | 1    | Approx. 62.5 ms                         | Approx. 62.5 ms                         | ≈ Overflow period                           |
| 1    | 0    | 0    | Approx. 125 ms                          | Approx. 125 ms                          | ≈ 50% of overflow period                    |
| 1    | 0    | 1    | Approx. 500 ms                          | Approx. 500 ms                          | ≈ 50% of overflow period                    |
| 1    | 1    | 0    | Approx. 2000 ms                         | Approx. 2000 ms                         | ≈ 50% of overflow period                    |
| 1    | 1    | 1    | Approx. 8000 ms                         | Approx. 8000 ms                         | ≈ 50% of overflow period                    |

<sup>\*1</sup>: where the WDTCLK frequency is 1.024kHz(typ.) that is not included a significant error.

#### [Note]

• When using the window function enabled mode, always define a WDT interrupt function even though no WDT interrupt occurs.

The following figure shows details of operation timing in the window function enabled mode.

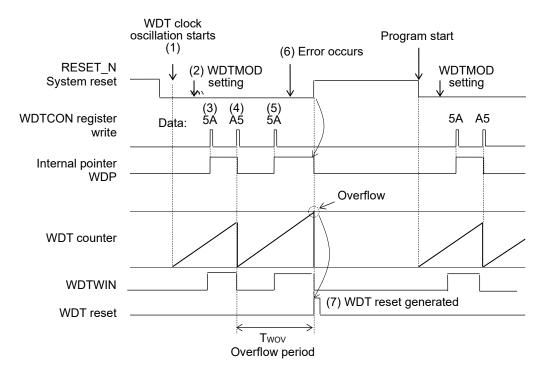



Figure 10-12 Details of Operation Timing in Window Function Enabled Mode

- (1) After the system reset is released, the WDT counter starts counting up.
- (2) The WDTMOD register is set with the WDT counter overflow period (T<sub>WOV</sub>) and WDT clear enabled period.
- (3) "0x5A" is written to WDTCON during the WDT clear enabled period. (Internal pointer WDP:  $0 \rightarrow 1$ )
- (4) "0xA5" is written to the WDTCON register to clear the WDT counter. (Internal pointer WDP:  $1 \rightarrow 0$ )
- (5) "0x5A" is written to WDTCON during the WDT clear enabled period. (Internal pointer WDP:  $0 \rightarrow 1$ )
- (6) Occurrence of abnormality
- (7) The WDT counter overflows and a WDT reset occurs. (Internal pointer WDP:  $1 \rightarrow 0$ )

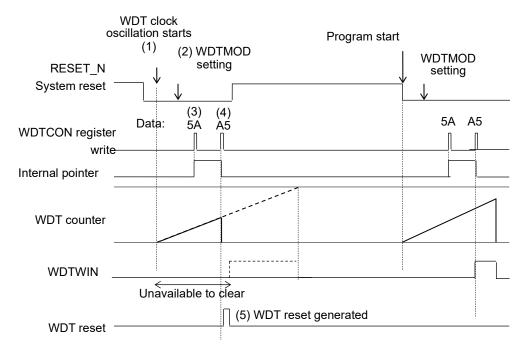



Figure 10-13 WDT invalid clear reset

- (1) After the system reset is released, the WDT counter starts counting up.
- (2) The WDTMOD register is set with the WDT counter overflow period ( $T_{WOV}$ ) and WDT clear enabled period.
- (3) "0x5A" is written to WDTCON. (Internal pointer WDP:  $0 \rightarrow 1$ )
- (4) "0xA5" is written to the WDTCON register to clear the WDT counter. (Internal pointer WDP:  $1 \rightarrow 0$ )
- (5) WDT invalid clear reset is occurred by clear processing during the WDT clear disabled period.

#### [Note]

In the watchdog timer (WDT) interrupt function, as the interrupt level (ELEVEL) of the CPU program status word (PSW) becomes "2", the WDT counter is unable to get cleared. Clear the WDT when the ELEVEL is "0" or "1". It is recommended that the WDT counter is cleared at one place in the main loop of the program as a fail-safe.

# Chapter 11 Synchronous Serial Port (SSIO)

### 11. Synchronous Serial Port

#### 11.1 General Description

ML62Q2500 group has 8-bit/16-bit synchronous serial port (SSIO). Table 11-1 shows the number of channels.

| Table11-1 Nu       | mber of SSIO channels |
|--------------------|-----------------------|
| Channel no.<br>(n) | ML62Q2500 group       |
| 0                  | •                     |

•: Available -: Unavailable

#### 11.1.1 Features

- Master mode / Slave mode
- MSB first / LSB first
- 8bit / 16bit data length
- Self-test function using the master and slave modes. For the self-test functions, see Chapter 29 "Safety Function."

#### 11.1.2 Configuration

Figure 11-1 shows configuration of the SSIO.



- SIOnCON : Serial port n control register
- SIOnDLYL : Serial port n interval setting register
- SIOnSTAT : Serial port n status register
- SIOnICNL : Serial port n interrupt control register
- SIOnINT : SSIO n interrupt

Figure 11-1 Configuration of SSIO

#### 11.1.3 List of Pins

The I/O pins of the SSIO are assigned to the shared function of the general ports.

| Pin name | I/O | Description                              |
|----------|-----|------------------------------------------|
| SCLKn    | I/O | Synchronous clock input/output of SSIO n |
| SOUTn    | 0   | Transmission data output of SSIO n       |
| SINn     | I   | Reception data input of SSIO n           |
| (n=0)    |     |                                          |

Table 11-2 shows the list of the general ports used for the SSIO and the register settings of the ports.

| Table 11-2 Folts used for the SSIC and the register settings (DART) |          |     |                       |                     |               |                    |  |  |  |  |
|---------------------------------------------------------------------|----------|-----|-----------------------|---------------------|---------------|--------------------|--|--|--|--|
| Channel no.                                                         | Pin name | Sh  | ared port             | Setting<br>register | Setting value | ML62Q2500<br>group |  |  |  |  |
|                                                                     |          | P06 | 2 <sup>nd</sup> Func. | P0MOD6              | 0001_XXXX*1   | •                  |  |  |  |  |
|                                                                     | SIN0     | P26 | 2 <sup>nd</sup> Func. | P2MOD6              | 0001_XXXX*1   | •                  |  |  |  |  |
|                                                                     |          | P32 | 2 <sup>nd</sup> Func. | P3MOD2              | 0001_XXXX*1   | •                  |  |  |  |  |
|                                                                     |          | P04 | 2 <sup>nd</sup> Func. | P0MOD4              | 0001_XXXX*3   | •                  |  |  |  |  |
| 0                                                                   | SCLK0    | P24 | 2 <sup>nd</sup> Func. | P2MOD4              | 0001_XXXX*3   | •                  |  |  |  |  |
|                                                                     |          | P30 | 2 <sup>nd</sup> Func. | P3MOD0              | 0001_XXXX*3   | •                  |  |  |  |  |
|                                                                     |          | P05 | 2 <sup>nd</sup> Func. | P0MOD5              | 0001_XXXX*2   | •                  |  |  |  |  |
|                                                                     | SOUT0    | P25 | 2 <sup>nd</sup> Func. | P2MOD5              | 0001_XXXX*2   | •                  |  |  |  |  |
|                                                                     |          | P31 | 2 <sup>nd</sup> Func. | P3MOD1              | 0001_XXXX*2   | •                  |  |  |  |  |

Table 11-2 Ports used for the SSIO and the register settings (UART)

•: Available to use, -: Unavailable

\*1 : "XXXX" determines the condition of the port input

| XXXX | Condition of the port input                  |
|------|----------------------------------------------|
| 0001 | Input (without an internal pull-up resistor) |
| 0101 | Input (with an internal pull-up resistor)    |

\*2 : "XXXX" determines the condition of the port output

|      | Condition of the port output                |
|------|---------------------------------------------|
| 0010 | CMOS output                                 |
| 1010 | Nch open drain output (without the pull-up) |
| 1111 | Nch open drain output (with the pull-up)    |

\*3 : XXXX determines the condition of the port input/output In the master mode, see to \*2 for use as output. In the slave mode, see to \*1 for use as input.

#### 11.1.4 Combination of SSIO port

SINn, SOUTn and SCLKn are assigned to multiple general ports. Be sure to use the ports in following combinations.

| 0           |             | Port  |        |        |                    |  |  |  |  |  |
|-------------|-------------|-------|--------|--------|--------------------|--|--|--|--|--|
| Combination | Channel no. | SINn* | SOUTn* | SCLKn* | ML62Q2500<br>group |  |  |  |  |  |
| 1           |             | P06   | P05    | P04    | •                  |  |  |  |  |  |
| 2           | 0           | P26   | P25    | P24    | •                  |  |  |  |  |  |
| 3           |             | P32   | P31    | P30    | •                  |  |  |  |  |  |

| Table 11-3 | Combination | of the | SSIO port |
|------------|-------------|--------|-----------|
|            | Combination |        |           |

\* :n=channel number. •: Available to use, -: Unavailable

[Note]

Be sure to use the SIN0/SOUT0/SCLK0 ports with combination in the Fig.11-3, and assign each function to only one LSI pin.

### 11.2 Description of Registers

#### 11.2.1 List of Registers

| Address | Name                                        | Syml      | loc       | R/W  | Size | Initial |  |
|---------|---------------------------------------------|-----------|-----------|------|------|---------|--|
| Address | Name                                        | Byte      | Word      | r/// | Size | value   |  |
| 0xF500  | Serial port 0 transmission/reception buffer | SIO0BUFL  | SIO0BUF   | R/W  | 8/16 | 0x00    |  |
| 0xF501  |                                             | SIO0BUFH  | SICUBUR   | R/W  | 8    | 0x00    |  |
| 0xF502  | Sorial part 0 status register               | SIO0STATL | SIO0STAT  | R    | 8/16 | 0x00    |  |
| 0xF503  | Serial port 0 status register               | SIO0STATH | 31003 TAT | W    | 8    | 0x00    |  |
| 0xF504  | Sorial part 0 control register              | SIO0CONL  | SIO0CON   | R/W  | 8/16 | 0x00    |  |
| 0xF505  | Serial port 0 control register              | SIO0CONH  | 3100001   | R/W  | 8    | 0x00    |  |
| 0xF506  | Sorial part 0 mode register                 | SIO0MODL  | SIO0MOD   | R/W  | 8/16 | 0x00    |  |
| 0xF507  | Serial port 0 mode register                 | SIO0MODH  | SICONICD  | R/W  | 8    | 0x00    |  |
| 0xF508  | Serial port 0 interval setting register     | SIO0DLYL  | -         | R/W  | 8    | 0x00    |  |
| 0xF509  | Reserved                                    | -         | -         | -    | -    | -       |  |
| 0xF50A  | Serial port 0 interrupt control register    | SIO0ICNL  | -         | R/W  | 8    | 0x00    |  |
| 0xF50B  | Reserved                                    | -         | -         | -    | -    | -       |  |
| 0xF50C  | Reserved                                    | -         |           | -    | -    | -       |  |
| 0xF50D  |                                             | _         | -         | -    | -    | -       |  |
| 0xF50E  | Reserved                                    |           |           | -    | -    | -       |  |
| 0xF50F  | Neserveu                                    | -         | -         | -    | -    | -       |  |

#### 11.2.2 Serial Port n Transmission/Reception Buffer (SIOnBUF)

This is a SFR to store transmission/ reception data.

| Acce<br>Acce     | Address :<br>Access :<br>Access size :<br>Initial value : |           | :F500 (:<br>W<br>16 bit<br>:0000 | SIO0Bl    | JFL/SIC   | DOBUF)    | ), 0xF5 | 01 (SIC | 0BUFH | H)   |      |      |      |      |      |      |
|------------------|-----------------------------------------------------------|-----------|----------------------------------|-----------|-----------|-----------|---------|---------|-------|------|------|------|------|------|------|------|
|                  | 15                                                        | 14        | 13                               | 12        | 11        | 10        | 9       | 8       | 7     | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
| Word             |                                                           |           |                                  |           |           |           |         | SIOn    | BUF   |      |      |      |      |      |      |      |
| Byte             |                                                           |           |                                  | SIOn      | BUFH      |           |         |         |       |      |      | SIOn | BUFL |      |      |      |
| Bit              | SnB1<br>5                                                 | SnB1<br>4 | SnB1<br>3                        | SnB1<br>2 | SnB1<br>1 | SnB1<br>0 | SnB9    | SnB8    | SnB7  | SnB6 | SnB5 | SnB4 | SnB3 | SnB2 | SnB1 | SnB0 |
| R/W              | R/W                                                       | R/W       | R/W                              | R/W       | R/W       | R/W       | R/W     | R/W     | R/W   | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Initial<br>value | 0                                                         | 0         | 0                                | 0         | 0         | 0         | 0       | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

If writing data into this register, the data is stored into the transmission register (SIOnTR).

If reading data, the data in the reception data (SIOnRC) is read out.

In an 8-bit mode, a communication is start when writing into SIOnBUFL at the SnEN bit of SIOnCON is "1" and the SnFUL bit of SIOnSTATL is "0".

In an 16-bit mode, a communication is start when writing into SIOnBUFH at the SnEN bit of SIOnCON is "1" and the SnFUL bit of SIOnSTATL is "0".

The transmission data is 0xFF/0xFFFF when transmission data buffer is empty in the slave mode.

| Bit No. | Bit symbol name  | Description                                                                                                                                                                                                                                                                                    |
|---------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 8 | SnB15 to<br>SnB8 | Transmission/Reception data buffer for the upper side 8 bit. If writing data into this register, the data is stored into the transmission register (SIOnTR). If reading data, the data in the reception data (SIOnRC) is read out.<br>These bits are unused and not writable in an 8-bit mode. |
| 7 to 0  | SnB7 to<br>SnB0  | Transmission/Reception data buffer for the lower side 8 bit. If writing data into this register, the data is stored into the transmission register (SUnTR). If reading data, the data in the reception data (SUnRC) is read out.                                                               |

#### 11.2.3 Serial Port n Status Register (SIOnSTAT)

This is a SFR to indicate the state of the transmission/reception operation.

| Addre<br>Acces<br>Acces<br>Initial | s :<br>s size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R/<br>e: 8/*    |        | SIO0S                     | ΓATL/S                                  | IOOSTA                                    | ΑT),0xF                                  | 502 (SI                        | OOSTA                   | ATH)                             |           |           |           |            |                      |            |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|---------------------------|-----------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------|-------------------------|----------------------------------|-----------|-----------|-----------|------------|----------------------|------------|
| _                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14              | 13     | 12                        | 11                                      | 10                                        | 9                                        | 8                              | 7                       | 6                                | 5         | 4         | 3         | 2          | 1                    | 0          |
| Word                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |        |                           |                                         |                                           |                                          | SIOn                           | STAT                    |                                  |           |           |           |            |                      |            |
| Byte                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |        | SIOn                      | STATH                                   | 0 70                                      | 0.00                                     | 0.711                          |                         | 0.05                             |           | SIOnS     |           | 0.70       | 0.00                 | 0. 711     |
| Bit                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -               | -      | -                         | -                                       | SnTO<br>C                                 | SnRO<br>C                                | SnTU<br>C                      | -                       | SnRF<br>UL                       | -         | SnTX<br>F | SnFU<br>L | SnTO<br>ER | SnRO<br>ER           | SnTU<br>ER |
| R/W                                | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R               | R      | R                         | R                                       | W                                         | W                                        | W                              | R                       | R                                | R         | R         | R         | R          | R                    | R          |
| Initial<br>value                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0               | 0      | 0                         | 0                                       | 0                                         | 0                                        | 0                              | 0                       | 0                                | 0         | 0         | 0         | 0          | 0                    | 0          |
| Bit no.                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | it symb<br>name | ol     |                           |                                         |                                           |                                          |                                | De                      | escriptic                        | on        |           |           |            |                      |            |
| 15 to 11                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |        | Reserve                   | ed bits                                 |                                           |                                          |                                |                         |                                  |           |           |           |            |                      |            |
| 10                                 | SnT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OC              | -      | Writin                    | g "0": Ir                               |                                           |                                          |                                | of SIC                  | nSTATI                           | L.        |           |           |            |                      |            |
| 9                                  | SnR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OC              | -      | Writin                    | g "0":Ir                                |                                           |                                          |                                | t of SIC                | DnSTAT                           | L.        |           |           |            |                      |            |
| 8                                  | SnT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UC              | -      | Writin                    | g "0": Ir                               |                                           |                                          |                                | of SIO                  | INSTATI                          |           |           |           |            |                      |            |
| 7                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |        | Reserve                   | ~                                       |                                           |                                          |                                |                         |                                  |           |           |           |            |                      |            |
| 6                                  | SnR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FUL             |        | 1: Re<br>The rec          | cleared<br>eceptio<br>eceptio<br>eption | when S<br>n buffer<br>n buffer<br>overrun | SIOnBL<br>is null.<br>is full.<br>error; | IF is rea<br>(Initial<br>SnROE | ad.<br>value)<br>R occu |                                  |           |           |           |            | state o              | f          |
| 5                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | ļ      | Reserve                   | ed bits                                 |                                           |                                          |                                |                         |                                  |           |           |           |            |                      |            |
| 4                                  | SnT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XF              | -      |                           | mmuni                                   | cation i                                  | s stop a                                 | and idle                       | state.                  | (Initial v                       |           |           |           |            |                      |            |
| 3                                  | 1: communication is active; transmitting / receiving.         SnFUL       This is used to indicate state of the transmission buffer (SIOnBUF).<br>This bit is set to "1" by writing a data to SIOnBUFL in the 8-bit mode, or by writing a data to SIOnBUFH in the 16-bit mode, and reset to "0" when starting to transfer the data.<br>When the SnEN bit of the SIOnCON register is set to "1" on the condition of SnFUL is "1" a master mode, the transmission starts. When writing data to SIOnBUF on the condition of SnFUL is "1", the SIOnBUF register is overwritten.<br>This is reset when writing "1" to SnTFC bit SIOnCON register.         0: Transmission buffer has no data (initial value)         1: Transmission buffer has data |                 |        |                           |                                         |                                           |                                          | '1" and                        |                         |                                  |           |           |           |            |                      |            |
| 2                                  | SnT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OER             | ۰<br>۱ | when th<br>SnTOC<br>0: Th | e SnFl<br>bit.<br>iere wa               | JL bit is                                 | "1", the                                 | e SnTO                         | ER bit i<br>errun er    | is set to<br>ror (Init           | о "1". То | o reset t |           |            | nBUF re<br>it, write |            |
| 1                                  | SnR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OER             |        | the data<br>0: Th         | a in the<br>iere wa                     | SIOnB                                     | UF regi<br>ception                       | ster. To<br>overru             | reset t<br>n error      | run erro<br>he SnR<br>(Initial \ | OER b     |           |           |            | before re<br>bit.    | eading     |

| Bit no. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0       | SnTUER             | <ul> <li>This bit is used to indicate a transmission underrun error.</li> <li>This bit is set to "1" by transmitting start when the SnFUL bit is "0" and SnEN bit is "1", where Transmitting data is 0xFF/0xFFF.</li> <li>In the clock type 1 slave mode, this bit is set to "1", when the SnEN bit is set to "1" or each transmission completed while the SnFUL bit is "0". See section 11.3.1.4 "Timing of transmission underrun error (SnTUER).</li> <li>To reset the SnTUER bit, write "1" to SnTUC bit.</li> <li>0: There was no transmission underrun error (Initial value)</li> <li>1: There was a transmission underrun error</li> </ul> |

### 11.2.4 Serial Port n Control Register (SIOnCON)

1: Enabled

This is a SFR to control the SSIO.

| Addres<br>Acces<br>Acces<br>Initial | s :<br>s size                                                                                                                                                                                                                                            | R/<br>e: 8/*    |    | (SIO0CC            | ONL/SI  | 10000                | N), 0xF | 505 (SI | 10200  | NH)       |    |   |   |   |   |      |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|--------------------|---------|----------------------|---------|---------|--------|-----------|----|---|---|---|---|------|
|                                     | 15                                                                                                                                                                                                                                                       | 14              | 13 | 12                 | 11      | 10                   | 9       | 8       | 7      | 6         | 5  | 4 | 3 | 2 | 1 | 0    |
| Word                                |                                                                                                                                                                                                                                                          |                 |    |                    |         |                      |         | SIOr    | CON    |           |    |   |   |   |   |      |
| Byte                                | e SIOnCONH SIOnCONL                                                                                                                                                                                                                                      |                 |    |                    |         |                      |         |         |        |           |    |   |   |   |   |      |
| Bit                                 | -                                                                                                                                                                                                                                                        | -               | -  | SnTF<br>C          | -       | -                    | -       | -       | -      | -         | -  | - | - | - | - | SnEN |
| R/W                                 | R                                                                                                                                                                                                                                                        | R               | R  | W                  | R       | R                    | R       | R       | R      | R         | R  | R | R | R | R | R/W  |
| Initial<br>value                    | 0                                                                                                                                                                                                                                                        | 0               | 0  | 0                  | 0       | 0                    | 0       | 0       | 0      | 0         | 0  | 0 | 0 | 0 | 0 | 0    |
| Bit no.                             | В                                                                                                                                                                                                                                                        | it symb<br>name | ol |                    |         |                      |         |         | De     | escriptio | on |   |   |   |   |      |
| 15 to 13                            | -                                                                                                                                                                                                                                                        |                 |    | Reserve            | ed bits |                      |         |         |        |           |    |   |   |   |   |      |
| 12                                  | SnTFC       This is used to clear the SnFUL bit of SIOnSTATL and transmittion register; SIOnTR.<br>If clearing SIOnTR, a data in SIOnTR is initialized to 0xFFFF.<br>Writing "0": Invalid<br>Writing "1": clear the SnFUL bit and initialize the SIOnTR. |                 |    |                    |         |                      |         |         |        |           |    |   |   |   |   |      |
| 11 to 1                             | -                                                                                                                                                                                                                                                        |                 |    | Reserve            | -       |                      |         |         |        |           |    |   |   |   |   |      |
| 0                                   | SnE                                                                                                                                                                                                                                                      | N               |    | This bit<br>0: Dis |         | l to ena<br>(Initial |         | nmunic  | ation. |           |    |   |   |   |   |      |

#### ML62Q2500 Group User's Manual Chapter 11 Synchronous Serial Port (SSIO)

#### 11.2.5 Serial Port n Mode Register (SIOnMOD)

This is a SFR to set a mode of the SSIO n.

|                  |                                                                                                                       | R/<br>e: 8/ | :F506 (:<br>W<br>16 bit<br>:0000 | SIOOM | ODL/SI    | 00M0I     | D), 0xF   | 507 (SI   | 00M0I | DH) |   |      |      |   |   |           |
|------------------|-----------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|-------|-----------|-----------|-----------|-----------|-------|-----|---|------|------|---|---|-----------|
|                  | 15                                                                                                                    | 14          | 13                               | 12    | 11        | 10        | 9         | 8         | 7     | 6   | 5 | 4    | 3    | 2 | 1 | 0         |
| Word             |                                                                                                                       |             |                                  |       |           |           |           | SIOn      | MOD   |     |   |      |      |   |   |           |
| Byte             | SIOnMODH                                                                                                              |             |                                  |       |           |           |           |           |       |     |   | SIOn | MODL |   |   |           |
| Bit              | -                                                                                                                     | SnNE<br>G   | SnCK<br>T                        | -     | SnCK<br>3 | SnCK<br>2 | SnCK<br>1 | SnCK<br>0 | -     | -   | - | -    | SnLG | - | - | SnDI<br>R |
| R/W              | R                                                                                                                     | R/W         | R/W                              | R     | R/W       | R/W       | R/W       | R/W       | R     | R   | R | R    | R/W  | R | R | R/W       |
| Initial<br>value | 0                                                                                                                     | 0           | 0                                | 0     | 0         | 0         | 0         | 0         | 0     | 0   | 0 | 0    | 0    | 0 | 0 | 0         |
|                  |                                                                                                                       | :•          | -l                               |       |           |           |           |           |       |     |   |      |      |   |   |           |
| Bit no.          | Bit symbol<br>name                                                                                                    |             |                                  |       |           |           | De        | scriptic  | n     |     |   |      |      |   |   |           |
| 15               | - Reserved bit                                                                                                        |             |                                  |       |           |           |           |           |       |     |   |      |      |   |   |           |
| 14               | - Reserved bit SnNEG This is used to choose edge of sampling clock. 0: Positive edge (Initial value) 1: Negative edge |             |                                  |       |           |           |           |           |       |     |   |      |      |   |   |           |

|         |                   | 0: Positive edge (Initial value)<br>1: Negative edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13      | SnCKT             | This is used to choose the phase of transfer clock.<br>Four types of communication are available combining the setting of SnNEG bit.<br>0: Clock type 0: (Initial value)<br>1 <sup>st</sup> edge is used to shift a data, 2 <sup>nd</sup> edge is used to sample a data. 以降繰り返し。<br>1: Clock type 1:<br>1 <sup>st</sup> edge is used to sample a data, 2 <sup>nd</sup> edge is used to shift a data. 以降繰り返し。                                                                                                                                                                                                                                                                                                                  |
| 12      | -                 | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11 to 8 | SnCK3 to<br>SnCK0 | These bits are used to choose the transfer clock.<br>When an internal clock is chosen for the transfer clock, the SSIO performs the master mode.<br>When an external clock is chosen, it performs the slave mode.<br>In the master mode, max frequency of transfer clock is 4MHz; it is specified in the data sheet.<br>In the slave mode, max frequency of transfer clock is 1/4 frequency of the system clock or<br>specified frequency in the data sheet.<br>0000: 1/1 SYSCLK (Initial value)<br>0001: 1/2 SYSCLK<br>0010: 1/4 SYSCLK<br>0010: 1/4 SYSCLK<br>0010: 1/16 SYSCLK<br>0100: 1/16 SYSCLK<br>0110: 1/64 SYSCLK<br>0111: 1/128 SYSCLK<br>1000: External clock (Slave mode)<br>Others: External clock (Slave mode) |
| 7 to 4  | -                 | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3       | SnLG              | This bit is used choose the bit length of the transmission/reception data.<br>0: 8-bit length (Initial value)<br>1: 16-bit length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 to 1  | -                 | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0       | SnDIR             | This bit is used to choose the data direction.<br>0: LSB first (Initial value)<br>1: MSB first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### [Note]

• Be sure to set the SIOnMOD register while communication is stopped (SnEN=0). If it is rewritten during communication, data may be transmitted or received incorrectly.

#### 11.2.6 Serial Port n Interval Setting Register (SIOnDLYL)

This is a SFR to set the frame interval of serial communication. It is used for the slave device to wait for a data reception process when continuously transmitting the serial data. This is available in the master mode.

|                  |    | R/<br>: 81       | W  | (SIO0DL | YL)    |           |           |      |                      |            |            |            |            |            |            |            |
|------------------|----|------------------|----|---------|--------|-----------|-----------|------|----------------------|------------|------------|------------|------------|------------|------------|------------|
|                  | 15 | 14               | 13 | 12      | 11     | 10        | 9         | 8    | 7                    | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             |    |                  |    |         |        |           |           |      | -                    |            |            |            |            |            |            |            |
| Byte             |    |                  |    | -       |        |           |           |      |                      |            |            | SIOn       | DLYL       |            |            |            |
| Bit              | -  | -                | -  | -       | -      | -         | -         | -    | SnDL<br>Y7           | SnDL<br>Y6 | SnDL<br>Y5 | SnDL<br>Y4 | SnDL<br>Y3 | SnDL<br>Y2 | SnDL<br>Y1 | SnDL<br>Y0 |
| R/W              | R  | R                | R  | R       | R      | R         | R         | R    | R/W                  | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0  | 0                | 0  | 0       | 0      | 0         | 0         | 0    | 0                    | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Bit no.          | Bi | t symbo<br>name  | ol |         |        |           |           |      | De                   | escriptio  | on         |            |            |            |            |            |
| 7 to 0           | -  | nDLY7 i<br>nDLY0 | to |         | no int | erval (Ir | nitial va | lue) | e interva<br>d of SC |            | (SIOnE     | )LYL va    | lue +1     | )          |            |            |

#### ML62Q2500 Group User's Manual Chapter 11 Synchronous Serial Port (SSIO)

### 11.2.7 Serial Port n Interrupt Control Register (SIOnICNL)

This is a SFR to control interrupt of SSIO.

|                  |                                                                                                                                                                                                                                                                        | R/<br>e: 81    | W<br>bit | SIO0IC       | NL)     |                       |        |        |        |                     |        |         |         |           |       |       |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|--------------|---------|-----------------------|--------|--------|--------|---------------------|--------|---------|---------|-----------|-------|-------|
| -                | 15                                                                                                                                                                                                                                                                     | 14             | 13       | 12           | 11      | 10                    | 9      | 8      | 7      | 6                   | 5      | 4       | 3       | 2         | 1     | 0     |
| Word             |                                                                                                                                                                                                                                                                        |                |          |              |         |                       |        |        | -      |                     |        |         |         |           |       |       |
| Byte             |                                                                                                                                                                                                                                                                        |                |          | -            |         |                       |        |        |        |                     |        | SIOr    | ICNL    |           |       |       |
| Bit              | -                                                                                                                                                                                                                                                                      | -              | I        | -            | -       | -                     | -      | -      | -      | -                   | I      | -       | -       | SnRI<br>E | SnFIE | SnTIE |
| R/W              | R                                                                                                                                                                                                                                                                      | R              | R        | R            | R       | R                     | R      | R      | R      | R                   | R      | R       | R       | R/W       | R/W   | R/W   |
| Initial<br>value | 0                                                                                                                                                                                                                                                                      | 0              | 0        | 0            | 0       | 0                     | 0      | 0      | 0      | 0                   | 0      | 0       | 0       | 0         | 0     | 0     |
| Bit n            | 0.                                                                                                                                                                                                                                                                     | Bit syr<br>nam |          |              |         |                       |        |        |        | Descri              | ption  |         |         |           |       |       |
| 15 to            | 3 -                                                                                                                                                                                                                                                                    |                |          | Rese         | rved bi | ts                    |        |        |        |                     |        |         |         |           |       |       |
| 2                | S                                                                                                                                                                                                                                                                      | SnRIE          |          | 0:           | Disable | ed (Initi             |        |        | end in | terrupt             | of one | frame t | ransfer |           |       |       |
| 1                | 1: Enabled         SnFIE       This is used to enable/disable the transfer completion interrupt.<br>This interrupt occurs when transmission/reception is finished with transmission buffer is empty(SnFUL="0").         0: Disabled (Initial value)         1: Enabled |                |          |              |         |                       |        |        |        | er is               |        |         |         |           |       |       |
| 0                | S                                                                                                                                                                                                                                                                      | SnTIE          |          | This i<br>0: | nterrup | ot occur<br>ed (Initi | s when | transn |        | nission<br>buffer b |        |         |         | t.        |       |       |

#### 11.3 Description of Operation

#### 11.3.1 Communication Timing (Master/Slave)

In clock type 0, the SOUTn output level when an end of one frame transfer is kept last bit data. In clock type 1, the SOUTn output level when an end of one frame transfer becomes first bit data in SIOnBUF. If there is the next data, it is the first bit of the next data. If it is not, the first bit of the latest data. When SnEN bit is set "0" during transmission/reception, then operation is stopped and SOUTn is kept current level in both clock type0 or 1.

Figure 11-2 shows operation waveforms; with 16-bit length, MSB first.

| SnEN                |                                                                      |
|---------------------|----------------------------------------------------------------------|
| SCLKn (positive)    |                                                                      |
| (negative)          |                                                                      |
| SDnBUF              | Transmission data                                                    |
| SOUTn               |                                                                      |
| SINn                |                                                                      |
| Shift register      |                                                                      |
| SIOnRC              | Reception data                                                       |
| SIOnINT             | <u></u> ↑*1                                                          |
| SnFUL               |                                                                      |
| SnRFUL              |                                                                      |
| SnTXF               | Reading SIOnBUF                                                      |
|                     | ission buffer empty interrupt, *2: Transfer completion interrupt     |
|                     | igure 11-2-1 Waveform for Clock Type 0 with 16-bit length, MSB first |
|                     |                                                                      |
| SnEN                |                                                                      |
| SCLKn (positive)    |                                                                      |
| (negative)          |                                                                      |
| SDnBUF              | Transmission data                                                    |
| SOUTn               |                                                                      |
| SINn                |                                                                      |
| Shift register      |                                                                      |
| SIOnRC <sup>-</sup> |                                                                      |
| -                   | X Reception data<br>^*1^*2                                           |
| SIOnINT _           |                                                                      |
| SnFUL _             |                                                                      |
| SnRFUL              | () () Reading                                                        |
| SnTXF               | SIOnBUF                                                              |
| *1: Transr          | nission buffer empty interrupt, *2: Transfer completion interrupt    |

Figure 11-2-2 Waveform for Clock Type 1 with 16-bit length, MSB first

Figure 11-3 shows operation waveforms of multi-frames without interval, where is with SIOnDLY = "0x00" in the master mode, or continuous transfer in the slave mode.

| SnEN             |                                                                                                                                                                              |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCLKn            |                                                                                                                                                                              |
| SDnBUF           | P TX data A X TX data B P X TX data C                                                                                                                                        |
| SOUTn            | A0 \A1 \A2 \A3 \A4 \A5 \A6 \A7 \B0 \B1 \B2 \B3 \B4 \B5 \B6 \B7 \C0 \C1 \                                                                                                     |
| SINn             | <u>A0</u> XA1XA2XA3XA4XA5XA6XA7XB0XB1XB2XB3XB4XB5XB6XB7X                                                                                                                     |
| Shift register   | <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>                                                                                                                      |
| SIOnRC           | RX data A RX data B                                                                                                                                                          |
| SIOnINT          | <u>↑*1</u> <u>↑*3</u> <u>↑*1</u> <u>↑*2</u> *3 <u>↑*1</u>                                                                                                                    |
| SnFUL            |                                                                                                                                                                              |
| SnTXF            |                                                                                                                                                                              |
| *3 : End interru | ion buffer empty interrupt, *2: Transfer completion interrupt<br>pt of one frame transfer.<br>1 Waveform of multi-frames without interval in clock type 0 with positive edge |
| SnEN             |                                                                                                                                                                              |
| SCLKn            |                                                                                                                                                                              |
| SDnBUF           | TX data A X TX data B X TX data C                                                                                                                                            |
| SOUTn            | A0 XA1 XA2 XA3 XA4 XA5 XA6 XA7 B0 XB1 XB2 XB3 XB4 XB5 XB6 XB7 XB0 X C0 XC1 XC2                                                                                               |
| SINn             | <u>χ</u> Α0 χΑ1 χΑ2 χΑ3 χΑ4 χΑ5 χΑ6 χΑ7 χ <sub>B0</sub> χB1 χB2 χB3 χB4 χB5 χB6 χB7 χ >                                                                                      |
| Shift register   | <u>\A0\A1\A2\A3\A4\A5\A6\A7\B0\B1\B2\B3\B4\B5\B6\B7\</u>                                                                                                                     |
| SIOnRC           | RX data A RX data B                                                                                                                                                          |
| SIOnINT          | <u>↑*1</u> <u>↑*3</u> <u>↑*1</u> <u>↑*2,*3</u> <u>↑*1</u>                                                                                                                    |
| SnFUL            |                                                                                                                                                                              |
| SnTXF            |                                                                                                                                                                              |

\*1: Transmission buffer empty interrupt, \*2: Transfer completion interrupt \*3 : End interrupt of one frame transfer.

Figure 11-3-2 Waveform of multi-frames without interval in clock type 1 with negative edge

Figure 11-4 shows operation waveforms of multi-frames with frame interval.

| SnEN                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCLKn                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDnBUF                                                               | O TX data A X TX data B O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SOUTn                                                                | ΧΑΟ ΧΑΙ ΧΑ2 ΧΑ3 ΧΑ4 ΧΑ5 ΧΑ6 ΧΑ7 ΧΒΟ ΧΒΙ ΧΒ2 ΧΒ3 ΧΒ4 ΧΒ5 ΧΒ6 ΧΒ7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SINn                                                                 | XA0XA1XA2XA3XA4XA5XA6XA7XXXB0XB1XB2XB3XB4XB5XB6XB7X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Shift register                                                       | χαοχαιχα2χα3χα4χα5χα6χα7χ χεοχειχεσχειχες                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SIOnRC                                                               | RX data A RX data B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SIOnINT                                                              | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SnFUL                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SnTXF                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *1: Transmis<br>*3 : End interro                                     | ion buffer empty interrupt, *2: Transfer completion interrupt<br>pt of one frame transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 11                                                            | 4-1 Waveforms of multi-frames with clock type 0, positive and frame interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 1 <sup>^</sup><br>SnEN                                        | 4-1 Waveforms of multi-frames with clock type 0, positive and frame interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                      | -4-1 Waveforms of multi-frames with clock type 0, positive and frame interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SnEN                                                                 | -4-1 Waveforms of multi-frames with clock type 0, positive and frame interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SnEN<br>SCLKn                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SnEN<br>SCLKn<br>SDnBUF                                              | TX data A         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X |
| SnEN<br>SCLKn<br>SDnBUF<br>SOUTn                                     | TX data A     TX data B       XA1XA2XA3XA4XA5XA6XA7X     B0       XB1XB2XB3XB4XB5XB6XB7X     B0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SnEN<br>SCLKn<br>SDnBUF<br>SOUTn<br>SINn                             | TX data A     TX data B       XA1XA2XA3XA4XA5XA6XA7X     B0       XA0XA1XA2XA3XA4XA5XA6XA7X     XB0XB1XB2XB3XB4XB5XB6XB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SnEN<br>SCLKn<br>SDnBUF<br>SOUTn<br>SINn<br>Shift register           | TX data A       TX data B         TX data A       TX data B         XA1XA2XA3XA4XA5XA6XA7       B0         XA1XA2XA3XA4XA5XA6XA7       B0         XA1XA2XA3XA4XA5XA6XA7       B0         XA1XA2XA3XA4XA5XA6XA7       B0         XA1XA2XA3XA4XA5XA6XA7       XB0XB1XB2XB3XB4XB5XB6XB7         XA0XA1XA2XA3XA4XA5XA6XA7       XB0XB1XB2XB3XB4XB5XB6XB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SnEN<br>SCLKn<br>SDnBUF<br>SOUTn<br>SINn<br>Shift register<br>SIOnRC | TX data A       TX data B         XA1\A2\A3\A4\A5\A6\A7\       B0       \\B1\B2\B3\B4\B5\B6\B7\         \(A1\A2\A3\A4\A5\A6\A7\)       \(B0\B1\B2\B3\B4\B5\B6\B7)\)         \(A0\A1\A2\A3\A4\A5\A6\A7\)       \(B0\B1\B2\B3\B4\B5\B6\B7)\)         \(A0\A1\A2\A3\A4\A5\A6\A7\)       \(B0\B1\B2\B3\B4\B5\B6\B7)\)         \(A0\A1\A2\A3\A4\A5\A6\A7\)       \(B0\B1\B2\B3\B4\B5\B6\B7)\)         \(A0\A1\A2\A3\A4\A5\A6\A7\)       \(B0\B1\B2\B3\B4\B5\B6\B7)\)         \(A0\A1\A2\A3\A4\A5\A6\A7\)       \(B0\B1\B2\B3\B4\B5\B6\B7)\)         \(RX\data A)       \(RX\data B)\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

\*1: Transmission buffer empty interrupt, \*2: Transfer completion interrupt \*3 : End interrupt of one frame transfer.

Figure 11-4-2 Waveforms of multi-frames with clock type 1, negative and frame interval

Figure 11-5 shows operation waveforms when writing "0" to SnEN bit during transmission/reception in the clock type 0.

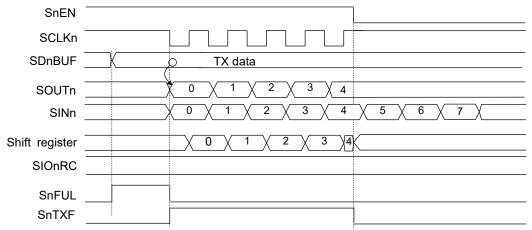



Figure 11-5 Waveforms when writing "0" to SnEN during communication

#### 11.3.2 Interrupt Timing

Table 11-4 shows interrupt timing of SSIO.

The interrupt cause is determined by the SIOnSTAT register.

- Transmission buffer empty : SnTXF=1 & SnFUL=1
   Transfer completion : SnTXF=0 & SnFUL=0

|                                        | Table             | 11-4-1 Interrupt T                            | iming in the master mode |
|----------------------------------------|-------------------|-----------------------------------------------|--------------------------|
| Enabled Interrupt                      | Frame<br>Interval | SnFUL<br>when end of<br>one frame<br>transfer | Interrupt Timing         |
| End interrupt of one frame transfer    | with              | 1                                             | data data data           |
|                                        | without           | 1                                             | data data data           |
|                                        | with/without      | 0                                             | data data data           |
| Transfer completion<br>Interrupt       | with              | 1                                             | data data data           |
|                                        | without           | 1                                             | data data data           |
|                                        | with/without      | 0                                             | data data data           |
| Transmission buffer<br>empty Interrupt | with/without      | 1                                             | data data data           |

#### Table 11-4-2 Interrupt Timing in the slave mode

| Enabled Interrupt                      | Frame<br>Interval | SnFUL<br>when end of<br>one frame<br>transfer | Interrupt Timing |
|----------------------------------------|-------------------|-----------------------------------------------|------------------|
| End interrupt of one frame transfer    | -                 | -                                             | data data data   |
| Transfer completion<br>Interrupt       | -                 | 1                                             | data data data   |
|                                        | -                 | 0                                             | data data data   |
| Transmission buffer<br>empty Interrupt | -                 | -                                             | data data data   |

#### 11.3.3 Example of setting

Figure 11-6 shows an example of setting for transmission and reception in the master mode.

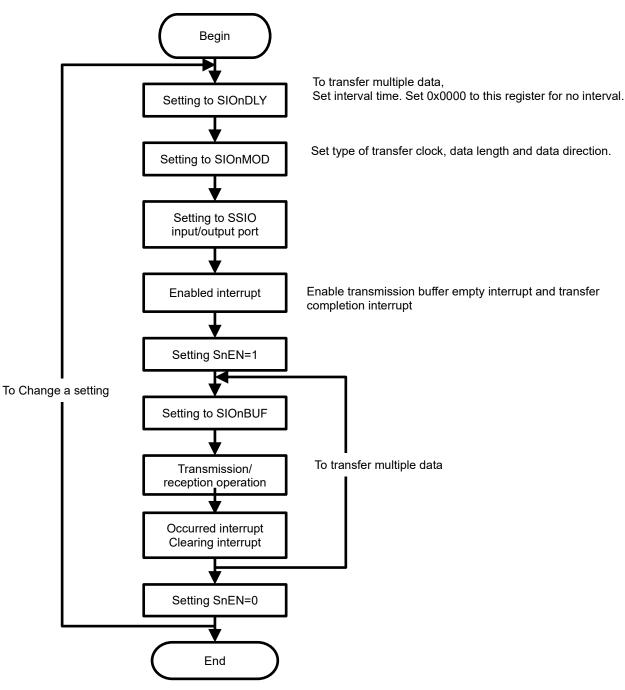



Figure 11-6 Example of setting for transmission/reception in the master mode

Figure 11-7 shows an example of setting for transmission and reception in the slave mode.

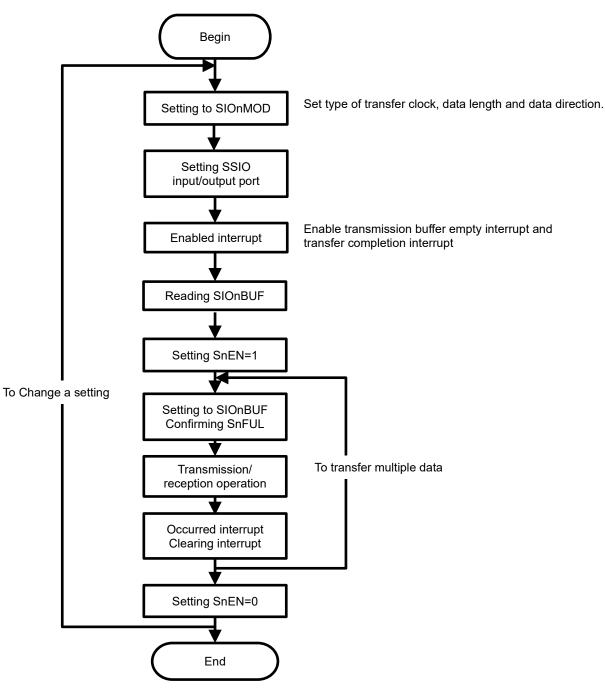
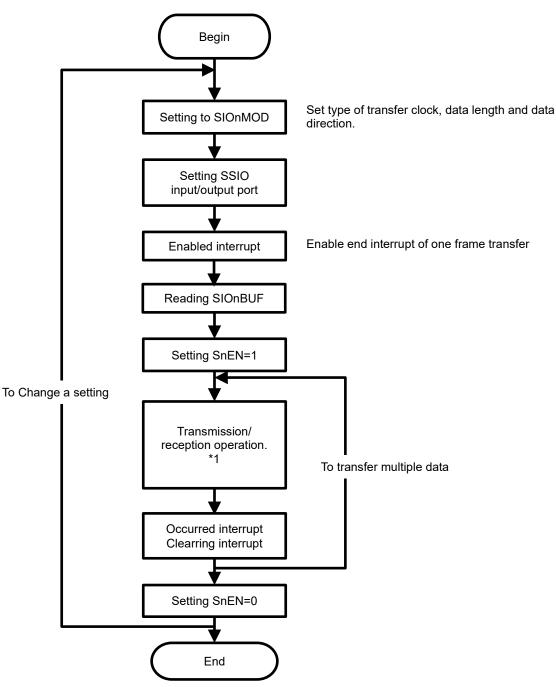




Figure 11-7 Example of setting for transmission/reception in the slave mode

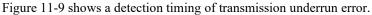
[Note]

 To prevent an overrun error after the first reception, read the SIOnBUF register before setting the SnEN bit to "1".

Figure 11-8 shows an example of setting for reception only in the slave mode.



\*1 : the transmission data is latest written data. The data is null data (All1) if the SIOnBUF has never been written.


Figure 11-8 Example of setting for reception in the slave mode

#### [Note]

• To prevent an overrun error after the first reception, read the SIOnBUF register before setting the SnEN bit to "1".

#### 11.3.4 Timing of Transmission Underrun Error (SnTUER)

A transmission underrun error (SnTUER) occurs only slave mode. In master mode, SnTUER is not set, because a transmission is executed at SnFUL="1".



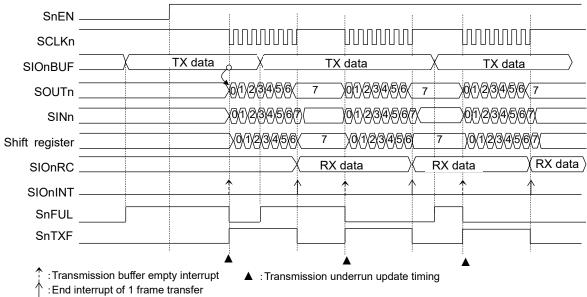



Figure 11-9-1 clock type 0 with positive

In the clock type 1 slave mode, in order for it to be able to perform any time when the clock is supplied from the master, preparation for data transfer that follows is started as soon as the preceding data transfer is completed. Therefore, the underrun error status is updated, when the SnEN bit is set to "1" or each transmission completed. It is possible to write data to the transfer buffer after updating underrun before the transfer is actually started (before the

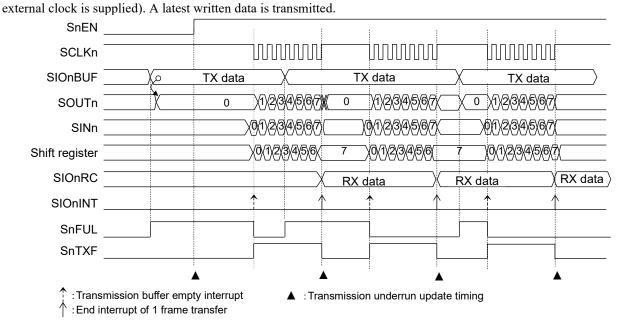



Figure 11-9-2 clock type 1 with negative

#### [Note]

To ensure that data is successfully transmitted, it is recommended that data is written when SnEN is "0" or while the transfer of previous data is in progress (SnTXF=1) in the clock type1 slave mode.

# Chapter 12 Synchronous Serial Port with FIFO (SSIOF)

### 12. Synchronous Serial Port with FIFO (SSIOF)

#### 12.1 General Description

This SSIOF can communicate with peripherals and other MCUs. Table 12-1 shows the number of channels.

| Table12-1 Number of the SIOF |                 |  |  |  |  |  |  |
|------------------------------|-----------------|--|--|--|--|--|--|
| Channel no.                  | ML62Q2500 group |  |  |  |  |  |  |
| 0                            | •               |  |  |  |  |  |  |
| •: Available -               | : Unavailable   |  |  |  |  |  |  |

### 12.1.1 Features

- Full-duplex data transfer
- Master or Slave mode can be selected
- Built-in 4-stage FIFO on each of transmit- and receive-sides
- For the transfer size, 8 bits (byte) or 16 bits (word) can be selected
- The number of received bytes (words) that cause interrupts can be set to 1 to 4.
- The number of untransmitted bytes (words) that cause interrupts can be set to 0 to 3.
- LSB first or MSB first can be selected
- The polarity and phase of the serial clock are selectable
- In Master mode, the OSCLK's 2 to 2046-division clocks can be selected as the sync clock (1023 types)
- In Master mode, the interval before/after transfer can be controlled
- State bit indicating transmission/receive complete and FIFO state
- Detects a mode fault error to avoid multi-master bus contention
- Detects a write overflow error if any further writing is attempted when the transmit FIFO is in the full state
- Self-test function using the master and slave modes. For the self-test functions, see Chapter 29 "Safety Function."

#### 12.1.2 Configuration

Figure 12-1 shows configuration of the SSIOF.

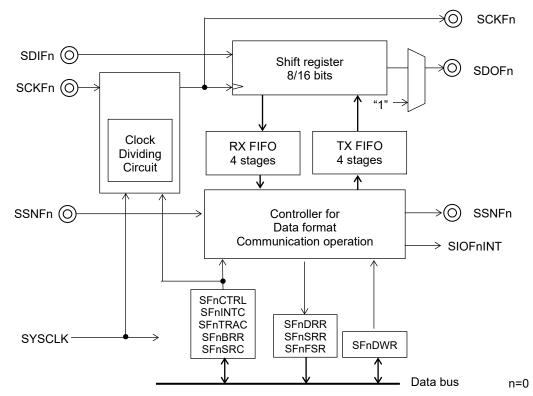



Figure 12-1 Configuration of SSIOF

#### 12.1.3 List of Pins

The I/O pins of the SSIOF are assigned to the shared function of the general ports.

| Pin name | I/O | Description                        |  |  |  |  |  |
|----------|-----|------------------------------------|--|--|--|--|--|
| SDOF0    | 0   | SSIOF0 transmission data output    |  |  |  |  |  |
| SDIF0    | I   | SIOF0 reception data input         |  |  |  |  |  |
| SCKF0    | I/O | SSIOF0 baud rate synchronous clock |  |  |  |  |  |
| SSNF0    | I/O |                                    |  |  |  |  |  |

Table 12-2 shows the list of the general ports used for the SSIOF and the register settings of the ports.

| Tac         |          | uscu |                       |                     | gister settings |                    |
|-------------|----------|------|-----------------------|---------------------|-----------------|--------------------|
| Channel no. | Pin name | Sh   | ared port             | Setting<br>register | Setting value   | ML62Q2500<br>group |
|             | SDIF0    | P12  | 2 <sup>nd</sup> Func. | P1MOD2              | 0001_XXXX*1     | •                  |
|             | SDIFU    | P22  | 2 <sup>nd</sup> Func. | P2MOD2              | 0001_XXXX*1     | •                  |
|             | SDOF0    | P11  | 2 <sup>nd</sup> Func. | P1MOD1              | 0001_XXXX*2     | •                  |
| 0           | SDOFU    | P21  | 2 <sup>nd</sup> Func. | P2MOD1              | 0001_XXXX*2     | •                  |
| U           | SCKF0    | P10  | 2 <sup>nd</sup> Func. | P1MOD0              | 0001_XXXX*3     | •                  |
|             | SCKFU    | P20  | 2 <sup>nd</sup> Func. | P2MOD0              | 0001_XXXX*3     | •                  |
|             | SSNF0    | P13  | 2 <sup>nd</sup> Func. | P1MOD3              | 0001_XXXX*3     | •                  |
|             | SSINFU   | P23  | 2 <sup>nd</sup> Func. | P2MOD3              | 0001_XXXX*3     | •                  |
|             |          |      |                       |                     |                 |                    |

Table 12-2 Ports used for the SSIOF and the register settings

•: Available to use -: Unavailable

\*1 : "XXXX" determines the condition of the port input

| XXXX | Condition of the port                        |
|------|----------------------------------------------|
| 0001 | Input (without an internal pull-up resistor) |
| 0101 | Input (with an internal pull-up resistor)    |

\*2 : "XXXX" determines the condition of the port output

| XXXX | Condition of the port                       |
|------|---------------------------------------------|
| 0010 | CMOS output                                 |
| 1010 | Nch open drain output (without the pull-up) |
| 1111 | Nch open drain output (with the pull-up)    |

\*<sup>3</sup> : "XXXX" determines the condition of the port input / output In the master mode, see to \*2 for use as output.

In the slave mode, see to \*1 for use as input.

#### 12.1.4 Combination of SSIOF port

SDOF0, SDIF0, SCKF0, SSNF0 are assigned to multiple general ports. Be sure to use the ports in following combinations.

|             |             | Ta     | ble 12-3 Combi | nation of the S | SIOF   |                    |
|-------------|-------------|--------|----------------|-----------------|--------|--------------------|
| 0           |             |        | Po             | ort             |        | -                  |
| Combination | Channel no. | SDIFn* | SDOFn*         | SCKFn*          | SSNFn* | NL62Q2500<br>group |
| 1           | 0           | P12    | P11            | P10             | P13    | •                  |
| 2           | 0           | P22    | P21            | P20             | P23    | •                  |

#### Table 12-3 Combination of the SSIOF

\* :n=channel number. •: Available to use, -: Unavailable

#### [Note]

Be sure to use the SDIF0/SDOF0/SCKF0/SSNF0 ports with combination in the Fig.12-3, and assign each function to only one LSI pin.

### 12.2 Description of Registers

#### 12.2.1 List of Registers

| Address | Name                                     | Syml     | bol     | R/W  | Size | Initial |
|---------|------------------------------------------|----------|---------|------|------|---------|
| Address | Name                                     | Byte     | Word    | r/// | Size | value   |
| 0xF580  | SIOE0 control register                   | SF0CTRLL | SF0CTRL | R/W  | 8/16 | 0x00    |
| 0xF581  | SIOF0 control register                   | SF0CTRLH | SFUCIAL | R/W  | 8    | 0x00    |
| 0xF582  | SIGE0 interrupt control register         | SF0INTCL | SF0INTC | R/W  | 8/16 | 0x00    |
| 0xF583  | SIOF0 interrupt control register         | SF0INTCH | SFUINTC | R/W  | 8    | 0x00    |
| 0xF584  | SIGE0 transfer interval control register | SF0TRACL | SF0TRAC | R/W  | 8/16 | 0x02    |
| 0xF585  | SIOF0 transfer interval control register | SF0TRACH | SFUIRAC | R/W  | 8    | 0x00    |
| 0xF586  |                                          | SF0BRRL  |         | R/W  | 8/16 | 0x02    |
| 0xF587  | SIOF0 baud rate register                 | SF0BRRH  | SF0BRR  | R/W  | 8    | 0x50    |
| 0xF588  |                                          | SF0SRRL  | SF0SRR  | R    | 8/16 | 0x00    |
| 0xF589  | SIOF0 status register                    | SF0SRRH  | SFUSKK  | R    | 8    | 0x14    |
| 0xF58A  | SIGE0 status algor register (1 /L1)      | SF0SRCL  |         | W    | 8    | 0x00    |
| 0xF58B  | SIOF0 status clear register (L/H)        | SF0SRCH  | -       | W    | 8    | 0x00    |
| 0xF58C  |                                          | SF0FSRL  | SF0FSR  | R    | 8/16 | 0x00    |
| 0xF58D  | SIOF0 FIFO status register               | SF0FSRH  | SFUFSK  | R    | 8    | 0x00    |
| 0xF58E  | SIOF0 writing data register              | SF0DWRL  |         | R/W  | 8/16 | 0x00    |
| 0xF58F  | SIOF0 writing data register              | SF0DWRH  | SF0DWR  | R/W  | 8    | 0x00    |
| 0xF590  | SIOF0 reading data register              | SF0DRRL  |         | R    | 8/16 | 0x00    |
| 0xF591  | SIOF0 reading data register              | SF0DRRH  | SF0DRR  | R    | 8    | 0x00    |

#### ML62Q2500 Group User's Manual Chapter 12 Synchronous Serial Port with FIFO

### 12.2.2 SIOF0 Control Register (SF0CTRL)

This is as SFR to control SSIOF0 operation.

|                  |                                                                                                     | R/<br>e: 8/*                                                                                                                                                 | :F580 (<br>W<br>16 bit<br>:0000 | SF0CT                                                         | rll /S                                  | F0CTR                      | L), OxF             | -581 (SF                                 | F0CTR                | LH)         |             |            |          |            |            |            |
|------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------|-----------------------------------------|----------------------------|---------------------|------------------------------------------|----------------------|-------------|-------------|------------|----------|------------|------------|------------|
|                  | 15                                                                                                  | 14                                                                                                                                                           | 13                              | 12                                                            | 11                                      | 10                         | 9                   | 8                                        | 7                    | 6           | 5           | 4          | 3        | 2          | 1          | 0          |
| Word             |                                                                                                     |                                                                                                                                                              |                                 |                                                               |                                         |                            |                     | SF00                                     | TRL                  |             |             |            |          |            |            |            |
| Byte             |                                                                                                     |                                                                                                                                                              |                                 | SF0C                                                          | TRLH                                    |                            |                     |                                          |                      |             |             | SF0C       | TRLL     |            |            |            |
| Bit              | -                                                                                                   | -                                                                                                                                                            | -                               | -                                                             | -                                       | -                          | -                   | SF0FI<br>CL                              | -                    | SF0C<br>POL | SF0C<br>PHA | SF0L<br>SB | -        | SF0SI<br>Z | SF0M<br>ST | SF0S<br>PE |
| R/W              | R                                                                                                   | R                                                                                                                                                            | R                               | R                                                             | R                                       | R                          | R                   | R/W                                      | R                    | R/W         | R/W         | R/W        | R        | R/W        | R/W        | R/W        |
| Initial<br>value | 0                                                                                                   | 0                                                                                                                                                            | 0                               | 0                                                             | 0                                       | 0                          | 0                   | 0                                        | 0                    | 0           | 0           | 0          | 0        | 0          | 0          | 0          |
| Bit no.          | В                                                                                                   | it symb<br>name                                                                                                                                              | ol                              |                                                               |                                         |                            |                     |                                          | De                   | escriptio   | on          |            |          |            |            |            |
| 15 to 9          | -                                                                                                   |                                                                                                                                                              | F                               | Reserve                                                       | ed bits                                 |                            |                     |                                          |                      |             |             |            |          |            |            |            |
| 8                | SF0                                                                                                 | SF0FICL       This is used to clear FIFO status.         0:       No operation (Initial value)         1:       Clear frame counts of reception/transmission |                                 |                                                               |                                         |                            |                     |                                          |                      |             |             |            |          |            |            |            |
| 7                | -                                                                                                   |                                                                                                                                                              | F                               | Reserve                                                       | ed bits                                 |                            |                     |                                          |                      |             |             |            |          |            |            |            |
| 6                | SF0                                                                                                 | CPOL                                                                                                                                                         | -                               | 0: 1 <sup>st</sup>                                            | edge i                                  | s positi                   | ve; the             | of trans<br>clock le<br>e clock l        | vel is "             | L" durir    |             |            | nitial v | alue)      |            |            |
| 5                | SF0                                                                                                 | CPHA                                                                                                                                                         | -                               | 0: Clo<br>1 <sup>st</sup><br>rep<br>1: Clo<br>1 <sup>st</sup> | ock typ<br>edge i<br>oeated.<br>ock typ | e 1: (In<br>s used<br>e 0: | itial val<br>to sam | hase of i<br>lue)<br>ple a da<br>a data, | ıta, 2 <sup>nd</sup> | edge is     |             |            |          |            |            |            |
| 4                | SF0                                                                                                 | LSB                                                                                                                                                          | -                               | 0: LS                                                         |                                         | choose<br>(Initial v       |                     | fer data                                 | directio             | on.         |             |            |          |            |            |            |
| 3                | -                                                                                                   |                                                                                                                                                              | F                               | Reserve                                                       | ed bits                                 |                            |                     |                                          |                      |             |             |            |          |            |            |            |
| 2                | SF0                                                                                                 | SIZ                                                                                                                                                          |                                 |                                                               | oit (Initi                              | choose<br>al value         |                     | fer size (                               | of 1 fra             | me.         |             |            |          |            |            |            |
| 1                | SF0MST This is used to choose master/slave mode.<br>0: Slave mode (Initial value)<br>1: Master mode |                                                                                                                                                              |                                 |                                                               |                                         |                            |                     |                                          |                      |             |             |            |          |            |            |            |
| 0                | SF0                                                                                                 | SPE                                                                                                                                                          | -                               |                                                               | sabled                                  | choose<br>(Initial v       |                     | e/disabl                                 | e a tra              | nsfer of    | the SS      | SIOF.      |          |            |            |            |

#### 12.2.3 SIOF0 Interrupt Control Register (SF0INTC)

This is a SFR to control interrupt operation for SSIOF0.

| Addre<br>Acces<br>Acces<br>Initial | s :<br>s size | R/<br>: 8/                                                                                                                                                                                                                                                                                                           | (F582 (<br>/W<br>16 bit<br>(0000 | SFOINT                       | CL/SF                                | OINTC                                      | ), 0xF58     | 33 (SF0       | INTCH     | )         |          |         |             |            |             |             |
|------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|--------------------------------------|--------------------------------------------|--------------|---------------|-----------|-----------|----------|---------|-------------|------------|-------------|-------------|
|                                    | 15            | 14                                                                                                                                                                                                                                                                                                                   | 13                               | 12                           | 11                                   | 10                                         | 9            | 8             | 7         | 6         | 5        | 4       | 3           | 2          | 1           | 0           |
| Word                               |               |                                                                                                                                                                                                                                                                                                                      |                                  |                              |                                      |                                            |              | SF0I          | NTC       |           |          |         |             |            |             |             |
| Byte                               |               |                                                                                                                                                                                                                                                                                                                      |                                  | SF0IN                        | ITCH                                 |                                            |              |               |           |           |          | SF0     | INTCL       |            |             |             |
| Bit                                | -             | -                                                                                                                                                                                                                                                                                                                    | SF0R<br>FIC1                     | SF0R<br>FIC0                 | -                                    | -                                          | SF0T<br>FIC1 | SF0T<br>FIC0  | -         | -         | -        | -       | SF0O<br>RIE | SF0FI<br>E | SF0R<br>FIE | SF0T<br>FIE |
| R/W                                | R             | R                                                                                                                                                                                                                                                                                                                    | R/W                              | R/W                          | R                                    | R                                          | R/W          | R/W           | R         | R         | R        | R       | R/W         | R/W        | R/W         | R/W         |
| Initial<br>value                   | 0             | 0                                                                                                                                                                                                                                                                                                                    | 0                                | 0                            | 0                                    | 0                                          | 0            | 0             | 0         | 0         | 0        | 0       | 0           | 0          | 0           | 0           |
| Bit no.                            | Bi            | Bit symbol name     Description       Reserved bits     Reserved bits                                                                                                                                                                                                                                                |                                  |                              |                                      |                                            |              |               |           |           |          |         |             |            |             |             |
| 15 to 14                           | -             |                                                                                                                                                                                                                                                                                                                      |                                  |                              |                                      |                                            |              |               |           |           |          |         |             |            |             |             |
| 13 to 12                           |               | SF0RFIC1 to       These bits are configured count in reception FIFO for the reception interrupt request occurs.         SF0RFIC0       00: Stacking 1 frame data (Initial value)         01: Stacking 2 frame data       10: Stacking 3 frame data         11: Stacking 4 frame data       11: Stacking 4 frame data |                                  |                              |                                      |                                            |              |               |           |           |          |         |             |            |             |             |
| 11 to 10                           | -             |                                                                                                                                                                                                                                                                                                                      | F                                | Reserve                      | d bits                               |                                            |              |               |           |           |          |         |             |            |             |             |
| 9 to 8                             |               | TFIC1<br>TFIC0                                                                                                                                                                                                                                                                                                       |                                  | 01: Re<br>10: Re             | reque<br>ipty in<br>mainir<br>mainir | st occu<br>the FIF<br>lg 1 fra<br>lg 2 fra | Irs.         | al value<br>a | -         | ınt in tr | ansmis   | sion F  | IFO for     | the tran   | smissio     | on          |
| 7 to 4                             | -             |                                                                                                                                                                                                                                                                                                                      | F                                | Reserve                      | d bits                               |                                            |              |               |           |           |          |         |             |            |             |             |
| 3                                  | SF0           | ORIE                                                                                                                                                                                                                                                                                                                 | 1                                | This is c<br>0: Dis<br>1: En | abled                                | red the<br>(Initial                        |              | 0 overri      | un erroi  | r interru | ıpt requ | uest.   |             |            |             |             |
| 2                                  | SF0           | FIE                                                                                                                                                                                                                                                                                                                  |                                  | This is c<br>0: Dis<br>1: En | abled                                |                                            |              | 0 transf      | er com    | pletion   | interru  | pt requ | est.        |            |             |             |
| 1                                  | SF0           | RFIE                                                                                                                                                                                                                                                                                                                 |                                  | This is c<br>0: Dis<br>1: En | abled                                | red the<br>(Initial                        |              | 0 recep       | tion inte | errupt r  | equest   |         |             |            |             |             |
| 0                                  | SF0           | TFIE                                                                                                                                                                                                                                                                                                                 | 1                                | This is c<br>0: Dis<br>1: En | abled                                | red the<br>(Initial                        |              | 0 transr      | nission   | interru   | pt requ  | iest.   |             |            |             |             |

#### 12.2.4 SIOF0 Transfer Interval Control Register (SF0TRAC)

This is a SFR used to set the minimum data transfer interval in Master mode. See 12.3.6 "Transfer Interval Setting" for details.

| Address :       | 0xF584 (SF0TRACL/SF0TRAC), 0xF585 (SF0TRACH) |
|-----------------|----------------------------------------------|
| Access :        | R/W                                          |
| Access size :   | 8/16 bit                                     |
| Initial value : | 0x0002                                       |
|                 |                                              |

|                  | 15 | 14 | 13 | 12    | 11   | 10 | 9 | 8           | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|------------------|----|----|----|-------|------|----|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Word             |    |    |    |       |      |    |   | SF01        | RAC         |             |             |             |             |             |             |             |
| Byte             |    |    |    | SF0TI | RACH |    |   |             |             |             |             | SF0T        | RACL        |             |             |             |
| Bit              | -  | -  | -  | -     | -    | -  | - | SF0D<br>TL8 | SF0D<br>TL7 | SF0D<br>TL6 | SF0D<br>TL5 | SF0D<br>TL4 | SF0D<br>TL3 | SF0D<br>TL2 | SF0D<br>TL1 | SF0D<br>TL0 |
| R/W              | R  | R  | R  | R     | R    | R  | R | R/W         |
| Initial<br>value | 0  | 0  | 0  | 0     | 0    | 0  | 0 | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 1           | 0           |

#### ML62Q2500 Group User's Manual Chapter 12 Synchronous Serial Port with FIFO

#### 12.2.5 SIOF0 Baud Rate Register (SF0BRR)

This is a SFR used to set the operation mode. Do not change the setting of this register during transfer.

| Acce<br>Acce     | ess :<br>ess :<br>ess size<br>l value                                                                                                                                                                                                                                                   | R/<br>e: 8/                                                                                                                                           | <f586 (<br="">/W<br/>16 bit<br/>&lt;5002</f586> | SF0BRF                                          | rl/SF(                         | )BRR), | , 0xF58 <sup>-</sup> | 7 (SF0     | BRRH)      |            |            |            |            |            |            |            |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------|--------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | 15                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                    | 13                                              | 12                                              | 11                             | 10     | 9                    | 8          | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             |                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                                                 |                                                 |                                |        |                      | SF0        | BRR        |            |            |            |            |            |            |            |
| Byte             |                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                                                 | SF0B                                            | RRH                            |        |                      |            |            |            |            | SFO        | BRRL       |            |            |            |
| Bit              | SF0L<br>AG1                                                                                                                                                                                                                                                                             | SF0L<br>AG0                                                                                                                                           | SF0L<br>EAD1                                    | SF0L<br>EAD0                                    | -                              | -      | SF0B<br>R9           | SF0B<br>R8 | SF0B<br>R7 | SF0B<br>R6 | SF0B<br>R5 | SF0B<br>R4 | SF0B<br>R3 | SF0B<br>R2 | SF0B<br>R1 | SF0B<br>R0 |
| R/W              | R/W                                                                                                                                                                                                                                                                                     | R/W                                                                                                                                                   | R/W                                             | R/W                                             | R                              | R      | R/W                  | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                     | 0                                               | 1                                               | 0                              | 0      | 0                    | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 1          | 0          |
| Bit no.          | В                                                                                                                                                                                                                                                                                       | Bit symbol<br>name Description                                                                                                                        |                                                 |                                                 |                                |        |                      |            |            |            |            |            |            |            |            |            |
| 15 to 14         | SF0<br>2 SF0                                                                                                                                                                                                                                                                            | SF0LAG1 to<br>SF0LAG0This is configured interval between SCKF0 and SSNF0 (H).00: 0.5 × SCKF0<br>01: 0.5 × SCKF0<br>10: 1.0 × SCKF0<br>11: 1.5 × SCKF0 |                                                 |                                                 |                                |        |                      |            |            |            |            |            |            |            |            |            |
| 11 to 10         | ) _                                                                                                                                                                                                                                                                                     |                                                                                                                                                       |                                                 | 11: 1.5<br>Reserve                              | -                              | (FU    |                      |            |            |            |            |            |            |            |            |            |
| 9 to 0           | SF0                                                                                                                                                                                                                                                                                     | BR9 to<br>BR0                                                                                                                                         |                                                 | This is co<br>f <sub>scк</sub> =f <sub>sy</sub> | onfigui<br><sub>sclк</sub> / ( | 2 × SF | -0BR9-0              | )          | id in the  | e maste    | er mode    | 9.         |            |            |            |            |
|                  | fsysclk : SYSCLK frequency<br>0000000000: 2 dividing<br>0000000001: 2 dividing<br>0000000010: 4 dividing (Initial value)<br>0000000011: 6 dividing<br>:<br>1111111111: 2046 dividing<br>In the master mode, max frequency of transfer clock is 4MHz; it is specified in the data sheet. |                                                                                                                                                       |                                                 |                                                 |                                |        |                      |            |            |            |            |            |            |            |            |            |

### 12.2.6 SIOF0 Status Register (SF0SRR)

This is a SFR used to indicate the data transfer state and error state of the SSIOF0.

| Addre<br>Acces<br>Acces<br>Initial | s :<br>s size | R<br>: 8/       | F588 (\$<br>16 bit<br>1400 | SF0SR                       | RL/SF0                               | SRR),                        | 0xF58                            | 9 (SF05                     | SRRH)              |          |                        |     |            |          |            |            |
|------------------------------------|---------------|-----------------|----------------------------|-----------------------------|--------------------------------------|------------------------------|----------------------------------|-----------------------------|--------------------|----------|------------------------|-----|------------|----------|------------|------------|
| _                                  | 15            | 14              | 13                         | 12                          | 11                                   | 10                           | 9                                | 8                           | 7                  | 6        | 5                      | 4   | 3          | 2        | 1          | 0          |
| Word                               |               |                 |                            |                             |                                      |                              |                                  | SF0                         | SRR                |          |                        |     |            |          |            |            |
| Byte                               |               | 1               |                            | -                           | SRRH                                 |                              | 1                                |                             |                    | 1        | 1                      | SF0 | SRRL       | 1        |            |            |
| Bit                                | -             | -               | SF0S<br>SF                 | SF0R<br>FE                  | SF0R<br>FF                           | SF0T<br>FE                   | SF0T<br>FF                       | SF0W<br>OF                  | -                  | -        | SF0S<br>PIF            | -   | SF0O<br>RF | SF0FI    | SF0R<br>FI | SF0T<br>FI |
| R/W                                | R             | R               | R                          | R                           | R                                    | R                            | R                                | R                           | R                  | R        | R                      | R   | R          | R        | R          | R          |
| Initial<br>value                   | 0             | 0               | 0                          | 1                           | 0                                    | 1                            | 0                                | 0                           | 0                  | 0        | 0                      | 0   | 0          | 0        | 0          | 0          |
| Bit no.                            | Bi            | it symb<br>name | ol                         |                             |                                      |                              |                                  |                             | De                 | escripti | on                     |     |            |          |            |            |
| 15 to 14                           | -             |                 | F                          | Reserve                     | ed bits                              |                              |                                  |                             |                    |          |                        |     |            |          |            |            |
| 13                                 | SF0           | SSF             | Т                          | 0: "H                       | used to<br>" level (<br>' level; (   | Initial v                    | alue)                            | selectio<br>g               | on signa           | al; SSN  | IFO.                   |     |            |          |            |            |
| 12                                 | SF0           | RFE             | Т                          | 0: No                       | ot empty                             | /                            | -                                | otion FIF                   | -                  | -        | e)                     |     |            |          |            |            |
| 11                                 | SF0           | RFF             | Т                          | his is u<br>0: No           |                                      | indicat<br>nitial va         | e recep<br>lue)                  | tion FIF                    |                    |          | ,                      |     |            |          |            |            |
| 10                                 | SF0           | TFE             | Т                          | his is u<br>0: No           | used to                              | indicat                      | e trans                          | mission<br>enerate          |                    |          | e)                     |     |            |          |            |            |
| 9                                  | SF0           | TFF             | Т                          | 0: No                       | used to<br>ot full (Ir<br>Ill; No ir | nitial va                    | lue)                             | mission<br>erated           | FIFO f             | ūll.     |                        |     |            |          |            |            |
| 8                                  | SF0           | WOF             | Т                          | 0: No                       | ot occur                             | red (Ini                     | tial val                         | verflow o<br>ue)<br>s gener |                    | missio   | n FIFO                 |     |            |          |            |            |
| 7 to 6                             | -             |                 | F                          | Reserve                     | ed bits                              |                              |                                  |                             |                    |          |                        |     |            |          |            |            |
| 5                                  | SF0           | SPIF            | Т                          | 0: No                       | used to<br>ot comp<br>omplete        | leted (I                     |                                  | letion o<br>alue)           | f 1 fran           | ne tran  | sfer.                  |     |            |          |            |            |
| 4                                  | -             |                 | F                          | Reserve                     | ed bits                              |                              |                                  |                             |                    |          |                        |     |            |          |            |            |
| 3                                  | SF0           | ORF             | Т                          | 0: No                       | ot occur                             | red (Ini                     | tial val                         | verrun o<br>ue)<br>enerate  | -                  | tion FII | =0.                    |     |            |          |            |            |
| 2                                  | SF0           | FI              |                            | his is u<br>s comp<br>0: No | used to<br>leted in                  | indicat<br>condit<br>pt requ | e trans<br>ion of tl<br>iest (In | fer com                     | pletion<br>smissic |          | pt. It oco<br>) is emp |     | hen trai   | nsfer la | st frame   | e data     |
| 1                                  | SF0           | RFI             |                            | eceptic<br>0: No            | n FIFO                               | is equa                      | al or m<br>iest (In              |                             | ne cour            |          | rs when<br>gured w     |     |            | f data i | n the      |            |
| 0                                  | SF0           | TFI             |                            | ransmis<br>0: No            | ssion Fl                             | FO ma<br>pt requ             | itches t<br>iest (In             |                             | e coun             |          | ccurs wl<br>gured wi   |     |            | ning da  | ta in the  | 9          |

### 12.2.7 SIOF0 Status Clear Register L/H (SF0SRCL, SF0SRCH)

This is a SFR used to clear the data transfer state and error state of the SSIOF.

|                  |                                                                                                                                                                                                     | W<br>: 81                                                                                                      |    | (SF0SR                          | CL), 0:  | kF58B   | (SF0SI  | RCH)        |   |          |              |        |             |           |            |            |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----|---------------------------------|----------|---------|---------|-------------|---|----------|--------------|--------|-------------|-----------|------------|------------|
|                  | 15                                                                                                                                                                                                  | 14                                                                                                             | 13 | 12                              | 11       | 10      | 9       | 8           | 7 | 6        | 5            | 4      | 3           | 2         | 1          | 0          |
| Word             |                                                                                                                                                                                                     |                                                                                                                |    |                                 |          |         |         | -           |   |          |              |        |             |           |            |            |
| Byte             |                                                                                                                                                                                                     |                                                                                                                |    | SF05                            | SRCH     |         |         |             |   |          |              | SF0    | SRCL        |           |            |            |
| Bit              | SF0I<br>RQ                                                                                                                                                                                          | -                                                                                                              | -  | -                               | -        | -       | -       | SF0W<br>OFC | - | -        | SF0S<br>PIFC | -      | SF0O<br>RFC | SF0F<br>C | SF0R<br>FC | SF0T<br>FC |
| R/W              | W                                                                                                                                                                                                   | R                                                                                                              | R  | R                               | R        | R       | R       | W           | R | R        | W            | R      | W           | W         | W          | W          |
| Initial<br>value | 0                                                                                                                                                                                                   | 0                                                                                                              | 0  | 0                               | 0        | 0       | 0       | 0           | 0 | 0        | 0            | 0      | 0           | 0         | 0          | 0          |
| Bit no.          | Bi<br>SF0                                                                                                                                                                                           | it symbonia it | ol | This is t                       | ho hit t | 0.0000  | tintorr | untroqu     |   | escripti |              |        | 222222      | dintorr   |            | r000       |
| 15               | 3FU                                                                                                                                                                                                 | IRQ                                                                                                            |    | the inter                       |          |         |         |             |   |          |              | y unpr | ocesse      | ainten    | upt sou    | rces,      |
| 14 to 9          | -                                                                                                                                                                                                   |                                                                                                                |    | Reserve                         | ed bits  |         |         |             |   |          |              |        |             |           |            |            |
| 8                | SF0                                                                                                                                                                                                 | WOFC                                                                                                           |    | This is u<br>The flag           |          |         |         |             |   | ow flaç  | g; SF0W      | OF bit |             |           |            |            |
| 7 to 6           | -                                                                                                                                                                                                   |                                                                                                                |    | Reserve                         | d bits   |         |         |             |   |          |              |        |             |           |            |            |
| 5                | SF0                                                                                                                                                                                                 | SPIFC                                                                                                          |    | This is u<br>The flag           |          |         |         |             |   | compl    | etion flag   | g; SF0 | SPIF bi     | t.        |            |            |
| 4                | -                                                                                                                                                                                                   |                                                                                                                |    | Reserve                         | ed bits  |         |         |             |   |          |              |        |             |           |            |            |
| 3                | SF0                                                                                                                                                                                                 | ORFC                                                                                                           |    | This is u<br>The req<br>the SF0 | uest is  | cleared |         |             |   |          |              |        |             |           | F0ORF      | bit of     |
| 2                | SF0                                                                                                                                                                                                 | FC                                                                                                             |    | This is u<br>The req<br>SF0SR   | uest is  | cleared |         |             |   |          |              |        |             |           | F0FI bit   | of the     |
| 1                | SF0                                                                                                                                                                                                 | RFC                                                                                                            |    | This is u<br>The req<br>the SF0 | uest is  | cleared |         |             |   |          |              |        | heck o      | n the S   | FORFI      | oit of     |
| 0                | SF0TFC This is used to clear the transmission interrupt request ;SF0TFI bit.<br>The request is cleared by writing "1" to this bit. For the request, check on the SF0TFI bit of the SF0SRR register. |                                                                                                                |    |                                 |          |         |         |             |   |          |              |        |             |           |            |            |

#### [Note]

Write "1" to SF0IRQ bit while there is any unprocessed interrupt source and processing all the interrupt sources before exiting the interrupt vector will cause re-entry to the interrupt vector with no interrupt source after exiting the interrupt vector. Ensure to write "1" before exiting the interrupt vector.

#### 12.2.8 SIOF0 FIFO Status Register (SF0FSR)

This is a SFR used to indicate the remaining frame counts in transmission/reception FIFO.

| Addre<br>Acce<br>Acce<br>Initial | F58C<br>16 bit<br>0000                                                                                                                                                                                                                                                      | (SF0FS | RL/SF | )FSR),  | 0xF58I  | D (SF0F     | FSRH)       |             |   |   |   |   |   |             |             |             |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|---------|---------|-------------|-------------|-------------|---|---|---|---|---|-------------|-------------|-------------|
|                                  | 15                                                                                                                                                                                                                                                                          | 14     | 13    | 12      | 11      | 10          | 9           | 8           | 7 | 6 | 5 | 4 | 3 | 2           | 1           | 0           |
| Word                             | SF0FSR                                                                                                                                                                                                                                                                      |        |       |         |         |             |             |             |   |   |   |   |   |             |             |             |
| Byte                             | SF0FSRH SF0FSRL                                                                                                                                                                                                                                                             |        |       |         |         |             |             |             |   |   |   |   |   |             |             |             |
| Bit                              | -                                                                                                                                                                                                                                                                           | -      | -     | -       | -       | SF0R<br>FD2 | SF0R<br>FD1 | SF0R<br>FD0 | - | - | - | - | - | SF0T<br>FD2 | SF0T<br>FD1 | SF0T<br>FD0 |
| R/W                              | R                                                                                                                                                                                                                                                                           | R      | R     | R       | R       | R           | R           | R           | R | R | R | R | R | R           | R           | R           |
| Initial<br>value                 | 0                                                                                                                                                                                                                                                                           | 0      | 0     | 0       | 0       | 0           | 0           | 0           | 0 | 0 | 0 | 0 | 0 | 0           | 0           | 0           |
| Bit<br>番号                        | Bit シンボル名 Description                                                                                                                                                                                                                                                       |        |       |         |         |             |             |             |   |   |   |   |   |             |             |             |
| 15 to 11                         | -                                                                                                                                                                                                                                                                           |        |       | Reserve | ed bits |             |             |             |   |   |   |   |   |             |             |             |
| 10 to 8                          | SF0RFD2 to<br>SF0RFD0       These bit are used to indicate the remaining frame counts in the reception FIFO.         000:       Empty (Initial value)         001:       1 frame         010:       2 frames         011:       3 frames         100:       4 frames (Full) |        |       |         |         |             |             |             |   |   |   |   |   |             |             |             |
| 7 to 3                           | -                                                                                                                                                                                                                                                                           |        |       | Reserve | ed bits |             |             |             |   |   |   |   |   |             |             |             |
| 2 to 0                           | SF0TFD2 to<br>SF0TFD0       These bit are used to indicate the remaining frame counts in the transmission FIFO.<br>000: Empty (Initial value)<br>001: 1 frame<br>010: 2 frames<br>011: 3 frames<br>100: 4 frames (Full)                                                     |        |       |         |         |             |             |             |   |   |   |   |   |             |             |             |

#### 12.2.9 SIOF0 Writing Data Register (SF0DWR)

This is a SFR used to write transmission data.

| Address :0xF58E (SF0DWRL/SF0DWR), 0xF58F (SF0DWRH)Access :R/WAccess size :8/16 bitInitial value :0x0000 |                 |             |             |             |             |             |            |            |            |            |            |            |            |            |            |            |
|---------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------|-------------|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                                                                                         | 15              | 14          | 13          | 12          | 11          | 10          | 9          | 8          | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Word                                                                                                    | SF0DWR          |             |             |             |             |             |            |            |            |            |            |            |            |            |            |            |
| Byte                                                                                                    | SF0DWRH SF0DWRL |             |             |             |             |             |            |            |            |            |            |            |            |            |            |            |
| Bit                                                                                                     | SF0W<br>D15     | SF0W<br>D14 | SF0W<br>D13 | SF0W<br>D12 | SF0W<br>D11 | SF0W<br>D10 | SF0W<br>D9 | SF0W<br>D8 | SF0W<br>D7 | SF0W<br>D6 | SF0W<br>D5 | SF0W<br>D4 | SF0W<br>D3 | SF0W<br>D2 | SF0W<br>D1 | SF0W<br>D0 |
| R/W                                                                                                     | R/W             | R/W         | R/W         | R/W         | R/W         | R/W         | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value                                                                                        | 0               | 0           | 0           | 0           | 0           | 0           | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |

Write to this register should be :

8-bit length data write access to the SF0DWRL for 8 bit transmission; SF0SIZ=0.

16-bit length data write access to the SF0DWR for 16 bit transmission; SF0SIZ=1.

#### 12.2.10 SIOF0 Reading Data Register (SF0DRR)

This is a SFR used to read reception data.

| Acce<br>Acce     | ess :<br>ess :<br>ess size<br>l value | R<br>: 8/   | F590 (\$<br>16 bit<br>0000 | SF0DR       | RL/SF(      | )DRR),      | 0xF59      | 1 (SF0[    | ORRH)      |            |            |            |            |            |            |            |
|------------------|---------------------------------------|-------------|----------------------------|-------------|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | 15                                    | 14          | 13                         | 12          | 11          | 10          | 9          | 8          | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             | SF0DRR                                |             |                            |             |             |             |            |            |            |            |            |            |            |            |            |            |
| Byte             | SF0DRRH SF0DRRL                       |             |                            |             |             |             |            |            |            |            |            |            |            |            |            |            |
| Bit              | SF0R<br>D15                           | SF0R<br>D14 | SF0R<br>D13                | SF0R<br>D12 | SF0R<br>D11 | SF0R<br>D10 | SF0R<br>D9 | SF0R<br>D8 | SF0R<br>D7 | SF0R<br>D6 | SF0R<br>D5 | SF0R<br>D4 | SF0R<br>D3 | SF0R<br>D2 | SF0R<br>D1 | SF0R<br>D0 |
| R/W              | R                                     | R           | R                          | R           | R           | R           | R          | R          | R          | R          | R          | R          | R          | R          | R          | R          |
| Initial<br>value | 0                                     | 0           | 0                          | 0           | 0           | 0           | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |

Read to this register should be:

8-bit length data read access to the SF0DRRL for 8 bit transmission; SF0SIZ=0.

16-bit length data read access to the SF0DRR for 16 bit transmission; SF0SIZ=1.

#### 12.3 Description of Operation

#### 12.3.1 Master / Slave Mode

This unit has 2 modes; the master mode and the slave mode. It is selected by the SF0MST bit of the SIOF0 control register.

SF0BR9-0, SF0LAG1-0, SF0LEAD1-0 bits of SF0BRR and SF0DTL8-0 bits of SF0TRAC determine SCKF0 and SSNF0 operations. Each bit of SF0CPOL, SF0CPHA, SF0LSB nad SF0SIZ bits need to habe the same value for master and slave.

#### 12.3.2 Serial Clock Baud Rate (Master Mode)

A baud rate is configured by the SF0BR9-0 bits of SF0BRR register. This is only valid in the master mode. The baud rate clock SCKF0 is generated by dividing SYSCLK. The baud rate (fSCK) is calculated as follos:

 $f_{SCK} = f_{SYSCLK} / (2 \times SF0BR9-0)$ 

 $f_{SCK}$  : A frequency of baud rate clock

 $f_{SYSCLK}$  : A frequency of system clock

SF0BR9-0 : Value set in SF0BR9-0 of the SF0BRR (1 to 1023)

If 0 is set the SF0BR register, it is processed as 1. It can be selected from 1023 dividing types (2 to 2046)

#### 12.3.3 Control of Polarity and Phase of Serial Clock

The SF0CPOL bit of the SF0CTRL register controls the clock polarity. SF0CPHA bit of the SF0CTRL register controls the clock phase and determines the shift timing of transmit data and the sampling timing of received data. The master and slave which communicate with each other must have the same setting values for SF0CPOL and SF0CPHA.

#### 12.3.4 Data Transfer Timing

Figure 12-2 shows the data transfer timing when SF0CPHA is "0". SSF0 is the slave selection input in Slave mode. In Master mode, the transfer is started when data is written to the SF0DWR register. In Slave mode, the transfer is started at the SSF0 falling edge. The received data is sampled at the rising-edge of SCKF0 in SF0CPOL is "0" and the falling-edge of SCKF0 in SF0CPOL is "1". The transmitted data is shifted at the falling-edge of SCKF0 in SF0CPOL is "0" and the rising-edge of SCKF0 in SF0CPOL is "1".

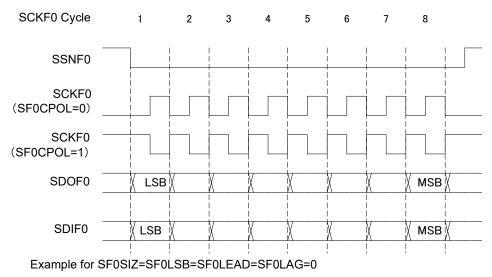



Figure 12-2 8-bit length data transfer at SF0CPHA=0

Figure 12-3 shows the data transfer timing when SF0CPHA is "1". SSF0 is the slave selection input in Slave mode. In Master mode, the transfer is started when data is written to SF0DWR. In Slave mode, the transfer is started at the first edge of SCKF0. The received data is sampled at the falling-edge of SCKF0 in SF0CPOL is "0" and the rising-edge of SCKF0 in SF0CPOL is "1". The transmitted data is shifted at the rising-edge of SCKF0 in SF0CPOL is "0" and the falling-edge of SCKF0 in SF0CPOL is "1".

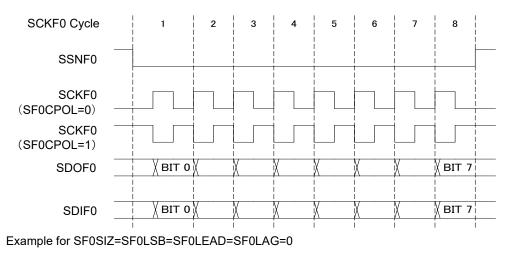
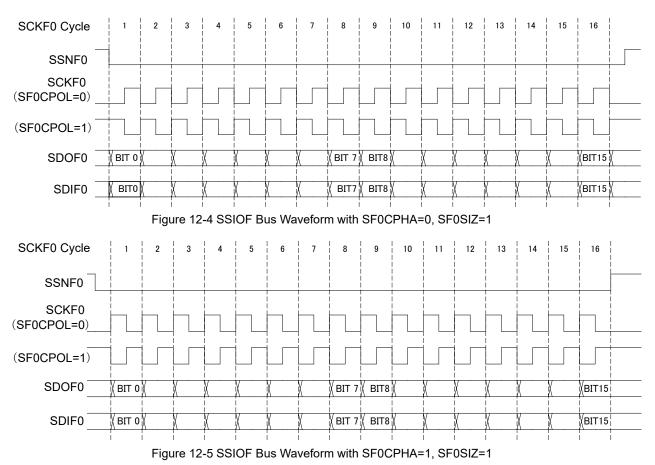




Figure 12-3 8-bit length data transfer at SF0CPHA=1

#### 12.3.5 Transfer Size

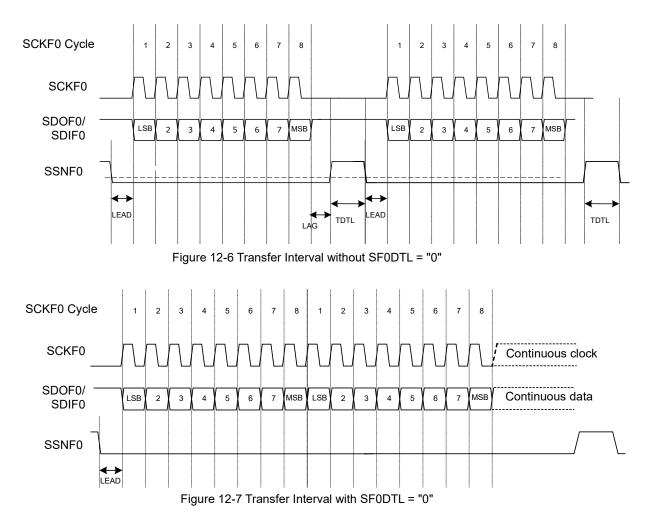
The transfer size can be selected in 8 bit (byte) or 16 bit (word) as 1 frame. Transfer data read/write must be coincided to the transfer size. As the number of FIFO stages is the same for both byte and word, the number of transfers is the same. The master and slaves which communicate with each other must have the same value for SF0SIZ.



## 12.3.6 Transfer Interval Setting (Master Mode)

The LEAD; SSF0-SCKF0 time, LAG; SCKF0-SSF0(H) time, and TDTL; SSF0(H)-SSF0(H) can be set to adjust the speed to the slave. This setting is only valid in Master mode. It is ignored in Slave mode. Setting during transferring is invalid.

1) LEAD


A value from 0.5 to 1.5 SCKF0 can be set.

2) LAG

A value from 0.5 to 1.5 SCKF0 can be set.

3) TDTL

The minimum transfer interval can be controlled in SCKF0 clocks by setting SF0DTL bit of the SF0TRAC register. If there is any transfer data in FIFO, the time set by this setting (SSF0) changes to "1" during byte/word transfer. If there is no transfer data in FIFO, this is "1" until any transmitted data is written. If SF0DTL bit of the SF0TRAC register is set to 0, the interval after transfer (TDTL) disappears and a continuous transfer is performed. SSF0 is held to 0 and returns to 1 after the transfer is finished.



## 12.3.7 Transmission Operation (Master Mode)

- (1) Write the necessary values to SF0CTRL, SF0INTC, SF0BRR, and SF0TRAC, set the SF0MST bit to Master mode, and set the SF0SPE bit to enable the SSIOF transfer.
- (2) When the transmitted data is written to SF0DWR, the transmit FIFO Empty flag changes to 0 (SF0TFE = 0). SSIOF starts the automatic transmission and outputs the transmitted data from LSB or MSB on the SOUTF0 pin according to the SF0LSB setting.
- (3) The sync clock, which was set by the SF0CPOL, SF0CPHA, and SF0BRR registers, is output from the SCKF0 pin.
- (4) Transmitted data can be written to SF0DWR successively. However, if further writing is performed when the transmit FIFO is in Full status (SF0TFF = 1), a write overflow occurs. (SF0WOF = 1, No interrupt is generated.)
- (5) The SF0SPIF bit is set each time the transfer of 1 frame is completed. (SF0SPIF=1)
- (6) A transmission interrupt occurs if the remaining data in the transmit FIFO matches the frame count selected with SF0TFIC. (SF0TFI=1)
- (7) If the transmit FIFO becomes empty and the transfer of the last frame is completed, a transfer completion interrupt is generated. (SF0FI=1)

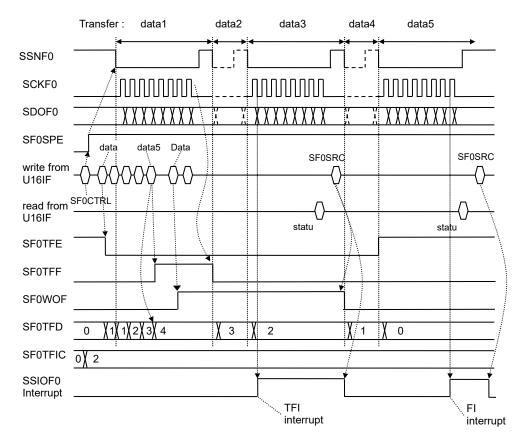



Figure 12-8 Transmission Operation in the Master Mode

## 12.3.8 Reception Operation (Master Mode)

The master mode of the synchronous serial with FIFO starts by setting data in a transmission buffer. The Data needs to be set into a transmission buffer even master mode reception only.

- (1) Write the necessary values to SF0CTRL, SF0INTC, SF0BRR and SF0TRAC, and then set the SF0MST bit to the master mode, and set the SF0SPE bit to enable the SSIOF transfer.
- (2) When the data is written to SF0DWR, the SSIOF transfer is started.
- (3) The synchronous clock, which was set by the SF0CPOL, SF0CPHA, and SF0BRR0-1 registers, is output from the SCKF0 pin.
- (4) On the SINF0 pin, the received data is sampled from LSB or MSB according to the SF0LSB setting and stored in the reception FIFO. The reception FIFO empty flag changes to 0 (RFE = 0).
- (5) The SF0SPIF bit is set each time the transfer of 1 frame is completed. (SF0SPIF=1)
- (6) If the number of data received in the reception FIFO is equal to or more than matches following the frame count selected with SF0RFIC of SF0CR, SF0RFI of SF0SRR is set to generate a reception interrupt. (SF0RFI=1)
- (7) When the reception FIFO becomes full, the subsequent reception is disabled. If the reception is performed in this state, an overrun error interrupt is generated. (SF0ORF=1)
- (8) If the temporary data of transmission FIFO becomes empty and the transfer of the last frame is completed, a transfer completion interrupt is generated. (SF0FI=1)

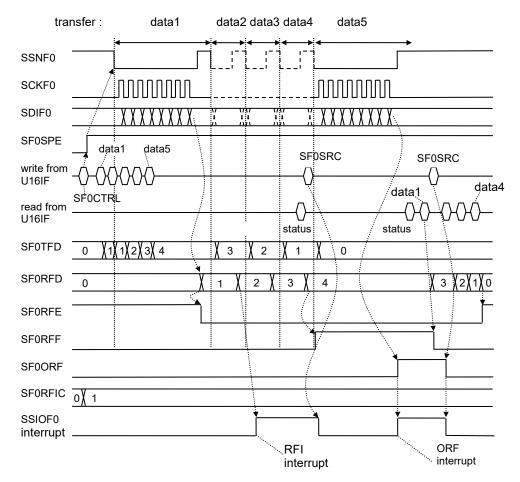



Figure 12-9 Reception Operation in the Master Mode

#### 12.3.9 FIFO Operation

The SSIOF includes the receive FIFO of 16 words and the transmit FIFO of 16 words. The FIFO state is indicated in the SF0TFF, SF0TFE, SF0RFF, and SF0RFE bits of SF0SRR, and the SF0TFD and SF0RFD bit of SF0FSR. There are three FIFO states, Full (SF0TFF and SF0RFF), Empty (SF0TFE and SF0RFE), and Depth (SF0TFD and SF0RFD).

#### 12.3.10 Writing Overflow for Transmission

If further writing is performed when the transmit FIFO is in Full status (SF0TFF = 1), a write overflow is set. (SF0WOF=1). However, interrupt is not generated even when a write overflow occurs. SF0WOF is cleared when write "1" in SF0WOFC bit of SF0SRCH.

#### 12.3.11 Overrun Error for Reception

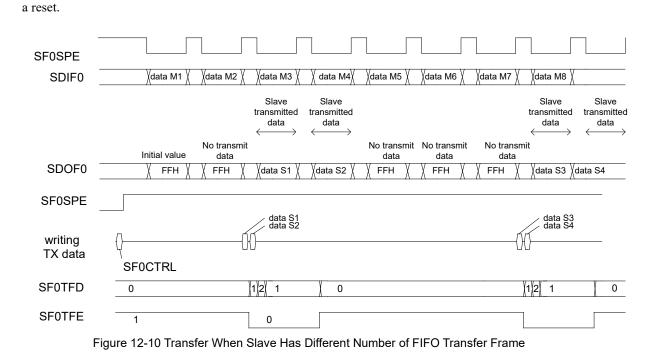
If further reception is performed when the reception FIFO is in full status (SF0RFF = 1), an overrun error occurs. (SF0ORF=1)

If an overrun error occurs, the SF0ORF bit of SF0SRR is set, and an overrun error interrupt is generated. The newly received data is not held.

Read the content of the reception FIFO to clear the SF0RFF bit, then write "1" in the SF0ORFC bit to clear the SF0ORFC bit.

#### 12.3.12 FIFO Clearing

The transmission/reception counter control of FIFO can be initialized to the initial setting state (SF0TFF=0, SF0TFE=1, SF0RFF=0, and SF0RFE=1 in the SF0SRR register and SF0TFD2-0=000 and SF0RFD2-0=000 in the SF0FSR register) by setting the SF0FICL bit of the SF0CTRL register to 1.


The SF0FICL bit of the SF0CTRL register needs to be 0, before next transfer operation.

Even if SF0FICL bit of SF0CTRL register is set to 1, the interrupt is not changed for SF0RFIC, SF0TFIC, SF0ORIE, SF0FIE, SF0FIE, and SF0TFIE of the SF0INTC register, and SF0ORF, SF0FI, SF0RFI, and SF0TFI of the SF0SRR register.

This bit can be used to discard the data of FIFO when the communication is aborted.

#### 12.3.13 Transfer When Slave Has Different Number of FIFO Transfer Frame

- 1) The master sends data only when the transmission data is already written in FIFO.
- 2) As the slave's transmission data count is determined by the master, data is transferred as follows if the number of FIFO transfer frame of slave is different from that of the master. If the transmission data is not written in the slave's FIFO, a 0xFF ((0xFFFF) for word) is sent, including the state after



FEUL62Q2500

## 12.3.14 Interrupt

#### 12.3.14.1 SSIOF Interrupt Source

There are the following four types.

- Overrun
- If an overrun occurs, SF0ORF of SF0SRR is set, and an overrun error interrupt is generated.
- Transmission FIFO threshold If the remaining data of the transmission FIFO matches the frame count selected with SF0TFIC, SF0TFI of SF0SRR is set to generate a transmission interrupt.
- Reception FIFO threshold If the number of data received in the reception FIFO is equal to or more than following the frame count selected with SF0RFIC of SF0CR, SF0RFI of SF0SRR is set to generate a reception interrupt.
- Transfer completion If the transmission FIFO becomes empty and the transfer of the last frame is completed, SF0FI of SF0SRR is set to generate a transfer completion interrupt.

### 12.3.14.2 Clearing SSIOF Interrupt

An interrupt request is cleared by writing 1 to each interrupt bit (SF0TFC, SF0RFC, SF0RFC, SF0ORFC, SF0MDFC, SF0SPIFC, and SF0WOFC) of the SF0SRR.

#### 12.3.14.3 SSIOF Interrupt Timing

Figure 12-11 shows the interrupt timing.

The transmission interrupt (TFI) generates an interrupt in 3 to 4 SYSCLK after the shift clock of the second bit in the master mode, in 3 to 5 SYSCLK after the shift clock of the second bit in the slave mode.

For reception interrupt (RFI), transfer completion interrupt (FI), and overrun (ORF), an interrupt is generated in 2 to 3 SYSCLK after the sampling clock at the MSB in the master mode, in 2 to 4 SYSCLK after the sampling clock at the MSB in the slave mode.

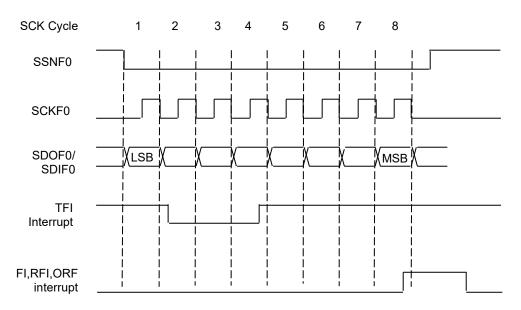



Figure 12-11 Interrupt Timing

#### 12.3.14.4 Interrupt processing flow

Figure 12-12 show the processing flow in the receiving operation of the slave mode.

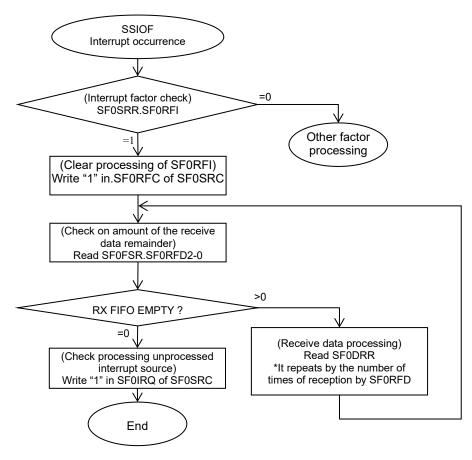



Figure 12-12 Example of the interrupt control flow

# Chapter 13 I<sup>2</sup>C Bus

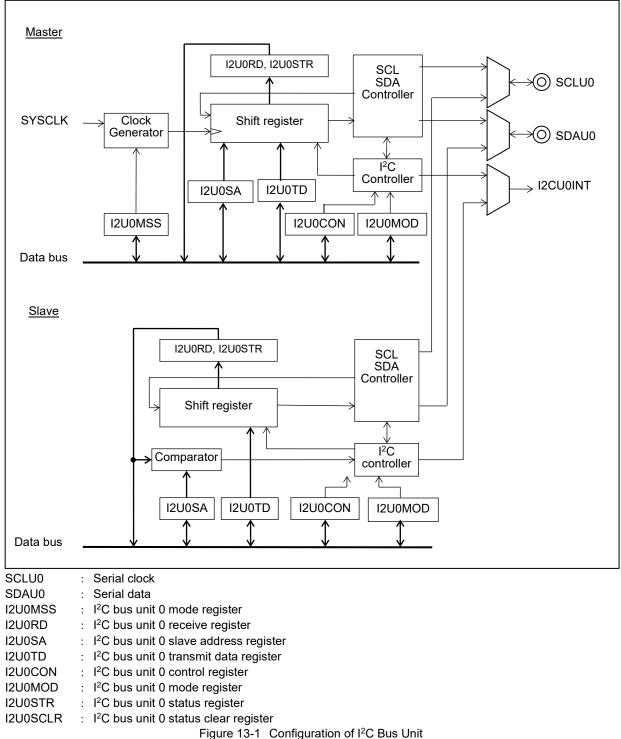
## 13. I<sup>2</sup>C Bus

#### 13.1 General Description

ML62Q2500 group has one channel of  $I^2C$  bus unit that supports both master and slave function and one channel of  $I^2C$  bus master.

 $I^2C$  bus unit is that either of master or slave can be chosen to use and both functions of master and slave are unworkable at the same time.

### 13.1.1 Features


Table 13-1 shows features of  $I^2C$  bus unit and  $I^2C$  bus master.

| Function                    | Operation<br>mode       | Features                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l²C bus unit                | Master<br>function      | <ul> <li>Communication speed: Standard mode (100 kbps), fast mode (400 kbps), and original standard 1 Mbps mode (1Mbps)</li> <li>Support clock stretch function for the Slave</li> <li>7 or 10-bit address format</li> <li>Self-test function by reading transmitted data onto the I<sup>2</sup>C bus (Safety function)</li> </ul> |
|                             | Slave<br>function       | <ul> <li>Communication speed: Standard mode (100 kbps), fast mode (400 kbps), and original standard 1 Mbps mode (1Mbps)</li> <li>Clock stretch function</li> <li>7-bit address format</li> <li>Wake-up from STOP/STOP-D/HALT-D mode by matching slave address</li> </ul>                                                           |
| l <sup>2</sup> C bus master | Master<br>function only | <ul> <li>Communication speed: Standard mode (100 kbps), fast mode (400 kbps), and original standard 1 Mbps mode (1Mbps)</li> <li>Support clock stretch function for the Slave</li> <li>7 or 10-bit address format</li> <li>Self-test function by reading transmitted data onto the l<sup>2</sup>C bus (Safety function)</li> </ul> |

#### Table 13-1 Features of I<sup>2</sup>C bus

## 13.1.2 Configuration

Figure 13-1 shows the configuration diagram of the I<sup>2</sup>C bus unit circuit. Change the reading of the register, symbol, signal name as for I<sup>2</sup>C bus master.



#### 13.1.3 List of Pins

The I/O pins of the I<sup>2</sup>C bus unit are assigned to the shared function of the general ports.

| Pin name | I/O | Description                                 |
|----------|-----|---------------------------------------------|
| SDAU0    | I/O | I <sup>2</sup> C bus unit 0 data I/O pin    |
| SCLU0    | I/O | I <sup>2</sup> C bus unit 0 clock I/O pin   |
| SDAM0    | I/O | I <sup>2</sup> C bus master 0 data I/O pin  |
| SCLM0    | I/O | I <sup>2</sup> C bus master 0 clock I/O pin |

Table 13-2 shows port used in the I<sup>2</sup>C and the register settings.

In addition to the mode setting of the shared function, choose "Enable Input, Enable Output, N-ch open drain output and without pull-up" by setting following data to the port n mode register m (PnMODm).

|                |          | UTL USC |           | and the regi        | Ster Settings |                    |
|----------------|----------|---------|-----------|---------------------|---------------|--------------------|
| Channel<br>no. | Pin name | Sh      | ared port | Setting<br>register | Setting value | ML62Q2500<br>group |
|                | SDAU0    | P25     | 4th Func. | P2MOD5              | 0011_1011     | •                  |
|                | 30700    | P71     | 4th Func. | P7MOD1              | 0011_1011     | •                  |
|                | SCLU0    | P24     | 4th Func. | P2MOD4              | 0011_1011     | •                  |
| 0              | SCLUU    | P70     | 4th Func. | P7MOD0              | 0011_1011     | •                  |
| U              | SDAM0    | P23     | 4th Func. | P2MOD3              | 0011_1011     | •                  |
| -              | SDAIVIU  | P73     | 4th Func. | P7MOD3              | 0011_1011     | •                  |
|                | SCLM0    | P22     | 4th Func. | P2MOD2              | 0011_1011     | •                  |
|                | SCLIVIU  | P72     | 4th Func. | P7MOD2              | 0011_1011     | •                  |

Table 13-2 Port used in the I<sup>2</sup>C and the register settings

•: Available -: Unavailable

## 13.1.4 Combination of I<sup>2</sup>C Bus Port

SDAU0/SCLU0/SDAM0/SCLM0 pins are assigned to multiple general ports. Be sure to use the ports in following combinations.

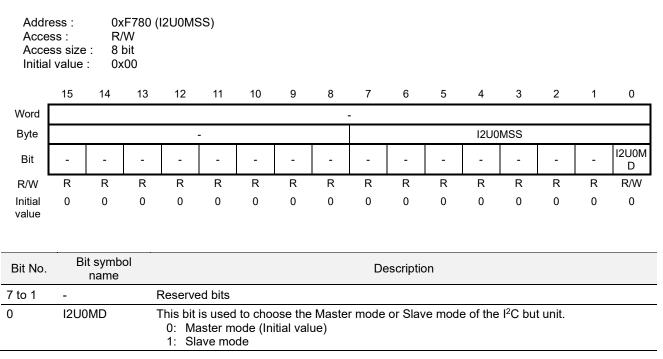
| S           |                                | C           | Po          | ort                | ML |
|-------------|--------------------------------|-------------|-------------|--------------------|----|
| Combination | <sup>3</sup> eripheral<br>Type | Channel no. | SDAUn/SDAMn | IL62Q2500<br>group |    |
| 1           | l <sup>2</sup> C bus unit      | 0           | P25         | P24                | ٠  |
| 2           |                                | 0           | P71         | P70                | ٠  |
| 3           | l <sup>2</sup> C bus master    | 0           | P23         | P22                | •  |
| 4           | I-C bus master                 | 0           | P73         | P72                | •  |

\*: n= Channel number. •: Available -: Unavailable

#### [Note]

- Use external pull-up resistors for SDA pin and SCL pin referring to the I<sup>2</sup>C bus specification. The internal
  pull-up resistors is unsatisfied the I<sup>2</sup>C bus specification. See the data sheet for each product for the value
  of internal pull-up resistors.
- If powering off this LSI in the slave mode, it disables communications of other devices on the l<sup>2</sup>C bus.
   Keep this LSI powered on when it works as a slave mode until the master device is powered off.
- Do not connect multiple master devices on the I<sup>2</sup>C bus when using the master function.

## 13.2 Description of Registers


## 13.2.1 List of Registers

| A data a a | Nama                                                                | Sym       | bol      |     |      | Initial |
|------------|---------------------------------------------------------------------|-----------|----------|-----|------|---------|
| Address    | Name                                                                | Byte      | Word     | R/W | Size | Value   |
| 0xF780     | I <sup>2</sup> C bus unit 0 mode register                           | I2U0MSS   | -        | R/W | 8    | 0x00    |
| 0xF781     | Reserved                                                            | -         | -        | -   | -    | -       |
| 0xF782     | I <sup>2</sup> C bus unit 0 receive register                        | I2U0RD    | -        | R   | 8    | 0x00    |
| 0xF783     | Reserved                                                            | -         | -        | -   | -    | -       |
| 0xF784     | I <sup>2</sup> C bus unit 0 slave address register                  | I2U0SA    | -        | R/W | 8    | 0x00    |
| 0xF785     | Reserved                                                            | -         | -        | -   | -    | -       |
| 0xF786     | I <sup>2</sup> C bus unit 0 transmit data register                  | I2U0TD    | -        | R/W | 8    | 0x00    |
| 0xF787     | Reserved                                                            | -         | -        | -   | -    | -       |
| 0xF788     | I <sup>2</sup> C bus unit 0 control register                        | I2U0CON   | -        | R/W | 8    | 0x00    |
| 0xF789     | Reserved                                                            | -         | -        | -   | -    | -       |
| 0xF78A     | - I <sup>2</sup> C bus unit 0 mode register                         | I2U0MODL  | I2U0MOD  | R/W | 8/16 | 0x00    |
| 0xF78B     |                                                                     | I2U0MODH  | 12001000 | R/W | 8    | 0x02    |
| 0xF78C     | 12C hus unit 0 status register                                      | I2U0STAT  |          | R   | 8/16 | 0x00    |
| 0xF78D     | <ul> <li>I<sup>2</sup>C bus unit 0 status register</li> </ul>       | I2U0ISR   | I2U0STR  | R   | 8    | 0x00    |
| 0xF78E     | 12C hus unit 0 status clear register                                | I2U0SCLRL | I2U0SCLR | W   | 8/16 | 0x00    |
| 0xF78F     | <ul> <li>I<sup>2</sup>C bus unit 0 status clear register</li> </ul> | I2U0SCLRH | IZUUSULK | W   | 8    | 0x00    |

| Address | Name                                                 | Syml      | bol      | R/W  | Size | Initial |
|---------|------------------------------------------------------|-----------|----------|------|------|---------|
| Address | Name                                                 | Byte      | Word     | r/// | Size | Value   |
| 0xF7C0  | Reserved                                             |           |          |      |      |         |
| 0xF7C1  | Reserved                                             | -         | -        | -    | -    | -       |
| 0xF7C2  | I <sup>2</sup> C bus master 0 receive register       | I2M0RD    | -        | R    | 8    | 0x00    |
| 0xF7C3  | Reserved                                             | -         | -        | -    | -    | -       |
| 0xF7C4  | I <sup>2</sup> C bus master 0 slave address register | I2M0SA    | -        | R/W  | 8    | 0x00    |
| 0xF7C5  | Reserved                                             | -         | -        | -    | -    | -       |
| 0xF7C6  | I <sup>2</sup> C bus master 0 transmit data register | I2M0TD    | -        | R/W  | 8    | 0x00    |
| 0xF7C7  | Reserved                                             | -         | -        | -    | -    | -       |
| 0xF7C8  | I <sup>2</sup> C bus master 0 control register       | I2M0CON   | -        | R/W  | 8    | 0x00    |
| 0xF7C9  | Reserved                                             | -         | -        | -    | -    | -       |
| 0xF7CA  | I²C bus master 0 mode register                       | I2M0MODL  | I2M0MOD  | R/W  | 8/16 | 0x00    |
| 0xF7CB  | 1-C bus master o mode register                       | I2M0MODH  |          | R/W  | 8    | 0x02    |
| 0xF7CC  | I²C bus master 0 status register                     | I2M0STAT  | I2M0STR  | R    | 8/16 | 0x00    |
| 0xF7CD  |                                                      | I2M0ISR   |          | R    | 8    | 0x00    |
| 0xF7CE  | I <sup>2</sup> C bus master 0 status clear register  | I2M0SCLRL | I2M0SCLR | W    | 8/16 | 0x00    |
| 0xF7CF  |                                                      | I2M0SCLRH |          | W    | 8    | 0x00    |

### 13.2.2 I<sup>2</sup>C Bus Unit 0 Mode Register (I2U0MSS)

This is a SFR used to choose the Master mode or Slave mode of the I2C bus unit 0.



[Note]

- All SFRs are shared in master mode and slave mode. If switching master/slave mode, set "0" I2U0EN bit of I2UMOD register, then Change mode and do reconfiguration each SFRs.
- When using the master function, do not connect multiple master devices on the I<sup>2</sup>C bus.
- If powering off this LSI in the slave mode, it disables communications of other devices on the I2C bus. Remain the power to this LSI when it works as a slave mode until the master device is powered off.

#### 13.3 Description of Registers for Master function

This section explains about master mode of I<sup>2</sup>C bus unit 0 and I<sup>2</sup>C bus master 0. In this section, both word symbol, byte symbol and bit symbol are put down with. A prefix of symbol for I<sup>2</sup>C bus unit 0 is I2U. A prefix of symbol for I<sup>2</sup>C bus master 0 is I2M. All SFRs are shared in master mode and slave mode. Set master mode on I2U0MSS, at the begining.

### 13.3.1 I<sup>2</sup>C Bus Unit 0 Receive Register (I2U0RD), I<sup>2</sup>C Bus Master 0 Receive Register (I2M0RD)

This is a read-only SFR used to store the received data. This is initialized, in addition to reset function, by writing "0" to I2U0EN/I2M0EN bit in I2U0MOD/I2M0MOD register.

|                  |    | R<br>: 8 | :F782(I:<br>bit<br>:00 | 2U0RD | ), 0xF7 | C2(I2N | 10RD) |   |            |            |            |            |            |            |            |            |
|------------------|----|----------|------------------------|-------|---------|--------|-------|---|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | 15 | 14       | 13                     | 12    | 11      | 10     | 9     | 8 | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             |    |          |                        |       |         |        |       |   | -          |            |            |            |            |            |            |            |
| Byte             |    |          |                        |       | -       |        |       |   |            |            |            | 12U(       | ORD        |            |            |            |
| Bit              | -  | -        | -                      | -     | -       | -      | -     | - | 12U0R7     | 12U0R6     | 12U0R5     | I2U0R4     | 12U0R3     | 12U0R2     | 12U0R1     | I2U0R0     |
| Word             |    |          |                        |       |         |        |       |   | -          |            |            |            |            |            |            |            |
| Byte             |    |          |                        |       | -       |        |       |   |            |            |            | I2M        | 0RD        |            |            |            |
| Bit              | -  | -        | -                      | -     | -       | -      | -     | - | I2M0R<br>7 | I2M0R<br>6 | I2M0R<br>5 | I2M0R<br>4 | I2M0R<br>3 | I2M0R<br>2 | I2M0R<br>1 | I2M0R<br>0 |
| R/W              | R  | R        | R                      | R     | R       | R      | R     | R | R          | R          | R          | R          | R          | R          | R          | R          |
| Initial<br>value | 0  | 0        | 0                      | 0     | 0       | 0      | 0     | 0 | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |

This is updated after completion of each reception.

| Bi  | t No. | Bit symbol<br>name                          | Description                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|-------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 t | o 0   | I2U0R7 to<br>I2U0R0/<br>I2M0R7 to<br>I2M0R0 | <ul> <li>These bits are used to store the received data. This data is updated at coinciding slave-address and data reception.</li> <li>Reading this register enables following confirmation.</li> <li>Reading when receiving data: Can confirm the received data.</li> <li>Reading slave address or Reading when transmitting data: Can confirm the transmission data is surely transmitted.</li> </ul> |

# 13.3.2 I<sup>2</sup>C Bus Unit 0 Slave Address Register (I2U0SA), I<sup>2</sup>C Bus Master 0 Slave Address Register (I2M0SA)

This is a SFR to set the address and transmission/reception mode of the slave device.

This is initialized, in addition to reset function, by writing "0" to I2U0EN/I2M0EN bit in I2U0MOD/I2M0MOD register.

|                  |    | R<br>: 8 | kF784(I<br>/W<br>bit<br>k00 | 2U0SA | ), 0xF7 | C4(I2M | 10SA) |   |        |        |        |        |        |        |        |            |
|------------------|----|----------|-----------------------------|-------|---------|--------|-------|---|--------|--------|--------|--------|--------|--------|--------|------------|
|                  | 15 | 14       | 13                          | 12    | 11      | 10     | 9     | 8 | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0          |
| Word             |    |          |                             |       |         |        |       |   | -      |        |        |        |        |        |        |            |
| Byte             |    |          |                             |       | -       |        |       |   |        |        |        | 12U    | OSA    |        |        |            |
| Bit              | -  | -        | -                           | -     | -       | -      | -     | - | 12U0A6 | I2U0A5 | I2U0A4 | I2U0A3 | I2U0A2 | I2U0A1 | 12U0A0 | 12U0R<br>W |
| Word             |    |          |                             |       |         |        |       |   | -      |        |        |        |        |        |        |            |
| Byte             |    |          |                             |       | -       |        |       |   |        |        |        | I2M    | 0SA    |        |        |            |
| Bit              | -  | -        | -                           | -     | -       | -      | -     | - | I2M0A6 | 12M0A5 | I2M0A4 | I2M0A3 | I2M0A2 | 12M0A1 | I2M0A0 | I2M0R<br>W |
| R/W              | R  | R        | R                           | R     | R       | R      | R     | R | R/W        |
| Initial<br>value | 0  | 0        | 0                           | 0     | 0       | 0      | 0     | 0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          |

| Bit No. | Bit symbol name                             | Description                                                                                                                                                        |
|---------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to 1  | I2U0A6 to<br>I2U0A0/<br>I2M0A6 to<br>I2M0A0 | These bits are used to set the address of the communication partner.                                                                                               |
| 0       | 12U0RW/<br>12M0RW                           | <ul><li>This bit is used to choose direction of the data communication.</li><li>0: Data transmission mode (Initial value)</li><li>1: Data reception mode</li></ul> |

# 13.3.3 I<sup>2</sup>C Bus Unit 0 Transmit Data Register (I2U0TD), I<sup>2</sup>C Bus Master 0 Transmit Data Register (I2M0TD)

This is a SFR used to set the transmission data.

This is initialized, in addition to reset function, by writing "0" to I2U0EN/I2M0EN bit in I2U0MOD/I2M0MOD register.

|                  |    | R.<br>e: 8 | <f786(i<br>/W<br/>bit<br/>&lt;00</f786(i<br> | 2U0TD | ), 0xF7 | C6(I2M | IOTD) |   |        |        |        |        |        |        |        |        |
|------------------|----|------------|----------------------------------------------|-------|---------|--------|-------|---|--------|--------|--------|--------|--------|--------|--------|--------|
|                  | 15 | 14         | 13                                           | 12    | 11      | 10     | 9     | 8 | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
| Word             |    |            |                                              |       |         |        |       |   | -      |        |        |        |        |        |        |        |
| Byte             |    |            |                                              |       | -       |        |       |   |        |        |        | I2U    | 0TD    |        |        |        |
| Bit              | -  | -          | -                                            | -     | -       | -      | -     | - | I2U0T7 | 12U0T6 | I2U0T5 | I2U0T4 | I2U0T3 | I2U0T2 | I2U0T1 | I2U0T0 |
| Word             |    |            |                                              |       |         |        |       |   | -      |        |        |        |        |        |        |        |
| Byte             |    |            |                                              |       | -       |        |       |   |        |        |        | I2M    | 0TD    |        |        |        |
| Bit              | -  | -          | -                                            | -     | -       | -      | -     | - | I2M0T7 | 12M0T6 | 12M0T5 | I2M0T4 | I2M0T3 | I2M0T2 | I2M0T1 | I2M0T0 |
| R/W              | R  | R          | R                                            | R     | R       | R      | R     | R | R/W    |
| Initial<br>value | 0  | 0          | 0                                            | 0     | 0       | 0      | 0     | 0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

| Bit No. | Bit symbol<br>name                          | Description                                       |
|---------|---------------------------------------------|---------------------------------------------------|
| 7 to 0  | I2U0T7 to<br>I2U0T0/<br>I2M0T7 to<br>I2M0T0 | These bits are used to set the transmission data. |

# 13.3.4 I<sup>2</sup>C Bus Unit 0 Control Register (I2U0CON), I<sup>2</sup>C Bus Master 0 Control Register (I2M0CON)

This is a SFR used to control transmission and reception operations.

This is initialized, in addition to reset function, by writing "0" to I2U0EN/I2M0EN bit in I2U0MOD/I2M0MOD register.

|                  |                                                                                                                                                                                                                                                      | R/<br>: 81      | W  | (I2U0CO                                                                                                                                                                                                                                                                                                                                                                                                                         | N), OxF | 7C8(12 | 2M0CO                                                                   | N)                                                   |                                                     |                                         |                                             |                                            |                                     |            |            |            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------|------------|------------|------------|
|                  | 15                                                                                                                                                                                                                                                   | 14              | 13 | 12                                                                                                                                                                                                                                                                                                                                                                                                                              | 11      | 10     | 9                                                                       | 8                                                    | 7                                                   | 6                                       | 5                                           | 4                                          | 3                                   | 2          | 1          | 0          |
| Word             |                                                                                                                                                                                                                                                      |                 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |                                                                         |                                                      | -                                                   |                                         |                                             |                                            |                                     |            |            |            |
| Byte             |                                                                                                                                                                                                                                                      | 1               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                 | -       |        | 1                                                                       | 1                                                    |                                                     |                                         | 1                                           | I2U0                                       | CON                                 | 1          | 1          |            |
| Bit              | -                                                                                                                                                                                                                                                    | -               | -  | -                                                                                                                                                                                                                                                                                                                                                                                                                               | -       | -      | -                                                                       | -                                                    | I2U0A<br>CT                                         | -                                       | -                                           | -                                          | -                                   | I2U0R<br>S | I2U0SP     | I2U0ST     |
| Word             |                                                                                                                                                                                                                                                      |                 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |                                                                         |                                                      | -                                                   |                                         |                                             |                                            |                                     |            |            |            |
| Byte             |                                                                                                                                                                                                                                                      |                 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                 | -       |        |                                                                         |                                                      |                                                     |                                         |                                             | 12M0                                       | CON                                 |            |            |            |
| Bit              | -                                                                                                                                                                                                                                                    | -               | -  | -                                                                                                                                                                                                                                                                                                                                                                                                                               | -       | -      | -                                                                       | -                                                    | I2M0A<br>CT                                         | -                                       | -                                           | -                                          | -                                   | I2M0R<br>S | I2M0S<br>P | I2M0S<br>T |
| R/W              | R                                                                                                                                                                                                                                                    | R               | R  | R                                                                                                                                                                                                                                                                                                                                                                                                                               | R       | R      | R                                                                       | R                                                    | R/W                                                 | R                                       | R                                           | R                                          | R                                   | W          | W          | R/W        |
| Initial<br>value | 0                                                                                                                                                                                                                                                    | 0               | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                               | 0       | 0      | 0                                                                       | 0                                                    | 0                                                   | 0                                       | 0                                           | 0                                          | 0                                   | 0          | 0          | 0          |
| Bit No.          | Bi                                                                                                                                                                                                                                                   | it symb<br>name | ol |                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |                                                                         |                                                      | De                                                  | scriptio                                | on                                          |                                            |                                     |            |            |            |
| 7                |                                                                                                                                                                                                                                                      | )ACT/<br>)ACT   |    | <ul> <li>This bit is used to set the acknowledgment data to be output at completion of reception.</li> <li>0: Acknowledgment data "0" (Initial value)</li> <li>1: Acknowledgment data "1"</li> </ul>                                                                                                                                                                                                                            |         |        |                                                                         |                                                      |                                                     |                                         |                                             |                                            |                                     |            |            |            |
| 6 to 3           | -                                                                                                                                                                                                                                                    |                 |    | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |                                                                         |                                                      |                                                     |                                         |                                             |                                            |                                     |            |            |            |
| 2                | 12U0<br>12M0                                                                                                                                                                                                                                         |                 |    | This bit is a write-only and used to request a restart.<br>When "1" is written to this bit during data communication, this module shifts to the restar condition and the communication restarts from the slave address.<br>"1" can be written to this bit only while communication is active (I2U0ST /I2M0ST = "1").<br>This bit always returns "0" for reading.<br>0: No restart request (Initial value)<br>1: Restart request |         |        |                                                                         |                                                      |                                                     |                                         |                                             |                                            |                                     |            |            |            |
| 1                | 12U0<br>12M0                                                                                                                                                                                                                                         |                 |    | <ul> <li>This bit is a write-only and used to request a stop condition.</li> <li>When "1" is written to this bit, the module shifts to the stop condition and the communication stops.</li> <li>This bit always returns "0" for reading.</li> <li>0: No stop condition request (Initial value)</li> <li>1: Stop condition request</li> </ul>                                                                                    |         |        |                                                                         |                                                      |                                                     |                                         |                                             |                                            |                                     |            |            | cation     |
| 0                | I2U0ST/<br>I2M0ST<br>This bit is used to control<br>When "1" is written to thi<br>When "1" is overwritten to<br>transmission/reception of<br>When "0" is written to thi<br>When "1" is written to thi<br>0: Stops communicat<br>1: Starts communicat |                 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        | this bit<br>n to thi<br>n of ack<br>this bit,<br>this bit,<br>cation (I | during<br>s bit in<br>nowled<br>, the co<br>, the I2 | I2U0ST<br>a next d<br>dgment,<br>ommunic<br>U0ST/I2 | /I2M0S<br>ata tra<br>the da<br>ation is | ST bit is<br>insmiss<br>ta trans<br>s stopp | "0", the<br>ion/rec<br>mission<br>ed forci | e comr<br>eption<br>n/recej<br>bly. | wait sta   | te after   |            |

#### [Note]

• Update it without a bit access instructions in the control register setting wait state.

 When the I2U0ST/I2M0ST bit is "1", write other bits of I2U0CON/I2M0CON register in the control register setting wait state.

## 13.3.5 I<sup>2</sup>C Bus Unit 0 Mode Register (I2U0MOD), I<sup>2</sup>C Bus Master 0 Mode Register (I2M0MOD)

This is a SFR used to set the operation mode.

See "13.5.4 Operation Waveforms" for detail of communication speed.

| Acce<br>Acce     | ress :<br>ess :<br>ess size<br>I value                                                                                                                                                                                                                                                                               | 0x<br>R/<br>: 8/´                      | F7CA(I        |                                                                      |                                                                        |                                                                                    | D), 0xF7<br>D), 0xF                                                                        |                                                                                  |                                                                          |                                                                 |                                                                   |                      |             |             |             |            |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|----------------------|-------------|-------------|-------------|------------|
|                  | 15                                                                                                                                                                                                                                                                                                                   | 14                                     | 13            | 12                                                                   | 11                                                                     | 10                                                                                 | 9                                                                                          | 8                                                                                | 7                                                                        | 6                                                               | 5                                                                 | 4                    | 3           | 2           | 1           | 0          |
| Word             |                                                                                                                                                                                                                                                                                                                      |                                        |               |                                                                      |                                                                        |                                                                                    |                                                                                            | 12U01                                                                            | MOD                                                                      |                                                                 |                                                                   |                      |             |             |             |            |
| Byte             |                                                                                                                                                                                                                                                                                                                      |                                        |               | 12U0N                                                                | /ODH                                                                   |                                                                                    |                                                                                            |                                                                                  | I2U0MODL                                                                 |                                                                 |                                                                   |                      |             |             |             |            |
| Bit              | 12U0TI<br>2                                                                                                                                                                                                                                                                                                          | 12U0TI<br>1                            | 12U0TI<br>0   | -                                                                    | -                                                                      | -                                                                                  | I2U0C<br>D1                                                                                | 12U0C<br>D0                                                                      | -                                                                        | -                                                               | I2U0M<br>D4                                                       | I2U0M<br>D3          | I2U0M<br>D2 | I2U0M<br>D1 | I2U0M<br>D0 | I2U0E<br>N |
| Word             |                                                                                                                                                                                                                                                                                                                      |                                        | Ū             |                                                                      |                                                                        |                                                                                    | 2.                                                                                         | I2M0                                                                             | MOD                                                                      |                                                                 | 2.                                                                | 20                   | 52          | 2.          | 20          |            |
| Byte             |                                                                                                                                                                                                                                                                                                                      |                                        |               | 12M0N                                                                | NODH                                                                   |                                                                                    |                                                                                            |                                                                                  | I2M0MODL                                                                 |                                                                 |                                                                   |                      |             |             |             |            |
| Bit              | I2M0TI<br>2                                                                                                                                                                                                                                                                                                          | I2M0TI<br>1                            | I2M0TI<br>0   | -                                                                    | -                                                                      | -                                                                                  | I2M0C<br>D1                                                                                | I2M0C<br>D0                                                                      | -                                                                        | -                                                               | I2M0M<br>D4                                                       | I2M0M<br>D3          | I2M0M<br>D2 | I2M0M<br>D1 | I2M0M<br>D0 | I2M0E<br>N |
| R/W              | R/W                                                                                                                                                                                                                                                                                                                  | R/W                                    | R/W           | R                                                                    | R                                                                      | R                                                                                  | R/W                                                                                        | R/W                                                                              | R                                                                        | R                                                               | R/W                                                               | R/W                  | R/W         | R/W         | R/W         | R/W        |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                    | 0                                      | 0             | 0                                                                    | 0                                                                      | 0                                                                                  | 1                                                                                          | 0                                                                                | 0                                                                        | 0                                                               | 0                                                                 | 0                    | 0           | 0           | 0           | 0          |
| Bit No.          | Bi                                                                                                                                                                                                                                                                                                                   | it symbo<br>name                       | ol            |                                                                      |                                                                        |                                                                                    |                                                                                            |                                                                                  | De                                                                       | escripti                                                        | on                                                                |                      |             |             |             |            |
| 15 to 13         | 13I2U0TI2 to<br>I2U0TI0/These bits are used<br>See Table 13-3 of "1<br>000: a parameter<br>001: a parameter<br>010: a parameter<br>011: a parameter<br>100: a parameter<br>101: Do not use ( |                                        |               |                                                                      |                                                                        | of "13<br>meter f<br>meter f<br>meter f<br>meter f<br>meter f<br>meter f<br>use (1 | 3.5.4 Op<br>for SYS(<br>for SYS(<br>for SYS(<br>for SYS(<br>for SYS(<br>for SYS(           | eration<br>CLK = 2<br>CLK = 1<br>CLK = 1<br>CLK =<br>CLK =<br>CLK = 1<br>CLK = 2 | Wavefo<br>4MHz<br>6MHz<br>2MHz<br>8MHz<br>1MHz<br>SCLK(<br>24MHz)        | orms" f<br>(Initial<br>)                                        | or detai                                                          |                      | ommuni      | cation r    | ate.        |            |
| 12 to 10         | ) -                                                                                                                                                                                                                                                                                                                  |                                        | F             | Reserve                                                              | ed bits                                                                |                                                                                    |                                                                                            |                                                                                  |                                                                          |                                                                 |                                                                   |                      |             |             |             |            |
| 9 to 8           | 12U0                                                                                                                                                                                                                                                                                                                 | 0CD1 tc<br>0CD0/<br>0CD1 tc<br>0CD1 tc | )             | 00:<br>01:<br>10:<br>11:                                             | SYSCL<br>1/2 SY<br>1/4 SY<br>1/8 SY                                    | _K<br>SCLK<br>SCLK<br>SCLK                                                         | o choos<br>(Initial v<br>n Wavef                                                           | alue)                                                                            |                                                                          | -                                                               |                                                                   | speed.               |             |             |             |            |
| 7, 6             | -                                                                                                                                                                                                                                                                                                                    |                                        | F             | Reserve                                                              | ed bits                                                                |                                                                                    |                                                                                            |                                                                                  |                                                                          |                                                                 |                                                                   |                      |             |             |             |            |
| 5                |                                                                                                                                                                                                                                                                                                                      | )MD4/<br>)MD4                          | Т             | his fun<br>n the lo<br>0: No                                         | ction m<br>bad of l<br>ot use t                                        | nonitor:<br><sup>2</sup> C bus<br>he cloc                                          | bose whe<br>s the I <sup>2</sup> C<br>s.<br>ck stretcl<br>tretch fu                        | bus, th<br>h function                                                            | erefor                                                                   | e the c                                                         | ommuni                                                            |                      |             |             |             |            |
| 4, 3             | 12U0<br>12M0                                                                                                                                                                                                                                                                                                         | )MD3,<br>)MD2/<br>)MD3,<br>)MD2        | tł<br>L<br>re | nat the<br>SCLK0<br>eductio<br>See Tab<br>00: No<br>01: Ap<br>10: Ap | commu<br>) or 1M<br>n" is ch<br>ole 13-3<br>o comm<br>proxim<br>proxim | unication<br>Hz is consent<br>of "13<br>of "13<br>ounicat<br>ately 1<br>ately 1    | o set the<br>on spee<br>chosen b<br>regardle<br>3.5.4 Op<br>ion spee<br>10% com<br>17% com | d excee<br>by the l2<br>ss this s<br>eration<br>d reduc<br>nmunica<br>nmunica    | eds 100<br>2U0TI2<br>setting.<br>Wavefection (In<br>ation sp<br>ation sp | ) kbps/<br>-0/I2M<br>orms" f<br>nitial va<br>beed re<br>beed re | 400kbps<br>0TI2-0 b<br>or detail<br>alue)<br>eduction<br>eduction | s/1 Mbp<br>bits, "No | os. Whe     | en para     | meter fo    | or         |

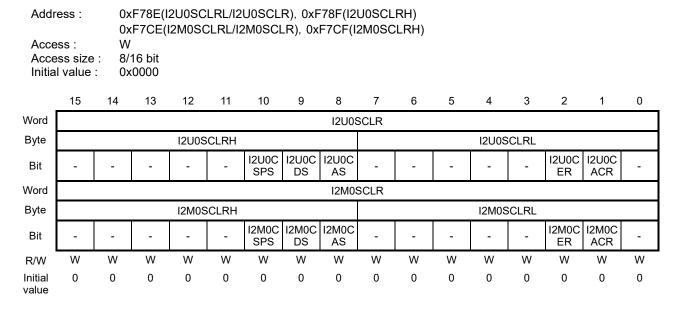
| Bit No. | Bit symbol<br>name   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2, 1    | I2U0MD1,<br>I2U0MD0/ | These bits are used to set the communication speed mode.<br>00: Standard mode (Initial value) (100 kbps*)<br>01: Fast mode (400 kbps*)                                                                                                                                                                                                                                                                                                                                                                                          |
|         | I2M0MD1,<br>I2M0MD0/ | 10: 1Mbps mode (1Mbps*)<br>11: 1Mbps mode (1Mbps*)<br>* : When SYSCLK=24 or 16 MHz and I2U0CD1-0/I2M0CD1-0 = "00" and I2U0MD4/I2M0MD4<br>= "0" and I2U0TI2-0/I2M0TI2-0 = "000/001" and I2U0MD3-2/I2M0MD3-2 = "00".                                                                                                                                                                                                                                                                                                              |
| 0       | I2U0EN/<br>I2M0EN    | This bit is used to enable the master operation. When "1" is written to this bit, the<br>I2U0ST/I2M0ST bit can be set. When "0" is written to this bit, the I <sup>2</sup> C master stops operation<br>and the I2U-RD/I2M0RD, I2U0SA/I2M0SA, I2U0TD/I2M0TD, I2U0CON/I2M0CON and<br>I2U0STR/I2M0STR are initialized.<br>If this bit is written "0" during a communication, do initialization and re-setting.<br>0: Stop the I <sup>2</sup> C master operation (Initial value)<br>1: Enable the I <sup>2</sup> C master operation |

## 13.3.6 I<sup>2</sup>C Bus Unit 0 Status Register (I2U0STR), I<sup>2</sup>C Bus Master 0 Status Register (I2M0STR)

This is a SFR to indicate the state of the  $I^2C$  bus unit / master.

This is initialized, in addition to reset function, by writing "0" to I2U0EN/I2M0EN bit in I2U0MOD/I2M0MOD register. Each bit is initialized by writing "1" to a corresponding bit of I2U0SCLR/I2M0SCLR register.

|                  |    | 0xF7CC(I2M0STAT/I2M0STR), 0xF7CD<br>s : R<br>s size : 8/16 bit |    |      |      |             |            |            |          |   |   |      |      |            |             |   |  |
|------------------|----|----------------------------------------------------------------|----|------|------|-------------|------------|------------|----------|---|---|------|------|------------|-------------|---|--|
|                  | 15 | 14                                                             | 13 | 12   | 11   | 10          | 9          | 8          | 7        | 6 | 5 | 4    | 3    | 2          | 1           | 0 |  |
| Word             |    |                                                                |    |      |      |             |            | I2U0       | STR      |   |   |      |      |            |             |   |  |
| Byte             |    |                                                                |    | 1200 | DISR |             |            |            | I2U0STAT |   |   |      |      |            |             |   |  |
| Bit              | -  | -                                                              | -  | -    | -    | I2U0SP<br>S | I2U0D<br>S | I2U0AS     | rsvd     | - | - | -    | -    | I2U0E<br>R | I2U0A<br>CR | - |  |
| Word             |    |                                                                |    |      |      |             |            | I2M0       | STR      |   |   |      |      |            |             |   |  |
| Byte             |    |                                                                |    | 12M0 | DISR |             |            |            |          |   |   | I2M0 | STAT |            |             |   |  |
| Bit              | -  | -                                                              | -  | -    | -    | I2M0S<br>PS | I2M0D<br>S | I2M0A<br>S | rsvd     | - | - | -    | -    | I2M0E<br>R | I2M0A<br>CR | - |  |
| R/W              | R  | R                                                              | R  | R    | R    | R           | R          | R          | R        | R | R | R    | R    | R          | R           | R |  |
| Initial<br>value | 0  | 0                                                              | 0  | 0    | 0    | 0           | 0          | 0          | 0        | 0 | 0 | 0    | 0    | 0          | 0           | 0 |  |


| Bit No.  | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 11 | -                   | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10       | I2U0SPS/<br>I2M0SPS | <ul> <li>This bit is used to indicate the usage state of the I<sup>2</sup>C bus.</li> <li>This bit is set to "1" when transmitting the stop condition has been completed on the I<sup>2</sup>C bus.</li> <li>To reset this bit, write "1" to I2U0CSPS/ I2M0CSP bit of I2U0SCLR/I2M0SCLR register.</li> <li>0: The stop condition has not been transmitted (Initial value)</li> <li>1: The stop condition has been transmitted</li> </ul>                                                                                                                                                                                                                                                                                                                                  |
| 9        | I2U0DS/<br>I2M0DS   | <ul> <li>This bit is used to indicate the usage state of the I<sup>2</sup>C bus.</li> <li>This bit is set to "1" when transmitting data or receiving data has been completed on the I<sup>2</sup>C bus.</li> <li>To reset this bit, write "1" tol2U0CDS/ I2M0CDS bit of I2U0SCLR/I2M0SCLR register.</li> <li>0: The transmission/reception has not been completed (Initial value)</li> <li>1: The transmission/reception has been completed</li> </ul>                                                                                                                                                                                                                                                                                                                    |
| 8        | I2U0AS/<br>I2M0AS   | <ul> <li>This bit is used to indicate the usage state of the I<sup>2</sup>C bus.</li> <li>This bit is set to "1" when transmitting the start condition and 7 bit slave address have been completed on the I<sup>2</sup>C bus.</li> <li>To reset this bit, write "1" to I2U0CAS/ I2M0CAS bit of I2U0SCLR/I2M0SCLR register</li> <li>0: The start condition and the slave address have not been transmitted (Initial value)</li> <li>1: The start condition and the slave address have been transmitted</li> </ul>                                                                                                                                                                                                                                                          |
| 7        | rsvd                | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6 to 3   | -                   | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2        | I2U0ER/<br>I2M0ER   | This bit is used to indicate a transmission error.<br>When a bit of transmission data and the value on the SDAU0/SDAM0 pin do not coincide, "1"<br>is set to this bit.<br>To reset this bit, write "1" tol2U0CER/ I2M0CER bit of I2U0SCLR/I2M0SCLR register.<br>When this bit is set to "1" and the clock stretch function is used (I2U0MD4/ I2M0MD4 = "1"),<br>the SDAU0/SDAM0 pin output is disabled until the subsequent byte data communication<br>terminates.<br>Even if this bit is set to "1", the SDAU0/SDAM0 pin output continues until the subsequent<br>byte data communication terminates when the clock stretch function is not used (I2U0MD4/<br>I2M0MD4 = "0").<br>0: There was no transmission error (Initial value)<br>1: There was a transmission error |

| Bit No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | I2U0ACR/<br>I2M0ACR | <ul> <li>This bit is used to store the acknowledgment signal received.</li> <li>Acknowledgment signals are received when the slave address is transmitted and the data transmission/reception is completed.</li> <li>To reset this bit, write "1" to I2U0CACR/ I2M0CACR bit of I2U0SCLR/I2M0SCLR register</li> <li>0: Received acknowledgment "0" (Initial value)</li> <li>1: Received acknowledgment "1"</li> </ul> |
| 0       | -                   | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                         |

# 13.3.7 I<sup>2</sup>C Bus Unit 0 Status Clear Register (I2U0SCLR), I<sup>2</sup>C Bus Master 0 Status Clear Register (I2M0SCLR)

This is a SFR to clear the state of the  $I^2C$  bus unit / master.

When Each bit is written "1", a corresponding bit of I2U0STR/I2M0STR register is initialized to "0".



Common description of each bits :

It is used to clear a target status.

Writing "0": Invalid

Writing "1": clear a target interrupt

| Bit No.  | Bit symbol<br>name    | Description (target)                                                |
|----------|-----------------------|---------------------------------------------------------------------|
| 15 to 11 | -                     | Reserved bits                                                       |
| 10       | I2U0CSPS/<br>I2M0CSPS | I2U0SPS bit of I2U0STR register/<br>I2M0SPS bit of I2M0STR register |
| 9        | I2U0CDS/<br>I2M0CDS   | I2U0DS bit of I2U0STR register/<br>I2M0DS bit of I2M0STR register   |
| 8        | I2U0CAS/<br>I2M0CAS   | I2U0AS bit of I2U0STR register/<br>I2M0AS bit of I2M0STR register   |
| 7 to 3   | -                     | Reserved bit                                                        |
| 2        | I2U0CER/<br>I2M0CER   | I2U0ER bit of I2U0STR register/<br>I2M0ER bit of I2M0STR register   |
| 1        | I2U0CACR/<br>I2M0CACR | I2U0ACR bit of I2U0STR register/<br>I2M0ACR bit of I2M0STR register |
| 0        | -                     | Reserved bit                                                        |

#### 13.4 Description of Registers for Slave function

This section explains about slave mode of I<sup>2</sup>C bus unit 0. A prefix of symbol for I<sup>2</sup>C bus unit 0 is I2U. A prefix of symbol for I<sup>2</sup>C bus master 0 is I2M. Set master mode on I2U0MSS, at the begining I<sup>2</sup>C bus unit 0. I<sup>2</sup>C bus master does not have this function.

## 13.4.1 I<sup>2</sup>C Bus Unit 0 Receive Register (I2U0RD)

This is a read-only SFR used to store the received data.

|                  |    | R<br>: 8 | kF782(I<br>bit<br>k00 | 2U0RD | )  |    |   |   |        |        |        |        |        |        |        |        |
|------------------|----|----------|-----------------------|-------|----|----|---|---|--------|--------|--------|--------|--------|--------|--------|--------|
|                  | 15 | 14       | 13                    | 12    | 11 | 10 | 9 | 8 | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
| Word             |    |          |                       |       |    |    |   |   | -      |        |        |        |        |        |        |        |
| Byte             |    |          |                       | -     |    |    |   |   |        |        |        | 12U(   | ORD    |        |        |        |
| Bit              | -  | -        | -                     | -     | -  | -  | - | - | 12U0R7 | 12U0R6 | 12U0R5 | 12U0R4 | 12U0R3 | 12U0R2 | 12U0R1 | 12U0R0 |
| R/W              | R  | R        | R                     | R     | R  | R  | R | R | R      | R      | R      | R      | R      | R      | R      | R      |
| Initial<br>value | 0  | 0        | 0                     | 0     | 0  | 0  | 0 | 0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                    |
|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7to0    | I2U0R7toI2U0<br>R0 | <ul> <li>These bits are used to store the received data. This data is updated at coinciding slave-address and data reception.</li> <li>Reading this register enables following confirmation.</li> <li>Reading when receiving data: Can confirm the received data.</li> <li>Reading when transmitting data: Can confirm the transmission data is surely transmitted.</li> </ul> |

## 13.4.2 I<sup>2</sup>C Bus Unit 0 Slave Address Register (I2U0SA)

This is a SFR used to set the slave address.

|                  |                     | R/<br>: 81 | Ŵ  | 2U0SA)  |         |         |         |         |        |           |        |        |        |        |        |   |
|------------------|---------------------|------------|----|---------|---------|---------|---------|---------|--------|-----------|--------|--------|--------|--------|--------|---|
|                  | 15                  | 14         | 13 | 12      | 11      | 10      | 9       | 8       | 7      | 6         | 5      | 4      | 3      | 2      | 1      | 0 |
| Word             |                     |            |    |         |         |         |         |         | -      |           |        |        |        |        |        |   |
| Byte             |                     |            |    | -       |         |         |         |         |        |           |        | 12U    | OSA    |        |        |   |
| Bit              | -                   | -          | -  | -       | -       | -       | -       | -       | I2U0A6 | I2U0A5    | I2U0A4 | 12U0A3 | 12U0A2 | I2U0A1 | 12U0A0 | - |
| R/W              | R                   | R          | R  | R       | R       | R       | R       | R       | R/W    | R/W       | R/W    | R/W    | R/W    | R/W    | R/W    | R |
| Initial<br>value | 0                   | 0          | 0  | 0       | 0       | 0       | 0       | 0       | 0      | 0         | 0      | 0      | 0      | 0      | 0      | 0 |
|                  | Bi                  | teymb      |    |         |         |         |         |         |        |           |        |        |        |        |        |   |
| Bit No.          | Bit symbol<br>name  |            |    |         |         |         |         |         | De     | escriptio | on     |        |        |        |        |   |
| 7 to 1           | I2U0A6 to<br>I2U0A0 |            |    | These b | its are | used to | set the | e slave | addres | S.        |        |        |        |        |        |   |

## 13.4.3 I<sup>2</sup>C Bus Unit 0 Transmit Data Register (I2U0TD)

Reserved bit

This is a SFR used to set the transmission data.

| Acce<br>Acce     | Address :0x786(I2U0TD)Access :R/WAccess size :8 bitInitial value :0x00 |    |    |    |    |    |   |   |        |        |        |        |        |        |        |        |
|------------------|------------------------------------------------------------------------|----|----|----|----|----|---|---|--------|--------|--------|--------|--------|--------|--------|--------|
|                  | 15                                                                     | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
| Word             |                                                                        |    |    |    |    |    |   |   | -      |        |        |        |        |        |        |        |
| Byte             |                                                                        |    |    |    | -  |    |   |   |        |        |        | 12U    | 0TD    |        |        |        |
| Bit              | -                                                                      | -  | -  | -  | -  | -  | - | - | 12U0T7 | I2U0T6 | I2U0T5 | I2U0T4 | I2U0T3 | 12U0T2 | I2U0T1 | I2U0T0 |
| R/W              | R                                                                      | R  | R  | R  | R  | R  | R | R | R/W    |
| Initial<br>value | 0                                                                      | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

| Bit No. | Bit symbol<br>name  | Description                                       |
|---------|---------------------|---------------------------------------------------|
| 7 to 0  | I2U0T7 to<br>I2U0T0 | These bits are used to set the transmission data. |

0

\_

### 13.4.4 I<sup>2</sup>C Bus Unit 0 Control Register (I2U0CON)

This is a SFR used to control transmission and reception operations.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R/<br>: 81       | Ŵ             | 2U0CO            | N)             |    |          |          |                       |         |            |         |         |          |         |          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|------------------|----------------|----|----------|----------|-----------------------|---------|------------|---------|---------|----------|---------|----------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14               | 13            | 12               | 11             | 10 | 9        | 8        | 7                     | 6       | 5          | 4       | 3       | 2        | 1       | 0        |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |               |                  |                |    |          |          | -                     |         |            |         |         |          |         |          |
| Byte             | - I2U0CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |               |                  |                |    |          |          |                       |         |            |         |         |          |         |          |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                | -             | -                | -              | -  | -        | -        | I2U0A<br>CT           | -       | I2U0W<br>T | -       | -       | -        | -       | -        |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R                | R             | R                | R              | R  | R        | R        | R/W                   | R       | W          | R       | R       | R        | R       | R        |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                | 0             | 0                | 0              | 0  | 0        | 0        | 0                     | 0       | 0          | 0       | 0       | 0        | 0       | 0        |
| Bit No.          | Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | it symbo<br>name | ol            |                  |                |    |          |          | De                    | scripti | on         |         |         |          |         |          |
| 7                | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )ACT             |               | slave m<br>0: Ac | ode.<br>knowle |    | t data " | 0" (Init | lgment o<br>ial value |         | be outp    | ut at c | ompleti | on of re | eceptio | n in the |
| 6                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | I             | Reserve          | ed bit         |    |          |          |                       |         |            |         |         |          |         |          |
| 5                | <ul> <li>I2U0WT This bit is used to release the communication wait state ("L" level output on the SCLU0 pin) in the slave mode. Writing "1" to this bit during the communication wait state releases the state ("L" level output of the SCLU0 pin is released).</li> <li>This bit is a write-only bit and always returns "0" for reading.</li> <li>0: Not release the communication wait state (Initial value)</li> <li>1: Release the communication wait state</li> </ul> |                  |               |                  |                |    |          |          |                       |         |            |         |         |          |         |          |
| 4 to 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | Reserved bits |                  |                |    |          |          |                       |         |            |         |         |          |         |          |

[Note]

- If system clock is extremely slower than the communication speed, the data transmission/reception can be failed.
- Before releasing the communication wait state, change the system clock enough speed for the communication.

## 13.4.5 I<sup>2</sup>C Bus Unit 0 Mode Register (I2U0MOD)

This is a SFR used to set the operation mode.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R/<br>e: 8/     |        | 2U0M0                                  | DL/I2U               | JOMOE                     | ), 0xF7                      | 78B(I2U               | JOMOE              | 9H),                |             |             |             |                                                 |        |            |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|----------------------------------------|----------------------|---------------------------|------------------------------|-----------------------|--------------------|---------------------|-------------|-------------|-------------|-------------------------------------------------|--------|------------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14              | 13     | 12                                     | 11                   | 10                        | 9                            | 8                     | 7                  | 6                   | 5           | 4           | 3           | 2                                               | 1      | 0          |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |        |                                        |                      |                           |                              | 12U0                  | MOD                |                     |             |             |             |                                                 |        |            |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |        | 12U01                                  | NODH                 |                           |                              |                       |                    |                     |             | I2U0        | MODL        |                                                 |        |            |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -               | -      | -                                      | -                    | -                         | -                            | -                     | -                  | 12U0M<br>D5         | I2U0M<br>D4 | I2U0M<br>D3 | I2U0M<br>D2 | I2U0M<br>D1                                     | -      | I2U0E<br>N |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R               | R      | R                                      | R                    | R                         | R                            | R                     | R                  | R/W                 | R/W         | R/W         | R/W         | R/W                                             | R      | R/W        |
| Initial<br>value | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |        |                                        |                      |                           |                              |                       |                    |                     |             |             |             |                                                 |        |            |
| Bit No.          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | it symb<br>name | ol     |                                        |                      |                           |                              |                       | D                  | escriptio           | on          |             |             |                                                 |        |            |
| 15 to 7          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | F      | Reserve                                | ed bits              |                           |                              |                       |                    |                     |             |             |             |                                                 |        |            |
| 6                | I2U0MD5 This bit is used to enable or disable the start condition interrupt in the slave mode.<br>0: Disabled (Initial value)<br>1: Enabled                                                                                                                                                                                                                                                                                                                                                                               |                 |        |                                        |                      |                           |                              |                       |                    |                     |             |             |             |                                                 |        |            |
| 5                | I2U0MD4 This bit is used to enable or disable the stop condition interrupt in the slave mode.<br>0: Disabled (Initial value)<br>1: Enabled                                                                                                                                                                                                                                                                                                                                                                                |                 |        |                                        |                      |                           |                              |                       |                    |                     |             |             |             |                                                 |        |            |
| 4                | 12U(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DMD3            | -      | commu<br>This fur<br>by the s<br>0: Di | nicating<br>oction p | to the<br>erforms<br>when | master<br>s detec<br>enablir | r, receiv<br>ting the | /ing re-<br>status | start co<br>of I2US | ndition     | and an      | anothe      | rupt whi<br>er slave<br>ar the I2               | is cho |            |
| 3                | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )MD2            | (<br>a | output<br>acknow<br>unctior<br>0: Di   | "L" leve<br>ledge d  | el on the<br>ata "1"      | e SCLL<br>from th            | J0 pin)               | when t             | ransmitt            | ing to t    | he mas      | ster and    | the I <sup>2</sup> C I<br>I receivii<br>municat | ng the |            |
| 2                | <ul> <li>I2U0MD1 This bit is used to select mode when the stop condition interrupt is enabled (I2U0MD4=1). This function performs detecting the status of I2US0SAA bit. Do not clear the I2US0SAA bit by the software when enabling the interrupt.</li> <li>0: The interrupt occur while the master is communicating with self-slave or other slaves (Initial value)</li> <li>1: The interrupt occur while the master is communicating with only self-slave</li> </ul>                                                    |                 |        |                                        |                      |                           |                              |                       |                    |                     |             |             |             |                                                 |        |            |
| 1                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | F      | Reserve                                | ed bit               |                           |                              |                       |                    |                     |             |             |             |                                                 |        |            |
| 0                | <ul> <li>I2U0EN This bit is used to enable the slave operation of the I<sup>2</sup>C bus unit. When "1" is written to this bit, the operation of the I<sup>2</sup>C bus unit 0 is enabled. When "0" is written to this bit, all the bits of the I<sup>2</sup>C bus status register (I2US0STR) are initialized to "0", and the operation of the I<sup>2</sup>C bus unit 0 is stopped.</li> <li>0: Stop the I<sup>2</sup>C slave operation (Initial value)</li> <li>1: Enable the I<sup>2</sup>C slave operation</li> </ul> |                 |        |                                        |                      |                           |                              |                       |                    |                     |             |             |             |                                                 |        |            |

#### [Note]

• To be disable the wake-up from standby mode by matching the slave address, Stop the operation by resetting I2U0EN bit to "0" before entering STOP/STOP-D/HALT-D mode.

## 13.4.6 I<sup>2</sup>C Bus Unit 0 Status Register (I2U0STR)

This is a SFR to indicate the state of the I<sup>2</sup>C bus unit.

Each bit is initialized, in addition to reset function, by writing "1" to a corresponding bit of I2U0SCLR/I2M0SCLR register.

| Address :       | 0xF78C(I2U0STAT/I2U0STR), 0xF78D(I2U0ISR) |
|-----------------|-------------------------------------------|
| Access :        | R                                         |
| Access size :   | 8/16 bit                                  |
| Initial value : | 0x0000                                    |

|                  | 15 | 14 | 13           | 12          | 11          | 10          | 9          | 8      | 7   | 6 | 5 | 4      | 3           | 2          | 1           | 0 |
|------------------|----|----|--------------|-------------|-------------|-------------|------------|--------|-----|---|---|--------|-------------|------------|-------------|---|
| Word             |    |    |              |             |             |             |            | 1200   | STR |   |   |        |             |            |             |   |
| Byte             |    |    |              | 120         | OISR        |             |            |        |     |   |   | 12009  |             |            |             |   |
| Bit              | -  | -  | I2U0AS<br>NA | I2U0R<br>AS | I2U0ST<br>S | I2U0SP<br>S | I2U0D<br>S | I2U0AS | -   | - | - | I2U0TR | I2U0SA<br>A | I2U0E<br>R | I2U0A<br>CR | - |
| R/W              | R  | R  | R            | R           | R           | R           | R          | R      | R   | R | R | R      | R           | R          | R           | R |
| Initial<br>value | 0  | 0  | 0            | 0           | 0           | 0           | 0          | 0      | 0   | 0 | 0 | 0      | 0           | 0          | 0           | 0 |

| Bit No.  | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 14 | -                  | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13       | I2U0ASNA           | <ul> <li>This bit is used to indicate status of reception.</li> <li>It is set when a coinciding slave-address and transmitting "H" as acknowledge occurs in the STOP-D/HALT-D mode.</li> <li>To reset this bit, write "1" to I2U0CASNA bit of I2U0SCLR register.</li> <li>0: It has not occur. (Initial value)</li> <li>1: It occurred</li> </ul>                                                                                                                                                                                              |
| 12       | I2U0RAS            | <ul> <li>This bit is used to indicate status of the interrupt when enabling the start condition interrupt (I2U0MD3 bit = 1).</li> <li>To reset this bit, write "1" to I2U0CRAS bit of I2U0SCLR register.</li> <li>0: Unmatched the slave address is detected after the start condition (Initial value)</li> <li>1: Unmatched the slave address is detected after the start condition</li> </ul>                                                                                                                                                |
| 11       | I2U0STS            | <ul> <li>This bit is used to indicate status of transmission and reception. This bit is set to "1" when receiving the start condition. This bit is available when I2U0MD5 bit is "1".</li> <li>To reset this bit, write "1" to I2U0CSTS bit of I2U0SCLR register.</li> <li>0: The start condition has not been received (Initial value)</li> <li>1: The start condition has been received</li> </ul>                                                                                                                                           |
| 10       | I2U0SPS            | <ul> <li>This bit is used to indicate status of transmission and receive. This bit is set to "1" when receiving the stop condition. This bit is available when I2U0MD4 bit is "1".</li> <li>To reset this bit, write "1" to I2U0CSPS bit of I2U0SCLR register.</li> <li>0: The stop condition has not been received (Initial value)</li> <li>1: The stop condition has been received</li> </ul>                                                                                                                                                |
| 9        | I2U0DS             | <ul> <li>This bit is used to indicate status of transmission and reception. This bit is set to "1" when transmitting or receiving data on the condition of that slave address is matched.</li> <li>However, this bit does not become to "1" when it is happened wake-up from STOP-D/HALT-D mode by the address matching.</li> <li>To reset this bit, write "1" to I2U0CDS bit of I2U0SCLR register.</li> <li>0: The data has not been transmitted or received (Initial value)</li> <li>1: The data has been transmitted or received</li> </ul> |
| 8        | I2U0AS             | <ul> <li>This bit is used to indicate status of transmission and reception. This bit is set to "1" when receiving the slave address data and it is matched.</li> <li>To reset this bit, write "1" to I2U0CAS bit of I2U0SCLR register.</li> <li>0: The slave address has not been received or it is not matched (Initial value)</li> <li>1: The slave address has been received and it is matched</li> </ul>                                                                                                                                   |
| 7 to 5   | -                  | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4        | I2U0TR             | <ul> <li>This bit is used to indicate the transmitting or receiving state. This bit is set to "1" when detecting the data reception mode. This bit is reset to "0" when detecting a stop condition or detecting the data transmission mode.</li> <li>To reset this bit, write "1" to I2U0CTR bit of I2U0SCLR register.</li> <li>0: Receiving state (Initial value)</li> <li>1: Transmitting state</li> </ul>                                                                                                                                   |

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3       | I2U0SAA            | <ul> <li>This bit is used to indicate that this device is specified as a slave address. This bit is set to "1" when the content of the slave address output by the master device coincides with the contents of I2US0SA register. However it is not set to "1" when wake-up from STOP-D/HALT-D mode even if the slave address is matching.</li> <li>This bit is reset to "0" when a stop condition is received or when "1" is written to I2U0CSAA bit of I2U0SCLR register.</li> <li>0: Not coincide with the slave address (Initial value)</li> <li>1: Coincides with the slave address</li> </ul> |
| 2       | I2U0ER             | This bit is used to indicate a transmission error. When the value of the bit transmitted and the value of the SDAU0 pin do not coincide, this bit is set to "1". When this bit is set to "1", the SDAU0 pin output is disabled until the subsequent byte data communication terminates. To reset this bit, write "1" tol2U0CER bit of I2U0SCLR register.<br>0: There was no transmission error (Initial value)<br>1: There was a transmission error                                                                                                                                                 |
| 1       | I2U0ACR            | <ul> <li>This bit is used to store an acknowledgment signal received. The acknowledgment signals are received each time the slave address is received and data transmission or reception is completed.</li> <li>To reset this bit, write "1" to I2U0CTR bit of I2U0SCLR register.</li> <li>0: Received the acknowledgment "0" (Initial value)</li> <li>1: Received the acknowledgment "1"</li> </ul>                                                                                                                                                                                                |
| 0       | -                  | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## 13.4.7 I<sup>2</sup>C Bus Unit 0 Status Clear Register (I2U0SCLR)

This is a SFR to clear the state of the I<sup>2</sup>C bus unit.

When Each bit is written "1", a corresponding bit of I2U0STR/I2M0STR register is initialized to "0".

|                  |    | W<br>: 8/ | <f78e(i<br>7<br/>16 bit<br/>&lt;0000</f78e(i<br> | 2U0SC | LRL/I2       | JOSCLI       | R), 0xF     | 78F(I2I     | JOSCL | RH) |   |             |              |             |              |   |
|------------------|----|-----------|--------------------------------------------------|-------|--------------|--------------|-------------|-------------|-------|-----|---|-------------|--------------|-------------|--------------|---|
|                  | 15 | 14        | 13                                               | 12    | 11           | 10           | 9           | 8           | 7     | 6   | 5 | 4           | 3            | 2           | 1            | 0 |
| Word             |    |           |                                                  |       |              |              |             | 12U0S       | SCLR  |     |   |             |              |             |              |   |
| Byte             |    |           |                                                  | 12U0S | CLRH         |              |             |             |       |     |   | 12U0S       | CLRL         |             |              |   |
| Bit              | -  | -         | I2U0C<br>ASNA                                    |       | I2U0C<br>STS | I2U0C<br>SPS | I2U0C<br>DS | I2U0C<br>AS | -     | -   | - | I2U0C<br>TR | I2U0C<br>SAA | I2U0C<br>ER | I2U0C<br>ACR | - |
| R/W              | W  | W         | W                                                | W     | W            | W            | W           | W           | W     | W   | W | W           | W            | W           | W            | W |
| Initial<br>value | 0  | 0         | 0                                                | 0     | 0            | 0            | 0           | 0           | 0     | 0   | 0 | 0           | 0            | 0           | 0            | 0 |

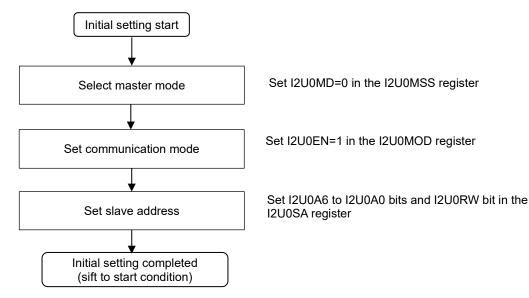
Common description of each bits :

It is used to clear a target status.

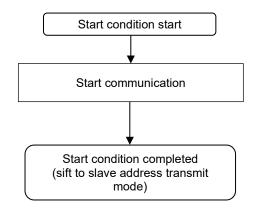
Writing "0": Invalid

Writing "1": clear a target interrupt

| Bit No.  | Bit symbol<br>name | Description (Target status)      |
|----------|--------------------|----------------------------------|
| 15 to 14 | -                  | Reserved bits                    |
| 13       | I2U0CASNA          | I2U0ASNA bit of I2U0STR register |
| 12       | I2U0CRAS           | I2U0RAS bit of I2U0STR register  |
| 11       | I2U0CSTS           | I2U0STS bit of I2U0STR register  |
| 10       | I2U0CSPS           | I2U0SPS bit of I2U0STR register  |
| 9        | I2U0CDS            | I2U0DS bit of I2U0STR register   |
| 8        | I2U0CAS            | I2U0AS bit of I2U0STR register   |
| 7 to 5   | -                  | Reserved bits                    |
| 4        | I2U0CTR            | I2U0TR bit of I2U0STR register   |
| 3        | I2U0CSAA           | I2U0SAA bit of I2U0STR register  |
| 2        | I2U0CER            | I2U0ER bit of I2U0STR register   |
| 1        | I2U0CACR           | I2U0ACR bit of I2U0STR register  |
| 0        | -                  | Reserved bit                     |


### 13.5 Description of Operation for Master function

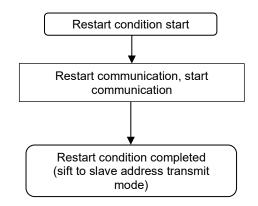
The following explains for I<sup>2</sup>C bus unit 0. Change the reading of the register, symbol, signal name as for I<sup>2</sup>C bus master.


#### 13.5.1 Control Procedures

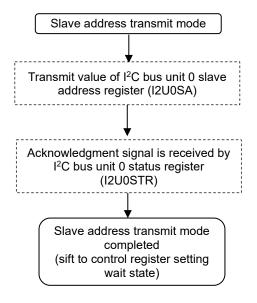
The following flow charts describe procedures of each operation in the master mode.

#### 13.5.1.1 Initial Setting of Communication Operation




#### 13.5.1.2 Start Condition




Set I2U0ST bit of I2U0CON register to "1".

Output the start condition waveforms to SDAU0 and SCLU0 pins.

#### 13.5.1.3 Restart Condition



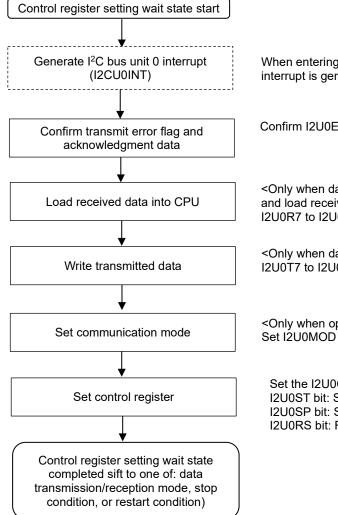
#### 13.5.1.4 Slave Address Transmission Mode



Communication in progress (I2U0ST=1)

Set I2U0RS=1 and I2U0ST=1 in the I2U0CON register

Output restart condition waveforms to SDAU0 and SCLU0 pins.


The value is transmitted from SDAU0 pin in MSB first through hardware following the start condition I2U0A6 to I2U0A0 bits: Slave address

I2U0RW: Data direction (transmission/reception) Value transmitted from the SDAU0 pin is stored in the I2U0RD register

Acknowledgment signal is received through hardware I2UM0ACR bit: Acknowledgment data

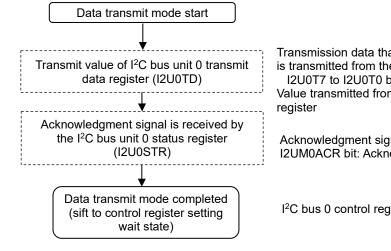
I<sup>2</sup>C bus 0 control register (I2UM0CON) setting wait state

#### 13.5.1.5 Control Register Setting Wait State



When entering the control register setting wait state, an interrupt is generated through hardware

Confirm I2U0ER and I2U0ACR bits in the I2U0STR register

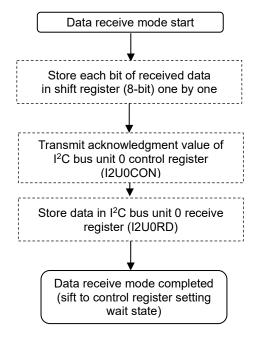

<Only when data is received> Read the I2U0RD register and load received data into the CPU I2U0R7 to I2U0R0 bits: 8-bit receive data

<Only when data is transmitted> Set I2U0TD register I2U0T7 to I2U0T0 bits: 8-bit transmit data

<Only when operation mode is changed> Set I2U0MOD register

Set the I2U0CON register I2U0ST bit: Starts communication (I2U0ST=1) I2U0SP bit: Stop condition request (I2U0SP=1) I2U0RS bit: Restart request (I2U0RS=1)

#### 13.5.1.6 Data Transmission Mode



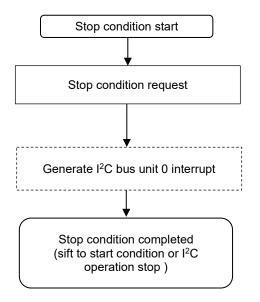

Transmission data that has been written to the I2U0TD register is transmitted from the SDAU0 pin in MSB first I2U0T7 to I2U0T0 bits: 8-bit transmit data Value transmitted from the SDAU0 pin is stored in the I2U0RD register

Acknowledgment signal is received through hardware I2UM0ACR bit: Acknowledgment data

I<sup>2</sup>C bus 0 control register (I2UM0CON) setting wait state

#### 13.5.1.7 Data Reception Mode




Value (received data) input to SDAU0 pin is stored in synchronization with rising edge of transfer clock input to SCLU0 pin in MSB first

Acknowledgment signal is transmitted through hardware I2U0ACT bit: Acknowledgment value Transmitted acknowledgment value is stored in the I2U0ACR bit of the I2U0STA register

Received data is stored from the shift register after acknowledgment signal is transmitted I2U0R7 to I2U0R0 bits: 8-bit receive data

I<sup>2</sup>C bus unit 0 control register (I2U0CON) setting wait state

#### 13.5.1.8 Stop Condition



Set I2U0SP bit of I2U0CON register to "1".

Output stop condition waveforms to SDAU0 and SCLU0 pins.

After the stop condition waveform is output, an interrupt is generated through hardware

Sift to start condition or I<sup>2</sup>C operation stop (I2U0EN = 0)

## 13.5.2 Communication Operation Timing

Figures 13-2 to 13-4 show the operation timing and control method for each communication mode during the master operation.




Figure 13-4 Operation timing during data transmission/ reception in the master mode

Figure 13-5 shows the operation timing and control method when an acknowledgment error occurs.

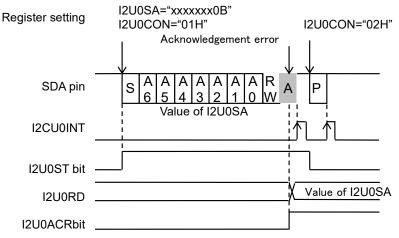



Figure 13-5 Operation suspend timing at occurrence of acknowledgment error in the master mode

When the values of the transmitted bit and the SDAU0 pin do not coincide, the I2U0ER bit of the I<sup>2</sup>C bus unit 0 status register (I2U0STR) is set to "1" and the SDAU0 pin output is disabled until termination of the subsequent byte data communication.

Figure 13-6 shows the operation timing and control method when transmission fails.

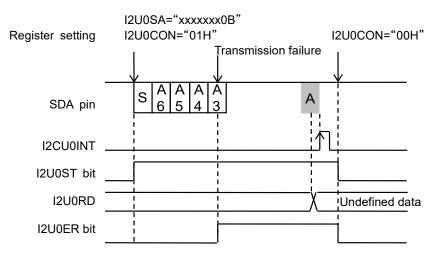



Figure 13-6 Operation timing when transmission fails in the master mode

#### 13.5.3 Interrupt

The following is interrupt causes in master operation.

| Interrupt causes                | Timing that the interrupt is occurred                                                        |
|---------------------------------|----------------------------------------------------------------------------------------------|
| Transmission of a slave address | At entry to control register setting wait state after end of slave address transmission mode |
| Data transmission               | At entry to control register setting wait state after end of data transmission mode          |
| Data reception                  | At entry to control register setting wait state after end of data reception mode             |
| Output stop condition           | After output stop condition waveform and passing tBUF.                                       |

## 13.5.4 Operation Waveforms

Figure 13-7 shows the operation waveforms of SDAU0 and SCLU0 pins. Table 13-3 shows the relationship between communication speeds and I<sup>2</sup>C operating clock counts.

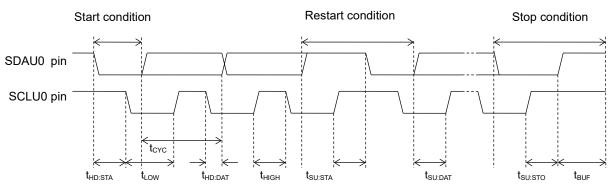



Figure 13-7 Operation Waveforms of SDAU0 and SCLU0 Pins

|           |           | Ta        | able 13 | 13-3 relationship between communication speeds and I <sup>2</sup> C operating clock counts.                      |      |         |       |         |         |         |      |         |        |      |       |  |  |
|-----------|-----------|-----------|---------|------------------------------------------------------------------------------------------------------------------|------|---------|-------|---------|---------|---------|------|---------|--------|------|-------|--|--|
|           | UOMC      |           |         | AC timing [I <sup>2</sup> C operating clock counts] I <sup>2</sup> C operating frequency and communication speed |      |         |       |         |         |         |      |         |        |      |       |  |  |
| r         | egiste    | er        |         |                                                                                                                  |      |         | [kHz] |         |         |         |      |         |        |      |       |  |  |
| 12U0T12-0 | 12U0MD1-0 | 12U0MD3-2 | tcyc    | thd:sta                                                                                                          | tLOW | thd:dat | thigh | tsu:sta | tsu:da⊤ | tsu:sto | teur | 24MHz   | 16MHz  | 1MHz | LSCLK |  |  |
| 0         | 0         | 0         | 240     | 108                                                                                                              | 132  | 24      | 108   | 132     | 108     | 108     | 132  | 100.0   | 66.7   | 4.2  | 0.1   |  |  |
| 0         | 0         | 1         | 264     | 120                                                                                                              | 144  | 24      | 120   | 144     | 120     | 120     | 144  | 90.9    | 60.6   | 3.8  | 0.1   |  |  |
| 0         | 0         | 2         | 288     | 132                                                                                                              | 156  | 24      | 132   | 156     | 132     | 132     | 156  | 83.3    | 55.6   | 3.5  | 0.1   |  |  |
| 0         | 0         | 3         | 312     | 144                                                                                                              | 168  | 24      | 144   | 168     | 144     | 144     | 168  | 76.9    | 51.3   | 3.2  | 0.1   |  |  |
| 0         | 1         | 0         | 60      | 24                                                                                                               | 36   | 12      | 24    | 36      | 24      | 24      | 36   | 400.0   | 266.7  | 16.7 | 0.5   |  |  |
| 0         | 1         | 1         | 66      | 27                                                                                                               | 39   | 12      | 27    | 39      | 27      | 27      | 39   | 363.6   | 242.4  | 15.2 | 0.5   |  |  |
| 0         | 1         | 2         | 72      | 30                                                                                                               | 42   | 12      | 30    | 42      | 30      | 30      | 42   | 333.3   | 222.2  | 13.9 | 0.5   |  |  |
| 0         | 1         | 3         | 78      | 33                                                                                                               | 45   | 12      | 33    | 45      | 33      | 33      | 45   | 307.7   | 205.1  | 12.8 | 0.4   |  |  |
| 0         | 2         | 0         | 24      | 10                                                                                                               | 14   | 4       | 10    | 14      | 10      | 10      | 14   | 1000.0  | 666.7  | 41.7 | 1.4   |  |  |
| 0         | 2         | 1         | 26      | 11                                                                                                               | 15   | 4       | 11    | 15      | 11      | 11      | 15   | 923.1   | 615.4  | 38.5 | 1.3   |  |  |
| 0         | 2         | 2         | 29      | 13                                                                                                               | 16   | 4       | 13    | 16      | 12      | 13      | 16   | 827.6   | 551.7  | 34.5 | 1.1   |  |  |
| 0         | 2         | 3         | 31      | 14                                                                                                               | 17   | 4       | 14    | 17      | 13      | 14      | 17   | 774.2   | 516.1  | 32.3 | 1.1   |  |  |
| 1         | 0         | 0         | 160     | 72                                                                                                               | 88   | 16      | 72    | 88      | 72      | 72      | 88   | 150.0   | 100.0  | 6.3  | 0.2   |  |  |
| 1         | 0         | 1         | 176     | 80                                                                                                               | 96   | 16      | 80    | 96      | 80      | 80      | 96   | 136.4   | 90.9   | 5.7  | 0.2   |  |  |
| 1         | 0         | 2         | 192     | 88                                                                                                               | 104  | 16      | 88    | 104     | 88      | 88      | 104  | 125.0   | 83.3   | 5.2  | 0.2   |  |  |
| 1         | 0         | 3         | 208     | 96                                                                                                               | 112  | 16      | 96    | 112     | 96      | 96      | 112  | 115.4   | 76.9   | 4.8  | 0.2   |  |  |
| 1         | 1         | 0         | 40      | 14                                                                                                               | 26   | 12      | 14    | 26      | 14      | 14      | 26   | 600.0   | 400.0  | 25.0 | 0.8   |  |  |
| 1         | 1         | 1         | 44      | 16                                                                                                               | 28   | 12      | 16    | 28      | 16      | 16      | 28   | 545.5   | 363.6  | 22.7 | 0.7   |  |  |
| 1         | 1         | 2         | 48      | 18                                                                                                               | 30   | 12      | 18    | 30      | 18      | 18      | 30   | 500.0   | 333.3  | 20.8 | 0.7   |  |  |
| 1         | 1         | 3         | 52      | 20                                                                                                               | 32   | 12      | 20    | 32      | 20      | 20      | 32   | 461.5   | 307.7  | 19.2 | 0.6   |  |  |
| 1         | 2         | 0         | 16      | 6                                                                                                                | 10   | 4       | 6     | 10      | 6       | 6       | 10   | 1500.0* | 1000.0 | 62.5 | 2.0   |  |  |
| 1         | 2         | 1         | 18      | 7                                                                                                                | 11   | 4       | 7     | 11      | 7       | 7       | 11   | 1333.3* | 888.9  | 55.6 | 1.8   |  |  |
| 1         | 2         | 2         | 19      | 8                                                                                                                | 11   | 4       | 8     | 11      | 7       | 8       | 11   | 1263.2* | 842.1  | 52.6 | 1.7   |  |  |
| 1         | 2         | 3         | 21      | 9                                                                                                                | 12   | 4       | 9     | 12      | 8       | 9       | 12   | 1142.9* | 761.9  | 47.6 | 1.6   |  |  |
| 2         | 0         | 0         | 120     | 54                                                                                                               | 66   | 12      | 54    | 66      | 54      | 54      | 66   | 200.0   | 133.3  | 8.3  | 0.3   |  |  |
| 2         | 0         | 1         | 132     | 60                                                                                                               | 72   | 12      | 60    | 72      | 60      | 60      | 72   | 181.8   | 121.2  | 7.6  | 0.2   |  |  |
| 2         | 0         | 2         | 144     | 66                                                                                                               | 78   | 12      | 66    | 78      | 66      | 66      | 78   | 166.7   | 111.1  | 6.9  | 0.2   |  |  |
| 2         | 0         | 3         | 156     | 72                                                                                                               | 84   | 12      | 72    | 84      | 72      | 72      | 84   | 153.8   | 102.6  | 6.4  | 0.2   |  |  |
| 2         | 1         | 0         | 30      | 12                                                                                                               | 18   | 6       | 12    | 18      | 12      | 12      | 18   | 800.0   | 533.3  | 33.3 | 1.1   |  |  |
| 2         | 1         | 1         | 33      | 14                                                                                                               | 19   | 6       | 14    | 19      | 13      | 14      | 19   | 750.0   | 500.0  | 31.3 | 1.0   |  |  |
| 2         | 1         | 2         | 36      | 15                                                                                                               | 21   | 6       | 15    | 21      | 15      | 15      | 21   | 666.7   | 444.4  | 27.8 | 0.9   |  |  |

| Table 13-3 relationship between | communication speeds and I <sup>2</sup> C | operating clock counts. |
|---------------------------------|-------------------------------------------|-------------------------|
|---------------------------------|-------------------------------------------|-------------------------|

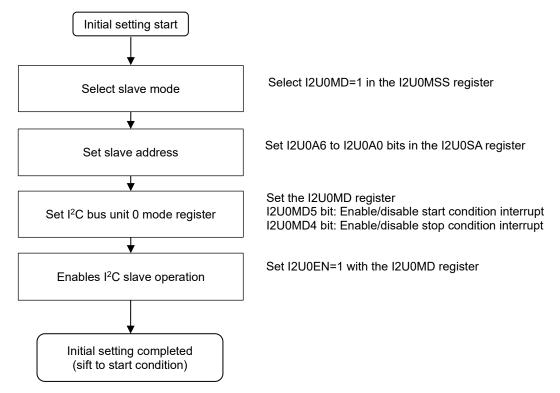
|           | U0MC<br>egiste |           |      |              | AC tim | ning [l <sup>2</sup> C | operat | ting cloc | < counts] |         |      |         | erating fre<br>municatio<br>[kHz | on spee |       |
|-----------|----------------|-----------|------|--------------|--------|------------------------|--------|-----------|-----------|---------|------|---------|----------------------------------|---------|-------|
| 12U0T12-0 | 12U0MD1-0      | I2U0MD3-2 | toyc | thd:sta      | tLow   | thd:dat                | tнівн  | tsu:sta   | tsu:dat   | tsu:sto | teur | 24MHz   | 16MHz                            | 1MHz    | LSCLK |
| 2         | 1              | 3         | 39   | 17           | 22     | 6                      | 17     | 22        | 16        | 17      | 22   | 631.6   | 421.1                            | 26.3    | 0.9   |
| 2         | 2              | 0         | 12   | 5            | 7      | 2                      | 5      | 7         | 5         | 5       | 7    | 2000.0* | 1333.3*                          | 83.3    | 2.7   |
| 2         | 2              | 1         | 13   | 6            | 7      | 2                      | 6      | 7         | 5         | 6       | 7    | 2000.0* | 1333.3*                          | 83.3    | 2.7   |
| 2         | 2              | 2         | 14   | 6            | 8      | 2                      | 6      | 8         | 6         | 6       | 8    | 1714.3* | 1142.9*                          | 71.4    | 2.3   |
| 2         | 2              | 3         | 15   | 7            | 8      | 2                      | 7      | 8         | 6         | 7       | 8    | 1600.0* | 1066.7*                          | 66.7    | 2.2   |
| 3         | 0              | 0         | 80   | 36           | 44     | 8                      | 36     | 44        | 36        | 36      | 44   | 300.0   | 200.0                            | 12.5    | 0.4   |
| 3         | 0              | 1         | 88   | 40           | 48     | 8                      | 40     | 48        | 40        | 40      | 48   | 272.2   | 181.8                            | 11.4    | 0.4   |
| 3         | 0              | 2         | 96   | 44           | 52     | 8                      | 44     | 52        | 44        | 44      | 52   | 250.0   | 166.7                            | 10.4    | 0.3   |
| 3         | 0              | 3         | 104  | 48           | 56     | 8                      | 48     | 56        | 48        | 48      | 56   | 230.8   | 153.8                            | 9.6     | 0.3   |
| 3         | 1              | 0         | 20   | 7            | 13     | 6                      | 7      | 13        | 7         | 7       | 13   | 1200.0* | 800.0                            | 50.0    | 1.6   |
| 3         | 1              | 1         | 22   | 8            | 14     | 6                      | 8      | 14        | 8         | 8       | 14   | 1090.9* | 727.3                            | 45.5    | 1.5   |
| 3         | 1              | 2         | 24   | 9            | 15     | 6                      | 9      | 15        | 9         | 9       | 15   | 1000.0  | 666.7                            | 41.7    | 1.4   |
| 3         | 1              | 3         | 26   | 10           | 16     | 6                      | 10     | 16        | 10        | 10      | 16   | 923.1   | 615.4                            | 38.5    | 1.3   |
| 3         | 2              | 0         | 8    | 3            | 5      | 2                      | 3      | 5         | 3         | 3       | 5    | 3000.0* | 2000.0*                          | 125.0   | 4.1   |
| 3         | 2              | 1         | 9    | 4            | 5      | 2                      | 4      | 5         | 3         | 4       | 5    | 3000.0* | 2000.0*                          | 125.0   | 4.1   |
| 3         | 2              | 2         | 10   | 4            | 6      | 2                      | 4      | 6         | 4         | 4       | 6    | 2666.7* | 1777.8*                          | 111.1   | 3.6   |
| 3         | 2              | 3         | 11   | 5            | 6      | 2                      | 5      | 6         | 4         | 5       | 6    | 2400.0* | 1600.0*                          | 100.0   | 3.3   |
| 4         | 0              | **        | 10   | 5            | 5      | 1                      | 5      | 5         | 4         | 5       | 5    | 2400.0* | 1600.0*                          | 100.0   | 3.3   |
| 4         | 1              | **        | 4    | 2            | 2      | 1                      | 2      | 2         | 1         | 2       | 2    |         | 4000.0*                          | 250.0   | 8.2   |
| 4         | 2              | **        | 4    | 2            | 2      | 1                      | 2      | 2         | 1         | 2       | 2    |         | 4000.0*                          | 250.0   | 8.2   |
| 5         | 0              | **        | 16   | 8            | 8      | 1                      | 8      | 8         | 7         | 8       | 8    | 1500.0* | 1000.0*                          | 62.5    | 2.0   |
| 5         | 1              | **        | 8    | 4            | 4      | 1                      | 4      | 4         | 3         | 4       | 4    | 3000.0* | 2000.0*                          | 125.0   | 4.1   |
| 5         | 2              | **        | 4    | 2<br>guarant | 2      | 1                      | 2      | 2         | 1         | 2       | 2    | 6000.0* | 4000.0*                          | 250.0   | 8.2   |

\*: The operation is not guaranteed when over 1MHz speed. \*\*: The setting is invalid.

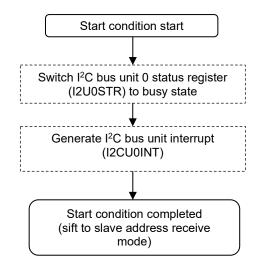
These clock counts is in case of I2U0CD1-0/I2M0CD1-0 bits = "00". If it is not "00", its counts increase depending on dividing rate.

#### [Note]

• When the slave device uses the clock stretch function which holds the SCLU0 pin at "L" level, the time t<sub>CYC</sub> and time t<sub>LOW</sub> are extended.


#### 13.6 Description of Operation for Slave function

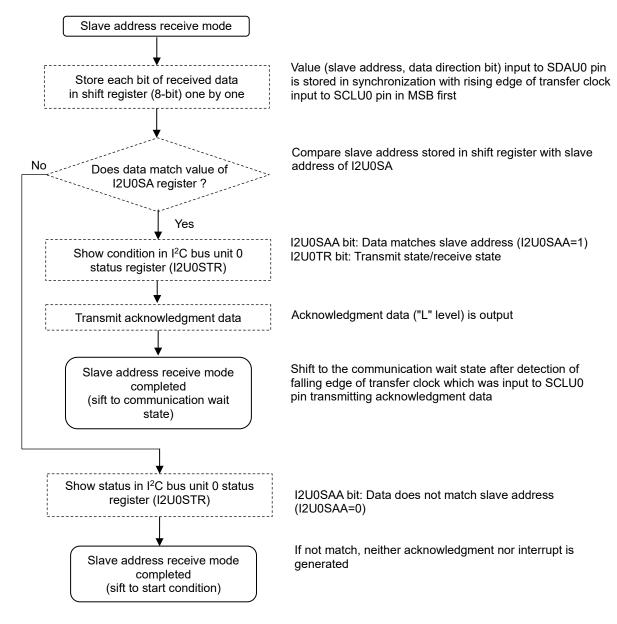
I<sup>2</sup>C bus unit 0 only have slave function.


#### 13.6.1 Procedures

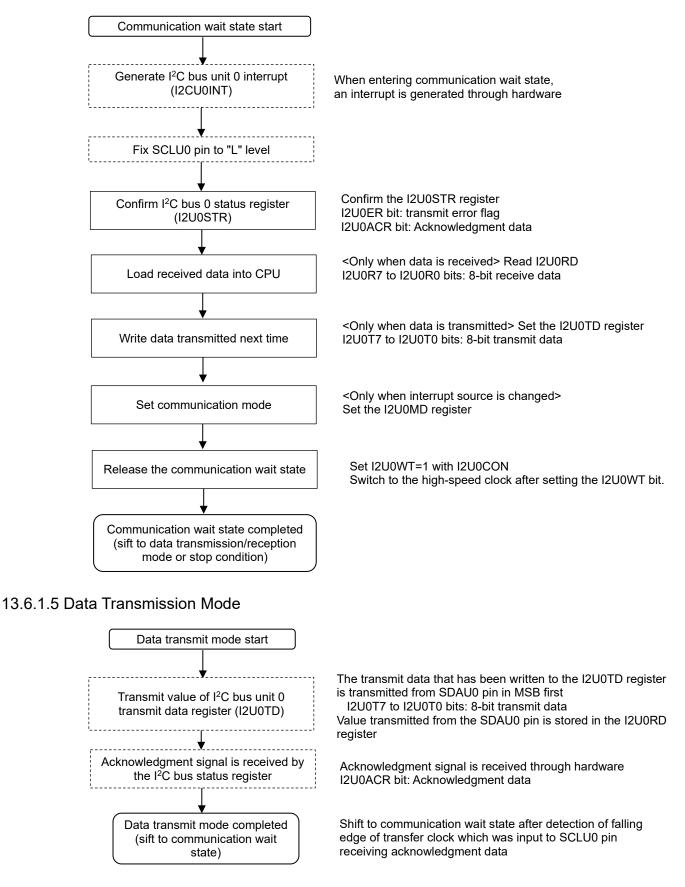
The following flow charts describe procedures of each operation in the slave mode.

#### 13.6.1.1 Initial Setting of Communication Operation

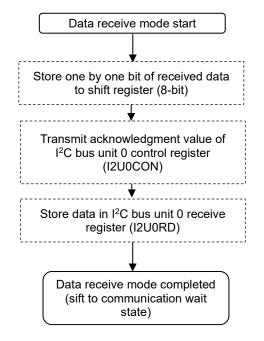



13.6.1.2 Start Condition




Value of the following bit becomes "1" when start condition waveforms are input to SDAU0 and SCLU0 pins

<Only when I2U0MD5=1> Start condition interrupt is generated


#### 13.6.1.3 Slave Address Reception Mode

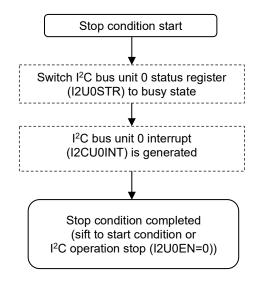


#### 13.6.1.4 Communication Wait State



#### 13.6.1.6 Data Reception Mode




Value (received data) input to SDAU0 pin is stored in synchronization with rising edge of transfer clock input to SCLU0 pin in MSB first

Acknowledgment signal is transmitted through hardware I2U0ACT bit: Acknowledgment value Transmitted acknowledgment value is stored in the I2U0ACR bit of the I2U0STR register

Received data is stored from the shift register after acknowledgment signal is transmitted I2U0R7 to I2U0R0 bits: 8-bit receive data

Shift to communication wait state after detection of falling edge of transfer clock which was input to SCLU0 pin transmitting acknowledgment data

#### 13.6.1.7 Stop Condition



Value of the following bit becomes "0" when stop condition waveforms are input to SDAU0 and SCLU0 pins.

<Only when I2U0MD4=1> Stop condition interrupt is generated

### 13.6.2 Communication Operation Timing

Figures 13-8 to 13-10 show the operation timing and control method for each communication mode.

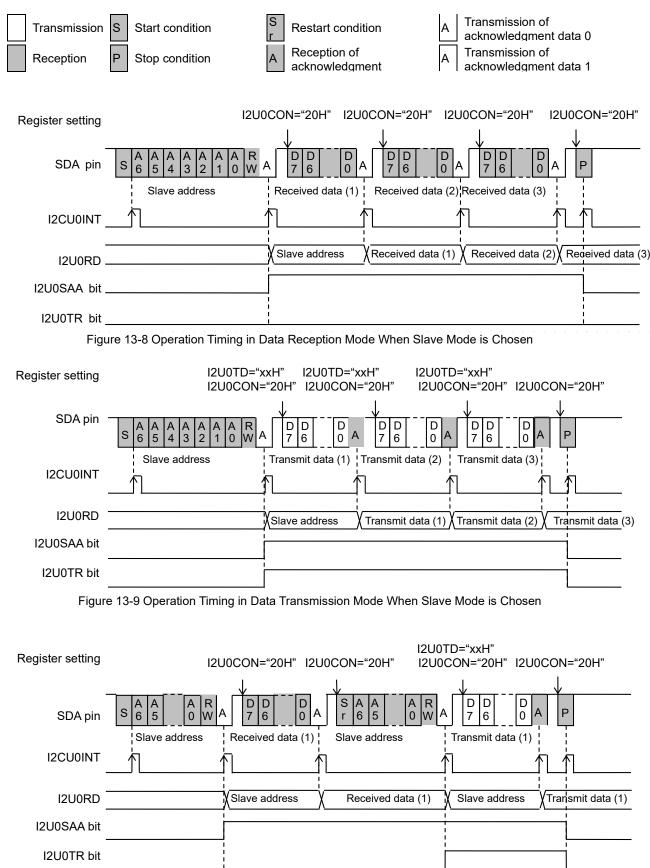
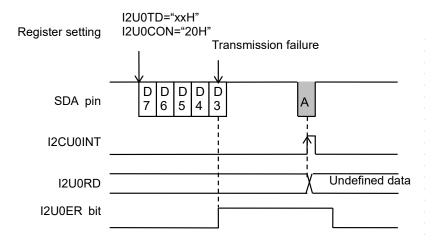




Figure 13-10 Operation Timing at Data Transmission/Reception Mode Switching When Slave Mode is Chosen

When the values of the transmitted bit and the SDAU0 pin do not coincide, the I2U0ER bit of the I<sup>2</sup>C bus unit 0 status register (I2U0STR) is set to "1" and the SDAU0 pin output is disabled until termination of the subsequent byte data communication.

Figure 13-11 shows the operation timing and control method when transmission fails.





#### [Note]

#### If entering to the STOP/STOP-D mode while the slave mode is enabled, first make sure that communication is not in progress (from coincidence of address to reception of stop condition).

#### 13.6.3 Interrupt

Table 13-4 shows interrupt causes in slave operation.

| Interrupt causes                                                           | Setting to enable       | Status flag in the I2U0STR register | Timing that the interrupt is occurred                                                                                          |
|----------------------------------------------------------------------------|-------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Start condition                                                            | I2U0MD5=1               | I2U0STS=1                           | After output start condition waveform.                                                                                         |
| Coinciding Slave<br>Address                                                | -                       | I2U0AS=1                            | At entry to control register setting wait state<br>with coinciding slave-address after end of<br>slave address reception mode  |
| Coinciding Slave<br>Address<br>(in the HALT-D ⁄<br>STOP-D mode)            | -                       | I2U0ASNA=1                          | At output "H" as acknowledge with coinciding slave-address after end of slave address reception mode.                          |
| Data<br>transmission                                                       | -                       | I2U0DS=1                            | At entry to control register setting wait state after end of data transmission mode                                            |
| Data reception                                                             | -                       | I2U0DS=1                            | At entry to control register setting wait state after end of data reception mode                                               |
| Stop condition                                                             | I2U0MD4=1               | I2U0SPS=1                           | At detecting stop-condition waveform.                                                                                          |
| Re-start<br>condition, and<br>then the master<br>selects another<br>slave. | I2U0MD3=1               | I2U0RAS=1                           | At end of slave-address reception mode<br>without coinciding slave-address after detected<br>re-start condition with I2USAA=1. |
| Detect stop-<br>condition for<br>another slave.                            | I2U0MD4=1,<br>I2U0MD1=0 | I2U0SPS=1, I2U0AS=1                 | At detecting stop-condition waveform with I2U0SAA=1.                                                                           |

Table 13-4 List of slave interrupt

#### 13.6.4 Wake-up from STOP-D/HALT-D mode by the Slave Address Coinciding

The LSI can return from stand-by mode to program run mode by matching slave address.

In the HALT/HALT-H/STOP mode, the acknowledge data "L" level is output. In the STOP-D/HALT-D, the acknowledge data "H" level is output.

When acknowledge data "H" level is output, the communication can be performed by retransmitting from the start condition.

Depending on the timing of an entry to the STOP-D/HALT-D mode and slave address reception, it may wakeup with acknowledge data "L" level output. The I2U0STR register indicates these state. See section "13.6.3 Interrupt" for detail.

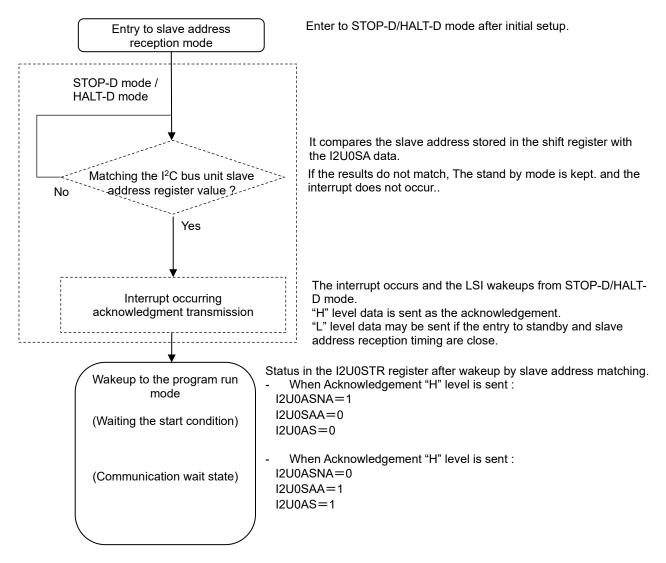



Figure 13-12 Wakeup from STOP-D/HALT-D mode by a coinciding slave address

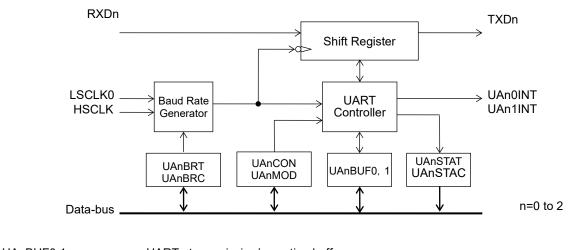
[Note]

- The master device should Wait for the SYSCLK to be supplied in order to transmit the start condition after wakeup from the STOP-D/HALT-D mode by slave address matching.
- It is supported the Standard/Fast mode (to max. 400 kbps) in the STOP-D/HALT-D mode.

# **Chapter 14 UART**

### 14. UART

### 14.1 General Description


ML62Q2500 group has full-duplexed universal asynchronous receiver transmitter; UART.

#### 14.1.1 Features

- Data length : 5/6/7/8 bit
- Data parity : odd, even, fixed 0, fixed 1, none
- Stop bit : 1bit or 2bit
- Status flags: parity error, overrun error, framing error, transmission buffer
- Signal level : positive, negative
- Data direction : LSB first or MSB first
- Wide range of communication speed
  - 1bps~4,800bps (Clock frequency is 32.768kHz)
  - 300bps~2Mbps (Clock frequency is 16MHz)
  - 600bps~3Mbps (Clock frequency is 24MHz)
- Built-in baud rate generator for each channel
- Self-test function using transmission and reception. See Chapter 29 "Safety Function." for the self-test functions.

### 14.1.2 Configuration

Figure 14-1 shows configuration of the UART.



| UAnBUF0,1        | : | UARTn transmission/reception buffer                |
|------------------|---|----------------------------------------------------|
| UAnBRT           | : | UARTn baud rate register                           |
| UAnBRC           | : | UARTn baud rate adjustment register                |
| UAnCON           | : | UARTn control register                             |
| UAnMOD           | : | UARTn mode register                                |
| UAnSTAT, UAnSTAC | : | UARTn status register, UARTn status clear register |
|                  |   |                                                    |

Figure 14-1 Configuration of UART

### 14.1.3 List of Pins

The I/O pins of the UART are assigned to the shared function of the general ports.

| Pin name | I/O | Description                        |
|----------|-----|------------------------------------|
| RXDn     | I   | Reception data input of UART n     |
| TXDn     | 0   | Transmission data output of UART n |

Table 14-1 shows the list of the general ports used for the UART and the register settings of the ports.

|                |             |     |                       |                     |               | - T            | .62Q2          | 500            |
|----------------|-------------|-----|-----------------------|---------------------|---------------|----------------|----------------|----------------|
|                |             |     |                       |                     |               |                | group          |                |
| Channel<br>no. | Pin<br>name | Sha | ared port             | Setting<br>register | Setting value | 32 pin product | 40 pin product | 48 pin product |
|                |             | P04 | 3 <sup>rd</sup> Func. | P0MOD4              | 0010_XXXX*1   | •              | •              | •              |
|                | RXD0        | P20 | 3 <sup>rd</sup> Func. | P2MOD0              | 0010_XXXX*1   | ٠              | ٠              | •              |
|                | KADU        | P30 | 3 <sup>rd</sup> Func. | P3MOD0              | 0010_XXXX*1   | ٠              | ٠              | •              |
| 0              |             | P52 | 3 <sup>rd</sup> Func. | P5MOD2              | 0010_XXXX*1   | -              | -              | •              |
| 0              |             | P05 | 3 <sup>rd</sup> Func. | P0MOD5              | 0010_XXXX*2   | •              | •              | •              |
|                | TXD0        | P21 | 3 <sup>rd</sup> Func. | P2MOD1              | 0010_XXXX*2   | ٠              | ٠              | •              |
|                | TXD0        | P31 | 3 <sup>rd</sup> Func. | P3MOD1              | 0010_XXXX*2   | ٠              | •              | •              |
|                |             | P53 | 3 <sup>rd</sup> Func. | P5MOD3              | 0010_XXXX*2   | 1              | -              | •              |
|                |             | P02 | 3 <sup>rd</sup> Func. | P0MOD2              | 0010_XXXX*1   | 1              | -              | •              |
|                | RXD1        | P06 | 3 <sup>rd</sup> Func. | P0MOD6              | 0010_XXXX*1   | ٠              | •              | •              |
| 1              |             | P32 | 3 <sup>rd</sup> Func. | P3MOD2              | 0010_XXXX*1   | ٠              | •              | •              |
| I              |             | P03 | 3 <sup>rd</sup> Func. | P0MOD3              | 0010_XXXX*2   | -              | -              | •              |
|                | TXD1        | P07 | 3 <sup>rd</sup> Func. | P0MOD7              | 0010_XXXX*2   | ٠              | ٠              | •              |
|                |             | P33 | 3 <sup>rd</sup> Func. | P3MOD3              | 0010_XXXX*2   | ٠              | •              | •              |
|                | RXD2        | P10 | 3 <sup>rd</sup> Func. | P1MOD0              | 0010_XXXX*1   | ٠              | •              | •              |
| 2              | INAU2       | P72 | 3 <sup>rd</sup> Func. | P7MOD2              | 0010_XXXX*1   | ٠              | ٠              | •              |
| 2              | TXD2        | P11 | 3 <sup>rd</sup> Func. | P1MOD1              | 0010_XXXX*2   | ٠              | ٠              | •              |
|                | TADZ        | P73 | 3 <sup>rd</sup> Func. | P7MOD3              | 0010_XXXX*2   | •              | •              | •              |

Table 14-1 Ports used for the UART and the register settings

•: Available to use, -: Unavailable

<sup>\*1 : &</sup>quot;XXXX" determines the condition of the port input

| XXXX | Condition of the port input                  |
|------|----------------------------------------------|
| 0001 | Input (without an internal pull-up resistor) |
| 0101 | Input (with an internal pull-up resistor)    |

\*<sup>2</sup> : "XXXX" determines the condition of the port output

| XXXX | Condition of the port output                 |
|------|----------------------------------------------|
| 0010 | CMOS output                                  |
| 1010 | N-ch open drain output (without the pull-up) |
| 1111 | N-ch open drain output (with the pull-up)    |

### 14.2 Description of Registers

### 14.2.1 List of Registers

|                   |                                     | Sym            | bol     |     | <b>.</b> | Initial |
|-------------------|-------------------------------------|----------------|---------|-----|----------|---------|
| Address           | Name                                | Byte           | Word    | R/W | Size     | value   |
| 0xF600            | UART0 reception buffer              | UA0BUF0        | -       | R   | 8        | 0x00    |
| 0xF601            | UART0 transmission buffer           | UA0BUF1        | -       | R/W | 8        | 0x00    |
| 0xF602            | UART0 status register               | UA0STAT        | -       | R   | 8        | 0x00    |
| 0xF603            | UART0 status clear register         | <b>UA0STAC</b> | -       | W   | 8        | 0x00    |
| 0xF604            | UART0 control register              | UA0CON         | -       | R/W | 8        | 0x00    |
| 0xF605            | Reserved                            | -              | -       | -   | -        | -       |
| 0xF606            | LIADTO modo registor                | UA0MODL        |         | R/W | 8/16     | 0x00    |
| 0xF607            | UART0 mode register                 | UA0MODH        | UA0MOD  | R/W | 8        | 0x00    |
| 0xF608            | UART0 interrupt enable register     | UA0INTE        | -       | R/W | 8        | 0x00    |
| 0xF609            | Reserved                            | -              | -       | -   | -        | -       |
| 0xF60A            |                                     | UA0BRTL        |         | R/W | 8/16     | 0xFF    |
| 0xF60B            | UART0 baud rate register            | UA0BRTH        | UA0BRT  | R/W | 8        | 0x0F    |
| 0xF60C            | UART0 baud rate adjustment register | UA0BRC         | -       | R/W | 8        | 0x00    |
| 0xF60D~<br>0xF60F | Reserved                            | -              | -       | -   | -        | -       |
| 0xF610            | UART1 reception buffer              | UA1BUF0        | -       | R   | 8        | 0x00    |
| 0xF611            | UART1 transmission buffer           | UA1BUF1        | -       | R/W | 8        | 0x00    |
| 0xF612            | UART1 status register               | UA1STAT        | -       | R   | 8        | 0x00    |
| 0xF613            | UART1 status clear register         | UA1STAC        | -       | W   | 8        | 0x00    |
| 0xF614            | UART1 control register              | UA1CON         | -       | R/W | 8        | 0x00    |
| 0xF615            | Reserved                            | -              | -       | -   | -        | -       |
| 0xF616            |                                     | UA1MODL        |         | R/W | 8/16     | 0x00    |
| 0xF617            | UART1 mode register                 | UA1MODH        | UA1MOD  | R/W | 8        | 0x00    |
| 0xF618            | UART1 interrupt enable register     | UA1INTE        | -       | R/W | 8        | 0x00    |
| 0xF619            | Reserved                            | -              | -       | -   | -        | -       |
| 0xF61A            |                                     | UA1BRTL        |         | R/W | 8/16     | 0xFF    |
| 0xF61B            | UART1 baud rate register            | UA1BRTH        | UA1BRT  | R/W | 8        | 0x0F    |
| 0xF61C            | UART1 baud rate adjustment register | UA1BRC         | -       | R/W | 8        | 0x00    |
| 0xF61D~<br>0xF61F | Reserved                            | -              | -       | -   | -        | -       |
| 0xF620            | UART2 reception buffer              | UA2BUF0        | -       | R   | 8        | 0x00    |
| 0xF621            | UART2 transmission buffer           | UA2BUF1        | -       | R/W | 8        | 0x00    |
| 0xF622            | UART2 status register               | UA2STAT        | -       | R   | 8        | 0x00    |
| 0xF623            | UART2 status clear register         | UA2STAC        | -       | W   | 8        | 0x00    |
| 0xF624            | UART2 control register              | UA2CON         | -       | R/W | 8        | 0x00    |
| 0xF625            | Reserved                            | -              | -       | -   | -        | -       |
| 0xF626            |                                     | UA2MODL        |         | R/W | 8/16     | 0x00    |
| 0xF627            | UART2 mode register                 | UA2MODH        | UA2MOD  | R/W | 8        | 0x00    |
| 0xF628            | UART2 interrupt enable register     | UA2INTE        | -       | R/W | 8        | 0x00    |
| 0xF629            | Reserved                            | -              | -       | -   | -        | -       |
| 0xF62A            |                                     | UA2BRTL        | LIAODOT | R/W | 8/16     | 0xFF    |
| 0xF62B            | UART2 baud rate register            | UA2BRTH        | UA2BRT  | R/W | 8        | 0x0F    |
| 0xF62C            | UART2 baud rate adjustment register | UA2BRC         | -       | R/W | 8        | 0x00    |

 [Note]
 When the DCKUAn of Block control register 2; BCKCON2, A reading value of relevant SFR is 0x00/0x0000. However values written to the SFR is kept. A reading value of relevant SFR is setting value after the DCKUAn bit is returned "0". See Chapter 4 "Power Management" as for block control register.

### 14.2.2 UARTn Reception Buffer (UAnBUF0)

This is a SFR to store reception data.

| Bit 7 6 5 4 3 2 1<br>R/W R R R R R R R R R R R R R R R R R R |            |                 |    |                                                     |                                 |                                   |                                |                           |          |           |          |          |          |   |   |           |  |
|--------------------------------------------------------------|------------|-----------------|----|-----------------------------------------------------|---------------------------------|-----------------------------------|--------------------------------|---------------------------|----------|-----------|----------|----------|----------|---|---|-----------|--|
|                                                              | 15         | 14              | 13 | 12                                                  | 11                              | 10                                | 9                              | 8                         | 7        | 6         | 5        | 4        | 3        | 2 | 1 | 0         |  |
| Word                                                         |            |                 |    |                                                     |                                 |                                   |                                |                           | -        |           |          |          |          |   |   |           |  |
|                                                              |            |                 |    |                                                     |                                 |                                   |                                |                           |          |           | UAnBUF0  |          |          |   |   |           |  |
| Bit                                                          | -          | -               | -  | -                                                   | -                               | -                                 | -                              | -                         | _        | -         | -        | -        |          |   | - | UnRD<br>0 |  |
| R/W                                                          | R          | R               | R  | R                                                   | R                               | R                                 | R                              | R                         | R        | R         | R        | R        | R        | R | R | R         |  |
| Initial<br>value                                             | 0          | 0               | 0  | 0                                                   | 0                               | 0                                 | 0                              | 0                         | 0        | 0         | 0        | 0        | 0        | 0 | 0 | 0         |  |
| Bit no.                                                      | Bi         | it symb<br>name | ol |                                                     |                                 |                                   |                                |                           | De       | escriptio | on       |          |          |   |   |           |  |
| 7 to 0                                                       | UnR<br>UnR | D7 to<br>D0     |    | This wo<br>Data at<br>register<br>Writing<br>When c | the end<br>by usir<br>to this r | d of rece<br>ng the L<br>register | eption o<br>JARTn0<br>is inval | commu<br>) interru<br>id. | ipt gene | erated a  | at the e | nd of re | eception |   |   |           |  |

### 14.2.3 UARTn Transmission Buffer (UAnBUF1)

0

0

0

0

This is a SFR to store transmission data.

|      |    | R/<br>: 8 | W . | JA0BUF | <sup>-</sup> 1),0xF | 611(UA | A1BUF | 1),0xF6 | 21(UA2    | 2BUF1)    | 3         |           |           |           |           |           |
|------|----|-----------|-----|--------|---------------------|--------|-------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|      | 15 | 14        | 13  | 12     | 11                  | 10     | 9     | 8       | 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
| Word |    |           |     |        |                     |        |       |         | -         |           |           |           |           |           |           |           |
| Byte |    |           |     |        |                     |        |       |         |           |           |           | UAn       | BUF1      |           |           |           |
| Bit  | -  | -         | -   | -      | -                   | -      | -     | -       | UnTD<br>7 | UnTD<br>6 | UnTD<br>5 | UnTD<br>4 | UnTD<br>3 | UnTD<br>2 | UnTD<br>1 | UnTD<br>0 |
| R/W  | R  | R         | R   | R      | R                   | R      | R     | R       | R/W       |

| Bit no. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                     |
|---------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to 0  | UnTD7 to<br>UnTD0  | This works as the transmission buffer.<br>Write transmission data to this. For continuous transmitting, write the next transmission data<br>to this register after checking UnFUL bit of UAnSTAT is "0". The written data in this register<br>can be read out.<br>When choosing the 5 to 7 bit length, written data in unused bits are invalid. |

0

0

0

0

0

0

0

0

0

Initial

value

0

0

0

### 14.2.4 UARTn Status Register (UAnSTAT)

This is a SFR to indicate states of the transmission/reception operation.

| Addre<br>Acces<br>Acces | ess :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x<br>R<br>: 8 | (F602(l     | JAOSTA                                   |                                                       |                                                         |                                                         | 1                                                |                                    |                               | .)                                      |           |            |           |           |           |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|------------------------------------|-------------------------------|-----------------------------------------|-----------|------------|-----------|-----------|-----------|
|                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14             | 13          | 12                                       | 11                                                    | 10                                                      | 9                                                       | 8                                                | 7                                  | 6                             | 5                                       | 4         | 3          | 2         | 1         | 0         |
| Word                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             |                                          |                                                       |                                                         |                                                         |                                                  | -                                  |                               |                                         |           |            |           |           |           |
| Byte                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             |                                          | -                                                     |                                                         | 1                                                       | 1                                                |                                    | 1                             |                                         | -         | STAT       |           |           |           |
| Bit                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -              | -           | -                                        | -                                                     | -                                                       | -                                                       | -                                                | -                                  | -                             | UnRX<br>F                               | UnTX<br>F | UnFU<br>L  | UnPE<br>R | UnOE<br>R | UnFE<br>R |
| R/W                     | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R              | R           | R                                        | R                                                     | R                                                       | R                                                       | R                                                | R                                  | R                             | R                                       | R         | R          | R         | R         | R         |
| Initial<br>value        | Bit symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |             |                                          |                                                       |                                                         |                                                         |                                                  |                                    |                               |                                         |           | 0          | 0         |           |           |
| Bit no.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             |                                          |                                                       |                                                         |                                                         |                                                  |                                    |                               |                                         |           |            |           |           |           |
| 7 to 6                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             |                                          |                                                       |                                                         |                                                         |                                                  |                                    |                               |                                         |           |            |           |           |           |
| 5                       | UnRXF This is used to indicate reception state.<br>0: Data reception is stopped (Initial value)<br>1: Data reception is in progress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |             |                                          |                                                       |                                                         |                                                         |                                                  |                                    |                               |                                         |           |            |           |           |           |
| 4                       | UnT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XF             | -           |                                          | ita tran                                              | indicat<br>smissic<br>smissic                           | on is sto                                               | opped (                                          | Initial v                          | alue)                         |                                         |           |            |           |           |           |
| 3                       | UnF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UL             | -<br>1<br>1 | he data<br>next trai<br>UnFUL0<br>0: Tra | is set to<br>. To tra<br>nsmiss<br>C bit of<br>ansmis | o "1" by<br>insmit c<br>ion data                        | v writing<br>lata suc<br>a to the<br>AC reg<br>ffer has | i a data<br>ccessiv<br>UAnB<br>ister.<br>s no da | a to UAi<br>ely, che<br>UF1.Th     | nBUF1<br>eck tha<br>is bit is | and res<br>t the Un<br>s forcibly<br>e) | FUL bi    | t is "0" I | before v  | writing   | the       |
| 2                       | UnP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ER             |             | do not n<br>UnPER<br>0: Th               | ity of th<br>natch, f<br>C bit of<br>e parity         | ie recei<br>his bit ∣<br>UAnS <sup>-</sup><br>y error ∣ | ved da<br>become<br>IAC reg<br>has not                  | ta and<br>es "1".T<br>gister.<br>occurr          | the pari<br>his bit                | is forcil                     | idded to<br>bly reset<br>ue)            |           |            |           |           | if they   |
| 1                       | 0: The parity error has not occurred. (Initial value)         1: The parity error has occurred.         UNOER       This is used to indicate a reception overrun error.         This bit becomes "1" if the next data is received before reading the previous receive data in reception buffer (SDnBUFL). Even if reception is stopped by the UnEN bit and then reception is re-started, this bit is set to "1" unless the previously received data is not read. Therefore, make sure that data is always read from the reception buffer even if the data is not required. This is forcibly reset to "0" by writing "1" to the UnOERC bit of UAnSTAC register.         0: The overrun error has not occurred (Initial value)         1: The overrun error has occurred |                |             |                                          |                                                       |                                                         |                                                         |                                                  |                                    |                               |                                         |           |            |           |           |           |
| 0                       | UnF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ER             | -           | o "0" by<br>0: Th                        | comes<br>/ writing<br>e fram                          | "1" whe                                                 | en an e<br>the Un<br>or has n                           | rror oco<br>FERC<br>ot occu                      | curs in t<br>bit of U<br>urred (Ir | AnSTA                         | rt/stop b<br>.RC regi<br>alue)          |           | Un0FE      | R bit is  | forcibly  | / reset   |

### 14.2.5 UARTn Status Clear Register (UAnSTAC)

This is a write-only SFR to clear states of the transmission/reception operation.

|                  |                                                                                                                           | W<br>: 8        |    | JAOSTA                            | AC),0xF | -613(U/                     | A1STA | C),0xF6 | 623(UA   | 2STAC     | ÷)       |       |            |            |            |            |
|------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------|----|-----------------------------------|---------|-----------------------------|-------|---------|----------|-----------|----------|-------|------------|------------|------------|------------|
|                  | 15                                                                                                                        | 14              | 13 | 12                                | 11      | 10                          | 9     | 8       | 7        | 6         | 5        | 4     | 3          | 2          | 1          | 0          |
| Word             |                                                                                                                           |                 |    |                                   |         |                             |       |         | -        |           |          |       |            |            |            |            |
| Byte             |                                                                                                                           |                 |    |                                   | -       |                             |       |         |          |           |          | UAn   | STAC       |            |            |            |
| Bit              | -                                                                                                                         | -               | -  | -                                 | -       | -                           | -     | -       | -        | -         | -        | -     | UnFU<br>LC | UnPE<br>RC | UnOE<br>RC | UnFE<br>RC |
| R/W              | R                                                                                                                         | R               | R  | R                                 | R       | R                           | R     | R       | R        | R         | R        | R     | R          | W          | W          | W          |
| Initial<br>value | 0                                                                                                                         | 0               | 0  | 0                                 | 0       | 0                           | 0     | 0       | 0        | 0         | 0        | 0     | 0          | 0          | 0          | 0          |
| Bit no.          | В                                                                                                                         | it symb<br>name | ol |                                   |         |                             |       |         | De       | escriptio | on       |       |            |            |            |            |
| 7 to 3           | -                                                                                                                         |                 | l  | Reserve                           | ed bits |                             |       |         |          |           |          |       |            |            |            |            |
| 3                | UnF                                                                                                                       | ULC             |    | This is ι<br>Writing<br>Writing ' | g "0" : | Invalid                     | l     |         | ismissio | on buffe  | er state | flag. |            |            |            |            |
| 2                | UnP                                                                                                                       | ERC             |    |                                   | g "0" : | clear U<br>Invalid<br>Clear | I     |         | -        | r flag.   |          |       |            |            |            |            |
| 1                | UnOERC This is used to clear UnOER bit ; overrun error flag.<br>Writing "0": Invalid<br>Writing "1": Clear the UnOER bit. |                 |    |                                   |         |                             |       |         |          |           |          |       |            |            |            |            |
| 0                | UnF                                                                                                                       | ERC             | -  |                                   | g "0" : | clear U<br>Invalid<br>Clear | 1     |         | _        | ror flag  |          |       |            |            |            |            |

### 14.2.6 UARTn Control Register (UAnCON)

This is a SFR to control enable/disable communication.

|                  |                                                                                                                                                                                                                                                                                  | R/<br>: 8      | W Ì | UA0CO   | N),0xF6 | 614(UA | 1CON) | ,0xF62 | 4(UA2C | CON)      |    |   |   |   |   |      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|---------|---------|--------|-------|--------|--------|-----------|----|---|---|---|---|------|
|                  | 15                                                                                                                                                                                                                                                                               | 14             | 13  | 12      | 11      | 10     | 9     | 8      | 7      | 6         | 5  | 4 | 3 | 2 | 1 | 0    |
| Word             |                                                                                                                                                                                                                                                                                  |                |     |         |         |        |       |        | -      |           |    |   |   |   |   |      |
| Byte             |                                                                                                                                                                                                                                                                                  | - UAnCON       |     |         |         |        |       |        |        |           |    |   |   |   |   |      |
| Bit              | -                                                                                                                                                                                                                                                                                | -              | -   | -       | -       | -      | -     | -      | -      | -         | -  | - | - | - | - | UnEN |
| R/W              | R                                                                                                                                                                                                                                                                                | R              | R   | R       | R       | R      | R     | R      | R      | R         | R  | R | R | R | R | R/W  |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                | 0              | 0   | 0       | 0       | 0      | 0     | 0      | 0      | 0         | 0  | 0 | 0 | 0 | 0 | 0    |
| Bit no.          |                                                                                                                                                                                                                                                                                  | t symb<br>name | ol  |         |         |        |       |        | De     | escriptio | on |   |   |   |   |      |
| 7 to 1           | -                                                                                                                                                                                                                                                                                |                |     | Reserve | ed bits |        |       |        |        |           |    |   |   |   |   |      |
| 0                | UnENThis is used to enable the UART n communication. See section "14.3.4 Transmission<br>Operation" for details. A both of transmission and reception is enabled when UnEN = 1. Set<br>"0" to this bit if communication is stopped.<br>0: Disabled (Initial value)<br>1: Enabled |                |     |         |         |        |       |        |        |           |    |   |   |   |   |      |

[Note]

• Do setting for used ports and the mode/baud rate before setting "1" to UnEN bit.

### 14.2.7 UARTn Mode Register (UAnMOD)

This is a SFR to set the transfer mode.

| 15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         Word<br>Byte<br>Bit       Image       Umage       Umage       Umage       Umage       Umage       Umage       Umage       Umage       Umage       Image       Umage       Image       Image <th>Acce<br/>Acce</th> <th>ess :<br/>ess :<br/>ess size<br/>I value</th> <th>0x<br/>0x<br/>R/<br/>e: 8/</th> <th>F616(<br/>F626(</th> <th>UA0MO<br/>UA1MO<br/>UA2MO</th> <th>DL/UA</th> <th>1MOD)</th> <th>,0xF61</th> <th>7(ÙA1N</th> <th>10DH)</th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> | Acce<br>Acce | ess :<br>ess :<br>ess size<br>I value | 0x<br>0x<br>R/<br>e: 8/                                                          | F616(<br>F626( | UA0MO<br>UA1MO<br>UA2MO                                | DL/UA                                                                | 1MOD)                                                                      | ,0xF61             | 7(ÙA1N  | 10DH)   | ,         |         |           |           |    |     |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------|----------------------------------------------------------------------------------|----------------|--------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------|---------|---------|-----------|---------|-----------|-----------|----|-----|---|
| Byte         UANMODH         UANMODU         UANMODU         UANMODU         UANMODU           Bit         UnOI         UnNE         UnST         UnPT                                                                                                                                                                                                                                                               |              | 15                                    | 14                                                                               | 13             | 12                                                     | 11                                                                   | 10                                                                         | 9                  | 8       | 7       | 6         | 5       | 4         | 3         | 2  | 1   | 0 |
| Bit         UnDI         UNNE         UnPT         UnPT         UnPT         UnPC         1         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         0         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                      | Word         |                                       |                                                                                  |                |                                                        |                                                                      |                                                                            |                    | UAn     | MOD     |           |         |           |           |    |     |   |
| bit         R         G         P         2         1         0         1         0         -         S         -         -         -         0         -         -         0         -         -         0         -         -         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                              | Byte         |                                       |                                                                                  |                | UAn                                                    | NODH                                                                 |                                                                            |                    |         |         |           |         | UAn       | MODL      |    |     |   |
| Initial<br>value       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bit          |                                       | -                                                                                | -              | -                                                      |                                                                      |                                                                            |                    |         | -       |           | -       | -         | -         | -  |     | - |
| value     Bit no.     Bit symbol<br>name     Description       15     UnDIR     This is used to choose the data direction.<br>0: LSB first (Initial value)<br>1: MSB first       14     UnNEG     This is used to choose a logic of the data input / output.<br>0: Positive logic (Initial value)<br>1: Negative logic       13     UnSTP     This is used to choose a stop bit length.<br>0: 1 stop bit (Initial value)<br>1: 2 stop bit       12 to 10     UnPT2 to<br>UnPT0     This is used to choose a parity bit.<br>00 0: No parity bit (Initial value)<br>001: Odd parity<br>010: No parity bit (Initial value)<br>001: Odd parity<br>010: No parity bit       9 to 8     UnLG1 to<br>UnG0     These are used to choose a data length.<br>00: 8-bit length<br>11: 5-bit length<br>11: Clause set to UAn0BRTH and UAn0BRTL registers)/2] -1       5-2     -     Reserved bits       1     UnCK0     This is used to choose base clock baud rate generator.<br>0: (Values set to UAn0BRTH and UAn0BRTL registers)/2] -1                                                                                                                                                                                                                                                                                    | R/W          | R/W                                   | R/W                                                                              | R/W            | R/W                                                    | R/w                                                                  | R/w                                                                        | R/W                | R/W     | R       | R/W       | R       | R         | R         | R  | R/W | R |
| Diffic         name         Description           15         UnDIR         This is used to choose the data direction.<br>0: LSB first (Initial value)<br>1: MSB first           14         UnNEG         This is used to choose a logic of the data input / output.<br>0: Positive logic (Initial value)<br>1: Negative logic           13         UnSTP         This is used to choose a stop bit length.<br>0: 1 stop bit (Initial value)<br>1: 2 stop bit           12 to 10         UnPT2 to<br>UnPT0         This is used to choose a parity bit.<br>0: No parity bit (Initial value)<br>001: No parity bit           12 to 10         UnPT0         0 0: No parity bit (Initial value)<br>001: No parity bit           111: Even parity<br>000: No parity bit         0 0: No parity bit           011: Even parity<br>100: No parity bit         101: Parity bit is fixed to "1"<br>110: No parity bit           111: Parity bit is fixed to choose a data length.<br>00: 8-bit length<br>11: 5-bit length         00: 8-bit length<br>10: 6-bit length<br>11: 5-bit length           7         -         Reserved bits           6         UnRSS         This is used to choose sampling timing of the reception data.<br>0: (Values set to UAn0BRTH and UAn0BRTL registers)/2 (Initial value)<br>1: {(Values set to UAn0BRTH and UAn0BRTL registers)/2 (Initial value)<br>1: {(Values set to Choose base clock baud rate generator.<br>0: LSCLK0 (Initial value)<br>1: HSCLK                |              | 0                                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  |                |                                                        |                                                                      |                                                                            |                    |         |         |           |         |           |           |    |     |   |
| 15       UnDIR       This is used to choose the data direction.<br>0: LSB first (Initial value)<br>1: MSB first         14       UnNEG       This is used to choose a logic of the data input / output.<br>0: Positive logic (Initial value)<br>1: Negative logic         13       UnSTP       This is used to choose a stop bit length.<br>0: 1 stop bit (Initial value)<br>1: 2 stop bit         12 to 10       UnPT2 to<br>UnPT0       This is used to choose a parity bit.<br>00 0: No parity bit (Initial value)<br>001: Odd parity<br>010: No parity bit<br>101: Parity bit is fixed to "1"<br>110: No parity bit<br>101: Parity bit is fixed to "1"<br>110: No parity bit<br>101: Parity bit is fixed to "1"<br>110: No parity bit<br>101: Parity bit is fixed to "0"         9 to 8       UnLG1 to<br>UnLG0       These are used to choose a data length.<br>00: 8-bit length<br>11: 5-bit length<br>10: 6-bit length<br>11: 5-bit length<br>11: 5-bit length         7       -       Reserved bits         6       UnRSS       This is used to choose sampling timing of the reception data.<br>0: (Values set to UAn0BRTH and UAn0BRTL registers)/2 (Initial value)<br>1: {(Values set to UAn0BRTH and UAn0BRTL registers)/2 (Initial value)<br>1: {(Values set to Choose base clock baud rate generator.<br>0: LSCLK0 (Initial value)<br>1: HSCLK                                                                                                                                         | Bit no.      | В                                     | Descuouon                                                                        |                |                                                        |                                                                      |                                                                            |                    |         |         |           |         |           |           |    |     |   |
| 0: Positive logic (Initial value)         1: Negative logic         13       UnSTP         14       UnSTP         15       us used to choose a stop bit length.         16       1         17       1         18       UnPT2 to<br>UnPT0         19       UnPT0         11       UnPT0         11       UnPT0         12       to to to choose a parity bit.         11       UnPT0         11       UnPT0         12       to to to to choose a parity bit.         11       UnPT0         11       UnPT0         11       UnPT0         11       Parity bit is fixed to "1"         11       Parity bit is fixed to "1"         111       Parity bit is fixed to "0"         111       Parity bit is fixed to "0"         111       Parity bit is fixed to "0"         111       Parity bit is fixed to "1"         111       Parity bit is fixed to choose a data length.         111       Parity bit is sused to choose sampling timing of the reception data.         11       UnRS0       This is used to choose sampling timing of the reception data.         11       UnCK0       This is used                                                                                                                                                                                                                                                                                                                                                                                             | 15           | UnE                                   | UnDIR This is used to choose the data direction.<br>0: LSB first (Initial value) |                |                                                        |                                                                      |                                                                            |                    |         |         |           |         |           |           |    |     |   |
| 0: 1 stop bit (Initial value)<br>1: 2 stop bit         12 to 10       UnPT2 to<br>UnPT0       This is used to choose a parity bit.<br>00 0: No parity bit (Initial value)<br>001: Odd parity<br>010: No parity bit<br>011: Even parity<br>100: No parity bit<br>101: Parity bit is fixed to "1"<br>110: No parity bit<br>101: Parity bit is fixed to "0"         9 to 8       UnLG1 to<br>UnLG0       These are used to choose a data length.<br>00: 8-bit length<br>11: 7-bit length<br>10: 6-bit length<br>11: 5-bit length         7       -       Reserved bits         6       UnRSS       This is used to choose sampling timing of the reception data.<br>0: (Values set to UAn0BRTH and UAn0BRTL registers)/2 (Initial value)<br>1: {(Values set to UAn0BRTH and UAn0BRTL registers)/2 -1         5~2       -       Reserved bits         1       UnCK0       This is used to choose base clock baud rate generator.<br>0: LSCLK0 (Initial value)<br>1: HSCLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14           | UnN                                   | IEG                                                                              |                | 0: Po                                                  | ositive l                                                            | ogic (In                                                                   |                    |         | data ir | nput / ou | tput.   |           |           |    |     |   |
| UnPT000 0: No parity bit (Initial value)<br>001: Odd parity<br>010: No parity bit<br>011: Even parity<br>010: No parity bit<br>101: Parity bit is fixed to "1"<br>110: No parity bit<br>111: Parity bit is fixed to "0"9 to 8UnLG1 to<br>UnLG0These are used to choose a data length.<br>00: 8-bit length (Initial value)<br>01: 7-bit length<br>11: 5-bit length7-Reserved bits6UnRSSThis is used to choose sampling timing of the reception data.<br>0: (Values set to UAn0BRTH and UAn0BRTL registers)/2 (Initial value)<br>1: {(Values set to UAn0BRTH and UAn0BRTL registers)/2] -15~2-Reserved bits1UnCK0This is used to choose base clock baud rate generator.<br>0: LSCLK0 (Initial value)<br>1: HSCLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13           | UnS                                   | STP                                                                              |                | 0: 1:                                                  | stop bit                                                             | (Initial                                                                   |                    | bit len | gth.    |           |         |           |           |    |     |   |
| UnLG0       00: 8-bit length (Initial value)<br>01: 7-bit length<br>10: 6-bit length<br>11: 5-bit length         7       -         6       UnRSS         This is used to choose sampling timing of the reception data.<br>0: (Values set to UAn0BRTH and UAn0BRTL registers)/2 (Initial value)<br>1: {(Values set to UAn0BRTH and UAn0BRTL registers)/2} -1         5~2       -         1       UnCK0         This is used to choose base clock baud rate generator.<br>0: LSCLK0 (Initial value)<br>1: HSCLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12 to 10     |                                       |                                                                                  |                | 00 0:<br>001:<br>010:<br>011:<br>10 0:<br>101:<br>110: | No par<br>Odd pa<br>No par<br>Even p<br>No par<br>Parity I<br>No par | ity bit (<br>arity<br>ity bit<br>arity<br>ity bit<br>pit is fix<br>ity bit | Initial va         | alue)   |         |           |         |           |           |    |     |   |
| 6       UnRSS       This is used to choose sampling timing of the reception data.<br>0: (Values set to UAn0BRTH and UAn0BRTL registers)/2 (Initial value)<br>1: {(Values set to UAn0BRTH and UAn0BRTL registers)/2} -1         5~2       -       Reserved bits         1       UnCK0       This is used to choose base clock baud rate generator.<br>0: LSCLK0 (Initial value)<br>1: HSCLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 to 8       |                                       |                                                                                  |                | 00: 8-<br>01: 7-<br>10: 6-                             | bit leng<br>bit leng<br>bit leng                                     | th (In<br>th<br>th                                                         |                    |         | ngth.   |           |         |           |           |    |     |   |
| 0:       (Values set to UAn0BRTH and UAn0BRTL registers)/2 (Initial value)         1:       {(Values set to UAn0BRTH and UAn0BRTL registers)/2} -1         5~2       -       Reserved bits         1       UnCK0       This is used to choose base clock baud rate generator.         0:       LSCLK0 (Initial value)         1:       HSCLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7            | -                                     |                                                                                  |                | Reserve                                                | ed bits                                                              |                                                                            |                    |         |         |           |         |           |           |    |     |   |
| 1       UnCK0       This is used to choose base clock baud rate generator.         0:       LSCLK0 (Initial value)         1:       HSCLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6            | UnF                                   | RSS                                                                              |                | 0: (V                                                  | alues s                                                              | et to U                                                                    | An0BŔ <sup>-</sup> | ΓH and  | UAn0E   | BRTL reg  | gisters | )/2 (Init | ial value | e) |     |   |
| 0: LSCLK0 (Initial value)<br>1: HSCLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5~2          | - Reserved bits                       |                                                                                  |                |                                                        |                                                                      |                                                                            |                    |         |         |           |         |           |           |    |     |   |
| 0 - Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            | UnC                                   | 0: LSCLK0 (Initial value)                                                        |                |                                                        |                                                                      |                                                                            |                    |         |         |           |         |           |           |    |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0            | -                                     |                                                                                  |                | Reserve                                                | ed bits                                                              |                                                                            |                    |         |         |           |         |           |           |    |     |   |

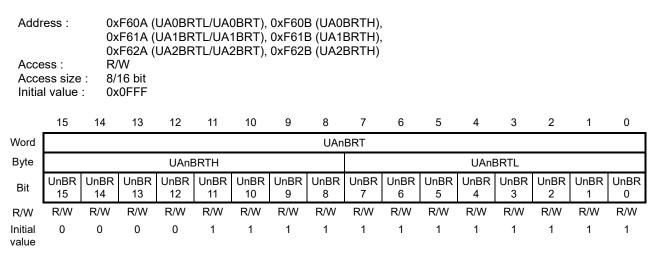
#### [Note]

#### • Be sure to set the UAn0MOD register while communication is stopped (Un0EN=0).

### 14.2.8 UARTn Interrupt Enable Register (UAnINTE)

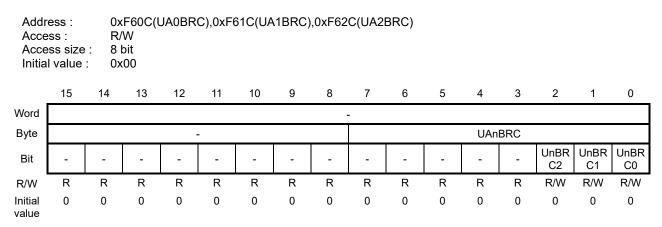
This is a SFR to enable interrupt requests.

|                  |    | R/<br>: 81 | W  | UA0INT | Ē),0xF | 618 (U | A1INTE | E),0xF6 | 28 (UA | 2INTE) |   |     |      |           |           |           |
|------------------|----|------------|----|--------|--------|--------|--------|---------|--------|--------|---|-----|------|-----------|-----------|-----------|
|                  | 15 | 14         | 13 | 12     | 11     | 10     | 9      | 8       | 7      | 6      | 5 | 4   | 3    | 2         | 1         | 0         |
| Word             |    |            |    |        |        |        |        |         | -      |        |   |     |      |           |           |           |
| Byte             |    |            |    |        | -      |        |        |         |        |        |   | UAn | INTE |           |           |           |
| Bit              | -  | -          | -  | -      | -      | -      | -      | -       | -      | -      | - | -   | -    | UnFI<br>E | UnTI<br>E | UnRI<br>E |
| R/W              | R  | R          | R  | R      | R      | R      | R      | R       | R      | R      | R | R   | R    | R/W       | R/W       | R/W       |
| Initial<br>value | 0  | 0          | 0  | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0 | 0   | 0    | 0         | 0         | 0         |


Common description of each bits :

- It is configured enable/disable a target interrupt
  - 0: Disable a target interrupt (Initial value)
  - 1: Enable a target interrupt

| Bit no. | Bit symbol<br>name | Description                                                                                                                                    |
|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to 3  | -                  | Reserved bits                                                                                                                                  |
| 2       | UnFIE              | Transmission completion interrupt<br>This has occurred when transmission data is transmitted in the condition of transmission<br>buffer empty. |
| 1       | UnTIE              | Transmission buffer empty interrupt.<br>This has occurred when transmission buffer becomes empty.                                              |
| 0       | UnRIE              | Reception interrupt.<br>This has occurred at receiving a data.                                                                                 |


### 14.2.9 UARTn Baud Rate Register (UAnBRT)

This is a SFR to set the count value of the baud rate generator in UARTn. For details of relation between the count value of the baud rate generator and the baud rate, see Section 14.3.3 "Baud Rate".



### 14.2.10 UARTn Baud Rate Adjustment Register (UAnBRC)

This is a SFR to adjust the count value of the baud rate generator in UARTn. For details of relation between the value of UAnBRC and the correction value, see Section 14.3.3 "Baud Rate".



#### [Note]

• Be sure to set the UAnBRT and UAnBRC register while communication is stopped (UnEN=0). Do not rewrite it during communication.

### 14.3 Description of Operation

#### 14.3.1 Frame Format

In the transfer data format, one frame contains a start bit, a data bit, a parity bit, and a stop bit. In this format, the following are choosable: 5 to 8 bits for the data bit, even/odd/ fixed to "1", or fixed to "0" for the parity bit, 1 stop bit or 2 stop bit for the stop bit, LSB first or MSB first for the transfer direction, and positive logic or negative logic for the logic of the serial input/output.

All of these are set in the UARTn mode register (UAnMOD).

Figure 14-2 shows the input/output format.

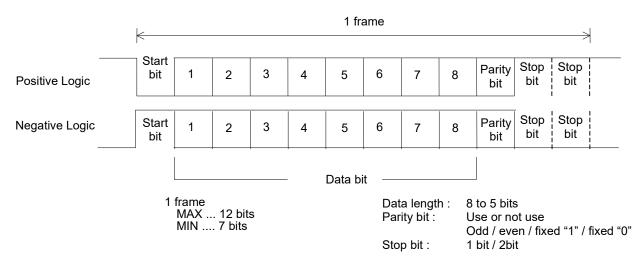



Figure 14-2 Format of Input/Output (LSB first)

#### 14.3.2 Data Direction

Figure 14-3 shows a relationship between the transmission/reception buffer and data.

- 8-bit length data

| - | 8-bit length data |                          |                  |              |              |              |              |        |               |        |  |
|---|-------------------|--------------------------|------------------|--------------|--------------|--------------|--------------|--------|---------------|--------|--|
|   | LSB RX            |                          | UnR5             | UnR4         | UnR3         | UnR2         | UnR1         | UnR0   | $\rightarrow$ | LSB TX |  |
|   | MSB TX ← Un       | T7 UnT6                  | UnT5             | UnT4         | UnT3         | l JnT2       | UnT1         | UnT0 < |               | MSB RX |  |
| - | 7-bit length data |                          |                  |              |              |              |              |        |               |        |  |
|   | LSB RX            | → UnR6                   | UnR5             | UnR4         | UnR3         | UnR2         | UnR1         | UnR0   | $\rightarrow$ | LSB TX |  |
|   | MSB TX            | ← UnT6                   | UnT5             | UnT4         | UnT3         | UnT2         | UnT1         | UnT0 🔶 |               | MSB RX |  |
|   |                   | UnR                      | 7 is "0" a       | t receivin   | g comple     | tion         |              |        |               |        |  |
| - | 6-bit length data |                          |                  |              | -            |              |              |        |               |        |  |
|   |                   | LSB RX $\longrightarrow$ | UnR5             | UnR4         | UnR3         | UnR2         | UnR1         | UnR0   | $\rightarrow$ | LSB TX |  |
|   | I                 | MSB TX                   | UnT5             | UnT4         | UnT3         | UnT2         | UnT1         | UnT0 ← |               | MSB RX |  |
|   |                   |                          | UnR7 a           | and UnR6     | are "0" a    | it receivin  | ig comple    | etion  |               |        |  |
| - | 5-bit length data |                          |                  |              |              |              |              |        |               |        |  |
|   |                   | LSB                      | RX $\rightarrow$ | UnR4         | UnR3         | UnR2         | UnR1         | UnR0   | $\rightarrow$ | LSB TX |  |
|   |                   | MSB                      | TX ←             | UnR4<br>UnT4 | UnR3<br>UnT3 | UnR2<br>UnT2 | UnR1<br>UnT1 | UnT0   |               | MSB RX |  |
|   |                   |                          |                  |              |              |              |              |        |               |        |  |

UnR7, UnR6 and UnR5 are "0" at receiving completion



#### 14.3.3 Baud Rate

The baud rate generator generates a baud rate using the base clock chosen in the UARTn mode register (UAnMOD). The setting values for the UARTn baud rate register (UAnBRT) and the UARTn baud rate adjustment register (UAnBRC) can be calculated by the following formulae.

UAnBRT = ROUNDDOWN (Base clock frequency (Hz) / Baud rate (bps)) – 1 + Carryover of UAnBRCUAnBRC = ROUND ( (Base clock frequency (Hz) % Baud rate (bps)) × 8 / Baud rate (bps))

where is ROUNDDOWN: Rounded down, ROUND: Rounded to the nearest whole number, %:Surplus. Setting range of UAnBRC is 0 to 7. If the calculated value of UAnBRC is 8, add 1 to UAnBRT and set 0 to UAnBRC.

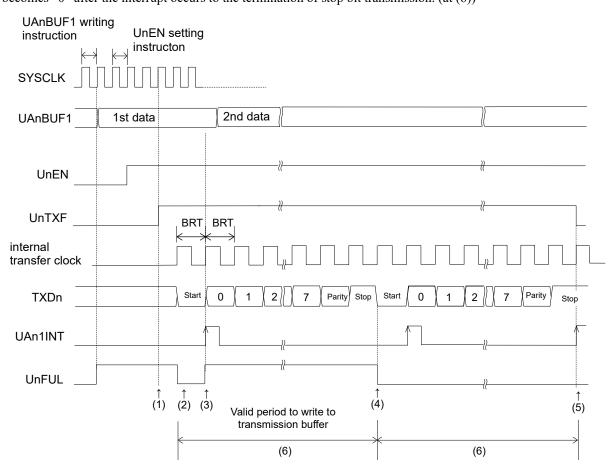
| (24.002560MHz % 115,200bps) × 8 / 115,200bps | = 40960 × 8 / 115,200                                    |
|----------------------------------------------|----------------------------------------------------------|
|                                              | $= 2.84444 \cdots = 3$ (rounding to the nearest integer) |
|                                              | = 0x03                                                   |
| UAnBRT = $0x00CF$ , UAnBRC = $0x03$          |                                                          |

Example(2) : Base clock frequency: Approx.16MHz (16.007168MHz), Baud rate ideal value:115,200bps 16.007168MHz  $\checkmark$  115,200bps - 1 = 137.95111 $\cdots$  - 1 = 137 (rounding down to the nearest integer) = 0x0089 (16.007168MHz % 115,200bps)  $\times$  8  $\checkmark$  115,200bps = 109568  $\times$  8  $\checkmark$  115,200 = 7.60888 $\cdots$  = 8 (rounding to the nearest integer) = 0x08 UAnBRC carrier over occurred UAnBRT = 0x0089+1 = 0x008A, UAnBRC = 0x08 = 0x00

The actual baud rate calculated from the setting value for the baud rate can be expressed by the following formula:

Actual baud rate (bps) = [Base clock frequency] /  $\{(UAnBRT + 1) + (UAnBRC / 8)\}$ 

Example: Base clock frequency: Approx.24 MHz (23.986176 MHz), Baud rate ideal value: 1200 bps Actual baud rate (bps) = 24.002560 MHz / {(0x4E21 + 1)} + (0x01 / 8)}  $\approx$  1199.99


Table 14-2 lists the count values for typical baud rates.

| Base clock                          | Baud rate  | UAnBRT | UAnBRC | Actual baud rate |
|-------------------------------------|------------|--------|--------|------------------|
|                                     | 1,200bps   | 0x4E21 | 0x01   | 1200.00bps       |
|                                     | 2,400bps   | 0x2710 | 0x01   | 2399.99bps       |
|                                     | 4,800bps   | 0x1387 | 0x04   | 4800.03bps       |
| PLL 24MHz                           | 9,600bps   | 0x09C3 | 0x02   | 9600.06bps       |
| (Approx. 24.0025600MHz)             | 19,200bps  | 0x04E1 | 0x01   | 19200.13bps      |
|                                     | 38,400bps  | 0x0270 | 0x01   | 38396.42bps      |
|                                     | 57,600bps  | 0x019F | 0x06   | 57594.63bps      |
|                                     | 115,200bps | 0x00CF | 0x03   | 115189.25bps     |
|                                     | 300bps     | 0xD06C | 0x02   | 300.00bps        |
|                                     | 1,200bps   | 0x341A | 0x02   | 1200.01bps       |
|                                     | 2,400bps   | 0x1A0C | 0x05   | 2400.01bps       |
|                                     | 4,800bps   | 0x0D05 | 0x07   | 4799.93bps       |
| PLL 16MHz<br>(Approx. 16.007168MHz) | 9,600bps   | 0x0682 | 0x03   | 9600.22bps       |
|                                     | 19,200bps  | 0x0340 | 0x06   | 19199.00bps      |
|                                     | 38,400bps  | 0x019F | 0x07   | 38398.00bps      |
|                                     | 57,600bps  | 0x0114 | 0x07   | 57605.64bps      |
|                                     | 115,200bps | 0x008A | 0x00   | 115159.48bps     |
|                                     | 300bps     | 0x0D02 | 0x03   | 300.00bps        |
|                                     | 1,200bps   | 0x033F | 0x07   | 1199.97bps       |
|                                     | 2,400bps   | 0x019F | 0x03   | 2400.30bps       |
|                                     | 4,800bps   | 0x00CF | 0x02   | 4799.16bps       |
| PLL 1MHz<br>(Approx. 0.999424MHz)   | 9,600bps   | 0x0067 | 0x01   | 9598.31bps       |
|                                     | 19,200bps  | 0x0033 | 0x00   | 19219.69bps      |
|                                     | 38,400bps  | 0x0019 | 0x00   | 38439.39bps      |
|                                     | 57,600bps  | 0x0010 | 0x03   | 57520.81bps      |
|                                     | 115,200bps | 0x0007 | 0x05   | 115875.25bps     |
|                                     | 200bps     | 0x00A2 | 0x07   | 199.95bps        |
|                                     | 300bps     | 0x006C | 0x02   | 299.93bps        |
| 32.768kHz                           | 1,200bps   | 0x001A | 0x02   | 1202.49bps       |
|                                     | 2,400bps   | 0x000C | 0x05   | 2404.99bps       |
|                                     | 4,800bps   | 0x0005 | 0x07   | 4766.25bps       |

### 14.3.4 Transmission Operation

Transmission is started by setting the UnEN bit of the UART n control register (UAnCON) to "1" and set transfer data to UAnBUF1. The order of UAnEN setting and UAnBUF1 setting does not matter. Figure 14-5 shows the operation timing for transmission.

When the UnEN bit is set to "1", the transmission status; UnTXF is set to "1" after 2 cycles of the system clock. (at (1)) An internal transfer clock of baud rate supplies after 2 cycles of the base clock(LSCLK0/HSCLK), and then the start bit is output the TXD pin. (at (2)) Subsequently, the transmitted data, a parity bit, and a stop bit are output. When the start bit is output, the transmission buffer status flag; UnFUL is return to "0" and the transmission interrupt is requested on the rising edge of the internal transfer clock. (at (3)) In the UARTn transmission interrupt routine, the next data to be transmitted is written to the transmission buffer (UAnBUF1). Then the UnFUL is set to "1". It is same as (2) after transmission of the stop bit (at(4)). At this time if the UART transmission interrupt routine is terminated without writing the next data to the transmit buffer; it means the stop-bit is sent when UnFUL is not set to "1", transmission is stop. Then the UnTXF bit is reset to "0", and the UART transmission buffer is from when the UnFUL bit becomes "0" after the interrupt occurs to the termination of stop bit transmission. (at (6))





[Note]

The transmission is start when setting "1" to UnEN bit of UAnCON with the UnFUL bit =1. Write "1" to the UnFULC bit in the UAnSTAC register to reset the UnFUL bit, and then set "1" to the UnEN to allow transmission/reception, if the transmission data is not ready and the reception is permitted first.

### 14.3.5 Reception Operation

A reception is started by setting the UnEN bit of the UART n control register (UAnCON) to "1". Figure 14-6 shows the operation timing for reception.

When a reception starts, this module checks the data sent to the input pin RXD and waits for the arrival of a start bit. When detecting a start bit ((2) in Figure 14-6), It generates the internal transfer clock of the baud rate set with the start bit detect point as a reference and performs reception operation.

The shift register shifts in the data input to RXD on the rising edge of the internal transfer clock. The data and parity bit are shifted into the shift register and 5- to 8- bit received data is transferred to the reception buffer (UAnBUF0) concurrently with the falling edge of the internal transfer clock of (3) in Figure 14-6.

This module requests a UART reception interrupt on the rising edge of the internal transfer clock subsequent to the internal transfer clock by which the received data was fetched ((4) in Figure 14-6) and checks for a stop bit error and a parity bit error. When an error is detected, this module sets the corresponding bit of the UART n status register (UAnSTAT) to "1".

Parity error : UnPER ="1" Overrun error : UnOER ="1" Framing error : UnFER ="1"

As shown in Figure 14-6, the rise of the internal transfer clock is set so that it may fall into the middle of the bit interval of the received data.

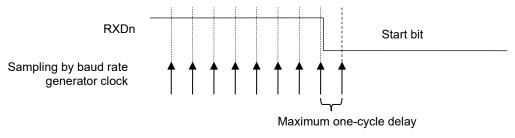
A reception continues until the UnEN bit is reset to "0" by the program. When the UnEN bit is reset to "0" during reception, the received data may be destroyed. When the UnEN bit is reset to "0" during the "UnEN reset enable period" in Figure 14-6, the received data is protected.

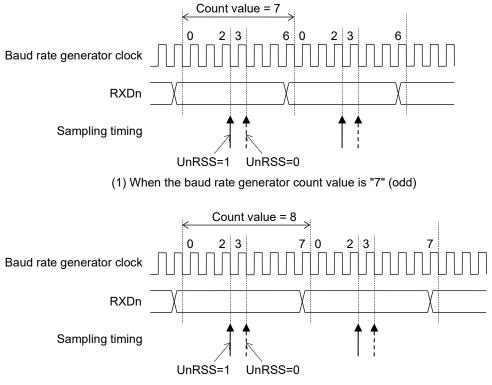
|                                           |                                                         | UnEN reset enable period                                                                           |
|-------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| UnEN                                      | }                                                       |                                                                                                    |
| RXDn Start                                | 0 1 2 7 Parity Stop Start                               | 0 1 6 7 Parity Stop                                                                                |
| internal transfer clock                   |                                                         |                                                                                                    |
| shift register Star<br>(input stage) Star | t 0 1 2 7 Parity Stop Star                              | t 0 1 6 7 Parity Stop                                                                              |
| Reception                                 | ) 1st dat                                               | ta 2nd data                                                                                        |
| UAn0INT                                   |                                                         |                                                                                                    |
| UnPER                                     |                                                         |                                                                                                    |
|                                           | ↓: overrun                                              | error                                                                                              |
| ↑ ↑<br>(1) (2) Start                      | bit detection (3) (4) Parity/ov<br>error det<br>UARTn i | errun/framing (5)<br>ected Stop receiving<br>nterrupt request because the start bit is<br>not read |

Figure 14-6 Reception Timing

#### 14.3.5.1 Detection of Start Bit

The start bit is sampled with the baud rate generator clock selected by the UnCK0 bit of the UAnMOD register. Therefore, the start bit detection may be delayed for one cycle of the baud rate generator clock at the maximum. Figure 14-7 shows the start bit detection timing.





Figure 14-7 Start Bit Detection Timing (with Positive Logic)

#### 14.3.5.2 Sampling Timing

When the start bit is detected, the received data that was input to RXDn is sampled almost at the center of the baud rate, and then loaded to the shift register.

This sampling timing the shift register uses to load data can be adjusted for one clock of the baud rate generator clock in the UnRSS bit of the UART n mode register (UAnMOD).

Figure 14-8 shows the relationship between the UnRSS bit and the sampling timing.



(2) When the baud rate generator count value is "8" (even)

Figure 14-8 Relationship between UnRSS Bit and Sampling Timing

### 14.3.5.3 Receiving Margin

If there is an error between the sender baud rate and the receiver baud rate generated by the baud rate generator, the error accumulates until the last stop bit loading in one frame, decreasing the reception margin. Figure 14-9 shows the baud rate errors and reception margin waveforms.

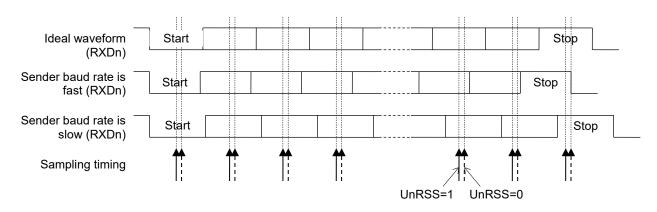



Figure 14-9 Baud Rate Errors and Reception Margin

[Note]

When designing the system, consider the difference of the baud rate between the transmission side and reception side, a delay of the start bit detection, signal degradation and noise influence, then adjust the baud rate and reception timing to ensure sufficient receiving margin.

#### 14.3.5.4 Reception Filter

This unit has reception data filter for a noise reduction. Figure 14-10 shows the RXD0 waveform before/after noise reduction.

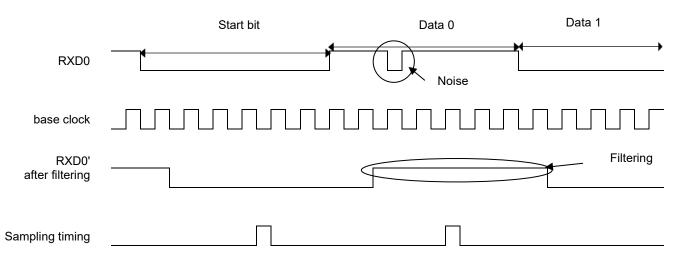



Figure 14-10 Noise reduction

#### 14.3.6 Interrupt

Figure 14-11 shows the interrupt timing.

The transmission empty interrupt is generated as UAn1INT at the end of start-bit after a transmission buffer becomes empty. At this time, UnFUL=0 and UnTXF=1.

The transmission completion interrupt is generated as UAn1INT when a transmission is completed in condition of that the transmission buffer is empty. At this time, UnFUL=0, UnTXF=0.

The reception interrupt is generated as UAn0INT when reception data is stacked the buffer.

| Transmission<br>state  | UnTXF   |        |        | Data A |        |        | Data B       |        |       |
|------------------------|---------|--------|--------|--------|--------|--------|--------------|--------|-------|
| Buffer state           | UnFUL   | Data A |        |        | Data B |        |              |        |       |
| Transmission interrupt | UAn1INT |        |        | ſ      |        |        | 1            |        | ſ     |
|                        |         |        |        | Buffer | empty  |        | Buffer empty | Comp   | leted |
|                        |         |        |        |        |        |        |              |        |       |
| Reception state        | UnRXF   |        | Data C |        |        | Data D |              | ]      |       |
|                        |         |        | -      |        |        | Data C |              | Data D |       |
| Reception<br>interrupt | UAn0INT |        |        |        |        | ſ      |              | Î      |       |
| Overrun error          | UnOER   |        |        |        |        |        |              | 1      |       |
|                        |         |        |        |        |        |        |              |        |       |

Figure 14-11 Interrupt Timing

# **Chapter 17 GPIO**

### 17. GPIO

### 17.1 General Description

The general purpose port (GPIO) is 2 types of an input only port (GPI) and input/output port (GPI/O). The input and output of a GPI/O is switchable on each pin. Max. 8 pins are available to read or to change the level of output in the same time. A general input port or output port shares a numbers of functions. See "1.3.2 List of Pins" or "1.3.3 Description of Pins" for more detail.

The GPIs are input is shared with the crystal resonator connection pins or debug/ISP interface pins.

The number of general port is dependent of each product. See Table 17-1 "List of Pins".

### 17.1.1 Features

- Input or output can be chosen in each pin
- Pull-up resistor can be chosen in each pin
- CMOS output or N-channel open drain output is can be chosen in each pin
- Direct driving LEDs is supported when the N-channel open drain output is chosen
- Carrier frequency output function
- Port output level test function

### 17.1.2 Configuration

Figure 17-1 shows the configuration of the general purpose port. See "17.2.1 List of registers" for available pins and registers.

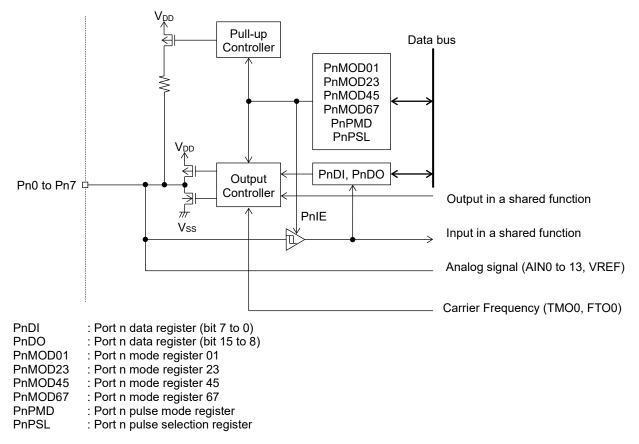



Figure 17-1 Configuration of GPI/O port n

Figure 17-2 shows the configuration of the GPI; PI0/PI1.

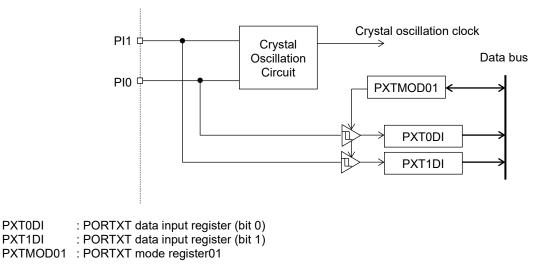



Figure 17-2 Configuration of GPI; PI0/PI1

### 17.1.3 List of Pins

Table 17-1 List of Pins (• is available)

|            | Table 17-1 List of Pins (• is ava                                 | ML62Q2500 group   |                   |                   |  |  |  |
|------------|-------------------------------------------------------------------|-------------------|-------------------|-------------------|--|--|--|
| Pin Name   | Primary                                                           | l                 |                   |                   |  |  |  |
| 1 III Name | Function                                                          | 32 pin<br>product | 40 pin<br>product | 48 pin<br>product |  |  |  |
| ХТО        | GPI(PI0) / Crystal resonator connection /<br>EXI1                 | •                 | •                 | •                 |  |  |  |
| XT1        | GPI(PI1) / Crystal resonator connection /<br>External clock input | •                 | •                 | •                 |  |  |  |
| P00/TEST0  | GPI / EXI0                                                        | •                 | •                 | •                 |  |  |  |
| P02        | GPI/O                                                             | -                 | •                 | •                 |  |  |  |
| P03        | GPI/O                                                             | -                 | •                 | •                 |  |  |  |
| P04        | GPI/O / EXI1                                                      | •                 | •                 | •                 |  |  |  |
| P05        | GPI/O / EXI2                                                      | •                 | •                 | •                 |  |  |  |
| P06        | GPI/O / EXI3                                                      | •                 | •                 | •                 |  |  |  |
| P07        | GPI/O / EXI4                                                      | •                 | •                 | •                 |  |  |  |
| P10        | GPI/O / EXI5                                                      | •                 | •                 | •                 |  |  |  |
| P11        | GPI/O / EXI6                                                      | •                 | •                 | •                 |  |  |  |
| P12        | GPI/O / EXI7                                                      | •                 | •                 | •                 |  |  |  |
| P13        | GPI/O / EXI3                                                      | •                 | •                 | •                 |  |  |  |
| P17        | GPI/O                                                             | _                 | •                 | •                 |  |  |  |
| P20        | GPI/O                                                             | •                 | •                 | •                 |  |  |  |
| P21        | GPI/O                                                             | •                 | •                 | •                 |  |  |  |
| P22        | GPI/O                                                             | •                 | •                 | •                 |  |  |  |
| P23        | GPI/O                                                             | •                 | •                 | •                 |  |  |  |
| P24        | GPI/O                                                             | •                 | •                 | •                 |  |  |  |
| P25        | GPI/O                                                             | •                 | •                 | •                 |  |  |  |
| P26        | GPI/O                                                             | •                 | •                 | •                 |  |  |  |
| P27        | GPI/O / EXI2                                                      | •                 | •                 | •                 |  |  |  |
| P30        | GPI/O / EXI2                                                      | •                 | •                 | •                 |  |  |  |
| P31        | GPI/O / EXI5                                                      | •                 | •                 | •                 |  |  |  |
| P32        | GPI/O / EXI6                                                      | •                 | •                 | •                 |  |  |  |
| P33        | GPI/O / EXI7                                                      | •                 | •                 | •                 |  |  |  |
| P34        | GPI/O / EXI0                                                      | -                 | •                 | •                 |  |  |  |
| P35        | GPI/O / EXII                                                      |                   | •                 | •                 |  |  |  |
| P36        | GPI/O / EXI2                                                      | -                 | •                 | •                 |  |  |  |
| P37        | GPI/O / EXI3                                                      |                   | •                 | •                 |  |  |  |
| P52        | GPI/O / EXIA                                                      |                   | -                 | •                 |  |  |  |
| P53        | GPI/O / EXI5                                                      | -                 | -                 |                   |  |  |  |
| P54        | GPI/O                                                             | -                 |                   | •                 |  |  |  |
| P55        | GPI/O                                                             |                   | •                 | •                 |  |  |  |
| P55        | GPI/O<br>GPI/O                                                    | -                 | •                 |                   |  |  |  |
| P56<br>P57 | GPI/O<br>GPI/O                                                    | -                 | -                 | •                 |  |  |  |
| P57<br>P60 | GPI/O / EXI6                                                      | -                 | -                 | •                 |  |  |  |
| P60<br>P61 | GPI/O / EXI6<br>GPI/O / EXI7                                      |                   | -                 | •                 |  |  |  |
| P61<br>P62 | GPI/O                                                             | -                 | -                 | •                 |  |  |  |
|            | GPI/O<br>GPI/O                                                    | -                 | -                 | •                 |  |  |  |
| P70        |                                                                   | •                 | •                 | •                 |  |  |  |
| P71        |                                                                   |                   | •                 | •                 |  |  |  |
| P72        | GPI/O / EXI0                                                      | •                 | •                 | •                 |  |  |  |
| P73        | GPI/O / EXI3                                                      | •                 | •                 | •                 |  |  |  |

### 17.2 Description of Registers

### 17.2.1 List of Registers

Writing to SFRs of unequipped port is not available. PnDI return 0xFF for reading. Other SFRs return 0x0000/0x00 for reading.

| reading. |                                 | Syr    | nbol     | R/W |      | Initial |  |
|----------|---------------------------------|--------|----------|-----|------|---------|--|
| Address  | Name                            | Byte   | -        |     | Size | Value   |  |
| 0xF200   | Dert 0 dete ve sister           | P0DI   | DOD      | R   | 8/16 | 0xFF    |  |
| 0xF201   | Port 0 data register            | P0D0   | P0D      | R/W | 8    | 0x00    |  |
| 0xF202   | Port 0 mode register 0          | P0MOD0 | -        | R/W | 8/16 | 0x05    |  |
| 0xF203   | Reserved                        | -      | -        | -   | -    | -       |  |
| 0xF204   | Dout 0 mode no mistor 22        | P0MOD2 |          | R/W | 8/16 | 0x00    |  |
| 0xF205   | Port 0 mode register 23         | P0MOD3 | P0MOD23  | R/W | 8    | 0x00    |  |
| 0xF206   | Dout 0 mode no sister 45        | P0MOD4 |          | R/W | 8/16 | 0x00    |  |
| 0xF207   | Port 0 mode register 45         | P0MOD5 | P0MOD45  | R/W | 8    | 0x00    |  |
| 0xF208   | Dout 0 mode no sister CZ        | P0MOD6 |          | R/W | 8/16 | 0x00    |  |
| 0xF209   | Port 0 mode register 67         | P0MOD7 | P0MOD67  | R/W | 8    | 0x00    |  |
| 0xF20A   | Dert 0 mulas mode register      | P0PMDL |          | R/W | 8/16 | 0x00    |  |
| 0xF20B   | Port 0 pulse mode register      | P0PMDH | P0PMD    | R/W | 8    | 0x00    |  |
| 0xF20C   | Dort 0 pulse coloction register | P0PSLL | P0PSL    | R/W | 8/16 | 0x00    |  |
| 0xF20D   | Port 0 pulse selection register | P0PSLH | PUPSL    | R/W | 8    | 0x00    |  |
| 0xF20E   | Beconved                        |        |          |     |      |         |  |
| 0xF20F   | Reserved                        | -      | -        | -   | -    | -       |  |
| 0xF210   | Port 1 data register            | P1DI   |          | R   | 8/16 | 0xFF    |  |
| 0xF211   | Port i data register            | P1DO   | P1D      | R/W | 8    | 0x00    |  |
| 0xF212   | Port 1 mode register 01         | P1MOD0 | P1MOD01  | R/W | 8/16 | 0x00    |  |
| 0xF213   |                                 | P1MOD1 |          | R/W | 8    | 0x00    |  |
| 0xF214   | Port 1 mode register 23         | P1MOD2 | P1MOD23  | R/W | 8/16 | 0x00    |  |
| 0xF215   | Fort Thiode register 23         | P1MOD3 | F INOD25 | R/W | 8    | 0x00    |  |
| 0xF216   | Reserved                        | -      |          | -   | -    | -       |  |
| 0xF217   | Reserved                        | -      | -        | -   | -    | -       |  |
| 0xF218   | Reserved                        | -      | -        | -   | -    | -       |  |
| 0xF219   | Port 1 mode register 7          | P1MOD7 | -        | R/W | 8    | 0x00    |  |
| 0xF21A   | Port 1 pulse mode register      | P1PMDL | P1PMD    | R/W | 8/16 | 0x00    |  |
| 0xF21B   | T off T pulse mode register     | P1PMDH |          | R/W | 8    | 0x00    |  |
| 0xF21C   | Port 1 pulse selection register | P1PSLL | P1PSL    | R/W | 8/16 | 0x00    |  |
| 0xF21D   | i or i puise selection register | P1PSLH | 111.0    | R/W | 8    | 0x00    |  |
| 0xF21E   | Reserved                        | _      |          |     |      |         |  |
| 0xF21F   |                                 | -      | -        | -   | -    | -       |  |
| 0xF220   | Port 2 data register            | P2DI   | P2D      | R   | 8/16 | 0xFF    |  |
| 0xF221   | - 1 UIL 2 UALA IEYISLEI         | P2DO   | FZU      | R/W | 8    | 0x00    |  |
| 0xF222   | Port 2 mode register 01         | P2MOD0 | P2MOD01  | R/W | 8/16 | 0x00    |  |
| 0xF223   |                                 | P2MOD1 |          | R/W | 8    | 0x00    |  |
| 0xF224   | Port 2 mode register 23         | P2MOD2 | P2MOD23  | R/W | 8/16 | 0x00    |  |
| 0xF225   |                                 | P2MOD3 |          | R/W | 8    | 0x00    |  |

|                   |                                       | Syr    | nbol       |     |      | Initial |  |
|-------------------|---------------------------------------|--------|------------|-----|------|---------|--|
| Address           | Name                                  | Byte   | Word       | R/W | Size | Value   |  |
| 0xF226            | Port 2 mode register 45               | P2MOD4 | P2MOD45    | R/W | 8/16 | 0x00    |  |
| 0xF227            | Port 2 mode register 45 P2MOD5        |        | F 21010D43 | R/W | 8    | 0x00    |  |
| 0xF228            | Deut Ourse de la siste a 07           | P2MOD6 |            | R/W | 8/16 | 0x00    |  |
| 0xF229            | Port 2 mode register 67               | P2MOD7 | P2MOD67    | R/W | 8    | 0x00    |  |
| 0xF22A            | Dert Grade a secola se sister         | P2PMDL |            | R/W | 8/16 | 0x00    |  |
| 0xF22B            | Port 2 pulse mode register            | P2PMDH | P2PMD      | R/W | 8    | 0x00    |  |
| 0xF22C            | Deut Orașile e cele stiere ne sistere | P2PSLL | DODOL      | R/W | 8/16 | 0x00    |  |
| 0xF22D            | Port 2 pulse selection register       | P2PSLH | P2PSL      | R/W | 8    | 0x00    |  |
| 0xF22E            |                                       |        |            |     |      |         |  |
| 0xF22F            | Reserved                              | -      | -          | -   | -    | -       |  |
| 0xF230            |                                       | P3DI   | 505        | R   | 8/16 | 0xFF    |  |
| 0xF231            | Port 3 data register                  | P3DO   | P3D        | R/W | 8    | 0x00    |  |
| 0xF232            |                                       | P3MOD0 |            | R/W | 8/16 | 0x00    |  |
| 0xF233            | Port 3 mode register 01               | P3MOD1 | P3MOD01    | R/W | 8    | 0x00    |  |
| 0xF234            |                                       | P3MOD2 |            | R/W | 8/16 | 0x00    |  |
| 0xF235            | Port 3 mode register 23               | P3MOD3 | P3MOD23    | R/W | 8    | 0x00    |  |
| 0xF236            |                                       | P3MOD4 |            | R/W | 8/16 | 0x00    |  |
| 0xF237            | Port 3 mode register 45               | P3MOD5 | P3MOD45    | R/W | 8    | 0x00    |  |
| 0xF238            |                                       | P3MOD6 |            | R/W | 8/16 | 0x00    |  |
| 0xF239            | Port 3 mode register 67               | P3MOD7 | P3MOD67    | R/W | 8    | 0x00    |  |
| 0xF23A<br>~0xF23F | Reserved                              | -      | -          | -   | -    | -       |  |
| 0xF240<br>~0xF24F | Reserved                              | -      | -          | -   | -    | -       |  |
| 0xF250            |                                       | P5DI   | DED        | R   | 8/16 | 0xFF    |  |
| 0xF251            | Port 5 data register                  | P5DO   | P5D        | R/W | 8    | 0x00    |  |
| 0xF252            | Reserved                              | -      | -          | -   | -    | -       |  |
| 0xF253            |                                       |        |            |     |      |         |  |
| 0xF254            | Port 5 mode register 23               | P5MOD2 | P5MOD23    | R/W | 8/16 | 0x00    |  |
| 0xF255            | 5                                     | P5MOD3 |            | R/W | 8    | 0x00    |  |
| 0xF256            | Port 5 mode register 45               | P5MOD4 | P5MOD45    | R/W | 8/16 | 0x00    |  |
| 0xF257            |                                       | P5MOD5 |            | R/W | 8    | 0x00    |  |
| 0xF258            | Port 5 mode register 67               | P5MOD6 | P5MOD67    | R/W | 8/16 | 0x00    |  |
| 0xF259            |                                       | P5MOD7 |            | R/W | 8    | 0x00    |  |
| 0xF25A<br>~0xF25F | Reserved                              | -      | -          | -   | -    | -       |  |
| 0xF260            | Port 6 data register                  | P6DI   | P6D        | R   | 8/16 | 0xFF    |  |
| 0xF261            |                                       | P6DO   |            | R/W | 8    | 0x00    |  |
| 0xF262            | Port 6 mode register 01               | P6MOD0 |            | R/W | 8/16 | 0x00    |  |
| 0xF263            | Port 6 mode register 01               | P6MOD1 | P6MOD01    | R/W | 8    | 0x00    |  |
| 0xF264            | Port 6 mode register 2                | P6MOD2 | -          | R/W | 8/16 | 0x00    |  |
| 0xF265            | Reserved                              | -      | -          | -   | -    | -       |  |
| 0xF266<br>~0xF26F | Reserved                              | -      | -          | -   | -    | -       |  |

| Address           | Nama                            | Syr     | mbol      | R/W     | Size | Initial<br>Value |  |
|-------------------|---------------------------------|---------|-----------|---------|------|------------------|--|
| Addless           | Name                            | Byte    | Word      | FK/ V V | Size |                  |  |
| 0xF270            | Port 7 data register            | P7DI    | P7D       | R       | 8/16 | 0xFF             |  |
| 0xF271            |                                 | P7DO    | 170       | R/W     | 8    | 0x00             |  |
| 0xF272            | Port 7 mode register 01         | P7MOD0  | P7MOD01   | R/W     | 8/16 | 0x00             |  |
| 0xF273            |                                 | P7MOD1  | FTNIODUT  | R/W     | 8    | 0x00             |  |
| 0xF274            | Port 7 mode register 23         | P7MOD2  | P7MOD23   | R/W     | 8/16 | 0x00             |  |
| 0xF275            | For 7 mode register 25          | P7MOD3  | F7INIOD25 | R/W     | 8    | 0x00             |  |
| 0xF276<br>~0xF279 | Reserved                        | -       | -         | -       | -    | -                |  |
| 0xF27A            | Dert 7 pulse mede register      | P7PMDL  | P7PMD     | R/W     | 8/16 | 0x00             |  |
| 0xF27B            | Port 7 pulse mode register      | P7PMDH  | PIPIND    | R/W     | 8    | 0x00             |  |
| 0xF27C            | Port 7 pulse selection register | P7PSLL  | P7PSL     | R/W     | 8/16 | 0x00             |  |
| 0xF27D            |                                 | P7PSLH  | FIFSL     | R/W     | 8    | 0x00             |  |
| 0xF27E<br>~0xF2EF | Reserved                        | -       | -         | -       | -    | -                |  |
| 0xF2F0            | PORTXT data input register      | PXTDI   |           | R       | 8    | 0x03             |  |
| 0xF2F1            | Reserved                        | -       | -         | -       | -    | -                |  |
| 0xF2F2            | PORTXT mode register 01         | PXTMOD0 | PXTMOD01  | R/W     | 8/16 | 0x00             |  |
| 0xF2F3            |                                 | PXTMOD1 |           | R/W     | 8    | 0x00             |  |

#### ML62Q2500 Group User's Manual Chapter 17 GPIO

|           |             | Table 17-2     List of Registers / Bits |                      |                                    |                  |                   |                                            | Available<br>ML62Q2500 group |                |                |
|-----------|-------------|-----------------------------------------|----------------------|------------------------------------|------------------|-------------------|--------------------------------------------|------------------------------|----------------|----------------|
| Port Name | Pin<br>Name | Control register / bit                  |                      |                                    |                  |                   |                                            |                              |                |                |
|           |             | (PnD)                                   | Port n data register | Port n mode register m<br>(PnMODm) | register (PnPMD) | Port n pulse mode | Port n pulse selection<br>register (PnPSL) | 32 pin product               | 40 pin product | 48 pin product |
|           | PI00        | -                                       | PXT0DI               | PXTMOD0                            | -                | -                 | -                                          | •                            | •              | •              |
| Port XT   | PI01        | -                                       | PXT1DI               | PXTMOD1                            | -                | -                 | -                                          | •                            | •              | •              |
|           | P00         | -                                       | P00DI                | P0MOD0                             | -                | -                 | -                                          | •                            | •              | •              |
|           | P02         | P02DO                                   | P02DI                | P0MOD2                             | -                | -                 | -                                          | -                            | •              | •              |
|           | P03         | P03DO                                   | P03DI                | P0MOD3                             | -                | -                 | -                                          | -                            | •              | •              |
| Port 0    | P04         | P04DO                                   | P04DI                | P0MOD4                             | -                | -                 | -                                          | •                            | •              | •              |
|           | P05         | P05DO                                   | P05DI                | P0MOD5                             | -                | -                 | -                                          | •                            | •              | •              |
|           | P06         | P06DO                                   | P06DI                | P0MOD6                             | -                | -                 | -                                          | •                            | •              | •              |
|           | P07         | P07DO                                   | P07DI                | P0MOD7                             | P07PLVL          | P07PEN            | P07PSL                                     | •                            | •              | •              |
|           | P10         | P10DO                                   | P10DI                | P1MOD0                             | -                | -                 | -                                          | •                            | •              | ٠              |
|           | P11         | P11DO                                   | P11DI                | P1MOD1                             | P11PLVL          | P11PEN            | P11PSL                                     | •                            | •              | •              |
| Port 1    | P12         | P12DO                                   | P12DI                | P1MOD2                             | -                | -                 | -                                          | •                            | •              | •              |
|           | P13         | P13DO                                   | P13DI                | P1MOD3                             | -                | -                 | -                                          | •                            | ٠              | •              |
|           | P17         | P17DO                                   | P17DI                | P1MOD7                             | -                | -                 | -                                          | -                            | •              | •              |
|           | P20         | P20DO                                   | P20DI                | P2MOD0                             | -                | -                 | -                                          | •                            | •              | •              |
|           | P21         | P21DO                                   | P21DI                | P2MOD1                             | P21PLVL          | P21PEN            | P21PSL                                     | •                            | •              | •              |
|           | P22         | P22DO                                   | P22DI                | P2MOD2                             | -                | -                 | -                                          | •                            | •              | •              |
| Port 2    | P23         | P23DO                                   | P23DI                | P2MOD3                             | -                | -                 | -                                          | •                            | •              | •              |
| 10112     | P24         | P24DO                                   | P24DI                | P2MOD4                             | -                | -                 | -                                          | •                            | •              | •              |
|           | P25         | P25DO                                   | P25DI                | P2MOD5                             | -                | -                 | -                                          | •                            | •              | •              |
|           | P26         | P26DO                                   | P26DI                | P2MOD6                             | -                | -                 | -                                          | •                            | •              | •              |
|           | P27         | P27DO                                   | P27DI                | P2MOD7                             | -                | -                 | -                                          | •                            | ٠              | •              |
|           | P30         | P30DO                                   | P30DI                | P3MOD0                             | -                | -                 | -                                          | •                            | ٠              | ٠              |
|           | P31         | P31DO                                   | P31DI                | P3MOD1                             | -                | -                 | -                                          | •                            | •              | •              |
|           | P32         | P32DO                                   | P32DI                | P3MOD2                             | -                | -                 | -                                          | •                            | •              | •              |
| Port 3    | P33         | P33DO                                   | P33DI                | P3MOD3                             | -                | -                 | -                                          | •                            | •              | •              |
| Port 3    | P34         | P34DO                                   | P34DI                | P3MOD4 <sup>*1</sup>               | -                | -                 | -                                          | -                            | ٠              | ٠              |
|           | P35         | P35DO                                   | P35DI                | P3MOD5 <sup>*1</sup>               | -                | -                 | -                                          | -                            | •              | •              |
| [         | P36         | P36DO                                   | P36DI                | P3MOD6 <sup>*1</sup>               | -                | -                 | -                                          | -                            | •              | •              |
|           | P37         | P37DO                                   | P37DI                | P3MOD7 <sup>*1</sup>               | -                | -                 | -                                          | -                            | -              | •              |
| _         | P52         | P52DO                                   | P52DI                | P5MOD2                             | -                | -                 | -                                          | -                            | -              | •              |
|           | P53         | P53DO                                   | P53DI                | P5MOD3                             | -                | -                 | -                                          | -                            | -              | •              |
| Port 5    | P54         | P54DO                                   | P54DI                | P5MOD4                             | -                | -                 | -                                          | -                            | •              | •              |
| 1 011 0   | P55         | P55DO                                   | P55DI                | P5MOD5                             | -                | -                 | -                                          | -                            | •              | •              |
|           | P56         | P56DO                                   | P56DI                | P5MOD6                             | -                | -                 | -                                          | -                            | -              | •              |
|           | P57         | P57DO                                   | P57DI                | P5MOD7                             | -                | -                 | -                                          | -                            | -              | •              |
|           | P60         | P60DO                                   | P60DI                | P6MOD0                             | -                | -                 | -                                          | -                            | -              | •              |
| Port 6    | P61         | P61DO                                   | P61DI                | P6MOD1                             | -                | -                 | -                                          | -                            | -              | •              |
|           | P62         | P62DO                                   | P62DI                | P6MOD2                             | -                | -                 | -                                          | -                            | -              | •              |

#### Table 17-2 List of Registers / Bits

#### ML62Q2500 Group User's Manual Chapter 17 GPIO

|           |             |       |                      | Control re                         | Available<br>ML62Q2500 group |                   |                                            |                |                |                |
|-----------|-------------|-------|----------------------|------------------------------------|------------------------------|-------------------|--------------------------------------------|----------------|----------------|----------------|
| Port Name | Pin<br>Name | (PnD) | Port n data register | Port n mode register m<br>(PnMODm) | register (PnPMD)             | Port n pulse mode | Port n pulse selection<br>register (PnPSL) | 32 pin product | 40 pin product | 48 pin product |
|           | P70         | P70DO | P70DI                | P7MOD0                             | -                            | -                 | -                                          | •              | •              | ٠              |
| Port 7    | P71         | P71DO | P71DI                | P7MOD1                             | -                            | -                 | -                                          | •              | •              | ٠              |
|           | P72         | P72DO | P72DI                | P7MOD2                             | -                            | -                 | -                                          | •              | •              | •              |
|           | P73         | P73DO | P73DI                | P7MOD3                             | P73PLVL                      | P73PEN            | P73PSL                                     | •              | •              | •              |

\*1 P34,P35,P36,P37 pins have GPI/O function only. So Writing to bit 4-7 of their PnPMODm is not available.

#### 17.2.2 Port 0 Data Register (P0D)

P0D is a SFR used to read the level of the port n pin and write output data.

The input level of the port 0 pins can be read by reading P0DI in the input mode. Data written to P0DO in the output mode are output to the port 0 pins. The data written to P0DO is readable. The bit can be set when output is enabled or disabled. Enable or disable the input or output by using the port 0 mode registers. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of P0DO that have no corresponding pin.

|                  |       | R/<br>: 8/ | :F200(F<br>W<br>16 bit<br>:00FF | PODI/PO | D), 0xF | 201(P0 | DO) |   |       |       |       |       |       |       |   |       |
|------------------|-------|------------|---------------------------------|---------|---------|--------|-----|---|-------|-------|-------|-------|-------|-------|---|-------|
|                  | 15    | 14         | 13                              | 12      | 11      | 10     | 9   | 8 | 7     | 6     | 5     | 4     | 3     | 2     | 1 | 0     |
| Word             |       |            |                                 |         |         |        |     | P | D     |       |       |       |       |       |   |       |
| Byte             |       |            |                                 | P0      | DO      |        |     |   |       |       |       | PC    | DI    |       |   |       |
| Bit              | P07DO | P06DO      | P05DO                           | P04DO   | P03DO   | P02DO  | -   | - | P07DI | P06DI | P05DI | P04DI | P03DI | P02DI | - | P00DI |
| R/W              | R/W   | R/W        | R/W                             | R/W     | R/W     | R/W    | R   | R | R     | R     | R     | R     | R     | R     | R | R     |
| Initial<br>value | 0     | 0          | 0                               | 0       | 0       | 0      | 0   | 0 | 1     | 1     | 1     | 1     | 1     | 1     | 1 | 1     |

| Bit<br>No. | Bit symbol name   | Description                                                                                                                         |
|------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 10   | P07DO to<br>P02DO | These bits are used to set the output level of port 0 pins.<br>0: Output "L" (Initial value)<br>1: Output "H"                       |
| 9 to 8, 1  | -                 | Reserved bits                                                                                                                       |
| 7 to 2, 0  | P07DI to<br>P00DI | These bits are used to set the input level of port n pin.<br>0: The input level is "L"<br>1: The input level is "H" (Initial value) |

### 17.2.3 Port n Data Register (PnD:n=1 to 3, 5 to 7)

PnD is a SFR used to read the level of the port n pin and write output data.

The input level of the port n pins can be read by reading PnDI in the input mode. Data written to PnDO in the output mode are output to the port n pins. The data written to PnDO is readable. The bit can be set when output is enabled or disabled. Enable or disable the input or output by using the port n mode register. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnDO that have no corresponding pin.

| Address:       | 0xF210(P1DI/P1D), 0xF211(P1DO), 0xF220(P2DI/P2D), 0xF221(P2DO),<br>0xF230(P3DI/P3D), 0xF231(P3DO), 0xF250(P5DI/P5D), 0xF251(P5DO),<br>0xF260(P6DI/P6D), 0xF261(P6DO), 0xF270(P7DI/P7D), 0xF271(P7DO) |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Access:        | R/W                                                                                                                                                                                                  |
| Access size:   | 8/16 bit                                                                                                                                                                                             |
| Initial value: | 0x00FF                                                                                                                                                                                               |

|                  | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Word             |       |       |       |       |       |       |       | Pr    | ۱D    |       |       |       |       |       |       |       |
| Byte             |       |       |       | Pn    | DO    |       |       |       |       |       |       | Pr    | nDI   |       |       |       |
| Bit              | Pn7DO | Pn6DO | Pn5DO | Pn4DO | Pn3DO | Pn2DO | Pn1DO | Pn0DO | Pn7DI | Pn6DI | Pn5DI | Pn4DI | Pn3DI | Pn2DI | Pn1DI | Pn0DI |
| R/W              | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R     | R     | R     | R     | R     | R     | R     | R     |
| Initial<br>value | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                          |
|------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 8    | Pn7DO to<br>Pn0DO  | These bits are used to set the output level of port n pins.<br>0: Output "L" (Initial value)<br>1: Output "H"                        |
| 7 to 0     | Pn7DI to<br>Pn0DI  | These bits are used to set the input level of port n pins.<br>0: The input level is "L"<br>1: The input level is "H" (Initial value) |

### 17.2.4 Port 0 Mode Register 0 (P0MOD0)

P0MOD0 is SFR to set P00 pin.

|                  |     | R/<br>: 8/*     |    | 20MOD   | 0)       |                                    |           |   |    |           |         |         |     |       |       |       |
|------------------|-----|-----------------|----|---------|----------|------------------------------------|-----------|---|----|-----------|---------|---------|-----|-------|-------|-------|
|                  | 15  | 14              | 13 | 12      | 11       | 10                                 | 9         | 8 | 7  | 6         | 5       | 4       | 3   | 2     | 1     | 0     |
| Word             |     |                 |    |         |          |                                    |           |   | -  |           |         |         |     |       |       |       |
| Byte             |     |                 |    |         | -        |                                    |           |   |    |           |         | P0M     | OD0 |       |       |       |
| Bit              | -   | -               | -  | -       | -        | -                                  | -         | - | -  | -         | -       | -       | -   | P00PU | P00OE | P00IE |
| R/W              | R   | R               | R  | R       | R        | R                                  | R         | R | R  | R         | R       | R       | R   | R/W   | R     | R     |
| Initial<br>value | 0   | 0               | 0  | 0       | 0        | 0                                  | 0         | 0 | 0  | 0         | 0       | 0       | 0   | 1     | 0     | 1     |
| Bit<br>No.       | Bi  | t symbo<br>name | ol |         |          |                                    |           |   | De | escriptio | on      |         |     |       |       |       |
| 15 to 3          | -   |                 | I  | Reserve | ed bits  |                                    |           |   |    |           |         |         |     |       |       |       |
| 2                | P00 | PU              | -  | 0: W    | ithout a | d to ena<br>a pull-up<br>Ill-up re | o resist  |   |    |           | or of P | 00 pin. |     |       |       |       |
| 1                | P00 | OE              | -  | 0: Di   | sable t  | d to ena<br>he outp<br>ne outpu    | ut (Initi |   |    | pin       |         |         |     |       |       |       |
| 0                | P00 | IE              | -  | 0: Di   | sable t  | d to ena<br>he inpu<br>ne input    | t (Initia |   |    | pin       |         |         |     |       |       |       |

#### [Note]

• The P00 pin is initially configured as the input with pull-up resistor. If input "L" level at an initial setting, the input current flows.

### 17.2.5 Port n Mode Register 01 (PnMOD01:n=1 to 3, 5 to 7)

PnMOD01 is a SFR to choose the input/output mode, input/output status, and shared function of Pn0 pin and Pn1 pin. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnMOD01 register that have no corresponding pins.

|                  |            | 0x<br>0x<br>R/<br>e: 8/ | F222(<br>F262( | P2MOD                                                                                   | 0/P2M                                                                                   | OD01)                                                                                  |                                                            | 3(P2M                   | OD1),             |            |            |            |         |          |           | 3MOD1),<br>7MOD1) |
|------------------|------------|-------------------------|----------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------|-------------------|------------|------------|------------|---------|----------|-----------|-------------------|
|                  | 15         | 14                      | 13             | 12                                                                                      | 11                                                                                      | 10                                                                                     | 9                                                          | 8                       | 7                 | 6          | 5          | 4          | 3       | 2        | 1         | 0                 |
| Word             |            |                         |                |                                                                                         |                                                                                         |                                                                                        |                                                            | PnM                     | OD01              |            |            |            |         |          |           |                   |
| Byte             |            |                         |                |                                                                                         | OD1                                                                                     |                                                                                        |                                                            |                         |                   |            |            |            | IOD0    | 1        |           |                   |
| Bit              | Pn1MD<br>3 | Pn1MD<br>2              | Pn1MD          | Pn1MD<br>0                                                                              | Pn10D                                                                                   | Pn1PU                                                                                  | Pn10E                                                      | Pn1IE                   | Pn0MD<br>3        | Pn0MD<br>2 | Pn0MD<br>1 | Pn0MD<br>0 | Pn0OD   | Pn0PU    | Pn0OE     | Pn0IE             |
| R/W              | R/W        | R/W                     | R/W            | R/W                                                                                     | R/W                                                                                     | R/W                                                                                    | R/W                                                        | R/W                     | R/W               | R/W        | R/W        | R/W        | R/W     | R/W      | R/W       | R/W               |
| Initial<br>value | 0          | 0                       | 0              | 0                                                                                       | 0                                                                                       | 0                                                                                      | 0                                                          | 0                       | 0                 | 0          | 0          | 0          | 0       | 0        | 0         | 0                 |
| Bit<br>No.       | В          | it symbo<br>name        | ol             |                                                                                         |                                                                                         |                                                                                        |                                                            |                         | De                | escriptio  | on         |            |         |          |           |                   |
| 15 to 12         |            | MD3 to<br>MD0           |                | For the<br>0000:<br>0001:<br>0010:<br>0011:<br>0100:<br>0101:<br>0110:<br>0111:<br>1XXX | details<br>Prim<br>2nd<br>3rd f<br>4th f<br>5th f<br>6th f<br>7th f<br>8th f            | of the s<br>ary fur<br>functior<br>unctior<br>unctior<br>unctior<br>unctior<br>unctior | า<br>า<br>า<br>า<br>(Primar                                | unctior<br>nitial va    | ı, see T<br>Ilue) |            |            |            | 0 Grouț | o Pin Li | st"       |                   |
| 11               | Pn1        |                         | /              | An LED<br>mode is<br>See the<br>0: CN                                                   | is direo<br>chosei<br>data sl<br>/IOS οι                                                | ctly driv<br>n.<br>neet foi<br>itput (Ir                                               | hoose t<br>/e-able<br>r details<br>nitial val<br>drain o   | by enla<br>about<br>ue) | rging th          | ne curre   | ent whe    |            | I-chann | iel oper | n drain d | output            |
| 10               | Pn1        | PU                      | -              | 0: Wi                                                                                   |                                                                                         | pull-up                                                                                | able the<br>p resisto<br>esistor                           |                         |                   |            | or of Pı   | n1 pins    |         |          |           |                   |
| 9                | Pn1        | OE                      | -              | 0: Di                                                                                   |                                                                                         | ne outp                                                                                | able the<br>out (Initia<br>ut                              |                         |                   | pins.      |            |            |         |          |           |                   |
| 8                | Pn1        | IE                      | -              | 0: Di                                                                                   |                                                                                         | ne inpu                                                                                | able the<br>t (Initial<br>t                                |                         | f Pn1 p           | ins.       |            |            |         |          |           |                   |
| 7 to 4           |            | MD3 to<br>MD0           |                | These b                                                                                 | its are<br>details<br>Prim<br>2nd<br>3rd f<br>3rd f<br>4th f<br>5th f<br>6th f<br>7th f | used to<br>of the s                                                                    | o choos<br>shared 1<br>nction (li<br>n<br>า<br>า<br>า<br>า | unctior                 | n, see T          |            |            |            | 0 Group | o Pin Li | st"       |                   |

0111:

X: 0 or 1 (don't care)

8th function

1XXX: Do not use (Primary function)

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                               |
|------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3          | Pn0OD              | <ul> <li>These bits are used choose the output type of Pn0 pins.</li> <li>An LED is directly drive-able by enlarging the current when the N-channel open drain output mode is chosen.</li> <li>See the data sheet for details about the current drive ability.</li> <li>0: CMOS output (Initial value)</li> <li>1: N-channel open drain output</li> </ul> |
| 2          | Pn0PU              | This bit is used to enable the internal pull-up resistor of Pn0 pins.<br>0: Without a pull-up resistor (Initial value)<br>1: With a pull-up resistor                                                                                                                                                                                                      |
| 1          | Pn0OE              | This bit is used to enable the output of Pn0 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                       |
| 0          | Pn0IE              | This bit is used to enable the input of Pn0 pins.<br>0: Disable the input (Initial value)<br>1: Enable the input                                                                                                                                                                                                                                          |

[Note]

- Be sure to set the PnMOD01 registers before setting EICON0, EIMOD0 and IE1 registers. If setting the PnMOD01 register when the interrupt is enabled, unexpected interrupts may happen.
- It is recommended to enable the output after setting a peripheral and shared function to prevent the unexpected output.
- Don't set un-assigned shared functions on the PnmMD3-0 bits.

### 17.2.6 Port n Mode Register 23 (PnMOD23:n=0 to 3, 5 to 7)

PnMOD23 is a SFR to choose the input/output mode, input/output status, and shared function of Pn2 pin and Pn3 pin. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnMOD23 register that have no corresponding pins.

| Addr             | ress:      | 0x<br>0x   | F224 (I<br>F254 (I | P2MOD<br>P5MOD | 2/P2M<br>2/P5M | OD23) | , 0xF22<br>, 0xF25 | 5(P2M<br>5(P5M | OD3),<br>OD3), | 0xF234     |            | DD2/P3     |       |       |       | MOD3),<br>BMOD3), |
|------------------|------------|------------|--------------------|----------------|----------------|-------|--------------------|----------------|----------------|------------|------------|------------|-------|-------|-------|-------------------|
| Acce             | ess:       | R/         | W                  |                |                |       |                    |                |                |            |            |            |       |       |       |                   |
| Acce             | ess size   | : 8/       | 16 bit             |                |                |       |                    |                |                |            |            |            |       |       |       |                   |
| Initia           | al value:  | 0x         | 0000               |                |                |       |                    |                |                |            |            |            |       |       |       |                   |
|                  | 15         | 14         | 13                 | 12             | 11             | 10    | 9                  | 8              | 7              | 6          | 5          | 4          | 3     | 2     | 1     | 0                 |
| Word             |            |            |                    |                |                |       |                    | PnM            | DD23           |            |            |            |       |       |       |                   |
| Byte             |            |            |                    |                | OD3            |       |                    |                |                |            |            |            | IOD2  |       |       |                   |
| Bit              | Pn3MD<br>3 | Pn3MD<br>2 | Pn3MD<br>1         | Pn3MD<br>0     | Pn3OD          | Pn3PU | Pn3OE              | Pn3IE          | Pn2MD<br>3     | Pn2MD<br>2 | Pn2MD<br>1 | Pn2MD<br>0 | Pn2OD | Pn2PU | Pn2OE | Pn2IE             |
| R/W              | R/W        | R/W        | R/W                | R/W            | R/W            | R/W   | R/W                | R/W            | R/W            | R/W        | R/W        | R/W        | R/W   | R/W   | R/W   | R/W               |
| Initial<br>value | 0          | 0          | 0                  | 0              | 0              | 0     | 0                  | 0              | 0              | 0          | 0          | 0          | 0     | 0     | 0     | 0                 |

| Bit<br>No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                        |
|------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 12   | Pn3MD3 to<br>Pn3MD0 | These bits are used to choose the shared function of Pn3 pins.For the details of the shared function, see Table 1-3 "ML62Q2500 Group Pin List"0000:Primary function (Initial value)0001:2nd function0010:3rd function0011:4th function0100:5th function0101:6th function0110:7th function0111:8th function111:8th function1XXX:Do not use (Primary function)X:0 or 1 (don't care)  |
| 11         | Pn3OD               | <ul> <li>These bits are used choose the output type of Pn3 pins.</li> <li>An LED is directly drive-able by enlarging the current when the N-channel open drain output mode is chosen.</li> <li>See the data sheet for details about the current drive ability.</li> <li>0: CMOS output (Initial value)</li> <li>1: N-channel open drain output</li> </ul>                          |
| 10         | Pn3PU               | This bit is used to enable the internal pull-up resistor of Pn3 pins.<br>0: Without a pull-up resistor (Initial value)<br>1: With a pull-up resistor                                                                                                                                                                                                                               |
| 9          | Pn3OE               | This bit is used to enable the output of Pn3 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                                                |
| 8          | Pn3IE               | This bit is used to enable the input of Pn3 pins.<br>0: Disable the input (Initial value)<br>1: Enable the input                                                                                                                                                                                                                                                                   |
| 7 to 4     | Pn2MD3 to<br>Pn2MD0 | These bits are used to choose the shared function of Pn2 pins.For the details of the shared function, see Table 1-3 "ML62Q2500 Group Pin List"0000:Primary function (Initial value)0001:2nd function0010:3rd function0011:4th function0100:5th function0101:6th function0110:7th function0111:8th function1111:8th function1XXX:Do not use (Primary function)X:0 or 1 (don't care) |

| Bit<br>No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                                                                                                                               |
|------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3          | Pn2OD              | <ul> <li>These bits are used choose the output type of Pn2 pins.</li> <li>An LED is directly drive-able by enlarging the current when the N-channel open drain output mode is chosen.</li> <li>See the data sheet for details about the current drive ability.</li> <li>0: CMOS output (Initial value)</li> <li>1: N-channel open drain output</li> </ul> |
| 2          | Pn2PU              | This bit is used to enable the internal pull-up resistor of Pn2 pins.<br>0: Without a pull-up resistor (Initial value)<br>1: With a pull-up resistor                                                                                                                                                                                                      |
| 1          | Pn2OE              | This bit is used to enable the output of Pn2 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                       |
| 0          | Pn2IE              | This bit is used to enable the input of Pn2 pins.<br>0: Disable the input (Initial value)<br>1: Enable the input                                                                                                                                                                                                                                          |

#### [Note]

- Be sure to set the PnMOD23 registers before setting EICON0, EIMOD0 and IE1 registers. If setting the PnMOD23 register when the interrupt is enabled, unexpected interrupts may happen.
- It is recommended to enable the output after setting a peripheral and shared function to prevent the unexpected output.
- Don't set un-assigned shared functions on the PnmMD3-0 bits.

### 17.2.7 Port n Mode Register 45 (PnMOD45:n=0 to 3, 5 to 7)

PnMOD45 is a SFR to choose the input/output mode, input/output status, and shared function of Pn4 pin and Pn5 pin. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnMOD45 register that have no corresponding pins.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x<br>R/<br>: 8/1                                                                                                                                                                                                                                                                                            | F236(      | P0MOD<br>P3MOD |       |       |       |       |            |            |            |            |       |       |       |       |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-------|-------|-------|-------|------------|------------|------------|------------|-------|-------|-------|-------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                           | 13         | 12             | 11    | 10    | 9     | 8     | 7          | 6          | 5          | 4          | 3     | 2     | 1     | 0     |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                              |            |                |       |       |       | PnM   | OD45       |            |            |            |       |       |       |       |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                              |            | PnM            | OD5   |       |       | -     |            | -          |            |            | 10D4  | -     | r     |       |
| Bit <sup>F</sup> | Pn5MD<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pn5MD<br>2                                                                                                                                                                                                                                                                                                   | Pn5ME<br>1 | Pn5MD<br>0     | Pn5OD | Pn5PU | Pn5OE | Pn5IE | Pn4MD<br>3 | Pn4MD<br>2 | Pn4MD<br>1 | Pn4MD<br>0 | Pn4OD | Pn4PU | Pn4OE | Pn4IE |
| R/W              | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R/W                                                                                                                                                                                                                                                                                                          | R/W        | R/W            | R/W   | R/W   | R/W   | R/W   | R/W        | R/W        | R/W        | R/W        | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bit symbol                                                                                                                                                                                                                                                                                                   |            |                |       |       |       |       |            |            |            |            |       |       |       | 0     |
| Bit<br>No.       | Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | name     Description       Pn5MD3 to     These bits are used to choose the shared function of Pn5 pins.                                                                                                                                                                                                      |            |                |       |       |       |       |            |            |            |            |       |       |       |       |
|                  | <ul> <li>Pn5MD3 to<br/>Pn5MD0</li> <li>These bits are used to choose the shared function of Pn5 pins.</li> <li>For the details of the shared function, see Table 1-3 "ML62Q2500 Group Pin List"<br/>0000: Primary function (Initial value)<br/>0001: 2nd function<br/>0010: 3rd function<br/>0011: 4th function<br/>0100: 5th function<br/>0101: 6th function<br/>0110: 7th function<br/>0111: 8th function<br/>0111: 8th function<br/>1XXX: Do not use (Primary function)<br/>X: 0 or 1 (don't care)</li> <li>* P35 pin does not have shared function. P35MD3-0 are not writable. The reading value is<br/>"0".</li> </ul> |                                                                                                                                                                                                                                                                                                              |            |                |       |       |       |       |            |            |            |            |       | ue is |       |       |
| 11               | Pn50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "0". Pn5OD These bits are used choose the output type of Pn5 pins. An LED is directly drive-able by enlarging the current when the N-channel open drain output mode is chosen. See the data sheet for details about the current drive ability. 0: CMOS output (Initial value) 1: N-channel open drain output |            |                |       |       |       |       |            |            |            |            |       |       |       |       |
| 10               | Pn5PUThis bit is used to enable the internal pull-up resistor of Pn5 pins.0:Without a pull-up resistor (Initial value)1:With a pull-up resistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                              |            |                |       |       |       |       |            |            |            |            |       |       |       |       |
| 9                | Pn5OE This bit is used to enable the output of Pn5 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                              |            |                |       |       |       |       |            |            |            |            |       |       |       |       |
| 8                | Pn5IE This bit is used to enable the input of Pn5 pins.<br>0: Disable the input (Initial value)<br>1: Enable the input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |            |                |       |       |       |       |            |            |            |            |       |       |       |       |

| Bit<br>No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to 4     | Pn4MD3 to<br>Pn4MD0 | These bits are used to choose the shared function of Pn4 pins.<br>For the details of the shared function, see Table 1-3 "ML62Q2500 Group Pin List"<br>0000: Primary function (Initial value)<br>0011: 2nd function<br>0010: 3rd function<br>0011: 4th function<br>0100: 5th function<br>0101: 6th function<br>0110: 7th function<br>0111: 8th function<br>1XXX: Do not use (Primary function)<br>X: 0 or 1 (don't care)<br>* P34 pin does not have shared function. P35MD3-0 are not writable. The reading value is<br>"0". |
| 3          | Pn4OD               | These bits are used choose the output type of Pn4 pins.<br>An LED is directly drive-able by enlarging the current when the N-channel open drain output<br>mode is chosen.<br>See the data sheet for details about the current drive ability.<br>0: CMOS output (Initial value)<br>1: N-channel open drain output                                                                                                                                                                                                            |
| 2          | Pn4PU               | This bit is used to enable the internal pull-up resistor of Pn4 pins.<br>0: Without a pull-up resistor (Initial value)<br>1: With a pull-up resistor                                                                                                                                                                                                                                                                                                                                                                        |
| 1          | Pn4OE               | This bit is used to enable the output of Pn4 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0          | Pn4IE               | This bit is used to enable the input of Pn4 pins.<br>0: Disable the input (Initial value)<br>1: Enable the input                                                                                                                                                                                                                                                                                                                                                                                                            |

[Note]

- Be sure to set the PnMOD45 registers before setting EICON0, EIMOD0 and IE1 registers. If setting the PnMOD45 register when the interrupt is enabled, unexpected interrupts may happen.
- It is recommended to enable the output after setting a peripheral and shared function to prevent the unexpected output.
- Don't set un-assigned shared functions on the PnmMD3-0 bits.

### 17.2.8 Port n Mode Register 67 (PnMOD67:n=0 to 3, 5)

PnMOD67 is a SFR to choose the input/output mode, input/output status, and shared function of Pn6 pin and Pn7 pin. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnMOD67 register that have no corresponding pins.

|                  |                                                                                                                                                                                                                                                                                                                       | 0x<br>0x<br>R/<br>: 8/1                                                                                               | F228(<br>F258( | P2MOE      | 06/P0M0<br>06/P2M0<br>06/P5M0 | OD67) | , 0xF22 | 9(P2M | IOD7),     |            |            |            | 3MOD6 | 7), 0xF | 239(P3 | 3MOD7) |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------|------------|-------------------------------|-------|---------|-------|------------|------------|------------|------------|-------|---------|--------|--------|
|                  | 15                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                    | 13             | 12         | 11                            | 10    | 9       | 8     | 7          | 6          | 5          | 4          | 3     | 2       | 1      | 0      |
| Word             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                       |                |            |                               |       |         | PnM   | OD67       |            |            |            |       |         |        |        |
| Byte             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                       |                |            | IOD7                          |       |         |       |            | 1          |            |            | /OD6  | 1       |        |        |
| Bit              | Pn7MD<br>3                                                                                                                                                                                                                                                                                                            | Pn7MD<br>2                                                                                                            | Pn7MD<br>1     | Pn7MD<br>0 | Pn70D                         | Pn7PL | Pn70E   | Pn7IE | Pn6MD<br>3 | Pn6MD<br>2 | Pn6MD<br>1 | Pn6ME<br>0 | Pn6OD | Pn6PU   | Pn6OE  | Pn6IE  |
| R/W              | R/W                                                                                                                                                                                                                                                                                                                   | R/W                                                                                                                   | R/W            | R/W        | R/W                           | R/W   | R/W     | R/W   | R/W        | R/W        | R/W        | R/W        | R/W   | R/W     | R/W    | R/W    |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                     | Bit symbol                                                                                                            |                |            |                               |       |         |       |            |            |            |            |       |         |        |        |
| Bit<br>No.       | Bi                                                                                                                                                                                                                                                                                                                    | Bit symbol<br>name     Description       Pn7MD3 to     These bits are used to choose the shared function of Pn7 pins. |                |            |                               |       |         |       |            |            |            |            |       |         |        |        |
|                  |                                                                                                                                                                                                                                                                                                                       |                                                                                                                       |                |            |                               |       |         |       |            |            |            |            |       |         |        |        |
| 11               | "0".         Pn7OD       These bits are used choose the output type of Pn7 pins.<br>An LED is directly drive-able by enlarging the current when the N-channel open drain output mode is chosen.<br>See the data sheet for details about the current drive ability.         0:       CMOS output (Initial value)<br>1: |                                                                                                                       |                |            |                               |       |         |       |            |            |            |            |       |         |        |        |
| 10               | Pn7PU This bit is used to enable the internal pull-up resistor of Pn7 pins.<br>0: Without a pull-up resistor (Initial value)<br>1: With a pull-up resistor                                                                                                                                                            |                                                                                                                       |                |            |                               |       |         |       |            |            |            |            |       |         |        |        |
| 9                | Pn7OE This bit is used to enable the output of Pn7 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                             |                                                                                                                       |                |            |                               |       |         |       |            |            |            |            |       |         |        |        |
| 8                | Pn7I                                                                                                                                                                                                                                                                                                                  |                                                                                                                       |                |            |                               |       |         |       |            |            |            |            |       |         |        |        |

| Bit<br>No. | Bit symbol<br>name  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to 4     | Pn6MD3 to<br>Pn6MD0 | These bits are used to choose the shared function of Pn6 pins.<br>For the details of the shared function, see Table 1-3 "ML62Q2500 Group Pin List"<br>0000: Primary function (Initial value)<br>0001: 2nd function<br>0010: 3rd function<br>0011: 4th function<br>0100: 5th function<br>0101: 6th function<br>0110: 7th function<br>0111: 8th function<br>1XXX: Do not use (Primary function)<br>X: 0 or 1 (don't care)<br>* P36 pin does not have shared function. P36MD3-0 are not writable. The reading value is<br>"0". |
| 3          | Pn6OD               | <ul> <li>These bits are used choose the output type of Pn6 pins.</li> <li>An LED is directly drive-able by enlarging the current when the N-channel open drain output mode is chosen.</li> <li>See the data sheet for details about the current drive ability.</li> <li>0: CMOS output (Initial value)</li> <li>1: N-channel open drain output</li> </ul>                                                                                                                                                                   |
| 2          | Pn6PU               | This bit is used to enable the internal pull-up resistor of Pn6 pins.<br>0: Without a pull-up resistor (Initial value)<br>1: With a pull-up resistor                                                                                                                                                                                                                                                                                                                                                                        |
| 1          | Pn6OE               | This bit is used to enable the output of Pn6 pins.<br>0: Disable the output (Initial value)<br>1: Enable the output                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0          | Pn6IE               | This bit is used to enable the input of Pn6 pins.<br>0: Disable the input (Initial value)<br>1: Enable the input                                                                                                                                                                                                                                                                                                                                                                                                            |

[Note]

- Be sure to set the PnMOD67 registers before setting EICON0, EIMOD0 and IE1 registers. If setting the PnMOD67 register when the interrupt is enabled, unexpected interrupts may happen.
- It is recommended to enable the output after setting a peripheral and shared function to prevent the unexpected output.
- Don't set un-assigned shared functions on the PnmMD3-0 bits.

### 17.2.9 Port n Pulse Mode Register (PnPMD:n=0 to 2, 7)

PnPMD is a SFR used when outputting a carrier frequency (pulse output) to the port n. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnPMD register that have no corresponding pin.

|                  |                                                                                                                                                                                                                                                                                                       | 0><br>R/<br>e: 8/ |    |     |     | . , |   |     | . , | -         |    |     | . ,        | xF21B(<br>xF27B( |            | ., |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|-----|-----|-----|---|-----|-----|-----------|----|-----|------------|------------------|------------|----|
|                  | 15                                                                                                                                                                                                                                                                                                    | 14                | 13 | 12  | 11  | 10  | 9 | 8   | 7   | 6         | 5  | 4   | 3          | 2                | 1          | 0  |
| Word             |                                                                                                                                                                                                                                                                                                       |                   |    |     |     |     |   | PnF | PMD |           |    |     |            |                  |            |    |
| Byte             |                                                                                                                                                                                                                                                                                                       |                   |    | PnP | MDH |     |   |     |     |           |    | PnP | MDL        |                  |            |    |
| Bit              |                                                                                                                                                                                                                                                                                                       |                   |    |     |     |     |   |     |     |           |    |     | Pn2PE<br>N | Pn1PE<br>N       | Pn0PE<br>N |    |
| R/W              | R/W                                                                                                                                                                                                                                                                                                   |                   |    |     |     |     |   |     |     |           |    |     |            |                  | R/W        |    |
| Initial<br>value |                                                                                                                                                                                                                                                                                                       |                   |    |     |     |     |   |     |     |           |    |     |            | 0                |            |    |
| Bit<br>No.       | В                                                                                                                                                                                                                                                                                                     | it symb<br>name   | ol |     |     |     |   |     | De  | escriptio | on |     |            |                  |            |    |
| 15 to 8          |                                                                                                                                                                                                                                                                                                       |                   |    |     |     |     |   |     |     |           |    |     |            |                  |            |    |
| 7 to 0           | Pn7PEN to<br>Pn0PEN       These bits are used to enable or disable the pulse output of Pn7 to Pn0.<br>These bits are valid when the Pn7 to Pn0 pins are configured as the output is enabled<br>(Pn7OE to Pn0OE are "0").<br>0: Disable the pulse output (initial value)<br>1: Enable the pulse output |                   |    |     |     |     |   |     |     |           |    |     |            |                  |            |    |

### 17.2.10 Port n Pulse Selection Register (PnPSL:n=0 to 2, 7)

PnPSL is a SFR used to choose the timer for generating the carrier frequency to the port n. See Table 17-2 "List of Registers / Bits" to check available pins and bits. Write "0" to the bits of PnPSL register that have no corresponding pin.

|                  |                     | 0×<br>R/<br>: 8/ | F22C |     |                              |                      |                              |                |                       |           |         |     |            |            |            | ,          |
|------------------|---------------------|------------------|------|-----|------------------------------|----------------------|------------------------------|----------------|-----------------------|-----------|---------|-----|------------|------------|------------|------------|
|                  | 15                  | 14               | 13   | 12  | 11                           | 10                   | 9                            | 8              | 7                     | 6         | 5       | 4   | 3          | 2          | 1          | 0          |
| Word             |                     |                  |      |     |                              |                      |                              | Pn             | PSL                   |           |         |     |            |            |            |            |
| Byte             |                     |                  |      | PnP | SLH                          |                      |                              |                |                       |           |         | PnF | SLL        |            |            |            |
| Bit              |                     |                  |      |     |                              |                      |                              |                |                       |           |         |     | Pn3PS<br>L | Pn2PS<br>L | Pn1PS<br>L | Pn0PS<br>L |
| R/W              | R                   | R                | R    | R   | R                            | R                    | R                            | R              | R/W                   | R/W       | R/W     | R/W | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0                   | 0                | 0    | 0   | 0                            | 0                    | 0                            | 0              | 0                     | 0         | 0       | 0   | 0          | 0          | 0          | 0          |
| Bit<br>No.       | Bi                  | t symb<br>name   | ol   |     |                              |                      |                              |                | De                    | escriptio | on      |     |            |            |            |            |
| 15 to 8          | o 8 - Reserved bits |                  |      |     |                              |                      |                              |                |                       |           |         |     |            |            |            |            |
| 7 to 0           | Pnm                 | PSL              |      |     | its are<br>where<br>-bit tim | valid wl<br>m = 0 to | hen the<br>o 7).<br>tput (TN | Pnm  <br>MH0Ol | pins are<br>JT) (Init | config    | ured as |     |            |            |            |            |

#### 17.2.11 PORTXT Data Input Register (PXTDI)

PXTDI is a SFR used for reading the level of XT0/XT1 pin. The level of XT0/PI0 and XT1/PI1 is readable in the input mode. Set PXT0IE bit and PXT1IE bit of PXTMOD01 register for switching the port to the input mode. The port is unavailable to use when connecting the crystal resonator.

|                  |                                                                                                                                                   | R<br>: 81      |    | PXTDI)  |         |    |   |   |       |           |    |    |     |   |            |            |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|---------|---------|----|---|---|-------|-----------|----|----|-----|---|------------|------------|
|                  | 15                                                                                                                                                | 14             | 13 | 12      | 11      | 10 | 9 | 8 | 7     | 6         | 5  | 4  | 3   | 2 | 1          | 0          |
| Word             |                                                                                                                                                   |                |    |         |         |    |   |   | -     |           |    |    |     |   |            |            |
| Byte             |                                                                                                                                                   |                |    |         | -       |    |   |   |       |           |    | PX | TDI |   |            |            |
| Bit              | -                                                                                                                                                 | -              | -  | -       | -       | -  | - | - | -     | -         | -  | -  | -   | - | PXT1D<br>I | PXT0D<br>I |
| R/W              | R                                                                                                                                                 | R              | R  | R       | R       | R  | R | R | R     | R         | R  | R  | R   | R | R          | R          |
| Initial<br>value | 0                                                                                                                                                 | 0              | 0  | 0       | 0       | 0  | 0 | 0 | 0     | 0         | 0  | 0  | 0   | 0 | 1          | 1          |
| Bit<br>No.       | Bi                                                                                                                                                | t symb<br>name | ol |         |         |    |   |   | De    | escriptio | on |    |     |   |            |            |
| 7 to 2           | -                                                                                                                                                 |                | F  | Reserve | ed bits |    |   |   |       |           |    |    |     |   |            |            |
| 1                | PXT1DI This bit is used for reading the<br>0: The input level of XT1/PI1<br>1: The input level of XT1/PI1                                         |                |    |         |         |    |   |   | s "L" | PI1.      |    |    |     |   |            |            |
| 0                | PXT0DI This bit is used for reading the level of XT0/PI0.<br>0: The input level of XT0/PI0 pin is "L"<br>1: The input level of XT0/PI0 pin is "H" |                |    |         |         |    |   |   |       |           |    |    |     |   |            |            |

[Note]

 PI0 and PI1 are unavailable to use as input ports when using the crystal resonator for the oscillation clock. Also, PI1 is unavailable to use as an input port when using the XT1 for the external clock input.
 See Chapter 6 "Clock Generation Circuit" for more details on how to use the crystal oscillation or external clock input.

### 17.2.12 PORTXT Mode Register 01 (PXTMOD01)

PXTMOD01 is a SFR used to choose the input mode of the XT0/PI0 pin and XT1/PI1 pin. The port is unavailable to use when connecting the crystal resonator.

|                  |                                                                                                                            | R/<br>: 8/*     |    | РХТМС   | D0/PX   | TMOD( | 01), 0x | F2F3(PX | TMOE | 01)       |    |     |      |   |            |   |
|------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|----|---------|---------|-------|---------|---------|------|-----------|----|-----|------|---|------------|---|
|                  | 15                                                                                                                         | 14              | 13 | 12      | 11      | 10    | 9       | 8       | 7    | 6         | 5  | 4   | 3    | 2 | 1          | 0 |
| Word             |                                                                                                                            |                 |    |         |         |       |         | PXTM    | OD01 |           |    |     |      |   |            |   |
| Byte             |                                                                                                                            |                 |    | PXT     | MOD1    |       |         |         |      |           |    | PXT | NOD0 |   |            |   |
| Bit              | -                                                                                                                          |                 |    |         |         |       |         |         |      |           |    |     |      |   | PXT0I<br>E |   |
| R/W              | R                                                                                                                          |                 |    |         |         |       |         |         |      |           |    |     |      |   |            |   |
| Initial<br>value | 0                                                                                                                          |                 |    |         |         |       |         |         |      |           |    |     |      |   |            |   |
| Bit<br>No.       |                                                                                                                            | t symbo<br>name | ol |         |         |       |         |         | De   | escriptio | on |     |      |   |            |   |
| 15 to 9          | -                                                                                                                          |                 |    | Reserve | ed bits |       |         |         |      |           |    |     |      |   |            |   |
| 8                | PXT1IE This bit is used to choose the input mode of the XT1/PI1 pin.<br>0: High impedance (Initial value)<br>1: Input mode |                 |    |         |         |       |         |         |      |           |    |     |      |   |            |   |
| 7 to 1           | -                                                                                                                          |                 |    | Reserve | ed bits |       |         |         |      |           |    |     |      |   |            |   |
| 0                | PXT0IE This bit is used to choose the input mode of the XT0/PI0 pin.<br>0: High impedance (Initial value)<br>1: Input mode |                 |    |         |         |       |         |         |      |           |    |     |      |   |            |   |

#### 17.3 Description of Operation

The following shows description of port functions, where "n" is port number 0 to 3 and 5 to 7, and "m" is bit number 0 to

#### 7. 17.3.1 Input

Each pin of port n except for the P00 sets the PnmIE bit of the PnMODm register to enter the state where input is enabled.

In the state with input enabled, the pin level can be read using the PnDI. In addition, pull-up can be enabled by setting the PnmPU bit of the PnMODm register.

At a system reset, input disabled and no pull-up are selected as the initial status of pins except for the P00. As one of the P00, input, input enabled and pull-up are selected.

#### 17.3.2 Output

Each pin of port n sets the PnmOD bit of the PnMODm register to choose either CMOS output or N-channel open drain output as an output type and sets PnmOE bit of the PnMODm register to enter the state where output is enabled. In the state with output enabled, "L" or "H" level is output to each pin of the general-purpose port according to the value set in the PnDO.

At a system reset, output disabled and CMOS output are selected as the initial status.

n: Port number 0 to 9, A, B

m: Bit number 0 to 7

#### 17.3.3 Primary Functions Other than Input/Output Function

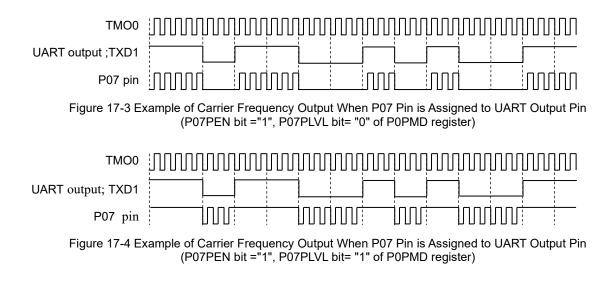
External input (EXI0 to EXI7), analog input for SA-ADC or crystal/external clock input can be used as the primary function other than the input/output function.

When using EXI0 to EXI7 as external interrupt input and the clock inputs of the 16-bit timer or trigger/clock input of the functional timer, set the PnMODm register of the applicable port to input enabled (PnmIE bit="1").

When using as analog input for SA-ADC; AIN0 to AIN13 and VREF, set the PnMODm register of the applicable port to input disabled (PnmIE bit="0" and PnmOE bit="0").

When using as crystal/external clock input, set by the FLMOD register; refer to Chaptuer 6. If it have been set, it is ignored to set by PORTXT mode register.

See Chapter 18 "External Interrupt Control" for external interrupts, Chapter 8 "16-Bit Timer" for clock input of the 16-bit timer, and Chapter 9 "Functional Timer" for external trigger/clock input of the functional timer.


#### 17.3.4 Shared Function

Each pin of port n can use 2nd to 7th functions as the shared function. Set PnmMD3 to PnmMD0 bits of the PnMODm register to choose each of the 1st to 8th functions.

#### 17.3.5 Carrier Frequency Output

#### 17.3.5.1 Carrier Frequency Output Operation

A carrier frequency signal can be output from port n by setting the PnPMD Register. See Table 17-2 "List of Registers/Bits" for pins supporting the carrier frequency output function. For the carrier frequency output, either of 16-bit timer 0 output (TMO0) or functional timer 0 output(FTO0) can be used through setting the PnPSL register. See Chapter 8 "16-Bit Timer" for details of 16-bit timer 0, and Chapter 9 "Functional Timer" for functional timer 0. Figures 17-3 and 17-4 show an example of use of the carrier frequency output function.



#### 17.3.5.2 Carrier Frequency Output Function Setting Procedure

Figure 17-5 shows an example of the carrier frequency output function setting procedure (with P07 pin used, TXD1 shared function, functional timer 0 output (FTO0) used as a timer, carrier frequency output at "L" level).

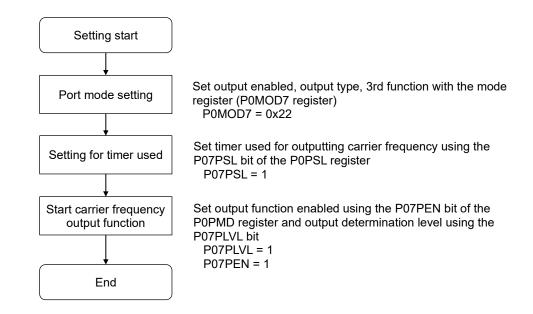



Figure 17-5 Example of Carrier Frequency Output Function Setting Procedure

#### 17.3.6 Port Output Level Test

The level specified in the PnDO can be read from the PnDI by setting the PnmOE bit of the PnMODm register to "1" and the PnmIE bit to "1". Use of this function allows confirmation that the level set in the PnDO is being normally output to the port.

#### 17.3.7 Port Setting Example

Figure 17-6 shows an example for setting port registers to output 0x55 to a port 2. It is also available to set output level before outputting.

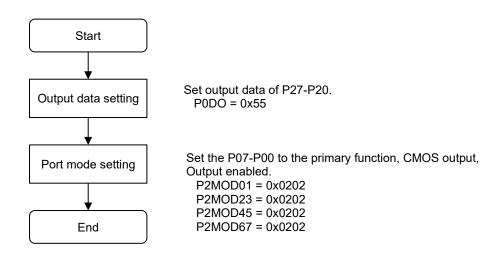



Figure 17-6 Setting example to output data to port 2

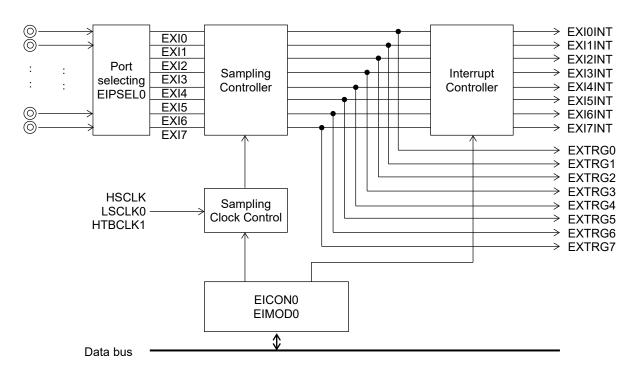
#### 17.3.8 Notes for using the P00/TEST0 pin

P00/TEST0 pin is used for the general port, the on-chip debug function or ISP function. When using the on-chip debug function or ISP function, P00/TEST0 is unavailable to use as the general purpose port. When using the general port, P00/TEST0 is unavailable to use for the on-chip debug function or ISP function.

# **Chapter 18 External Interrupt Function**

### 18. External Interrupt Function

#### 18.1 General Description


The external interrupt function generates interrupts by signals input to the general ports. The interrupt channel has each dedicated interrupt vector. See Chapter 5 "Interrupt" for details of the interrupt vector.

#### 18.1.1 Features

- Maskable 8 interrupts
- Each interrupt is assigned from max. 3 pins
- Available to choose the interrupt mode: interrupt disabled mode, falling-edge interrupt mode, rising-edge interrupt mode
- Available to choose "with sampling" or "without sampling" for the input signal (the sampling clock is LSCLK0, HSCLK or HTBCLK1)

#### 18.1.2 Configuration

Figure 18-1 shows the configuration of the external interrupt function (EXI0 to EXI7)



- EICON0: External interrupt control register 0
- EIMOD0: External interrupt mode register 0
- EIPSEL0: External interrupt port select register 0

Figure 18-1 Configuration of External Interrupt Function

#### 18.1.3 List of Pins

The external interrupt is assigned to the primary function of the general port.

| Pin name | I/O | Function                   |
|----------|-----|----------------------------|
| EXI0     | I   | External Interrupt Input 0 |
| EXI1     | I   | External Interrupt Input 1 |
| EXI2     | I   | External Interrupt Input 2 |
| EXI3     | I   | External Interrupt Input 3 |
| EXI4     | I   | External Interrupt Input 4 |
| EXI5     | I   | External Interrupt Input 5 |
| EXI6     | I   | External Interrupt Input 6 |
| EXI7     | I   | External Interrupt Input 7 |

Table 18-1 shows the list of the general ports used for the external interrupt and the register settings of the ports.

| Table    | e 18-1 Ports | used for th | e external int      | errupt and the re | gister s          | ettings           |                   |
|----------|--------------|-------------|---------------------|-------------------|-------------------|-------------------|-------------------|
|          |              |             |                     |                   | MI                | _62Q25            | 00                |
|          |              |             |                     |                   |                   | group             | 1                 |
| Pin name | Shared       | l port      | Setting<br>register | Setting value     | 32 pin<br>product | 40 pin<br>product | 48 pin<br>product |
|          | P00          |             | P0MOD0              | 0000_0X01*1       | •                 | •                 | •                 |
| EXI0     | P72          |             | P7MOD2              | 0000_0X01*1       | •                 | •                 | •                 |
|          | P34          |             | P3MOD4              | 0000_0X01*1       | -                 | •                 | •                 |
|          | P04          |             | P0MOD4              | 0000_0X01*1       | •                 | •                 | •                 |
| EXI1     | XT0(PI0)     |             | PXTMOD0             | 0000_0001*1       | •                 | •                 | •                 |
|          | P35          |             | P3MOD5              | 0000_0X01*1       | -                 | •                 | •                 |
|          | P05          |             | P0MOD5              | 0000_0X01*1       | •                 | •                 | •                 |
| EXI2     | P27          |             | P2MOD7              | 0000_0X01*1       | ٠                 | ٠                 | •                 |
|          | P36          |             | P3MOD6              | 0000_0X01*1       | -                 | •                 | ٠                 |
|          | P06          |             | P0MOD6              | 0000_0X01*1       | ٠                 | •                 | •                 |
| EXI3     | P73          |             | P7MOD3              | 0000_0X01*1       | •                 | •                 | ٠                 |
|          | P37          | Primary     | P3MOD7              | 0000_0X01*1       | -                 | -                 | ٠                 |
|          | P07          | function    | P0MOD7              | 0000_0X01*1       | •                 | •                 | ٠                 |
| EXI4     | P30          |             | P3MOD0              | 0000_0X01*1       | •                 | •                 | •                 |
|          | P52          |             | P5MOD2              | 0000_0X01*1       | -                 | -                 | •                 |
|          | P10          |             | P1MOD0              | 0000_0X01*1       | •                 | •                 | ٠                 |
| EXI5     | P31          |             | P3MOD1              | 0000_0X01*1       | •                 | •                 | •                 |
|          | P53          |             | P5MOD3              | 0000_0X01*1       | -                 | -                 | •                 |
|          | P11          |             | P1MOD1              | 0000_0X01*1       | •                 | •                 | •                 |
| EXI6     | P32          |             | P3MOD2              | 0000_0X01*1       | •                 | •                 | •                 |
|          | P60          |             | P6MOD0              | 0000_0X01*1       | -                 | •                 | •                 |
|          | P60<br>P12   |             | P1MOD2              | 0000_0X01*1       | ٠                 | •                 | •                 |
| EXI7     | P33          |             | P3MOD3              | 0000_0X01*1       | -                 | •                 | •                 |
|          | P61          |             | P6MOD1              | 0000_0X01*1       | -                 | -                 | •                 |
|          | rmines the c |             | the port inpu       |                   |                   |                   |                   |
| Х        |              |             | of the port in      |                   |                   |                   |                   |
| 0        |              |             | nal pull-up re      |                   |                   |                   |                   |
| 1        | Input (with  | an internal | pull-up resis       | tor)              |                   |                   |                   |

Table 18-1 Ports used for the external interrupt and the register settings

### 18.2 Description of Registers

### 18.2.1 List of Registers

| Address | Name                                          | Sym      | bol     | R/W   | Size | Initial |
|---------|-----------------------------------------------|----------|---------|-------|------|---------|
| Address | Name                                          | Byte     | Word    | r(/v/ | Size | Value   |
| 0xF044  | External interrupt control register 0         | EICON0L  | EICON0  | R/W   | 8/16 | 0x00    |
| 0xF045  |                                               | EICON0H  | EICONO  | R/W   | 8    | 0x00    |
| 0xF046  | Reserved                                      | -        | -       | -     | -    | -       |
| 0xF047  | Reserved                                      | -        | -       | -     | -    | -       |
| 0xF048  | External interrupt mode register 0            | EIMOD0L  | EIMOD0  | R/W   | 8/16 | 0x00    |
| 0xF049  | External interrupt mode register 0            | EIMOD0H  |         | R/W   | 8    | 0x00    |
| 0xF04A  | Reserved                                      | -        | -       | -     | -    | -       |
| 0xF04B  | Reserved                                      | -        | -       | -     | -    | -       |
| 0xF04C  | External interrupt part collection register 0 | EIPSEL0L | EIPSEL0 | R/W   | 8/16 | 0x00    |
| 0xF04D  | External interrupt port selection register 0  | EIPSEL0H | EIFSELU | R/W   | 8    | 0x00    |

#### 18.2.2 External Interrupt Control Register 0 (EICON0)

This is a SFR used to choose the detection edge of the external interrupt input (EXI0 to EXI7). Detecting the edge can generate the external interrupt (EXI0INT to EXI7INT).

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R/<br>: 8/             | •     | EICONO | IL/EICC | DNO), 0 | xF045( | EICON | 0H)   |       |       |       |       |       |       |       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|--------|---------|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                     | 13    | 12     | 11      | 10      | 9      | 8     | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |       |        |         |         |        | EIC   | ON0   |       |       |       |       |       |       |       |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |       | EICO   | DN0H    |         |        |       |       |       |       | EICO  | DNOL  |       |       |       |
| Bit              | PI7E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PI6E1                  | PI5E1 | PI4E1  | PI3E1   | PI2E1   | PI1E1  | PI0E1 | PI7E0 | PI6E0 | PI5E0 | PI4E0 | PI3E0 | PI2E0 | PI1E0 | PI0E0 |
| R/W              | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R/W                    | R/W   | R/W    | R/W     | R/W     | R/W    | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rit symbol             |       |        |         |         |        |       |       |       |       |       |       |       |       |       |
| Bit No.          | Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bit symbol Description |       |        |         |         |        |       |       |       |       |       |       |       |       |       |
| 15 to 8          | name       Description         PI7E1 to<br>PI0E1       These bits are used to choose the detection edge of the external interrupt (EXI0 to EXI7).         00 : Interrupt disabled (Initial value)       01 : Falling-edge interrupt         01 : Falling-edge interrupt       10 : Rising-edge interrupt         10 : Rising-edge interrupt       11 : Both-edge interrupt         The relation of the bit number and the target external interrupt:       Bit 15, 7 (PI7E1, PI7E0) : EXI7INT Interrupt |                        |       |        |         |         |        |       |       |       |       |       |       |       |       |       |
| 7 to 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |       |        |         |         |        |       |       |       |       |       |       |       |       |       |

#### 18.2.3 External Interrupt Mode Register 0 (EIMOD0)

This is a SFR to choose the sampling clock and with/without sampling for the external interrupt (EXI0 to EXI7). Only one sampling clock can be chosen and it is shared for all the interrupt EXI0 to EXI7.

| Acces<br>Acces   | ess :<br>ss :<br>ss size<br>value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R<br>: 8/     | <f048(e<br>/W<br/>'16 bit<br/>&lt;0000</f048(e<br> | EIMOD                                                        | )L/EIM                                                | OD0), 0    | xF049(                                 | EIMO                       | D0H)  |         |        |          |         |       |       |       |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|------------|----------------------------------------|----------------------------|-------|---------|--------|----------|---------|-------|-------|-------|
| -                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14            | 13                                                 | 12                                                           | 11                                                    | 10         | 9                                      | 8                          | 7     | 6       | 5      | 4        | 3       | 2     | 1     | 0     |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                    |                                                              |                                                       |            |                                        | EIN                        | 10D0  |         |        |          |         |       |       |       |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 1                                                  |                                                              | DD0H                                                  | 1 1        |                                        |                            |       |         |        | EIMC     | D0L     | 1     |       |       |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -             | PG0DI<br>V1                                        | PG0DI<br>V0                                                  | PG0CS<br>1                                            | PG0CS<br>0 | -                                      | -                          | PI7SM | PI6SM   | PI5SM  | PI4SM    | PI3SM   | PI2SM | PI1SM | PI0SM |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R             | R/W                                                | R/W                                                          | R/W                                                   | R/W        | R                                      | R                          | R/W   | R/W     | R/W    | R/W      | R/W     | R/W   | R/W   | R/W   |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0             | 0                                                  | 0                                                            | 0                                                     | 0          | 0                                      | 0                          | 0     | 0       | 0      | 0        | 0       | 0     | 0     | 0     |
| Bit No.          | Bit symbol Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                    |                                                              |                                                       |            |                                        |                            |       |         |        |          |         |       |       |       |
| 15 to 14         | - Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                    |                                                              |                                                       |            |                                        |                            |       |         |        |          |         |       |       |       |
| 11 to 10         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CS1 to<br>CS0 | 0 1                                                | 01: 1/2<br>10: 1/4<br>11: 1/8<br>These b<br>00: LS<br>01: HS | 2 of the<br>4 of the<br>3 of the<br>bits are<br>6CLK0 | (Initial v | ng cloc<br>ng cloc<br>ng cloc<br>choos | k sour<br>k sour<br>k sour | се    | l clock | source | in the E | EXI0 to | EXI7. |       |       |
| 9, 8             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | r                                                  | 11: rsv                                                      |                                                       |            |                                        |                            |       |         |        |          |         |       |       |       |
| 5, 0             | -       Reserved bits         PI7SM to<br>PI0SM       These bits are used to choose whether the input signals of EXI0 to EXI7 are detected with<br>the sampling clock.         0:       Detected without the sampling clock (Initial value)         1:       Detected with the sampling clock except in STOP/STOP-D mode         The relation of the bit number and the target external interrupt:<br>Bit 7 (PI7SM) : EXI7INT Interrupt         Bit 6 (PI6SM) : EXI6INT Interrupt         Bit 5 (PI5SM) : EXI5INT Interrupt         Bit 4 (PI4SM) : EXI3INT Interrupt         Bit 3 (PI3SM) : EXI3INT Interrupt         Bit 2 (PI2SM) : EXI2INT Interrupt         Bit 1 (PI1SM) : EXI1INT Interrupt         Bit 1 (PI1SM) : EXI2INT Interrupt         Bit 1 (PI1SM) : EXI0INT Interrupt         Bit 0 (PI0SM) : EXI0INT Interrupt |               |                                                    |                                                              |                                                       |            |                                        |                            |       |         |        |          |         |       |       |       |

[Note]

 If chosen high-speed clock as sampling clock source, it works without sampling when the high-speed clock does not supply; it include stop by entry to standby mode. Set to LSCLK0 as sampling clock if needed.

• In the STOP/STOP-D mode, it works without sampling.

#### 18.2.4 External Interrupt Port Selection Register 0 (EIPSEL0)

This is a SFR used to select a port assigned to EXI0 to EXI7.

| Acce<br>Acce     | Iress : 0xF04C(EIPSEL0L/EIPSEL0), 0xF04D(EIPSEL0H),<br>ess s: R/W<br>ess size : 8/16 bit<br>al value : 0x0000 |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|------------------|---------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                  | 15                                                                                                            | 14     | 13     | 12     | 11     | 10     | 9      | 8      | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
| Word             | EIPSEL0                                                                                                       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Byte             |                                                                                                               |        |        | EIPS   | EL0H   |        |        |        |        |        |        | EIPS   | EL0L   |        |        |        |
| Bit              | EI7PS1                                                                                                        | EI7PS0 | EI6PS1 | EI6PS0 | EI5PS1 | EI5PS0 | EI4PS1 | EI4PS0 | EI3PS1 | EI3PS0 | EI2PS1 | EI2PS0 | EI1PS1 | EI1PS0 | EI0PS1 | EI0PS0 |
| R/W              | R/W                                                                                                           | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    |
| Initial<br>value | 0                                                                                                             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                 |
|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-0    | ElnPS1,<br>ElnPS0  | This bit is used to select a port assigned to EXIn. See Table 18-2 for detail.<br>00: Selection 0 (Initial value)<br>01: Selection 1<br>10: Selection 2<br>11: Selection 3; it is reserved. |

| Table 1 | 8-2 assignn | nent port to | each EXI |
|---------|-------------|--------------|----------|
|         |             |              |          |

| EInPS1,EInPS0 | EXI7  | EXI6  | EXI5  | EXI4  | EXI3  | EXI2  | EXI1     | EXI0  |
|---------------|-------|-------|-------|-------|-------|-------|----------|-------|
| 00            | P12   | P11   | P10   | P07   | P06   | P05   | P04      | P00   |
| 01            | P33   | P32   | P31   | P30   | P73   | P27   | XT0(PI0) | P72   |
| 10            | P61*2 | P60*2 | P53*2 | P52*2 | P37*2 | P36*1 | P35*1    | P34*1 |
| 11            | rsvd     | rsvd  |

\*1: 40/48 pin product only. \*2: 48 pin product only. Unavailable selection is as equal as Selection 0. \*\*rsvd is as equal as Selection 2.

#### 18.3 Description of Operation

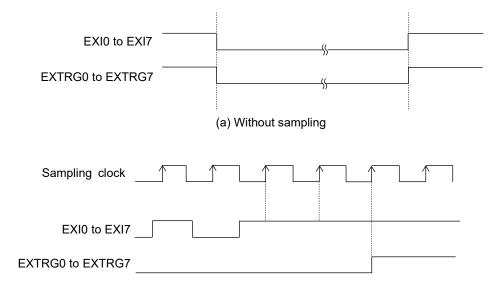
#### 18.3.1 Interrupt Request Timing

Figure 18-2 shows the interrupt generation timing without sampling (when the rising-edge/falling-edge/both-edge interrupt mode is chosen). Figure 18-3 shows the interrupt generation timing with sampling (when the rising-edge interrupt mode is chosen).

Table 18-3 shows the difference between the external interrupt generation timings with or without sampling after detection of the edge.

Table 18-3 EXI0INT to EXI11INT Generation After Detection of Edge of EXI0 to EXI7

| Sampling                                                | Generation timing                                                                                                        |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| No                                                      | Generated in synchronization with SYSCLK                                                                                 |
| Yes                                                     | Generated in synchronization with SYSCLK, when no transition for three periods with sampling clock after detecting edge. |
| SYSC<br>EXI0 to E<br>EXI0INT to EXI7<br>Interrupt requ  | xi7                                                                                                                      |
|                                                         | (a) When falling-edge interrupt mode is chosen                                                                           |
| SYSCL                                                   |                                                                                                                          |
| EXI0 to EXI                                             | 7                                                                                                                        |
| EXI0INT to EXI7IN                                       | T                                                                                                                        |
| Interrupt reques                                        |                                                                                                                          |
|                                                         | (b) When rising-edge interrupt mode is chosen                                                                            |
| SYSC<br>EXI0 to E<br>EXI0INT to EXI7I<br>Interrupt requ |                                                                                                                          |
|                                                         | (c) When both-edge interrupt mode is chosen                                                                              |
| Figu                                                    | re 18-2 External Interrupt Generation Timing (without Sampling)                                                          |
| Sampling clocl<br>SYSCLF                                |                                                                                                                          |
| EXI0 to EXI                                             |                                                                                                                          |
| Coincidence determined<br>3 times<br>EXI0INT to EXI7IN  |                                                                                                                          |
| Interrupt reques                                        | t                                                                                                                        |

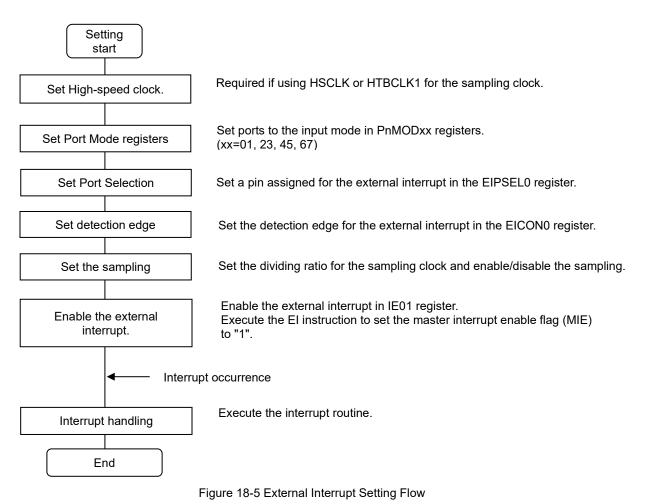

Figure 18-3 External Interrupt Generation Timing (with Sampling, with Rising-edge Interrupt Mode Chosen)

### 18.3.2 External Trigger Signal

Pins assigned with external interrupt can be used as external trigger signals (EXTRG0 to EXTRG7) for the 16-bit timer and function timer.

In addition, the sampling function contained in the external interrupt function can be used.

Figure 18-4 shows the external trigger signal timing.




(b) With sampling

Figure 18-4 Functional Timer Trigger Signal

#### 18.3.3 External Interrupt Setting Flow

Figure 18-5 shows the external interrupt setting flow.



# **Chapter 19 CRC Calculator**

### 19. CRC Calculator

#### 19.1 General Description

ML62Q2500 groups have the CRC (Cyclic Redundancy Check) calculator that performs CRC calculation and generates the CRC data used for error detection in serial communications.

Also, It has automatic CRC calculation mode to check data in program memory, available in HALT mode or HALT-H mode.

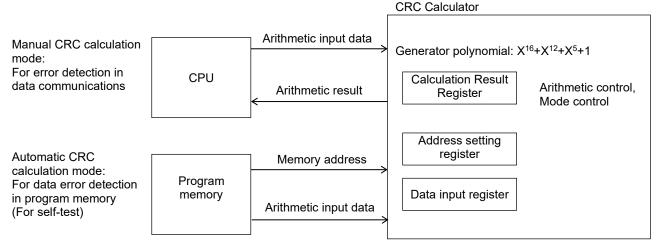
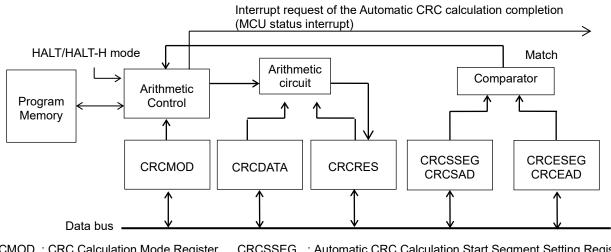



Figure 19-1 CRC calculator overview

#### 19.1.1 Features


- Manual CRC calculation mode Generates CRC data from data set in CRC calculation register by the software Calculation unit is 8bit
- Automatic CRC calculation mode Automatic CRC calculation by the hardware to check data in program memory in HALT or HALT-H mode and generates CRC data

Calculation unit is 32bit. The interrupt occurs when the arithmetic operation is completed

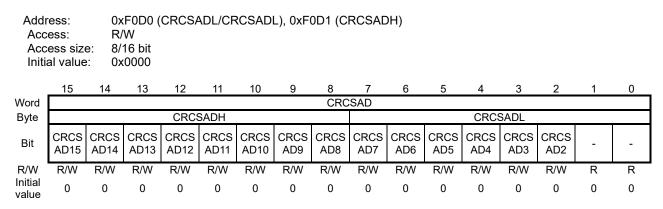
- Generator polynomial:  $X^{16}+X^{12}+X^{5}+1$
- MSB first or LSB first selectable

#### 19.1.2 Configuration

Figure 19-2 shows the configuration of the CRC calculator.



CRCMOD : CRC Calculation Mode Register CRCDATA : CRC Calculation Data Register CRCRES : CRC Calculation Result Register CRCRES : CRC Calculation Result Register Figure 19-2 CRCSEG : Automatic CRC Calculation Start Segment Setting Register CRCSAD : Automatic CRC Calculation Start Address Setting Register CRCEAD : Automatic CRC Calculation End Address Setting Register CRCEAD : Automatic CRC Calculation End Address Setting Register


### 19.2 Description of Registers

### 19.2.1 List of Registers

| A daha a a | Nama                                                        | Syml    | loc    | R/W | 0:   | Initial |
|------------|-------------------------------------------------------------|---------|--------|-----|------|---------|
| Address    | Name                                                        | Byte    | Word   | R/W | Size | Value   |
| 0xF0D0     | Automatic CRC Calculation Start Address                     | CRCSADL | CRCSAD | R/W | 8/16 | 0x00    |
| 0xF0D1     | Setting Register                                            | CRCSADH | CRCSAD | R/W | 8    | 0x00    |
| 0xF0D2     | Automatic CRC Calculation End Address                       | CRCEADL | CRCEAD | R/W | 8/16 | 0xFC    |
| 0xF0D3     | Setting Register                                            | CRCEADH | CRCEAD | R/W | 8    | 0xFF    |
| 0xF0D4     | Automatic CRC Calculation Start Segment<br>Setting Register | CRCSSEG | -      | R/W | 8    | 0x00    |
| 0xF0D5     | Reserved                                                    | -       | -      | -   | -    | -       |
| 0xF0D6     | Automatic CRC Calculation End Segment<br>Setting Register   | CRCESEG | -      | R/W | 8    | 0x0F    |
| 0xF0D7     | Reserved                                                    | -       | -      | -   | -    | -       |
| 0xF0D8     | CRC Calculation Data Register                               | CRCDATA | -      | R/W | 8    | 0x00    |
| 0xF0D9     | Reserved                                                    | -       | -      | -   | -    | -       |
| 0xF0DA     | CPC Calculation Result Register                             | CRCRESL | CRCRES | R/W | 8/16 | 0xFF    |
| 0xF0DB     | CRC Calculation Result Register                             | CRCRESH | URURES | R/W | 8    | 0xFF    |
| 0xF0DC     | CRC Calculation Mode Register                               | CRCMOD  | -      | R/W | 8    | 0x00    |
| 0xF0DD     | Reserved                                                    | -       | -      | -   | -    | -       |

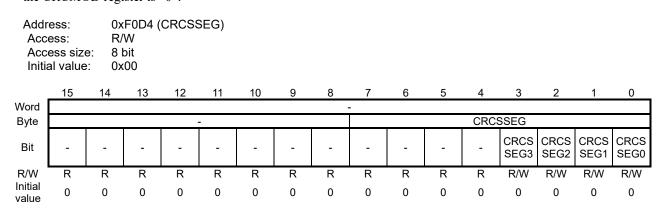
#### 19.2.2 Automatic CRC Calculation Start Address Setting Register (CRCSAD)

CRCSAD is a SFR used to set the start address of automatic CRC calculation. This register is incremented during the automatic CRC calculation mode. This register is writable if the CRCAEN bit of the CRCMOD register is "0".



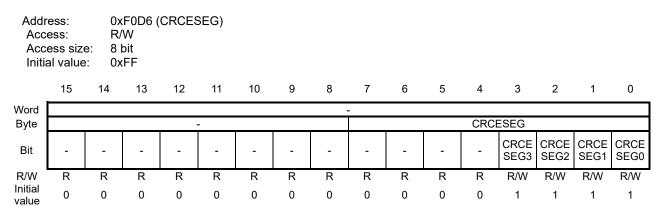
#### 19.2.3 Automatic CRC Calculation End Address Setting Register (CRCEAD)

CRCEAD is a SFR used to set the end address of automatic CRC calculation. To write this register is available if the CRCAEN bit of the CRCMOD register is "0" only.


| Acc              | ress: 0xF0D2 (CRCEADL/CRCEAD), 0xF0D3 (CRCEADH)<br>ress: R/W<br>ress size: 8/16 bit<br>al value: 0xFFFC |              |              |              |              |              |             |             |             |             |             |             |             |             |   |   |
|------------------|---------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---|---|
|                  | 15                                                                                                      | 14           | 13           | 12           | 11           | 10           | 9           | 8           | 7           | 6           | 5           | 4           | 3           | 2           | 1 | 0 |
| Word             |                                                                                                         |              |              |              |              |              |             | CRC         | EAD         |             |             |             |             |             |   |   |
| Byte             |                                                                                                         |              |              | CRC          | EADH         |              |             |             |             |             |             | CRC         | EADL        |             |   |   |
| Bit              | CRCE<br>AD15                                                                                            | CRCE<br>AD14 | CRCE<br>AD13 | CRCE<br>AD12 | CRCE<br>AD11 | CRCE<br>AD10 | CRCE<br>AD9 | CRCE<br>AD8 | CRCE<br>AD7 | CRCE<br>AD6 | CRCE<br>AD5 | CRCE<br>AD4 | CRCE<br>AD3 | CRCE<br>AD2 | - | - |
| R/W              | R/W                                                                                                     | R/W          | R/W          | R/W          | R/W          | R/W          | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R | R |
| Initial<br>value | 1                                                                                                       | 1            | 1            | 1            | 1            | 1            | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 0 | 0 |

#### [Note]

- Automatic CRC calculation is four-byte length. Generate an expected value by four bytes. Writing to the bits 1 and bit0 are ignored; they are fixed to "1" internally during the calculation.
- If an address set to CRCEAD and CRCESEG is smaller than one of CRCSAD and CRCSSEG, the calculation does not execute. Do not specify segment or address out of program code area. See section 2.5 "Program Memory Space" for details of the program code area.

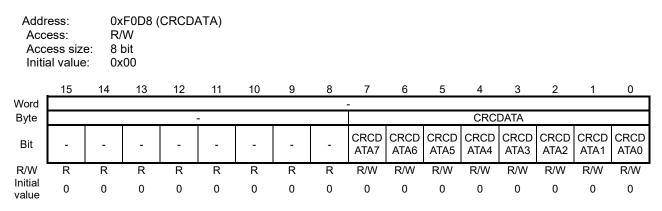

#### 19.2.4 Automatic CRC Calculation Start Segment Setting Register (CRCSSEG)

CRCSSEG is a SFR used to set the start segment of automatic CRC calculation. This register is incremented during the automatic CRC calculation mode. This register is writable if the CRCAEN bit of the CRCMOD register is "0".



#### 19.2.5 Automatic CRC Calculation End Segment Setting Register (CRCESEG)

CRCESEG is a SFR used to set the end segment of automatic CRC calculation. To write this register is available if the CRCAEN bit of the CRCMOD register is "0" only.




#### [Note]

 If an address set to CRCEAD and CRCESEG is smaller than one of CRCSAD and CRCSSEG, the calculation does not execute. Do not specify segment or address out of program code area. See section 2.5 "Program Memory Space" for details of the program code area.

#### 19.2.6 CRC Calculation Data Register (CRCDATA)

CRCDATA is a SFR used to set the CRC calculation data. Set it by eight bits. One clock after writing data to the CRCDATA, the calculation result is stored in the CRC Calculation Result Register (CRCRES). This register is writable if the CRCAEN bit of the CRCMOD register is "0".



#### 19.2.7 CRC Calculation Result Register (CRCRES)

CRCRES is a SFR. The CRC calculation result is stored by the hardware. Set data to the CRCRES as an initial data for the CRC calculation. To write this register is available if the CRCAEN bit of the CRCMOD register is "0" only.

| Acc<br>Acc | Iress: 0xF0DA (CRCRESL/CRCRES), 0xF0DB (CRCRESH)<br>cess: R/W<br>cess size: 8/16 bit<br>ial value: 0xFFF |              |              |              |              |              |             |             |             |             |             |             |             |             |             |             |
|------------|----------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|            | 15                                                                                                       | 14           | 13           | 12           | 11           | 10           | 9           | 8           | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
| Word       |                                                                                                          |              |              |              |              |              |             | CRC         | RES         |             |             |             |             |             |             |             |
| Byte       |                                                                                                          |              |              | CRC          | RESH         |              |             |             |             |             |             | CRCI        | RESL        |             |             |             |
| Bit        | CRCR<br>ES15                                                                                             | CRCR<br>ES14 | CRCR<br>ES13 | CRCR<br>ES12 | CRCR<br>ES11 | CRCR<br>ES10 | CRCR<br>ES9 | CRCR<br>ES8 | CRCR<br>ES7 | CRCR<br>ES6 | CRCR<br>ES5 | CRCR<br>ES4 | CRCR<br>ES3 | CRCR<br>ES2 | CRCR<br>ES1 | CRCR<br>ES0 |
| R/W        | R/W                                                                                                      | R/W          | R/W          | R/W          | R/W          | R/W          | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         |
| Initial    | 1                                                                                                        | 1            | 1            | 1            | 1            | 1            | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           | 1           |

value

# 19.2.8 CRC Calculation Mode Register (CRCMOD)

CRCMOD is SFR used to control the CRC calculation mode.

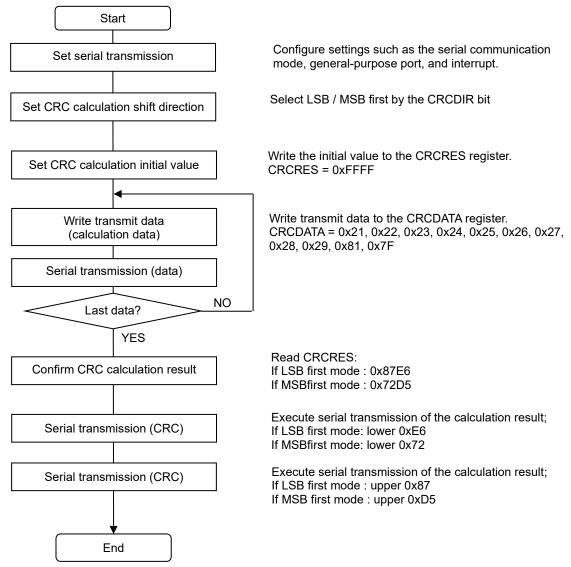
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R/<br>e: 8 k     | W<br>oit | (CRCM   | OD)      |            |        |           |          |           |        |          |     |   |            |            |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|---------|----------|------------|--------|-----------|----------|-----------|--------|----------|-----|---|------------|------------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14               | 13       | 12      | 11       | 10         | 9      | 8         | 7        | 6         | 5      | 4        | 3   | 2 | 1          | 0          |
| Word<br>Byte     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |          |         |          |            |        |           | - CRCMOD |           |        |          |     |   |            |            |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                | -        | -       | -        | -          | -      | -         | -        | -         | -      | -        | -   | - | CRCDI<br>R | CRCA<br>EN |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R                | R        | R       | R        | R          | R      | R         | R        | R         | R      | R        | R   | R | R/W        | R/W        |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                | 0        | 0       | 0        | 0          | 0      | 0         | 0        | 0         | 0      | 0        | 0   | 0 | 0          | 0          |
| Bit No.          | Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | it symbo<br>name | ol       |         |          |            |        |           | De       | escriptio | on     |          |     |   |            |            |
| 7 to 2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                |          | Reserve | ed bit   |            |        |           |          |           |        |          |     |   |            |            |
| 1                | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RCDIF            | ς ·      |         | SB first | (Initial v |        | e shift d | irection | of the    | CRC ca | alculati | on. |   |            |            |
| 0                | 1: MSB first         CRCAEN       This bit is used to enable the automatic CRC calculation mode.<br>If entering the HALT/HALT-H mode when the CRCAEN bit is "1", the CRC calculation for the program code area in the range specified by the CRCSSEG and CRCES and CRCSAD and CRCEAD register.<br>When CRC calculation is completed, the CRCAEN is reset to "0.", also the CRC completion interrupt is generated. See Chapter 29 "Safety Function" for details of automatic CRC calculation completion interrupt.         0: Disable (Initial value)       1: Enable |                  |          |         |          |            | SEG re | egister   |          |           |        |          |     |   |            |            |

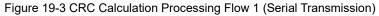
### 19.3 Description of Operation

Two modes are available for the CRC calculator: manual CRC calculation mode and automatic CRC calculation mode.

 Manual CRC Calculation Mode CRC calculation is executed by hardware as needed through writing data to the CRC calculation register by software.

Calculation unit: 8-bit.


• Automatic CRC Calculation Mode In the HALT/HALT-H mode, data in the program memory area is automatically CRC-calculated by hardware. Calculation unit: 32-bits with the interrupt generated when the automatic CRC calculation is completed.


### 19.3.1 Manual CRC Calculation Mode

In the manual CRC calculation mode, the calculation result is outputted to the CRC calculation result register (CRCRES) by writing the initial value to the 16-bit CRC calculation result register (CRCRES) then writing data to 8-bit CRC calculation data register (CRCDATA). For data error detection in serial communication, etc., presence of errors can be detected by transferring data with the calculation result attached when transmission and performing the same CRC calculation in the reception side.

### 19.3.1.1 Example of Use of Manual CRC Calculation Mode

The following chart shows the process flow of serial transmission with the CRC calculation result attached to data. In this example, 11-byte data with 0x21 in the beginning is used as transmit data, and calculation result is obtained. Transmission and CRC calculation data: 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x81, 0x7F





The following chart shows the CRC calculation process flow with the CRC calculation result attached to the serial receive data.

In this example, 13-byte received data with 0x21 in the beginning is used as calculation data. The first 11 bytes of the CRC calculation result is added to the last two bytes.

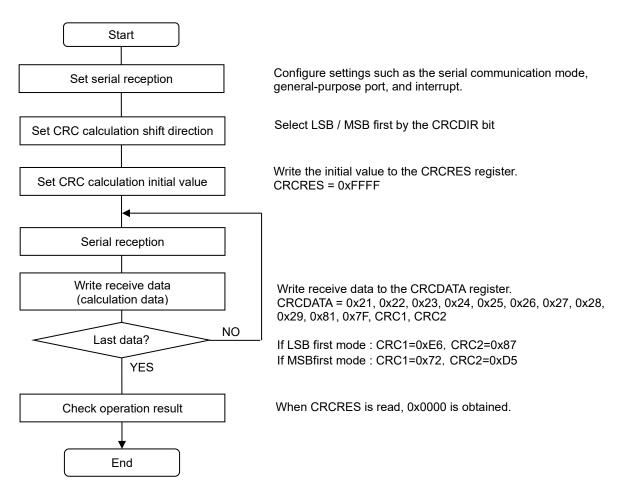
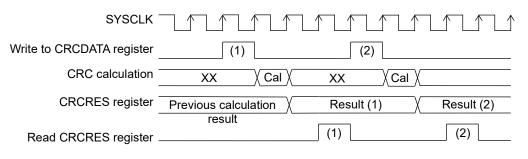




Figure 19-4 CRC Calculation Processing Flow 2 (Serial Reception/LSB First)

#### 19.3.1.2 Operation Timing Chart in Manual CRC Calculation Mode

Set the initial value of CRC calculation in the CRCRES register. When 8-bit data is written to the CRCDATA register, the calculation result is stored in the CRCRES register on the next clock rising-edge. The CRC calculation result can be checked anytime by reading the CRCRES register.

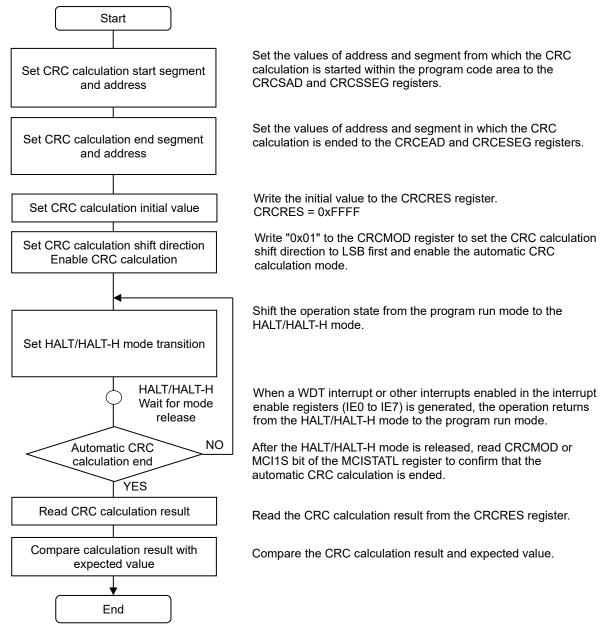
Figure 19-5 shows the operation timing chart of CRC calculation.



"Cal" means "Calculation state"



### 19.3.2 Automatic CRC Calculation Mode


In the automatic CRC calculation mode, an arbitrary program memory area is automatically CRC-calculated in the HALT/HALT-H mode and the result is output to the CRC calculation result register (CRCRES). The calculation is fourbyte length. Generate an expected value by four bytes.

For data error detection in program memory (for self-test), using software, the result of the automatic calculation can be compared with the expected value written to Flash memory in advance.

The expected value is created in the generation tool of the ROM code data from LAPIS.

### 19.3.2.1 Example of Use of Automatic CRC Calculation Mode

The following chart shows the automatic CRC calculation process flow.





The CRC calculation of data in the program code area configured in the CRCSSEG, CRCSAD, CRCESEG, and CRCEAD registers is started when entering to the HALT/HALT-H mode, if the CRCAEN bit of CRCMOD register is "1".

When the HALT/HALT-H mode released while the calculation is in progress, the calculation is aborted. If shifting to the HALT/HALT-H mode again, the calculation resumes at the address it was aborted. The CRCSSEG and CRCAD registers are incremented each time data is read from the program code area.

If the calculation start segment and address (values of CRCSSEG and CRCSAD registers) match the calculation end segment and address (values of CRCESEG and CRCEAD registers), the CRC calculation is ended, the CRCAEN bit becomes "0", and the automatic CRC calculation completion interrupt request is generated. If the automatic CRC calculation completion interrupt is enabled, then the HALT/HALT-H mode is released and the MCU status interrupt is generated.

To enable/disable the automatic CRC calculation completion interrupt is set by the MCU status interrupt enable register (MCINTEL). See Chapter 29 "Safety Function" for details of the MCINTEL register.

See "ML62Q2000 Series Self-test Sample Software AP Notes" and a manual of the generation tool of the ROM code data for details of self-test program using the automatic CRC calculation mode or how to generate expected values.

#### [Note]

- To perform CRC calculation in the manual mode when automatic CRC calculation is not completed, save the value in the CRCRES register before calculation. Once the CRC calculation in the manual mode is completed, move the saved value back to the CRCRES register and set the CRCAEN bit to "1". If entering the HALT/HALT-H mode, then the automatic CRC calculation can be restarted.
- The final addresses at the end of the previous operation are stored in the CRCSAD and CRCSSEG
  registers. If values in the CRCSAD and CRCSSEG registers are overwritten with the CRCAEN bit set to
  "0", the calculation works incorrectly.

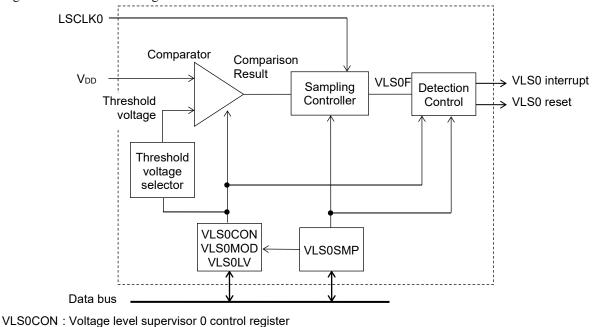
# **Chapter 22 Voltage Level Supervisor**

# 22. Voltage Level Supervisor

### 22.1 General Description

ML62Q2500 group has the Voltage Level Supervisor (VLS0) that detects whether the voltage level of  $V_{DD}$  is lower or higher than the specified threshold voltage.

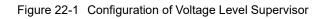
### 22.1.1 Features


- Accuracy: ±4 %
- Threshold voltage: Selectable from 15 values (1.85 to 4.00 V)
- Operation mode: Supervisor mode (continuous detection) or single mode (one detection)

| Mode            | Description                                                                                                                                                                                                                                                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single mode 1   | Detect the voltage level of $V_{DD}$ only once.<br>The interrupt occurs after detecting the voltage of $V_{DD}$ , indicates the detection has been completed.                                                                                                                                                       |
| Single mode 2   | Detect the voltage level of $V_{DD}$ only once.<br>The interrupt occurs after detecting the voltage of $V_{DD}$ is lower than<br>the threshold voltage, indicates the MCU is in the low voltage<br>condition.                                                                                                       |
| Supervisor mode | Detect continuously the voltage level of $V_{DD}$ , suitable for always detecting the low voltage level of $V_{DD}$ and generating the interrupt or reset. The interrupt or reset occurs according to the setting in the VLS0MOD register.<br>The VLS0 reset function is available by choosing the supervisor mode. |

- Voltage level supervisor reset (VLS0 reset)
- Voltage level supervisor interrupt (VLS0 interrupt)
- Initialized by the power-on reset (POR) or pin reset

### 22.1.2 Configuration


Figure 22-1 shows the configuration of the VLS.



VLS0MOD : Voltage level supervisor 0 mode register

VLS0LV : Voltage level supervisor 0 level register

VLS0SMP : Voltage level supervisor 0 sampling register



# 22.2 Description of Registers

### 22.2.1 List of Registers

| Adduces | Norra                                        | Sym     | bol  |     |      | Initial |  |
|---------|----------------------------------------------|---------|------|-----|------|---------|--|
| Address | Name                                         | Byte    | Word | R/W | Size | Value   |  |
| 0xF890  | Voltage level supervisor 0 control register  | VLS0CON | -    | R/W | 8    | 0x00    |  |
| 0xF891  | Reserved                                     | -       | -    | -   | -    | -       |  |
| 0xF892  | Voltage level supervisor 0 mode register     | VLS0MOD | -    | R/W | 8    | 0x00    |  |
| 0xF893  | Reserved                                     | -       | -    | -   | -    | -       |  |
| 0xF894  | Voltage level supervisor 0 level register    | VLS0LV  | -    | R/W | 8    | 0x0E    |  |
| 0xF895  | Reserved                                     | -       | -    | -   | -    | -       |  |
| 0xF896  | Voltage level supervisor 0 sampling register | VLS0SMP | -    | R/W | 8    | 0x00    |  |
| 0xF897  | Reserved                                     | -       | -    | -   | -    | -       |  |

### 22.2.2 Voltage Level Supervisor 0 Control Register (VLS0CON)

This is a SFR used to control the VLS0 (Voltage Level Supervisor). This is unresetable by anything other than the Power On Reset(POR) and RESET\_N pin reset.

|                         |                                                                                                                                                                                                                                                                    | R/<br>: 81      | W      | VLS0C             | ON)                |                                                                                                                                                                                                                                             |                             |                     |                                                                                                                                                                          |           |        |        |          |            |          |            |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|-------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--------|----------|------------|----------|------------|--|
|                         | 15                                                                                                                                                                                                                                                                 | 14              | 13     | 12                | 11                 | 10                                                                                                                                                                                                                                          | 9                           | 8                   | 7                                                                                                                                                                        | 6         | 5      | 4      | 3        | 2          | 1        | 0          |  |
| Word<br>Byte            |                                                                                                                                                                                                                                                                    |                 |        |                   |                    |                                                                                                                                                                                                                                             |                             |                     |                                                                                                                                                                          |           | VLS    | CON    |          |            |          |            |  |
| Bit                     | -                                                                                                                                                                                                                                                                  | -               | -      | -                 | -                  | -                                                                                                                                                                                                                                           | -                           | -                   | -                                                                                                                                                                        | -         | -      | -      | -        | VLS0R<br>F | VLS0F    | VLS0E<br>N |  |
| R/W<br>Initial<br>value | R<br>0                                                                                                                                                                                                                                                             | R<br>0          | R<br>0 | R<br>0            | R<br>0             | R<br>0                                                                                                                                                                                                                                      | R<br>0                      | R<br>0              | R<br>0                                                                                                                                                                   | R<br>0    | R<br>0 | R<br>0 | R<br>0   | R<br>0     | R/W<br>0 | R/W<br>0   |  |
| Bit<br>No.              | В                                                                                                                                                                                                                                                                  | it symb<br>name | ol     |                   |                    |                                                                                                                                                                                                                                             |                             |                     | De                                                                                                                                                                       | escriptio | on     |        |          |            |          |            |  |
| 7 to 3                  | -                                                                                                                                                                                                                                                                  |                 |        | Reserve           | ed bit             |                                                                                                                                                                                                                                             |                             |                     |                                                                                                                                                                          |           |        |        |          |            |          |            |  |
| 2                       | VLS                                                                                                                                                                                                                                                                | 0RF             |        | This bit<br>0: Th | is valid<br>ne VLS | only ir<br>Ocircui                                                                                                                                                                                                                          | n the su<br>t is stop       | pervisc<br>ped or   | the voltage level detection result is valid or not.<br>For mode and fixed to "0" in the single mode.<br>For VLS0 is being stabilized (initial value)<br>Valid (readable) |           |        |        |          |            |          |            |  |
| 1                       | This bit is cleared to "0" by writing<br>Also, this bit is cleared to "0" wher<br>0: The power voltage(V <sub>DD</sub> ) is hi                                                                                                                                     |                 |        |                   |                    | the voltage level retains the last detection result.<br>" by writing "1" to this bit, but not cleared by writing "0".<br>to "0" when the VLS starts operating.<br>je(V <sub>DD</sub> ) is higher than the threshold voltage (initial value) |                             |                     |                                                                                                                                                                          |           |        |        |          |            |          |            |  |
| 0                       | 1: The power voltage(V <sub>DD</sub> ) is low         VLS0EN       This bit is used to control the VLS         In the single mode, this bit is auton         the VLS stops operating.         0: Disable operating the VLS (Ir         1: Enable operating the VLS |                 |        |                   |                    |                                                                                                                                                                                                                                             | VLS o<br>automa<br>LS (Init | peratio<br>atically | n.<br>reset to                                                                                                                                                           |           |        |        | he volta | ge leve    | l and    |            |  |

#### [Note]

#### • There is a limitation in each mode for entering the STOP/STOP-D mode while the VLS is running.

| Operation                      | Description                                                                                                                                  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Running in the supervisor mode | The MCU can enter the STOP/STOP-D mode only when the VLS0RF bit is "1".                                                                      |
| Running in the single mode     | The MCU is unable to enter the STOP/STOP-D mode.<br>Enter the STOP/STOP-D mode when the VLS0 is not running<br>(when the VLS0EN bit is "0"). |

#### • Even if resets other than the POR and RESET\_N pin reset occurred, the VLS0 remains running.

### 22.2.3 Voltage Level Supervisor 0 Mode Register (VLS0MOD)

This is a SFR used to control the operation mode of the VLS (Voltage Level Supervisor). Set this register only when the VLS is stopped (VLS0EN bit of VLS0CON register is "0"). This register is unresetable by anything other than the Power On Reset (POR) and RESET N pin reset.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R/<br>e: 8      | (F892<br>/W<br>bit<br>(00 | (VLS0M  | OD)     |                                                                                       |                                                                                        |                                                               |                                                                           |                                               |                                                       |                           |                                  |                         |              |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|---------|---------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|---------------------------|----------------------------------|-------------------------|--------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14              | 13                        | 12      | 11      | 10                                                                                    | 9                                                                                      | 8                                                             | 7                                                                         | 6                                             | 5                                                     | 4                         | 3                                | 2                       | 1            | 0            |
| Word<br>Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                           |         | -       |                                                                                       |                                                                                        |                                                               | -                                                                         |                                               |                                                       | VLS0                      | MOD                              |                         |              |              |
| Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -               | -                         | -       | -       | -                                                                                     | -                                                                                      | -                                                             | -                                                                         | -                                             | VLS0A<br>MD1                                          | VLS0A<br>MD0              | -                                | -                       | VLS0S<br>EL1 | VLS0S<br>EL0 |
| R/W<br>Initial<br>value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R<br>0          | R<br>0                    | R<br>0  | R<br>0  | R<br>0                                                                                | R<br>0                                                                                 | R<br>0                                                        | R<br>0                                                                    | R<br>0                                        | R/W<br>0                                              | R/W<br>0                  | R<br>0                           | R<br>0                  | R/W<br>0     | R/W<br>0     |
| Bit<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | it symb<br>name | ol                        |         |         |                                                                                       |                                                                                        |                                                               | D                                                                         | escripti                                      | on                                                    |                           |                                  |                         |              |              |
| 7, 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                           | Reserve | ed bits |                                                                                       |                                                                                        |                                                               |                                                                           |                                               |                                                       |                           |                                  |                         |              |              |
| 5, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VLS0AMD1,<br>VLS0AMD0<br>VLS0AMD0<br>VLS0AMD0<br>VLS0AMD0<br>VLS0AMD0<br>VLS0AMD0<br>VLS0AMD0<br>VLS0AMD0<br>VLS0AMD0<br>VLS0F bit<br>01: Single mode 2<br>It detects the voltage level of V<br>"0x2", the interrupt occurs whe<br>checked by reading VLS0F bit<br>01: Single mode 2<br>It detects the voltage level of V<br>"0x2", the interrupt occurs whe<br>threshold voltage (when the V<br>1X: Supervisor mode<br>It always detects the voltage level of V<br>VLS0AMD0 |                 |                           |         |         | alue)<br>vel of \<br>urs whe<br>SOF bit<br>vel of \<br>urs whe<br>n the V<br>itage le | / <sub>DD</sub> only<br>en dete<br>of VLS<br>/ <sub>DD</sub> only<br>en dete<br>SL0F o | / once.<br>cting th<br>coCON<br>/ once.<br>cting th<br>f VLSO | When Y<br>e voltag<br>registe<br>When Y<br>e voltag<br>CON is<br>e interr | ge level<br>r.<br>VLS0SE<br>ge level<br>"1"). | of V <sub>DD</sub> .<br>EL1 and<br>of V <sub>DD</sub> | The r<br>d VLS(<br>is low | esult ca<br>)SEL0 b<br>er than t | n be<br>hits are<br>the |              |              |
| 3, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                           | Reserve | ed bits |                                                                                       |                                                                                        |                                                               |                                                                           |                                               |                                                       |                           |                                  |                         |              |              |
| 1, 0       VLS0SEL1,<br>VLS0SEL0       These bits are used to control enable/disable of the VLS0 reset / VLS0 interrupt request.<br>See section 22.3 "Description of Operation" for details of the occurrence condition of reset / VLS0 interrupt request.<br>00: Reset function is disable and Interrupt function is disable (Initial value)<br>01: Reset function is enable and Interrupt function is disable<br>10: Reset function is disable and Interrupt function is enable<br>11: Reset function is enable and Interrupt function is disable |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                           |         |         |                                                                                       |                                                                                        |                                                               |                                                                           |                                               |                                                       |                           |                                  |                         |              |              |

#### [Note]

#### • There is a limitation in each mode for entering the STOP/STOP-D mode while the VLS0 is running.

| Operation                      | Description                                                                                                                                  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Running in the supervisor mode | The MCU can enter the STOP/STOP-D mode only when the VLS0RF bit is "1".                                                                      |
| Running in the single mode     | The MCU is unable to enter the STOP/STOP-D mode.<br>Enter the STOP/STOP-D mode when the VLS0 is not running<br>(when the VLS0EN bit is "0"). |

### 22.2.4 Voltage Level Supervisor 0 Level Register (VLS0LV)

This is a SFR used to set the detection voltage.

Set this register only when the VLS0 is stopped (VLS0EN bit of VLS0CON register is "0"). This register is unresetable by anything other than the Power On Reset (POR) and RESET\_N pin reset.

|                         |        | R/<br>: 8       | F894<br>W<br>bit<br>0E | (VLSOL\ | /)                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                   |                  |           |        |           |             |             |             |             |
|-------------------------|--------|-----------------|------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|-----------|--------|-----------|-------------|-------------|-------------|-------------|
| _                       | 15     | 14              | 13                     | 12      | 11                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                  | 8                                 | 7                | 6         | 5      | 4         | 3           | 2           | 1           | 0           |
| Word<br>Byte            |        |                 |                        |         | -                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                   | -                |           |        | VLS       | SOLV        |             |             |             |
| Bit                     | -      | -               | -                      | -       | -                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                  | -                                 | -                | -         | -      | -         | VLS0L<br>V3 | VLS0L<br>V2 | VLS0L<br>V1 | VLS0L<br>V0 |
| R/W<br>Initial<br>value | R<br>0 | R<br>0          | R<br>0                 | R<br>0  | R<br>0                                                                                                                                | R<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R<br>0                                                                                                             | R<br>0                            | R<br>0           | R<br>0    | R<br>0 | R<br>0    | R/W<br>1    | R/W<br>1    | R/W<br>1    | R/W<br>0    |
| Bit<br>No.              | Bi     | t symb<br>name  | ol                     |         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                   | De               | escriptic | on     |           |             |             |             |             |
| 7 to 4                  | -      |                 |                        | Reserve | ed bits                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                   |                  |           |        |           |             |             |             |             |
| 3 to 0                  |        | OLV3 ti<br>OLVO | D                      |         | is fallir<br>Id volta<br>3.99<br>3.68<br>3.05<br>2.96<br>2.84<br>2.76<br>2.54<br>2.54<br>2.54<br>2.54<br>2.54<br>2.54<br>2.54<br>2.54 | ag or ris<br>ge deta<br>$V \pm 49$<br>$V \pm $ | sing. Th<br>ected w<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | e VLS<br>hile the<br>value)<br>%) | has hys<br>power | steresis  | charac | cteristic | s. For t    | he chai     | acteris     | tics of     |

### 22.2.5 Voltage Level Supervisor 0 Sampling Register (VLS0SMP)

This is a SFR used to control sampling the voltage level detection. Set this register only when the VLS0 is stopped (VLS0EN bit of VLS0CON register is "0"). This register is unresetable by anything other than the Power On Reset (POR) and RESET N pin reset.

|                         |                                                                                       | R/<br>: 81      | W<br>oit | VLSOSI                      | MP)    |        |                     |           |          |          |             |             |             |          |        |        |
|-------------------------|---------------------------------------------------------------------------------------|-----------------|----------|-----------------------------|--------|--------|---------------------|-----------|----------|----------|-------------|-------------|-------------|----------|--------|--------|
| -                       | 15                                                                                    | 14              | 13       | 12                          | 11     | 10     | 9                   | 8         | 7        | 6        | 5           | 4           | 3           | 2        | 1      | 0      |
| Word<br>Byte            |                                                                                       |                 |          |                             | _      |        |                     |           | -        |          |             | VLS         | OSMP        |          |        |        |
| Bit                     | -                                                                                     | -               | -        | -                           | -      | -      | -                   | -         | -        | rsvd     | VLS0D<br>V1 | VLS0D<br>V0 | VLS0S<br>M1 | rsvd     | -      | -      |
| R/W<br>Initial<br>value | R<br>0                                                                                | R<br>0          | R<br>0   | R<br>0                      | R<br>0 | R<br>0 | R<br>0              | R<br>0    | R<br>0   | R/W<br>0 | R/W<br>0    | R/W<br>0    | R/W<br>0    | R/W<br>0 | R<br>0 | R<br>0 |
| Bit<br>No.              | Bi                                                                                    | t symbo<br>name | ol       |                             |        |        |                     |           | D        | escripti | on          |             |             |          |        |        |
| 7                       | -                                                                                     |                 |          | Reserve                     | ed bit |        |                     |           |          |          |             |             |             |          |        |        |
| 6                       | rsvd                                                                                  |                 |          | Reserve                     | ed bit |        |                     |           |          |          |             |             |             |          |        |        |
| 5 to 4                  |                                                                                       | 0DIV1<br>0DIV0  | to       | 00: No<br>01:div<br>10: div |        |        | o choos<br>al value |           | iency d  | lividing | ratio foi   | r the sa    | mpling      | clock.   |        |        |
| 3                       | VLS0SM1<br>This is used to choose the sa<br>0: No sampling (Initial valu<br>1: LSCLK0 |                 |          |                             | clock  | source | for dete            | ecting th | ne volta | ge leve  | Ι.          |             |             |          |        |        |
| 2                       | rsvd Reserved bit. Set "0" to this bit.                                               |                 |          |                             |        |        |                     |           |          |          |             |             |             |          |        |        |
| 1, 0                    | - Reserved bits                                                                       |                 |          |                             |        |        |                     |           |          |          |             |             |             |          |        |        |

#### [Note]

• In the STOP/STOP-D mode, the VLS works without sampling regardless the setting in VLS0SM1 bit.

### 22.3 Description of Operation

VLS can be used to verify if  $V_{DD}$  is lower or higher than the specified threshold voltage. In addition, it generates VLS0 interrupt or VLS0 reset. VLS has hysteresis characteristics. See the data sheet of each product for characteristics of the threshold voltage at power voltage fall / rise.

The following two operation modes are available for VLS:

- Supervisor mode:

| ~ |                   | •                                                                                                                                                                                                                                    |                                                                                                       |  |  |  |  |  |  |  |
|---|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|   | Operation         | "1" is written to VLS0EN to enable operation of VLS, and then detecting the voltage is executed. The result is notified of through the VLS0RF flag as at the time the detection result becomes valid. The detection still continues. |                                                                                                       |  |  |  |  |  |  |  |
|   | <b>-</b> <i>i</i> | Interrupt of detecting voltage variations                                                                                                                                                                                            | The interrupt is generated when the power voltage becomes lower or higher than the threshold voltage. |  |  |  |  |  |  |  |
|   | Function          | Reset of detecting low voltage                                                                                                                                                                                                       | The reset can be generated when the power voltage becomes lower than the threshold voltage.           |  |  |  |  |  |  |  |

#### - Single mode:

| <br>gie moue. |                                                                                                                                                                                                       |                                                                                             |  |  |  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Operation     | "1" is written to VLS0EN to enable operation of VLS, and then detecting the voltage is executed. "0" is automatically written to VLS0EN to end the detection when the detection result becomes valid. |                                                                                             |  |  |  |  |  |  |
| Function      | Single mode 1:<br>Interrupt that indicates the<br>detecting voltage has been<br>completed                                                                                                             | The interrupt is generated at the time of completion of the voltage detection.              |  |  |  |  |  |  |
|               | Single mode 2:<br>Interrupt of detecting low<br>voltage                                                                                                                                               | The interrupt is generated when the power voltage becomes lower than the threshold voltage. |  |  |  |  |  |  |

### 22.3.1 Supervisor Mode

In the supervisor mode, the voltage level of  $V_{DD}$  can be constantly detected. This mode is suitable for using the reset when the low voltage is detected, or the interrupt when the voltage variations is detected.

Figure 22-2 shows the flow chart for starting the VLS in the supervisor mode.

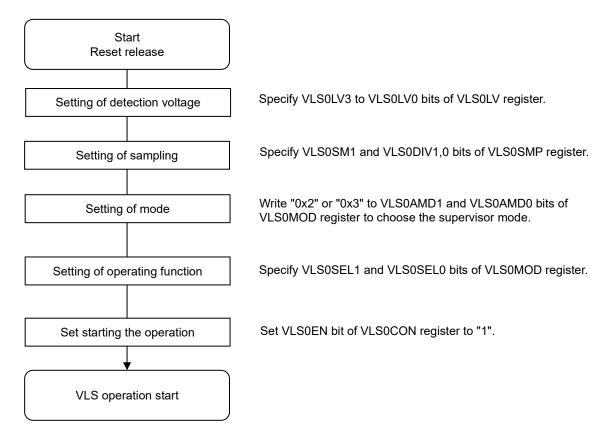
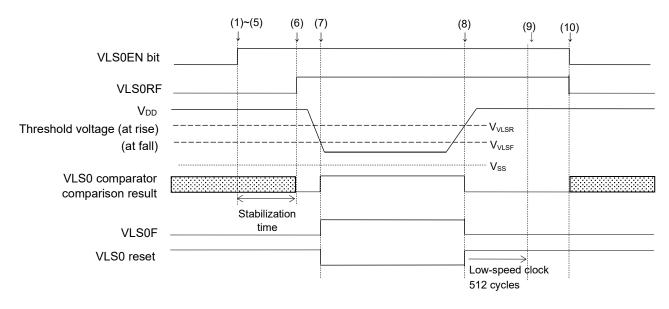
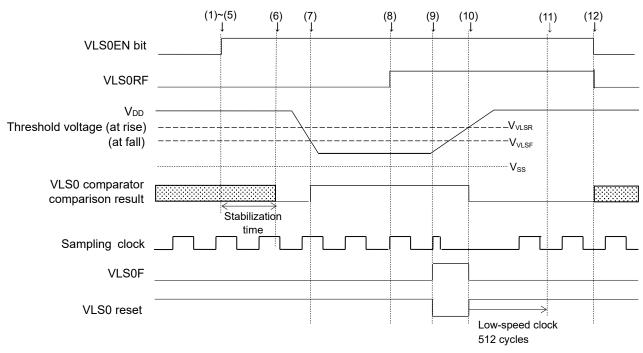
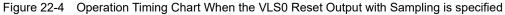



Figure 22-2 Flow chart for starting the VLS in the supervisor mode

### 22.3.1.1 Reset Output

Figure 22-3 shows the operation timing chart when the VLS0 reset output without sampling is specified.



Figure 22-3 Operation Timing Chart When the VLS0 Reset Output without Sampling is specified

The operation shown in Figure 22-3 is described below:

- (1) Choose a detection voltage by the VLS0LV3 to VLS0LV0 bits of the VLS0LV register.
- (2) Choose "No sampling" by the VLS0SM1bit of the VLS0SMP register.
- (3) Write "0x2" or "0x3" to VLS0AMD1 and VLS0AMD0 bits of VLS0MOD register in order to choose the supervisor mode.
- (4) Write "0x1" to VLS0SEL1 and VLS0SEL0 bits of the VLS0MOD register in order to enable the VLS0 reset.
- (5) Set the VLS0EN bit of the VLS0CON register to "1" (VLS0 starts operation in the supervisor mode).
- (6) After approximately 300 μs passed, the detection result of VLS0 becomes stabilized and the VLS0RF bit of the VLSCON register is set to "1" (value of the voltage level supervisor bit (VLS0F) is read in software) (\*<sup>1</sup>).
- (7) When the power voltage (V<sub>DD</sub>) becomes below the threshold voltage V<sub>VLSF</sub>, the VLS0F bit is set to "1" to generate the VLS0 reset.
- (8) If V<sub>DD</sub> becomes equal to or above the threshold voltage (V<sub>VLSR</sub>), the VLS0F bit is cleared to "0" to release the VLS0 reset.
- (9) The CPU starts after 512 cycles of low-speed clock.
- (10) Write "0" to the VLS0EN bit to disable VLS0 operation.
- \*1: VLS0F bit/interrupt/reset is masked until the VLS0RF bit becomes "1".

Figure 22-4 shows the operation timing chart when the VLS0 reset output with sampling is specified.





The operation shown in Figure 22-4 is described below:

- (1) Choose a detection voltage by the VLS0LV3 to VLS0LV0 bits of the VLS0LV register.
- (2) Choose "Sampling with LSCLK0" by the VLS0SM1 bit of the VLS0SMP register. And specify sampling clock dividing ratio by the VLS0DIV1 to VLS0DIV0 bits of the VLS0SMP register.
- (3) Write "0x2" or "0x3" to VLS0AMD1 and VLS0AMD0 bits of the VLS0MOD register in order to choose the supervisor mode.

Write "0x1" to VLS0SEL1 and VLS0SEL0 bits of the VLS0MOD register in order to enable the VLS0 reset.

- (4) Write "1" to the VLS0EN bit to enable VLS operation.
- (5) Wait until the comparison result of the VLS comparator is stabilized (approx. 300 µs).
- (6)  $V_{DD}$  becomes below the threshold voltage ( $V_{VLSF}$ ).
- (7) Once the comparison result of the VLS comparator is stabilized, the VLS0RF bit is set to "1" after three cycles of the sampling clock.
- (8) If the comparison result of the VLS comparator is below the threshold voltage (V<sub>VLSF</sub>) and this condition continues for the duration of three cycles or more of the sampling clock, the VLS0F bit is set to "1" and the VLS0 reset is generated.
- (9) If the comparison result of the VLS comparator becomes equal to or above the threshold voltage (V<sub>VLSR</sub>), the VLS0F bit is cleared to "0" to release the VLS0 reset.
- (10) The CPU starts after 512 cycles of low-speed clock. The VLS does not operate while the sampling clock is stops.
- (11) Write "0" to the VLS0EN bit to disable VLS operation.

#### [Note]

- Entering the STOP/STOP-D mode is not allowed during the VLS stabilization time. If entering the STOP/STOP-D mode after the supervisor mode is enabled, make sure that the VLS0RF bit is set to "1", and then enter the STOP/STOP-D mode.
- The initial value of the VLS detection voltage is 1.85V, so the MCU becomes in reset mode when the V<sub>DD</sub> is 1.85V or lower and VLS0 is specified as supervisor mode with the reset function. Therefore, set the detection voltage before enabling the VLS0 operation.
- If you want to use the VLS0 reset function like a reset IC, start the VLS when the CPU initially runs at the low-speed clock after the power up.

### 22.3.1.2 Interrupt Output

Figure 22-5 shows an example of the operation timing chart when the VLS0 interrupt output without sampling is specified.

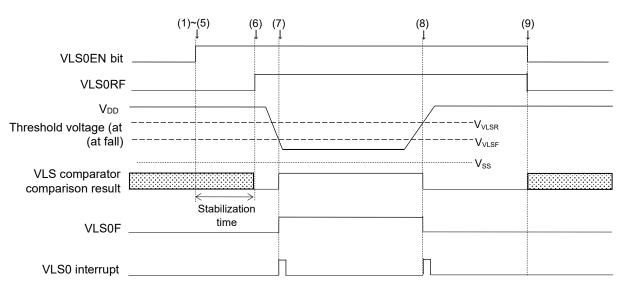



Figure 22-5 Operation Timing Chart When the VLS0 Interrupt Output without Sampling is specified

The operation shown in Figure 22-5 is described below:

- (1) Choose a detection voltage by the VLS0LV3 to VLS0LV0 bits of the VLS0LV register.
- (2) Choose "No sampling" by the VLS0SM1 bit of the VLS0SMP register.
- (3) Write "0x2" or "0x3" to VLS0AMD1 and VLS0AMD0 bits of VLS0MOD register in order to choose the supervisor mode.
- (4) Write "0x2" to VLS0SEL1 and VLS0SEL0 bits of the VLS0MOD register in order to enable the VLS0 interrupt.
- (5) Write "1" to the VLS0EN bit to enable VLS operation.
- (6) When the comparison result of the VLS comparator is stabilized, the VLS0RF bit is set to "1".
- (7) When  $V_{DD}$  becomes below the threshold voltage ( $V_{VLSF}$ ), the VLS0F bit is set to "1" to generate the VLS0 interrupt.
- (8) If V<sub>DD</sub> becomes equal to or above the threshold voltage (V<sub>VLSR</sub>), the VLS0F bit is cleared to "0" to generate the VLS0 interrupt.
- (9) Write "0" to the VLS0EN bit to disable VLS operation.

Figure 22-6 shows an example of the operation timing chart when the VLS0 interrupt output with sampling is specified.

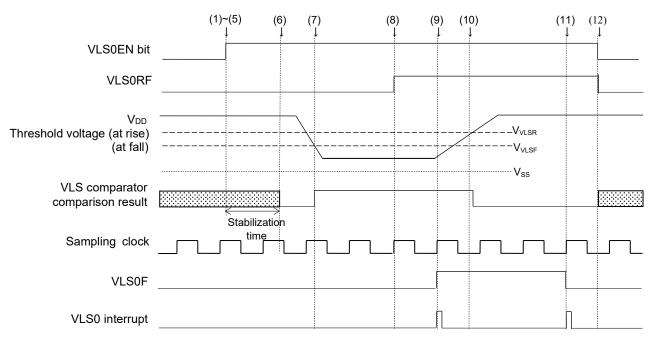



Figure 22-6 Operation Timing Chart When the VLS0 Interrupt Output with Sampling is specified

The operation shown in Figure 22-6 is described below:

- (1) Choose a detection voltage by the VLS0LV3 to VLS0LV0 bits of the VLS0LV register.
- (2) Choose "Sampling with LSCLK0" by the VLS0SM1 bit of the VLS0SMP register. And specify sampling clock dividing ratio by the VLS0DIV1 to VLS0DIV0 bits of the VLS0SMP register.
- (3) Write "0x2" or "0x3" to VLS0AMD1 and VLS0AMD0 bits of VLS0MOD register in order to choose the supervisor mode.
- (4) Write "0x2" to VLS0SEL1 and VLS0SEL0 bits of the VLS0MOD register in order to enable the VLS0 interrupt.
- (5) Write "1" to the VLS0EN bit to enable VLS operation.
- (6) Wait until the comparison result of the VLS comparator is stabilized (approx. 300 µs).
- (7)  $V_{DD}$  becomes below the threshold voltage ( $V_{VLSF}$ ).
- (8) Once the comparison result of the VLS comparator is stabilized, the VLS0RF bit is set to "1" after three cycles of the sampling clock.
- (9) If the comparison result of the VLS comparator is below the threshold voltage (V<sub>VLSF</sub>) and this condition continues for the duration of three cycles or more of the sampling clock, the VLS0F bit is set to "1" and the VLS0 interrupt is generated.
- (10) The comparison result of the VLS comparator becomes equal to or above the threshold voltage ( $V_{VLSR}$ ).
- (11) If the comparison result of the VLS comparator is equal to or above the threshold voltage (V<sub>VLSR</sub>) and this condition continues for the duration of three cycles or more of the sampling clock, the VLS0F bit is cleared to "0" and the VLS0 interrupt is generated.
- (12) Write "0" to the VLS0EN bit to disable VLS operation.

#### [Note]

- Entering the STOP/STOP-D mode is not allowed during the VLS stabilization time. If entering the STOP/STOP-D mode after the supervisor mode is enabled, make sure that the VLS0RF bit is set to "1", and then enter the STOP/STOP-D mode.
- When VLS0 is stopped (VLS0EN bit="0") while the V<sub>DD</sub> is lower than the specified threshold voltage (VLS0F bit="1"), the VLS0 interrupt is generated.

### 22.3.2 Single Mode

In the single mode, the software waits for the VLS0 interrupt to detect the voltage. It is useful for intermittently checking  $V_{\text{DD}}$ .

Figure 22-7 shows the flow chart for starting the VLS in the single mode.

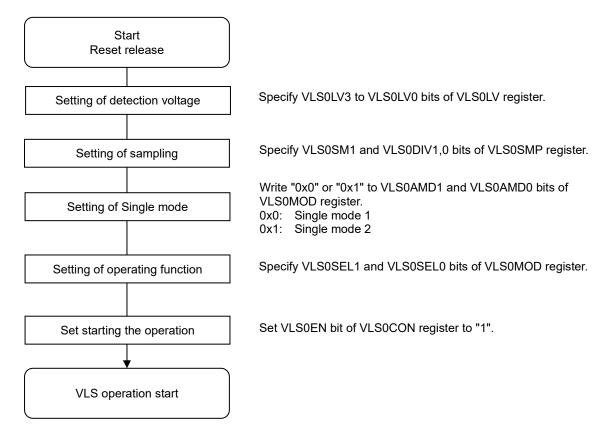



Figure 22-7 Flow chart for starting the VLS in the single mode

### 22.3.2.1 Single mode 1

The single mode 1 always generates the interrupt at completing the detection. Figure 22-8 shows an example of the operation timing chart without sampling in single mode 1.

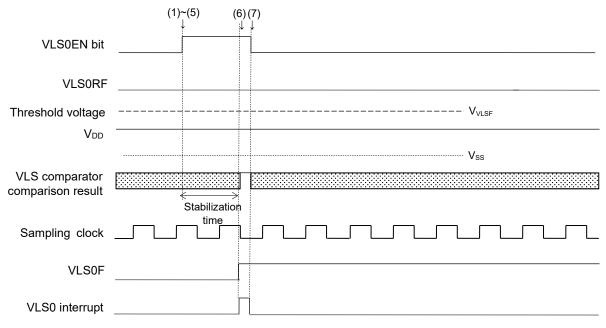



Figure 22-8 Operation Timing Chart without Sampling (Single Mode 1)

The operation shown in Figure 22-8 is described below:

- (1) Choose a detection voltage by the VLS0LV3 to VLS0LV0 bits of the VLS0LV register.
- (2) Choose "No sampling" by the VLS0SM1 bit of the VLS0SMP register.
- (3) Write "0x0" to VLS0AMD1 and VLS0AMD0 bits of VLS0MOD register in order to choose the single mode 1.
- (4) Write "0x2" to VLS0SEL1 and VLS0SEL0 bits of the VLS0MOD register in order to enable the VLS0 interrupt.
- (5) Write "1" to the VLS0EN bit to enable VLS operation.
- (6) If V<sub>DD</sub> is below the threshold voltage (V<sub>VLSF</sub>) when the comparison result of the VLS comparator is stabilized <sup>(\*1),</sup> the VLS0F bit is set to "1" and the VLS0 interrupt (detection complete) is generated. The VLS0 interrupt (detection complete) is generated regardless of the detection result of V<sub>DD</sub>.
- (7) After the interrupt is generated, the VLS0EN bit is cleared to "0" and VLS operation is disabled.
- (8) Read the VLS0F bit to confirm the detection result.

\*1: Stabilization time: Approximately 300 µs (approx. 300 µs + sampling clock cycle x 3 when sampling is enabled)

Figure 22-9 shows an example of the operation timing chart with sampling in single mode 1.

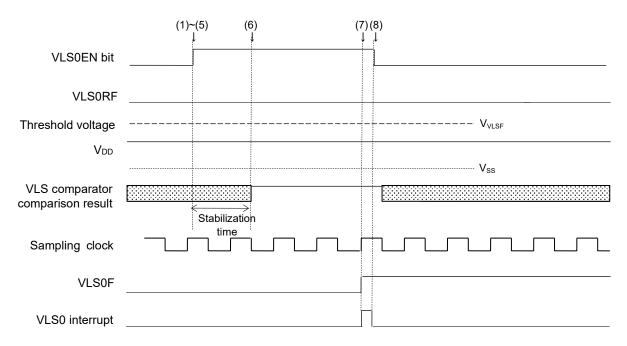



Figure 22-9 Operation Timing Chart with Sampling (Single Mode 1)

The operation shown in Figure 22-9 is described below:

- (1) Choose a detection voltage by the VLS0LV3 to VLS0LV0 bits of the VLS0LV register.
- (2) Choose "Sampling with LSCLK0" by the VLS0SM1 bit of the VLS0SMP register. And specify sampling clock dividing ratio by the VLS0DIV1 to VLS0DIV0 bits of the VLS0SMP register.
- (3) Write "0x0" to VLS0AMD1 and VLS0AMD0 bits of VLS0MOD register in order to choose the single mode 1.
- (4) Write "0x2" to VLS0SEL1 and VLS0SEL0 bits of the VLS0MOD register in order to enable the VLS0 interrupt.
- (5) Write "1" to the VLS0EN bit to enable VLS operation.
- (6) Wait until the comparison result of the VLS comparator is stabilized (approx. 300 µs).
- (7) If  $V_{DD}$  is below the threshold voltage ( $V_{VLSF}$ ) after three cycles of the sampling clock, the VLS0F bit is set to "1" and the VLS0 interrupt (detection complete) is generated. The VLS0 interrupt (detection complete) is generated regardless of the detection result of  $V_{DD}$ .
- (8) After the interrupt is generated, the VLS0EN bit is cleared to "0" and VLS operation is disabled.
- (9) Read the VLS0F bit to confirm the detection result.

#### [Note]

• Entering the STOP/STOP-D mode is not allowed while the single mode operation is in progress. Enter the STOP/STOP-D mode after the single mode operation is completed (VLS0EN bit="0").

### 22.3.2.2 Single mode 2

The single mode 2 generates the interrupt when the  $V_{DD}$  is lower than the threshold voltage. Figure 22-10 shows an example of the operation timing chart without sampling in single mode 2.

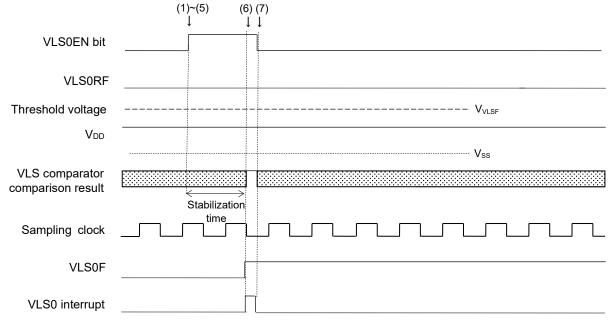



Figure 22-10 Operation Timing Chart without Sampling (Single Mode 2)

The operation shown in Figure 22-10 is described below:

- (1) Choose a detection voltage by the VLS0LV3 to VLS0LV0 bits of the VLS0LV register.
- (2) Choose "No sampling" by the VLS0SM1 bit of the VLS0SMP register.
- (3) Write "0x1" to VLS0AMD1 and VLS0AMD0 bits of VLS0MOD register in order to choose the single mode 2.
- (4) Write "0x2" to VLS0SEL1 and VLS0SEL0 bits of the VLS0MOD register in order to enable the VLS0 interrupt.
- (5) Write "1" to the VLS0EN bit to enable VLS.
- (6) If  $V_{DD}$  is below the specified threshold voltage ( $V_{VLSF}$ ) when the comparison result of the VLS comparator is stabilized, voltage level supervisor flag (VLS0F) is set to "1" and the VLS0 interrupt (low voltage) is generated. If  $V_{DD}$  is higher than the specified threshold voltage ( $V_{VLSF}$ ), the VLS0F bit is cleared to "0" and the VLS0 interrupt (low voltage) is not generated.
- (7) The VLS0EN bit is set to "0" and VLS is disabled regardless of whether the VLS0 interrupt occurs or not.

Figure 22-11 shows an example of the operation timing chart with sampling in single mode 2.

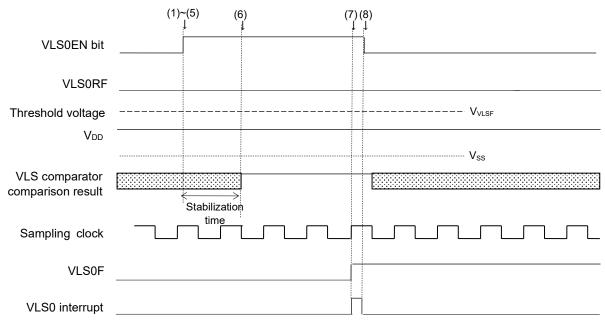



Figure 22-11 Operation Timing Chart with Sampling (Single Mode 2)

The operation shown in Figure 22-11 is described below:

- (1) Choose a detection voltage by the VLS0LV3 to VLS0LV0 bits of the VLS0LV register.
- (2) Choose "Sampling with LSCLK" by the VLS0SM1 bit of the VLS0SMP register. And specify sampling clock dividing ratio by the VLS0DIV1 to VLS0DIV0 bits of the VLS0SMP register.
- (3) Write "0x1" to VLS0AMD1 and VLS0AMD0 bits of VLS0MOD register in order to choose the single mode 2.
- (4) Write "0x2" to VLS0SEL1 and VLS0SEL0 bits of the VLS0MOD register in order to enable the VLS0 interrupt.
- (5) Write "1" to the VLS0EN bit to enable VLS operation.
- (6) Wait until the comparison result of the VLS comparator is stabilized (approx. 300 µs).
- (7) If  $V_{DD}$  is below the threshold voltage ( $V_{VLSF}$ ) after three cycles of the sampling clock, the VLS0F bit is set to "1" and the VLS0 interrupt (low voltage) is generated. If  $V_{DD}$  is equal to or above the threshold voltage ( $V_{VLSF}$ ), the VLS0F bit is cleared to "0" and the VLS0 interrupt (low voltage) is not generated.
- (8) The VLS0EN bit is set to "0" and VLS is disabled regardless of whether the VLS0 interrupt occurs or not.

#### [Note]

- Entering the STOP/STOP-D mode is not allowed while the single mode operation is in progress. Enter the STOP/STOP-D mode after the single mode operation is completed (VLS0EN bit="0").
- If V<sub>DD</sub> is higher than the specified threshold voltage, the VLS0 interrupt is not generated.

# Chapter 23 Successive Approximation Type A/D Converter

# 23. Successive Approximation Type A/D Converter

### 23.1 General Description

ML62Q2500 group has the Successive Approximation type A/D Converter (SA-ADC), converts an analog input level to a digital value.

The number of A/D Converter channels is dependent of the product specification. Table 23-1 shows the number of channels.

| Channel no.  | ML62Q2500<br>group |
|--------------|--------------------|
| 0            | •                  |
| 1            | •                  |
| 2            | •                  |
| 3            | •                  |
| 4            | •                  |
| 5            | •                  |
| 6            | •                  |
| 7            | •                  |
| 8            | •                  |
| 9            | •                  |
| 10           | •                  |
| 11           | •                  |
| 12           | •                  |
| 13           | •                  |
| •: Available | : Unavailable      |

#### Table 23-1 Number of A/D Converter channels

#### 23.1.1 Features

- Resolution : 12bit
- Conversion time : Min. 1.375µs/channel (conversion clock is 16MHz)
- Number of input channel : Max. 14ch
- Reference voltage: Voltage input from the VDD pin or External reference voltage(VREF pin)
- Sampling time can be chosen
- Consecutive scan conversion function for target channels
- Consecutive scan conversion with a specific interval time
- One conversion result register for each channel
- Upper /Lower limit is configurable for the conversion result, generates an interrupt
- A built-in temperature sensor usable for the low-speed RC oscillation adjustment
- A/D converter self test function (full scale, zero scale, internal reference voltage)
- Following triggers is available to start the A/D conversion
- 16-bit Timer interrupt request (TM1INT, TM2INT, TM3INT)
- Functional Timer trigger (FTM0TRG, FTM1TRG)
- Low-speed Time Base Counter interrupt (LTB0INT, LTB2INT)

### 23.1.2 Configuration

Figure 23-1 shows the configuration of SA-ADC.

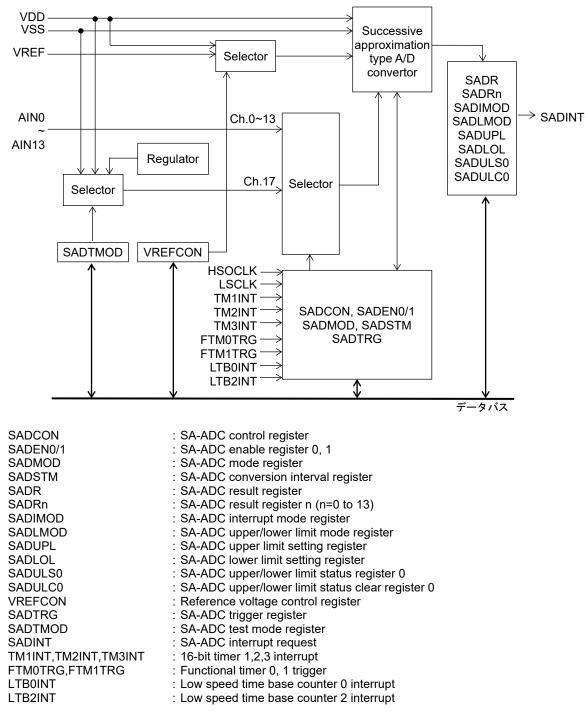



Figure 23-1 Configuration of successive approximation type A/D Converter

### 23.1.3 List of Pins

The I/O pins of the Successive Approximation type A/D converter are assigned to the shared function of the general ports.

| Pin name | I/O | Description                       |
|----------|-----|-----------------------------------|
| VDD      | -   | Positive power supply for SA-ADC  |
| VSS      | -   | Negative power supply for SA-ADC  |
| VREF     | -   | Reference power supply for SA-ADC |
| AIN0     |     | SA-ADC channel 0 analog input     |
| AIN1     |     | SA-ADC channel 1 analog input     |
| AIN2     | I   | SA-ADC channel 2 analog input     |
| AIN3     |     | SA-ADC channel 3 analog input     |
| AIN4     |     | SA-ADC channel 4 analog input     |
| AIN5     |     | SA-ADC channel 5 analog input     |
| AIN6     |     | SA-ADC channel 6 analog input     |
| AIN7     |     | SA-ADC channel 7 analog input     |
| AIN8     |     | SA-ADC channel 8 analog input     |
| AIN9     |     | SA-ADC channel 9 analog input     |
| AIN10    |     | SA-ADC channel 10 analog input    |
| AIN11    |     | SA-ADC channel 11 analog input    |
| AIN12    |     | SA-ADC channel 12 analog input    |
| AIN13    |     | SA-ADC channel 13 analog input    |

Table 23-2 shows the list of the general ports used for the A/D Converter and the register settings of the ports.

| 10             |             | 1 0113 | used in the A/D | COnventer a         | and the register | settings           |
|----------------|-------------|--------|-----------------|---------------------|------------------|--------------------|
| Channel<br>no. | Pin<br>name | S      | Shared port     | Setting<br>Register | Setting value    | ML62Q2500<br>group |
| 0              | AIN0        | P20    | Primary Func.   | P2MOD0              | 0000_0000        | •                  |
| 1              | AIN1        | P21    | Primary Func.   | P2MOD1              | 0000_0000        | •                  |
| 2              | AIN2        | P22    | Primary Func.   | P2MOD2              | 0000_0000        | •                  |
| 3              | AIN3        | P23    | Primary Func.   | P2MOD3              | 0000_0000        | •                  |
| 4              | AIN4        | P24    | Primary Func.   | P2MOD4              | 0000_0000        | •                  |
| 5              | AIN5        | P25    | Primary Func.   | P2MOD5              | 0000_0000        | •                  |
| 6              | AIN6        | P26    | Primary Func.   | P2MOD6              | 0000_0000        | •                  |
| 7              | AIN7        | P27    | Primary Func.   | P2MOD7              | 0000_0000        | •                  |
| 8              | AIN8        | P31    | Primary Func.   | P3MOD1              | 0000_0000        | •                  |
| 9              | AIN9        | P32    | Primary Func.   | P3MOD2              | 0000_0000        | •                  |
| 10             | AIN10       | P33    | Primary Func.   | P3MOD3              | 0000_0000        | •                  |
| 11             | AIN11       | P70    | Primary Func.   | P7MOD0              | 0000_0000        | •                  |
| 12             | AIN12       | P71    | Primary Func.   | P7MOD1              | 0000_0000        | •                  |
| 13             | AIN13       | P13    | Primary Func.   | P1MOD3              | 0000_0000        | •                  |
| -              | VREF        | P30    | Primary Func.   | P3MOD0              | 0000_0000        | •                  |

Table 23-2 Ports used in the A/D Converter and the register settings

#### [Note]

- When using the SA-ADC, set PnmIE bit and PnmOE bit of port n mode register 01/23/45/67 (n: port number 1, 2, 3, 7, m: bit number 0 to 7) to "0" as "Disable input" and "Disable output", otherwise a shootthrough current may flow.
- While the A/D converter is operating, an influence of the noise is reducible by preventing the switching of neighboring pins or A/D converting in the HALT mode.

## 23.2 Description of Registers

### 23.2.1 List of Registers

Registers for unequipped channels are not available to use. They return 0x0000 for reading.

| Address                | Nome                                                    | Syn      | nbol    | R/W     | Size | Initial |
|------------------------|---------------------------------------------------------|----------|---------|---------|------|---------|
| Address                | Name                                                    | Byte     | Word    | r./ v v | Size | value   |
| 0xF800                 | SA ADC mode register                                    | SADMODL  | CADMOD  | R/W     | 8/16 | 0x00    |
| 0xF801                 | <ul> <li>SA-ADC mode register</li> </ul>                | SADMODH  | SADMOD  | R/W     | 8    | 0x00    |
| 0xF802                 |                                                         | SADCONL  | SADCON  | R/W     | 8/16 | 0x00    |
| 0xF803                 | <ul> <li>SA-ADC control register</li> </ul>             | SADCONH  | SADCON  | R/W     | 8    | 0x00    |
| 0xF804                 |                                                         | SADSTML  | CADOTM  | R/W     | 8/16 | 0x00    |
| 0xF805                 | <ul> <li>SA-ADC conversion interval register</li> </ul> | SADSTMH  | SADSTM  | R/W     | 8    | 0x00    |
| 0xF806                 | Reference voltage control register                      | VREFCON  | -       | R/W     | 8    | 0x00    |
| 0xF807                 | Reserved                                                | -        | -       | -       | -    | -       |
| 0xF808                 | SA-ADC interrupt mode register                          | SADIMOD  | -       | R/W     | 8    | 0x00    |
| 0xF809                 | Reserved                                                | -        | -       | -       | -    | -       |
| 0xF80A                 | SA-ADC trigger register                                 | SADTRG   | -       | R/W     | 8    | 0x00    |
| 0xF80B                 | Reserved                                                | -        | -       | -       | -    | -       |
| 0xF80C                 |                                                         | SADEN0L  |         | R/W     | 8/16 | 0x00    |
| 0xF80D                 | <ul> <li>SA-ADC enable register 0</li> </ul>            | SADEN0H  | SADEN0  | R/W     | 8    | 0x00    |
| 0xF80E                 |                                                         | SADEN1L  |         | R/W     | 8/16 | 0x00    |
| 0xF80F                 | SA-ADC enable register 1                                | SADEN1H  | SADEN1  | R/W     | 8    | 0x00    |
| 0xF810<br>to<br>0xF81F | Reserved                                                | -        | -       | -       | -    | -       |
| 0xF820                 | SA-ADC upper/lower limit mode                           | SADLMODL |         | R/W     | 8/16 | 0x00    |
| 0xF821                 | register                                                | SADLMODH | SADLMOD | R/W     | 8    | 0x00    |
| 0xF822                 |                                                         | SADUPLL  |         | R/W     | 8/16 | 0xF0    |
| 0xF823                 | <ul> <li>SA-ADC upper limit setting register</li> </ul> | SADUPLH  | SADUPL  | R/W     | 8    | 0xFF    |
| 0xF824                 |                                                         | SADLOLL  |         | R/W     | 8/16 | 0x00    |
| 0xF825                 | <ul> <li>SA-ADC lower limit setting register</li> </ul> | SADLOLH  | SADLOL  | R/W     | 8    | 0x00    |
| 0xF826                 | SA-ADC upper/lower limit status                         | SADULS0L |         | R       | 8/16 | 0x00    |
| 0xF827                 | register 0                                              | SADULS0H | SADULS0 | R       | 8    | 0x00    |
| 0xF828                 | Reserved                                                | -        | -       | -       | -    | -       |
| 0xF829                 | Reserved                                                | -        | -       | -       | -    | -       |
| 0xF82A                 | SA-ADC upper/lower limit status clear                   | SADULCOL |         | W       | 8/16 | 0x00    |
| 0xF82B                 | register 0                                              | SADULC0H | SADULC0 | W       | 8    | 0x00    |
| 0xF82C                 | Reserved                                                | -        | -       | -       | -    | -       |
| 0xF82D                 | Reserved                                                | -        | -       | -       | -    | -       |
| 0xF82E<br>to<br>0xF82F | Reserved                                                | -        | -       | -       | -    | -       |
| 0xF830                 | SA-ADC test mode register                               | SADTMOD  | -       | R/W     | 8    | 0x00    |
| 0xF831<br>to<br>0xF83D | Reserved                                                |          |         | -       | -    | -       |

### ML62Q2500 Group User's Manual Chapter 23 Successive Approximation Type A/D Converter

| Address | Nome                                          | Syr     | mbol   | R/W | Cina | Initial |
|---------|-----------------------------------------------|---------|--------|-----|------|---------|
| Address | Name                                          | Byte    | Word   | R/W | Size | value   |
| 0xF83E  |                                               | SADRL   | CADD   | R   | 8/16 | 0x00    |
| 0xF83F  | <ul> <li>SA-ADC result register</li> </ul>    | SADRH   | SADR   | R   | 8    | 0x00    |
| 0xF840  |                                               | SADR0L  | 04000  | R   | 8/16 | 0x00    |
| 0xF841  | <ul> <li>SA-ADC result register 0</li> </ul>  | SADR0H  | SADR0  | R   | 8    | 0x00    |
| 0xF842  |                                               | SADR1L  |        | R   | 8/16 | 0x00    |
| 0xF843  | <ul> <li>SA-ADC result register 1</li> </ul>  | SADR1H  | SADR1  | R   | 8    | 0x00    |
| 0xF844  |                                               | SADR2L  | 04000  | R   | 8/16 | 0x00    |
| 0xF845  | <ul> <li>SA-ADC result register 2</li> </ul>  | SADR2H  | SADR2  | R   | 8    | 0x00    |
| 0xF846  |                                               | SADR3L  | 04000  | R   | 8/16 | 0x00    |
| 0xF847  | <ul> <li>SA-ADC result register 3</li> </ul>  | SADR3H  | SADR3  | R   | 8    | 0x00    |
| 0xF848  |                                               | SADR4L  | 04004  | R   | 8/16 | 0x00    |
| 0xF849  | <ul> <li>SA-ADC result register 4</li> </ul>  | SADR4H  | SADR4  | R   | 8    | 0x00    |
| 0xF84A  |                                               | SADR5L  | 04005  | R   | 8/16 | 0x00    |
| 0xF84B  | <ul> <li>SA-ADC result register 5</li> </ul>  | SADR5H  | SADR5  | R   | 8    | 0x00    |
| 0xF84C  |                                               | SADR6L  | CADDO  | R   | 8/16 | 0x00    |
| 0xF84D  | <ul> <li>SA-ADC result register 6</li> </ul>  | SADR6H  | SADR6  | R   | 8    | 0x00    |
| 0xF84E  |                                               | SADR7L  | 04007  | R   | 8/16 | 0x00    |
| 0xF84F  | <ul> <li>SA-ADC result register 7</li> </ul>  | SADR7H  | SADR7  | R   | 8    | 0x00    |
| 0xF850  |                                               | SADR8L  | 04000  | R   | 8/16 | 0x00    |
| 0xF851  | <ul> <li>SA-ADC result register 8</li> </ul>  | SADR8H  | SADR8  | R   | 8    | 0x00    |
| 0xF852  |                                               | SADR9L  | 64000  | R   | 8/16 | 0x00    |
| 0xF853  | <ul> <li>SA-ADC result register 9</li> </ul>  | SADR9H  | SADR9  | R   | 8    | 0x00    |
| 0xF854  |                                               | SADR10L | 040040 | R   | 8/16 | 0x00    |
| 0xF855  | <ul> <li>SA-ADC result register 10</li> </ul> | SADR10H | SADR10 | R   | 8    | 0x00    |
| 0xF856  |                                               | SADR11L | 040044 | R   | 8/16 | 0x00    |
| 0xF857  | <ul> <li>SA-ADC result register 11</li> </ul> | SADR11H | SADR11 | R   | 8    | 0x00    |
| 0xF858  |                                               | SADR12L | 045540 | R   | 8/16 | 0x00    |
| 0xF859  | <ul> <li>SA-ADC result register 12</li> </ul> | SADR12H | SADR12 | R   | 8    | 0x00    |
| 0xF85A  |                                               | SADR13L | 045540 | R   | 8/16 | 0x00    |
| 0xF85B  | SA-ADC result register 13                     | SADR13H | SADR13 | R   | 8    | 0x00    |

## 23.2.2 SA-ADC Mode Register (SADMOD)

This is a SFR to set an operation mode and operating clock frequency for SA-ADC.

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/<br>e: 8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (F800 (<br>/W<br>16 bit<br>(0000 | SADM                                   | ODL/SA                                        | DMOD                                     | ), 0xF                                 | 801 (SA                                                            | DMOD                                       | H)                                      |                      |              |          |                     |          |          |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|----------------------|--------------|----------|---------------------|----------|----------|
|                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                               | 12                                     | 11                                            | 10                                       | 9                                      | 8                                                                  | 7                                          | 6                                       | 5                    | 4            | 3        | 2                   | 1        | 0        |
| Word                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                        |                                               |                                          |                                        | SAD                                                                | MOD                                        |                                         |                      |              |          |                     |          |          |
| Byte                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | SADI                                   | NODH                                          |                                          |                                        |                                                                    |                                            |                                         |                      | SADI         | MODL     |                     |          |          |
| Bit                     | SAINIT<br>T3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAINIT<br>T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAINIT<br>T1                     | SAINIT<br>T0                           | SAINIT                                        | -                                        | -                                      | SASHT<br>4                                                         | SASHT<br>3                                 | SASHT<br>2                              | SASHT                | SASHT<br>0   | SACK2    | SACK1               | SACK0    | SALP     |
| R/W<br>Initial<br>value | R/W<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R/W<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R/W<br>0                         | R/W<br>0                               | R/W<br>0                                      | R<br>0                                   | R<br>0                                 | R/W<br>0                                                           | R/W<br>0                                   | R/W<br>0                                | R/W<br>0             | R/W<br>0     | R/W<br>0 | R/W<br>0            | R/W<br>0 | R/W<br>0 |
| Bit No.                 | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bit symbol Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                                        |                                               |                                          |                                        |                                                                    |                                            |                                         |                      |              |          |                     |          |          |
| 15 to 12                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAINITT3 to       These bits are used to be configured amplifier stability time at conversion starting.         SAINITT0       wait time for stability [s] = setting value / SAD_CLK frequency         This time should be equal or more than 0.5[µs]       When SAINIT="1", it is included discharge time for sample hold capacitor.         In this case, this time should be equal or more than 0.65[µs].       Make decision on the value with external impedance of input pin.         Table 23-3 shows example for typical setting.       The setting. |                                  |                                        |                                               |                                          |                                        |                                                                    |                                            |                                         |                      |              |          |                     |          |          |
| 11                      | SAINIT       This is used to control whether or not to discharge the electrical charge remained in the sample hold capacitor on the previous A/D conversion, before starting the next SA-ADC conversion.         0:       Without discharging (Initial value)         1:       With discharging                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                        |                                               |                                          |                                        |                                                                    |                                            |                                         |                      |              |          |                     |          |          |
| 10 to 9                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | Reserve                                | ed bits                                       |                                          |                                        |                                                                    |                                            |                                         |                      |              |          |                     |          |          |
| 8 to 4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SHT4 to<br>SHT0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-<br>                       | samp<br>This sei<br>This tim<br>Make d | ling time<br>tting val<br>le shoul<br>ecision | e [s] = (<br>ue sho<br>d be eo<br>on the | (setting<br>uld be<br>qual of<br>value |                                                                    | + 1) / S/<br>r more<br>nan 0.5<br>ernal im | AD_CL<br>than 3.<br>[µs] at `<br>npedan | V <sub>REF</sub> ≥2. | -<br>7V, 4[μ |          | <sub>REF</sub> ≥2.1 | V        |          |
| 3 to 1                  | Make decision on the value with external impedance of input pin.<br>Table 23-4 shows example for typical setting.         SACK2 to<br>SACK0       These bits are used to choose the frequency of the A/D conversion operating clock<br>(SAD_CLK). The SAD_CLK frequency should be equal or lower 16 MHz.<br>000: 1/1 x HSOCLK (Initial value)<br>001: 1/2 x HSOCLK<br>010: 1/4 x HSOCLK<br>010: 1/4 x HSOCLK<br>011: 1/8 x HSOCLK<br>100: 1/16 x HSOCLK<br>101: Do not use<br>110: Do not use<br>111: 1/1 x LSCLK0<br>The following formula is calculated A/D conversion time without discharge/amp. stability t |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                        |                                               |                                          |                                        |                                                                    |                                            |                                         |                      | ty time      |          |                     |          |          |
| 0                       | SAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                | This bit<br>channe<br>convers<br>0: Si | is used<br>l or cons<br>sion moo<br>ngle A/[  | to cho<br>secutiv<br>le is sp<br>) conve | ose w<br>ely. Tł<br>pecifie<br>ersion  | SASHT4<br>hether the<br>conve<br>d in the<br>(Initial v<br>convers | ne A/D o<br>ersion ir<br>SADST<br>alue)    | convers<br>nterval 1                    | sion is p<br>time in | perform      | ed onc   | e only f            | for each | 1        |

#### Table 23-3 Example for SAINITT3 to 0 setting

|         |                                 | i i o u setting  |
|---------|---------------------------------|------------------|
|         | SAINITT3 to 0                   | SAINITT3 to 0    |
|         | SAINIT=1                        | SAINIT=0         |
| SAD_CLK | (Discharge time/Amp. stability) | (Amp. stability) |
|         |                                 |                  |
|         | > 0.65us                        | > 0.5us          |
| 16 MHz  | 1010                            | 1000             |
| 12 MHz  | 1000                            | 0110             |
| 8 MHz   | 0101                            | 0100             |
| 6 MHz   | 0100                            | 0011             |
| 4 MHz   | 0011                            | 0010             |
| < 4 MHz | 0010                            | 0010             |

|            |                         | SASHT4 to 0             |                         |
|------------|-------------------------|-------------------------|-------------------------|
| SAD_CLK    |                         | (Sampling time)         |                         |
|            | V <sub>REF</sub> ≥ 2.1V | V <sub>REF</sub> ≥ 2.4V | V <sub>REF</sub> ≥ 2.7V |
| ~ 16 MHz   | -                       | -                       | 00111                   |
| ~ 8 MHz    | -                       | 00011                   | 00011                   |
| 1 MHz      | 00011                   | 00011                   | 00011                   |
| 32.768 kHz | 00011                   | 00011                   | 00011                   |

#### Table 23-4 Example for SASHT4 to 0 setting

## 23.2.3 SA-ADC Control Register (SADCON)

SADCON is a SFR used to control the operation of the A/D converter.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R/<br>e: 8/*     |    | SADCC   | ONL/SA   | DCON     | ), 0xF8 | 03 (SA   | DCONI | 4)        |          |          |          |      |            |           |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|---------|----------|----------|---------|----------|-------|-----------|----------|----------|----------|------|------------|-----------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14               | 13 | 12      | 11       | 10       | 9       | 8        | 7     | 6         | 5        | 4        | 3        | 2    | 1          | 0         |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |    |         |          |          |         | SAD      | CON   |           |          |          |          |      |            |           |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |    | SADO    | CONH     |          |         |          |       |           |          | SAD      | CONL     |      |            |           |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                | -  | -       | -        | -        | -       | -        | -     | -         | -        | -        | -        | -    | SATGE<br>N | SARU<br>N |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                | R  | R       | R        | R        | R       | R        | R     | R         | R        | R        | R        | R    | R/W        | R/W       |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                | 0  | 0       | 0        | 0        | 0       | 0        | 0     | 0         | 0        | 0        | 0        | 0    | 0          | 0         |
| Bit No.          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | it symbo<br>name | ol |         |          |          |         |          | De    | escriptio | on       |          |          |      |            |           |
| 15 to 2          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | I  | Reserve | ed bits  |          |         |          |       |           |          |          |          |      |            |           |
| 1                | SAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GEN              | -  |         | sable th | ne trigg | er oper | ation (I |       |           | on by tl | he trigg | jer ever | nts. |            |           |
| 0                | 1: Enable the trigger operation         SARUN       This bit is used to start or stop the A/D conversion.<br>Write "1" to this bit to start the A/D conversion, and "0" to stop it.<br>When "0" is written to SALP bit and the A/D conversion on the largest number of channel i<br>ended, this SARUN bit is automatically reset to "0".<br>When "1" is written to SALP, the A/D conversion repeats until the SARUN bit is reset to "0"<br>the software.         0:       Stop the A/D conversion (Initial value)<br>1: |                  |    |         |          |          |         |          |       |           |          |          |          |      |            |           |

[Note]

- Start the A/D conversion with one or more channels chosen by the SA-ADC enable registers (SADEN0 and SADEN1). If no channel is chosen, the operation does not start.
- Enter STOP/STOP-D mode after checking SARUN bit is "0". It does not enter the STOP/STOP-D mode when the SARUN bit is "1".
- When SACK2 to 0 bits are set to 0x7, it takes max. 3 clocks of the low-speed clock (LSCLK0) to start or stop the A/D conversion after setting or resetting the SARUN bit.

## 23.2.4 SA-ADC Conversion Interval Register (SADSTM)

This is a SFR used to set the interval time in the consecutive scan A/D conversion mode.

| Acce<br>Acce     | ress :<br>ess :<br>ess size<br>Il value | R/<br>e: 8/  | (F804 (<br>/W<br>16 bit<br>(0000 | SADST        | ML/SA        | DSTM)        | , 0xF8(     | )5 (SAE     | DSTMH       | I)          |             |             |             |             |             |             |
|------------------|-----------------------------------------|--------------|----------------------------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                  | 15                                      | 14           | 13                               | 12           | 11           | 10           | 9           | 8           | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
| Word             |                                         |              |                                  |              |              |              |             | SAD         | STM         |             |             |             |             |             |             |             |
| Byte             |                                         |              |                                  | SADS         | STMH         |              |             |             |             |             |             | SAD         | STML        |             |             |             |
| Bit              | SADST<br>M15                            | SADST<br>M14 | SADST<br>M13                     | SADST<br>M12 | SADST<br>M11 | SADST<br>M10 | SADST<br>M9 | SADST<br>M8 | SADST<br>M7 | SADST<br>M6 | SADST<br>M5 | SADST<br>M4 | SADST<br>M3 | SADST<br>M2 | SADST<br>M1 | SADST<br>M0 |
| R/W              | R/W                                     | R/W          | R/W                              | R/W          | R/W          | R/W          | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         |
| Initial<br>value | 0                                       | 0            | 0                                | 0            | 0            | 0            | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |

The interval time is determined by the following formula.

A/D conversion interval time = HSCLK cycle x SADSTM setting value

For an example, supposing to A/D convert channel 2 and channel 5, the A/D conversion interval time means the time after the channel 2 and channel 5 are A/D converted consecutively and before the A/D conversion of channel 2 is started. The next A/D conversion starts at the timing that the value set in this register has been counted with SAD\_CLK.

### 23.2.5 Reference Voltage Control Register (VREFCON)

This is a SFR used to choose reference voltage for the SA-ADC.

|                  |      | R/<br>e: 81     | W  | VREFC   | ON)                            |            |          |         |        |           |         |            |     |   |   |      |
|------------------|------|-----------------|----|---------|--------------------------------|------------|----------|---------|--------|-----------|---------|------------|-----|---|---|------|
|                  | 15   | 14              | 13 | 12      | 11                             | 10         | 9        | 8       | 7      | 6         | 5       | 4          | 3   | 2 | 1 | 0    |
| Word             |      |                 |    |         |                                |            |          |         | -      |           |         |            |     |   |   |      |
| Byte             |      |                 |    |         | -                              |            |          |         |        |           |         | VREF       | CON |   |   |      |
| Bit              | -    | -               | -  | -       | -                              | -          | -        | -       | -      | -         | -       | VREFP<br>0 | -   | - | - | rsvd |
| R/W              | R    | R               | R  | R       | R                              | R          | R        | R       | R      | R         | R       | R/W        | R   | R | R | R/W  |
| Initial<br>value | 0    | 0               | 0  | 0       | 0                              | 0          | 0        | 0       | 0      | 0         | 0       | 0          | 0   | 0 | 0 | 0    |
| Bit No.          | В    | it symb<br>name | ol |         |                                |            |          |         | De     | escriptio | on      |            |     |   |   |      |
| 7 to 5           | -    |                 | I  | Reserve | ed bits                        |            |          |         |        |           |         |            |     |   |   |      |
| 4                | VRE  | FP0             | -  | 0: VE   | used to<br>DD pin (<br>REF pin | (Initial v |          | ference | voltag | e for th  | e A/D c | conversi   | on. |   |   |      |
| 3 to 1           | -    |                 |    | Reserve | ed bits                        |            |          |         |        |           |         |            |     |   |   |      |
| 0                | rsvd |                 |    | Reserve | ed bit. S                      | Set "0" t  | o this b | it.     |        |           |         |            |     |   |   |      |

## 23.2.6 SA-ADC Interrupt Mode Register (SADIMOD)

This is a SFR used to choose the interrupt mode of the SA-ADC.

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R/<br>e: 8      | W  | (SADIM  | OD)     |    |   |   |    |           |    |     |      |   |             |             |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|---------|---------|----|---|---|----|-----------|----|-----|------|---|-------------|-------------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14              | 13 | 12      | 11      | 10 | 9 | 8 | 7  | 6         | 5  | 4   | 3    | 2 | 1           | 0           |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |    |         |         |    |   |   | -  |           |    |     |      |   |             |             |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |    |         | -       |    |   |   |    |           |    | SAD | IMOD |   |             |             |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -               | -  | -       | -       | -  | - | - | -  | -         | -  | -   | -    | - | SADIM<br>D1 | SADIM<br>D0 |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R               | R  | R       | R       | R  | R | R | R  | R         | R  | R   | R    | R | R/W         | R/W         |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0               | 0  | 0       | 0       | 0  | 0 | 0 | 0  | 0         | 0  | 0   | 0    | 0 | 0           | 0           |
| Bit No.          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | it symb<br>name | ol |         |         |    |   |   | De | escriptio | on |     |      |   |             |             |
| 7 to 2           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |    | Reserve | ed bits |    |   |   |    |           |    |     |      |   |             |             |
| 1                | <ul> <li>Reserved bits</li> <li>SADIMD1</li> <li>This bit is used to choose the occurrence timing of SA-ADC interrupt request with upper/lower limit detection function.</li> <li>0: Make the interrupt request at a timing corresponding to SADIMD0 setting, only when the detection function result coincides. (Initial value)</li> <li>1: Make the interrupt request at a timing corresponding to SADIMD0 setting without the detection function result.</li> </ul> |                 |    |         |         |    |   |   |    |           |    |     |      |   |             |             |
| 0                | SADIMD0       This bit is used to choose the occurrence timing of SA-ADC interrupt request.         0:       Make the interrupt request after the A/D conversion is completed on all channels (I value)         1:       Make the interrupt request whenever the A/D conversion is completed on each channels                                                                                                                                                          |                 |    |         |         |    |   |   |    |           |    |     |      |   |             |             |

### 23.2.7 SA-ADCTrigger Register (SADTRG)

This is a SFR used to control the trigger event for the SA-ADC.

|                  |    | R/<br>: 81             | W  | (SADTF  | RG)     |    |   |   |   |   |   |    |            |            |            |            |
|------------------|----|------------------------|----|---------|---------|----|---|---|---|---|---|----|------------|------------|------------|------------|
|                  | 15 | 14                     | 13 | 12      | 11      | 10 | 9 | 8 | 7 | 6 | 5 | 4  | 3          | 2          | 1          | 0          |
| Word             |    |                        |    |         |         |    |   |   | - |   |   |    |            |            |            |            |
| Byte             |    |                        |    |         | -       |    |   |   |   |   |   | SA | DTRG       |            |            |            |
| Bit              | -  | -                      | -  | -       | -       | -  | - | - | - | - | - | -  | SASTS<br>3 | SASTS<br>2 | SASTS<br>1 | SASTS<br>0 |
| R/W              | R  | R                      | R  | R       | R       | R  | R | R | R | R | R | R  | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0  | 0                      | 0  | 0       | 0       | 0  | 0 | 0 | 0 | 0 | 0 | 0  | 0          | 0          | 0          | 0          |
| Bit No.          | В  | Bit symbol Description |    |         |         |    |   |   |   |   |   |    |            |            |            |            |
| 7 to 4           | -  |                        |    | Reserve | ed bits |    |   |   |   |   |   |    |            |            |            |            |
| 3 to 0           |    |                        |    |         |         |    |   |   |   |   |   |    |            |            |            |            |

### 23.2.8 SA-ADC Enable Register 0 (SADEN0)

This is a SFR used to choose channels of the A/D converter and enable/disable the conversion.

|                  |    | R/<br>: 8/ | (F80C (<br>/W<br>16 bit<br>(0000 | SADEN      | IOL/SA     | DEN0),     | 0xF80      | D (SAE     | DEN0H      | )          |            |            |            |            |            |            |
|------------------|----|------------|----------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                  | 15 | 14         | 13                               | 12         | 11         | 10         | 9          | 8          | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Word             |    |            |                                  |            |            |            |            | SAD        | EN0        |            |            |            |            |            |            |            |
| Byte             |    |            |                                  | SAD        | EN0H       |            |            |            |            |            |            | SAD        | EN0L       |            |            |            |
| Bit              | -  | -          | SACH<br>13                       | SACH<br>12 | SACH<br>11 | SACH<br>10 | SACH<br>09 | SACH<br>08 | SACH<br>07 | SACH<br>06 | SACH<br>05 | SACH<br>04 | SACH<br>03 | SACH<br>02 | SACH<br>01 | SACH<br>00 |
| R/W              | R  | R          | R/W                              | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        |
| Initial<br>value | 0  | 0          | 0                                | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |

Common description of each bits :

This bit is used to control enable/disable the conversion on a target channel.

- 0: Disabled (Initial value)
- 1: Enabled

When multiple bits of SACHn (n=00 to 17) are set to "1", the A/D conversion starts in the order of smaller channel number.

| Bit No. | Bit symbol<br>name | Description (target channel) |
|---------|--------------------|------------------------------|
| 15      | -                  | Reserved bits                |
| 14      | -                  | Reserved bits                |
| 13      | SACH13             | Channel 13                   |
| 12      | SACH12             | Channel 12                   |
| 11      | SACH11             | Channel 11                   |
| 10      | SACH10             | Channel 10                   |
| 9       | SACH09             | Channel 9                    |
| 8       | SACH08             | Channel 8                    |
| 7       | SACH07             | Channel 7                    |
| 6       | SACH06             | Channel 6                    |
| 5       | SACH05             | Channel 5                    |
| 4       | SACH04             | Channel 4                    |
| 3       | SACH03             | Channel 3                    |
| 2       | SACH02             | Channel 2                    |
| 1       | SACH01             | Channel 1                    |
| 0       | SACH00             | Channel 0                    |

#### [Note]

Do not start the A/D conversion when the all bits of SACHn (n=00 to 17) are "0". In that case SARUN bit of SADCON register does not get to "1".

### 23.2.9 SA-ADC Enable Register 1 (SADEN1)

This is a SFR used to choose channels of the A/D converter and enable/disable the conversion.

| Acces<br>Acces   | Access :<br>Access size :<br>Initial value :                                                                                                                                                                                              |    |    | SADEN   | I1L/SAI | DEN1), | 0xF80 | F (SAC | )EN1H) |   |       |     |      |   |            |   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|---------|---------|--------|-------|--------|--------|---|-------|-----|------|---|------------|---|
|                  | 15                                                                                                                                                                                                                                        | 14 | 13 | 12      | 11      | 10     | 9     | 8      | 7      | 6 | 5     | 4   | 3    | 2 | 1          | 0 |
| Word             |                                                                                                                                                                                                                                           |    |    |         |         |        |       | SAD    | EN1    |   |       |     |      |   |            |   |
| Byte             |                                                                                                                                                                                                                                           |    |    | SAD     | EN1H    |        |       |        |        |   |       | SAD | EN1L |   |            |   |
| Bit              | -                                                                                                                                                                                                                                         | -  | -  | -       | -       | -      | -     | -      | -      | - | -     | -   | -    | - | SACH<br>17 | - |
| R/W              | R                                                                                                                                                                                                                                         | R  | R  | R       | R       | R      | R     | R      | R      | R | R     | R   | R    | R | R/W        | R |
| Initial<br>value | 0                                                                                                                                                                                                                                         | 0  | 0  | 0       | 0       | 0      | 0     | 0      | 0      | 0 | 0     | 0   | 0    | 0 | 0          | 0 |
| Bit No.          | o. Bit symbol Description (target channel)                                                                                                                                                                                                |    |    |         |         |        |       |        |        |   |       |     |      |   |            |   |
| 15 to 2          | 2 - Reserved bits                                                                                                                                                                                                                         |    |    |         |         |        |       |        |        |   |       |     |      |   |            |   |
| 1                | <ul> <li>SACH17 This bits is used to control enable/disable the conversion on channel 17; A/D converter test.</li> <li>0: Disable the conversion on channel 17 (initial value)</li> <li>1: Enable the conversion on channel 17</li> </ul> |    |    |         |         |        |       |        |        |   | test. |     |      |   |            |   |
| 0                | -                                                                                                                                                                                                                                         |    | F  | Reserve | ed bit  |        |       |        |        |   |       |     |      |   |            |   |

#### [Note]

Do not start the A/D conversion when the all bits of SACHn (n=00 to 17) are "0". In that case SARUN bit of SADCON register does not get to "1".

### 23.2.10 SA-ADC Upper/Lower Limit Mode Register (SADLMOD)

This is a SFR used to set modes in the A/D conversion result upper/lower limit detection function.

| ,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R/<br>e: 8/                     |    | (SADLM  | IODL/S  | ADLM | IOD), 0x   | (F821 (    | SADLM | ODH)     |    |      |      |   |   |       |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----|---------|---------|------|------------|------------|-------|----------|----|------|------|---|---|-------|
|                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                              | 13 | 12      | 11      | 10   | 9          | 8          | 7     | 6        | 5  | 4    | 3    | 2 | 1 | 0     |
| Word             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |    |         |         |      |            | SADL       | MOD   |          |    |      |      |   |   |       |
| Byte             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |    | SADL    | MODH    |      |            |            |       |          |    | SADL | MODL |   |   |       |
| Bit              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                               | -  | -       | -       | -    | SALMD<br>1 | SALMD<br>0 | -     | -        | I  | -    | -    | I | - | SALEN |
| R/W              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R                               | R  | R       | R       | R    | R/W        | R/W        | R     | R        | R  | R    | R    | R | R | R/W   |
| Initial<br>value | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |    |         |         |      |            |            |       |          |    |      |      |   |   |       |
| Bit No.          | name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |    |         |         |      |            |            |       | scriptic | on |      |      |   |   |       |
| 15 to 10         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |    | Reserve | ed bits |      |            |            |       |          |    |      |      |   |   |       |
| 9, 8             | -       Reserved bits         SALMD1,<br>SALMD0       These bits are used to set a condition of the A/D conversion result upper/lower limit<br>detection.<br>If the condition is satisfied, corresponding bits of the SA-ADC upper/lower status registers 0<br>(SADULS0) get to "1" and generates the SA-ADC interrupt request.<br>00: SADLOL value ≤ A/D conversion value ≤ SADUPL value (Initial value)<br>01: A/D conversion value > SADUPL value<br>10: A/D conversion value < SADLOL value<br>11: A/D conversion value > SADUPL or A/D conversion value < SADLOL value |                                 |    |         |         |      |            |            |       |          |    |      |      |   |   |       |
| 7 to 1           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |    | Reserve | ed bits |      |            |            |       |          |    |      |      |   |   |       |
| 0                | SALEN       This bit is used to enable or disable the A/D conversion result upper/lower limit detection         function. If the interrupt occurred by satisfying the upper/lower limit detection condition, check         the SA-ADC upper/lower status registers 0(SADULS0) to see which channel of A/D         conversion result matched to the condition.         SA-ADC Upper/Lower Limit Status Register 0 (SADULS0) are not updated when this bit is         "0".         0: Disabled (Initial value)         1: Enabled                                             |                                 |    |         |         |      |            |            |       |          |    |      |      |   |   |       |

### 23.2.11 SA-ADC Upper Limit Setting Register (SADUPL)

This is a SFR used to set the upper limit of A/D conversion result.

|                  | ess :<br>ess size | ss : R/W<br>ss size : 8/16 bit<br>value : 0xFFF0 |     |      |      |     |     |     |     |     |     |     |      |   |   |   |
|------------------|-------------------|--------------------------------------------------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|------|---|---|---|
|                  | 15                | 14                                               | 13  | 12   | 11   | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3    | 2 | 1 | 0 |
| Word             |                   | SADUPL                                           |     |      |      |     |     |     |     |     |     |     |      |   |   |   |
| Byte             |                   |                                                  |     | SADI | JPLH |     |     |     |     |     |     | SAD | JPLL |   |   |   |
| Bit              | d15               | d14                                              | d13 | d12  | d11  | d10 | d9  | d8  | d7  | d6  | d5  | d4  | -    | - | - | - |
| R/W              | R/W               | R/W                                              | R/W | R/W  | R/W  | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R    | R | R | R |
| Initial<br>value | 1                 | 1                                                | 1   | 1    | 1    | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 0    | 0 | 0 | 0 |

### 23.2.12 SA-ADC Lower Limit Setting Register (SADLOL)

This is a SFR used to set the lower limit of A/D conversion result.

| Address :       | 0xF824 (SADLOLL/SADLOL), 0xF825 (SADLOLH) |
|-----------------|-------------------------------------------|
| Access :        | R/W                                       |
| Access size :   | 8/16 bit                                  |
| Initial value : | 0x0000                                    |

|                  | 15  | 14  | 13  | 12  | 11   | 10  | 9   | 8   | 7   | 6   | 5   | 4    | 3   | 2 | 1 | 0 |
|------------------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|------|-----|---|---|---|
| Word             |     |     |     |     |      |     |     | SAD | LOL |     |     |      |     |   |   |   |
| Byte             |     |     |     | SAD | LOLH |     |     |     |     |     |     | SADI | OLL |   |   |   |
| Bit              | d15 | d14 | d13 | d12 | d11  | d10 | d9  | d8  | d7  | d6  | d5  | d4   | -   | - | - | - |
| R/W              | R/W | R/W | R/W | R/W | R/W  | R/W | R/W | R/W | R/W | R/W | R/W | R/W  | R   | R | R | R |
| Initial<br>value | 0   | 0   | 0   | 0   | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0 | 0 | 0 |

### 23.2.13 SA-ADC Upper/Lower Limit Status Register 0 (SADULS0)

This is a read-only SFR used to indicate whether the A/D conversion result matches to the condition of upper/lower limit.

| Acce<br>Acce     | dress : 0xF826 (SADULS0L/SADULS0), 0xF827 (SADULS0H)<br>cess : R<br>cess size : 8/16 bit<br>tial value : 0x0000 |    |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
|------------------|-----------------------------------------------------------------------------------------------------------------|----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                  | 15                                                                                                              | 14 | 13          | 12          | 11          | 10          | 9           | 8           | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
| Word             |                                                                                                                 |    |             |             |             |             |             | SAD         | ULS0        |             |             |             |             |             |             |             |
| Byte             |                                                                                                                 |    |             | SADL        | JLS0H       |             |             |             |             |             |             | SADL        | JLS0L       |             |             |             |
| Bit              | -                                                                                                               | -  | SAULS<br>13 | SAULS<br>12 | SAULS<br>11 | SAULS<br>10 | SAULS<br>09 | SAULS<br>08 | SAULS<br>07 | SAULS<br>06 | SAULS<br>05 | SAULS<br>04 | SAULS<br>03 | SAULS<br>02 | SAULS<br>01 | SAULS<br>00 |
| R/W              | R                                                                                                               | R  | R           | R           | R           | R           | R           | R           | R           | R           | R           | R           | R           | R           | R           | R           |
| Initial<br>value | 0                                                                                                               | 0  | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |

Common description of each bits :

It is used to indicate whether the A/D conversion results of target channel matches to the condition of upper/lower limit.

- 0: Unmatched to the condition of upper/lower limit. (Initial value)
- 1: Matched to the condition of upper/lower limit.

Each bit is forcibly cleared to "0" by writing 1 corresponding bit in the SADULC0 register.

The corresponding bits get "1" if the condition matched and holds "1" until the bits are cleared or the LSI gets the system reset.

When using the A/D conversion result upper/lower limit detection function (SALEN=1), the interrupt request is generated at any bit of SADULS0 is "1" and a timing configured on the SAIMOD register.

Refer to Figure 23-9 to 23-11 for the timing of the interrupt and updates of detection result.

| Bit No. | Bit symbol<br>name | Description (target channel) |
|---------|--------------------|------------------------------|
| 15      | -                  | Reserved bit                 |
| 14      | -                  | Reserved bit                 |
| 13      | SAULS13            | Channel 13 (AIN13)           |
| 12      | SAULS12            | Channel 12 (AIN12)           |
| 11      | SAULS11            | Channel 11 (AIN11)           |
| 10      | SAULS10            | Channel 10 (AIN10)           |
| 9       | SAULS09            | Channel 9 (AIN9)             |
| 8       | SAULS08            | Channel 8 (AIN8)             |
| 7       | SAULS07            | Channel 7 (AIN7)             |
| 6       | SAULS06            | Channel 6 (AIN6)             |
| 5       | SAULS05            | Channel 5 (AIN5)             |
| 4       | SAULS04            | Channel 4 (AIN4)             |
| 3       | SAULS03            | Channel 3 (AIN3)             |
| 2       | SAULS02            | Channel 2 (AIN2)             |
| 1       | SAULS01            | Channel 1 (AIN1)             |
| 0       | SAULS00            | Channel 0 (AIN0)             |

#### [Note]

• When using the A/D conversion result upper/lower limit detection function (SALEN bit =1), the interrupt can be cleared by clearing the corresponding bit of SAULS13 to SAULS00 or by resetting the LSI.

- When performing the A/D conversion only one time (SALP bit =0), confirm the bit of SAULS13 to SAULS00 is "0" before setting SARUN bit to "1".
- When performing the consecutive scan A/D conversion (SALP bit =1), confirm the bit of SAULS13 to SAULS00 is "0", before the next A/D conversion ends.

### 23.2.14 SA-ADC Upper/Lower Limit Status Clear Register 0 (SADULC0)

This is a write-only SFR used to clear the A/D conversion result matches to the condition of upper/lower limit.

| Acce<br>Acce     | Address : 0xF82A (SADULC0L/SADULC0), 0xF82B (SADULC0H)<br>Access : W<br>Access size : 8/16 bit<br>nitial value : 0x0000 |    |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
|------------------|-------------------------------------------------------------------------------------------------------------------------|----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                  | 15                                                                                                                      | 14 | 13          | 12          | 11          | 10          | 9           | 8           | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
| Word             |                                                                                                                         |    |             |             |             |             |             | SAD         | ULC0        |             |             |             |             |             |             |             |
| Byte             |                                                                                                                         |    |             | SADL        | ILC0H       |             |             |             |             |             |             | SADL        | JLC0L       |             |             |             |
| Bit              | -                                                                                                                       | -  | SAULC<br>13 | SAULC<br>12 | SAULC<br>11 | SAULC<br>10 | SAULC<br>09 | SAULC<br>08 | SAULC<br>07 | SAULC<br>06 | SAULC<br>05 | SAULC<br>04 | SAULC<br>03 | SAULC<br>02 | SAULC<br>01 | SAULC<br>00 |
| R/W              | R                                                                                                                       | R  | W           | W           | W           | W           | W           | W           | W           | W           | W           | W           | W           | W           | W           | W           |
| Initial<br>value | 0                                                                                                                       | 0  | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |

Common description of each bits :

It is used to clear a target result of upper/lower limit detection.

Writing "0": Invalid

Writing "1": clear a target result

| Bit No. | Bit symbol<br>name | Description (target channel) |
|---------|--------------------|------------------------------|
| 15      | -                  | Reserved bit                 |
| 14      | -                  | Reserved bit                 |
| 13      | SAULC13            | Channel 13 (AIN13)           |
| 12      | SAULC12            | Channel 12 (AIN12)           |
| 11      | SAULC11            | Channel 11 (AIN11)           |
| 10      | SAULC10            | Channel 10 (AIN10)           |
| 9       | SAULC09            | Channel 9 (AIN9)             |
| 8       | SAULC08            | Channel 8 (AIN8)             |
| 7       | SAULC07            | Channel 7 (AIN7)             |
| 6       | SAULC06            | Channel 6 (AIN6)             |
| 5       | SAULC05            | Channel 5 (AIN5)             |
| 4       | SAULC04            | Channel 4 (AIN4)             |
| 3       | SAULC03            | Channel 3 (AIN3)             |
| 2       | SAULC02            | Channel 2 (AIN2)             |
| 1       | SAULC01            | Channel 1 (AIN1)             |
| 0       | SAULC00            | Channel 0 (AIN0)             |

### 23.2.15 SA-ADC Result Register (SADR)

This is a read-only SFR used to store the A/D conversion results on channels 0 to 13 and 17 (A/D converter test function).

|                  |     | R<br>: 8/ | F83E(<br>16 bit<br>:0000 | SADRL | /SADR | 2), 0xF8 | 3F (SA | DRH) |    |    |    |     |     |   |   |   |
|------------------|-----|-----------|--------------------------|-------|-------|----------|--------|------|----|----|----|-----|-----|---|---|---|
|                  | 15  | 14        | 13                       | 12    | 11    | 10       | 9      | 8    | 7  | 6  | 5  | 4   | 3   | 2 | 1 | 0 |
| Word             |     |           |                          |       |       |          |        | SA   | DR |    |    |     |     |   |   |   |
| Byte             |     |           |                          | SAE   | ORH   |          |        |      |    |    |    | SAI | ORL |   |   |   |
| Bit              | d15 | d14       | d13                      | d12   | d11   | d10      | d9     | d8   | d7 | d6 | d5 | d4  | -   | - | - | - |
| R/W              | R   | R         | R                        | R     | R     | R        | R      | R    | R  | R  | R  | R   | R   | R | R | R |
| Initial<br>value | 0   | 0         | 0                        | 0     | 0     | 0        | 0      | 0    | 0  | 0  | 0  | 0   | 0   | 0 | 0 | 0 |

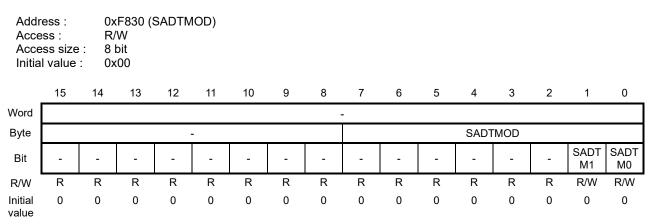
The A/D conversion results of all channels are stored to this register. The result of each channel is overwritten. The A/D conversion test result on channel 17 is stored to this register only.

| ĺ | Symbol name | Channel                                             |
|---|-------------|-----------------------------------------------------|
|   | SADR        | Latest conversion result of channels 0 to 13 and 17 |

### 23.2.16 SA-ADC Result Register n (SADRn : n=0 to 13)

This is a SFR used to store the SA-ADC conversion results on channels 0 to 13.

| Address :                                    | 0xF840 (SADR0L/SADR0), 0xF841 (SADR0H),<br>0xF842 (SADR1L/SADR1), 0xF843 (SADR1H),<br>0xF844 (SADR2L/SADR2), 0xF845 (SADR2H),<br>0xF846 (SADR3L/SADR3), 0xF847 (SADR3H),<br>0xF848 (SADR4L/SADR4), 0xF849 (SADR4H),<br>0xF84A (SADR5L/SADR5), 0xF84B (SADR5H),<br>0xF84C (SADR6L/SADR6), 0xF84D (SADR6H),<br>0xF84E (SADR7L/SADR7), 0xF84F (SADR7H),<br>0xF850 (SADR8L/SADR8), 0xF851 (SADR8H),<br>0xF852 (SADR9L/SADR9), 0xF853 (SADR9H),<br>0xF854 (SADR10L/SADR10), 0xF855 (SADR10H),<br>0xF856 (SADR11L/SADR11), 0xF857 (SADR11H),<br>0xF858 (SADR12L/SADR12), 0xF858 (SADR12H),<br>0xF854 (SADR13L/SADR13), 0xF85B (SADR13H),<br>R |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Access :<br>Access size :<br>Initial value : | R<br>8/16 bit<br>0x0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |


|                  | 15               | 14    | 13  | 12  | 11  | 10  | 9  | 8  | 7  | 6  | 5  | 4  | 3 | 2 | 1 | 0 |
|------------------|------------------|-------|-----|-----|-----|-----|----|----|----|----|----|----|---|---|---|---|
| Word             |                  | SADRn |     |     |     |     |    |    |    |    |    |    |   |   |   |   |
| Byte             | te SADRnH SADRnL |       |     |     |     |     |    |    |    |    |    |    |   |   |   |   |
| Bit              | d15              | d14   | d13 | d12 | d11 | d10 | d9 | d8 | d7 | d6 | d5 | d4 | - | - | - | - |
| R/W              | R                | R     | R   | R   | R   | R   | R  | R  | R  | R  | R  | R  | R | R | R | R |
| Initial<br>value | 0                | 0     | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 |

The A/D conversion result of each channel can be read from SADRn.

| Symbol name | Channel            |
|-------------|--------------------|
| SADR0       | Channel 0 (AIN0)   |
| SADR1       | Channel 1 (AIN1)   |
| SADR2       | Channel 2 (AIN2)   |
| SADR3       | Channel 3 (AIN3)   |
| SADR4       | Channel 4 (AIN4)   |
| SADR5       | Channel 5 (AIN5)   |
| SADR6       | Channel 6 (AIN6)   |
| SADR7       | Channel 7 (AIN7)   |
| SADR8       | Channel 8 (AIN8)   |
| SADR9       | Channel 9 (AIN9)   |
| SADR10      | Channel 10 (AIN10) |
| SADR11      | Channel 11 (AIN11) |
| SADR12      | Channel 12 (AIN12) |
| SADR13      | Channel 13 (AIN13) |

### 23.2.17 SA-ADC Test Mode Register (SADTMOD)

This is a SFR used to control the SA-ADC test function.



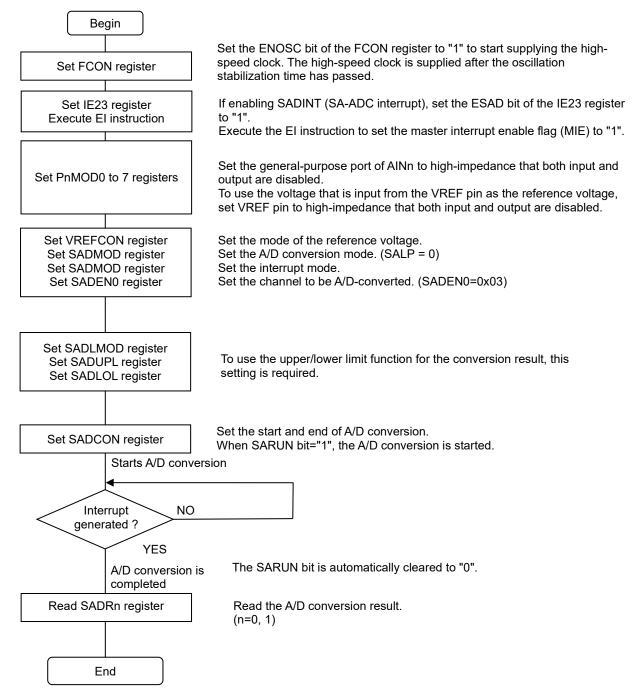
This function enables to check if the successive approximation type A/D converter and the analog switch work correctly, by performing the A/D conversion for the full scale, zero scale and the internal reference voltage (approx. 1.0 V). The A/D conversion result is stored in the SA-ADC result register (SADR).

Also, the AIN0-13 input level is measured by using a measurement value of internal reference voltage. For example:

1: Convert at  $V_{REF} = V_{DD}$ , SACH17=1, SADTM1-0=3, where the result is "a".

2: Convert at  $V_{REF} = V_{DD}$ , SACHn=1, where the result is "b".

An input level from AINn is b/a [V].


The seriality measurement can be by setting the SACHn and SACH17 at once. Read the results from SADRn and SADR.

| Bit No. | Bit symbol name   | Description                                                                                                                                                                                                                                                                                                                           |
|---------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 to 2  | -                 | Reserved bits                                                                                                                                                                                                                                                                                                                         |
| 1 to 0  | SADTM1,<br>SADTM0 | These bits are used to set the successive approximation type A/D converter test function.<br>This is selected input to channel 17.<br>00: Do not use the A/D converter test function (Initial value)<br>01: Full scale A/D conversion<br>10: Zero scale A/D conversion<br>11: Internal reference voltage (approx.1.0V) A/D conversion |

### 23.3 Description of Operation

### 23.3.1 Operation of Successive Approximation Type A/D Converter

Figure 23-2 shows a setting example when one-time A/D conversion is performed using channel 1 and 0.





#### ML62Q2500 Group User's Manual Chapter 23 Successive Approximation Type A/D Converter

Figure 23-3 shows a setting example when one-time A/D conversion is performed in HALT mode using channel 1 and 0.

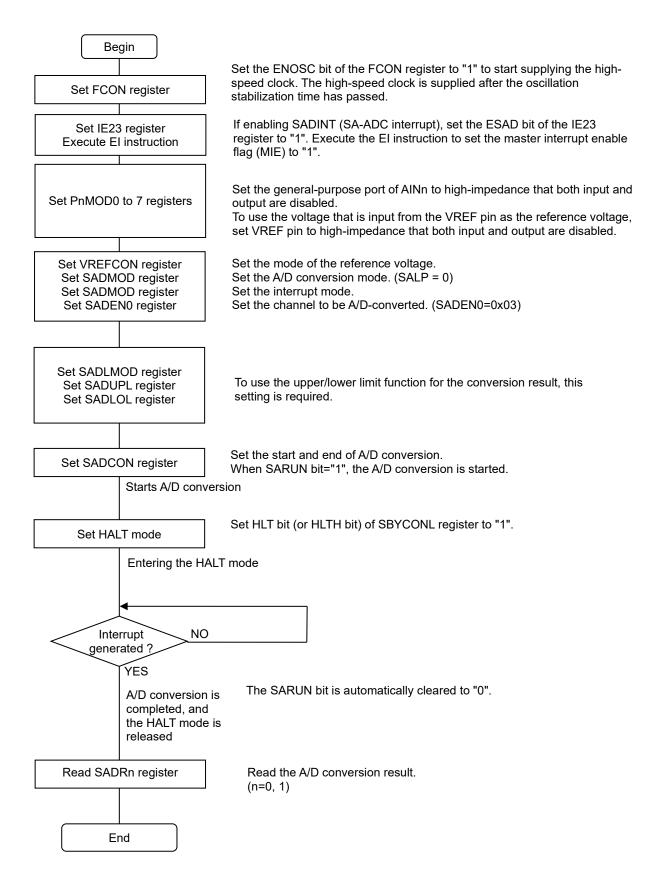





Figure 23-4 shows a setting example when one-time A/D conversion is performed using channel 1 and 0 starting by a trigger event.

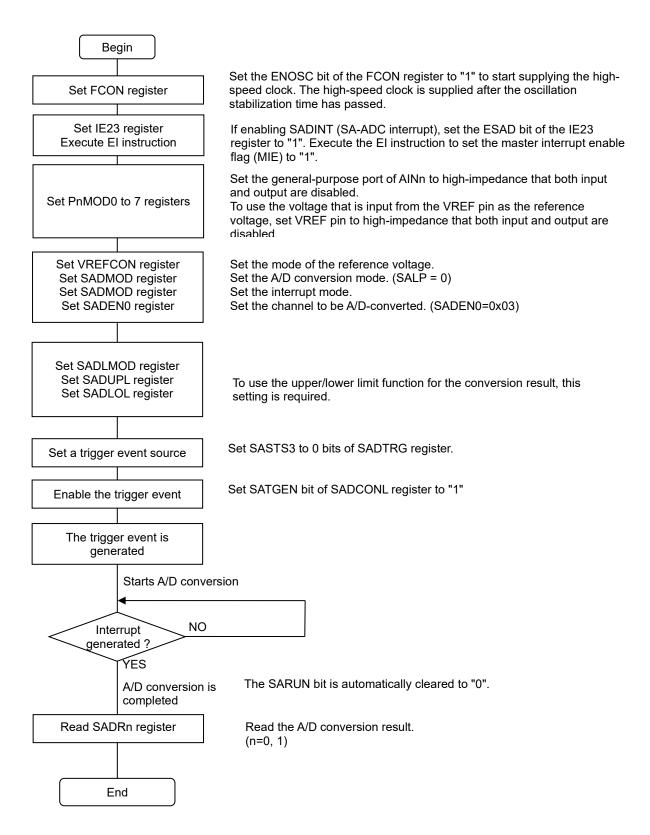
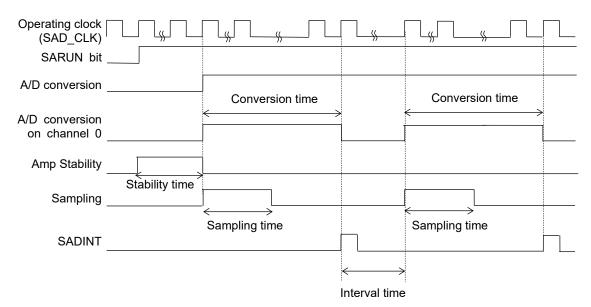



Figure 23-4 Example of A/D Conversion Setting (Start converting by a trigger event)

Figure 23-5 and 23-6 show operation waveforms when one-time A/D conversion is performed using channel 1 and 0.

| Operating clock<br>(SAD_CLK)     |                | <b></b>                               |                 |   |
|----------------------------------|----------------|---------------------------------------|-----------------|---|
| SARUN bit_                       |                |                                       |                 |   |
| A/D conversion _                 |                | Conversion time                       | Conversion time |   |
| A/D conversion<br>on channel 0 _ |                | · · · · · · · · · · · · · · · · · · · | *               |   |
| A/D conversion<br>on channel 1 _ |                |                                       |                 |   |
| Amp Stability                    |                | 1                                     |                 |   |
| Sampling _                       | Stability time |                                       |                 |   |
| SADINT<br>(SADIMD0=0)            |                | Sampling time                         | Sampling time   | Γ |
| (SADIMD0=1)                      |                |                                       |                 |   |

Operating clock (SAD\_CLK) is configured by SACK2-0 bits of SADMOD register. Amp stability time is configured by SAINITT3-0 bits of SADMOD register. Sampling time is configured by SASHT4-0 bits of SADMOD register. Interrupt mode is configured by SADIMOD register.


Figure 23-5 Operation Waveforms of A/D Conversion (One-time Conversion, Without Discharge)

| Operating clock<br>(SAD_CLK)   |                | <u> </u>      | <u> </u> | П <sub>ж</sub> Л |              | "        |  |
|--------------------------------|----------------|---------------|----------|------------------|--------------|----------|--|
| SARUN bit                      |                |               |          |                  |              |          |  |
| A/D conversion                 |                | Conversi      | on time  |                  | Conversi     | ion timo |  |
|                                |                | Conversi      | on une   |                  | Conversi     |          |  |
| A/D conversion<br>on channel 0 |                | <u></u>       | ~ ~      |                  | <            |          |  |
| A/D conversion<br>on channel 1 |                |               |          |                  |              |          |  |
| Discharge                      |                |               |          | <>               |              |          |  |
| Sampling                       | Discharge time |               | Disc     | harge time       | Ĺ            |          |  |
| SADINT<br>(SADIMD0=0)          |                | Sampling time |          | Sa               | ampling time |          |  |
| (SADIMD0=1)                    |                |               |          |                  |              |          |  |

Operating clock (SAD\_CLK) is configured by SACK2-0 bits of SADMOD register. Discharge enabling and time are configured by SAINIT bit and SAINITT3-0 bits of SADMOD register. Sampling time is configured by SASHT4-0 bits of SADMOD register. Interrupt mode is configured by SADIMOD register.

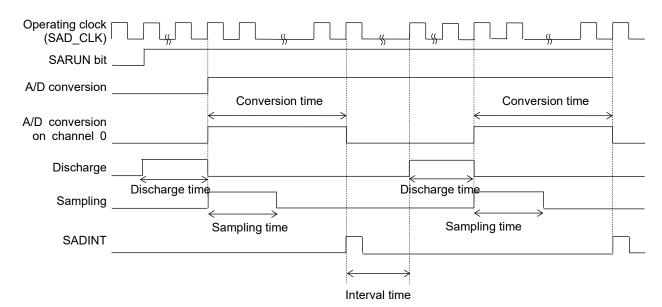

Figure 23-6 Operation Waveforms of A/D Conversion (One-time Conversion, With Discharge)

Figure 23-7 and 23-8 show the operation waveforms when the continuous A/D conversion is performed using channel 0.



Operating clock (SAD\_CLK) is configured by SACK2-0 bits of SADMOD register. Amp stability time is configured by SAINITT3-0 bits of SADMOD register. Sampling time is configured by SASHT4-0 bits of SADMOD register. Interrupt mode is configured by SADIMOD register.

Figure 23-7 Operation Waveforms of A/D Conversion (Continuous Conversion, Without Discharge)



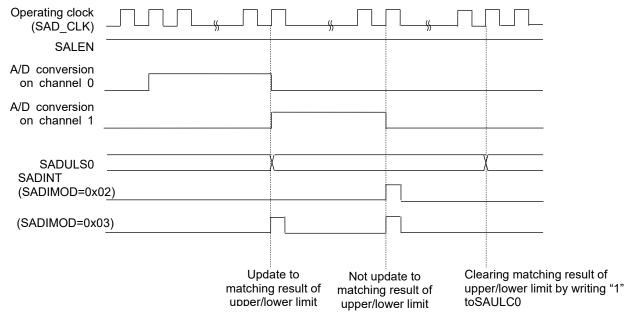

Operating clock (SAD\_CLK) is configured by SACK2-0 bits of SADMOD register. Discharge enabling and time are configured by SAINIT bit and SAINITT3-0 bits of SADMOD register. Sampling time is configured by SASHT4-0 bits of SADMOD register. Interrupt mode is configured by SADIMOD register.

Figure 23-8 Operation Waveforms of A/D Conversion (Continuous Conversion, With Discharge)

Figure 23-9 to 23-11 show the operation waveforms when an A/D conversion is performed with upper/lower limit function using channel 1 and 0.

| Operating clock<br>(SAD_CLK)                                                                                                                                                                                                                                                                                                                   |                          | <u>«</u>            |                       |                    | l     |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|-----------------------|--------------------|-------|--|--|--|--|--|
| SALEN                                                                                                                                                                                                                                                                                                                                          |                          |                     |                       |                    |       |  |  |  |  |  |
| A/D conversion<br>on channel 0                                                                                                                                                                                                                                                                                                                 |                          |                     |                       |                    |       |  |  |  |  |  |
| A/D conversion<br>on channel 1                                                                                                                                                                                                                                                                                                                 |                          |                     |                       |                    |       |  |  |  |  |  |
| SADULS0<br>SADINT<br>(SADIMD0=0)                                                                                                                                                                                                                                                                                                               |                          | X                   | (                     | X                  |       |  |  |  |  |  |
| (SADIMD0=1)                                                                                                                                                                                                                                                                                                                                    |                          |                     |                       |                    |       |  |  |  |  |  |
| Update to Update to Update to Clearing matching result of matching result of upper/lower limit of upper/lower limit toSAULC0<br>A reflection of writing "1" to SAULC0 bit to clear matching result of upper/lower limit, is delayed maximum 1clock of the SAD_CLK.<br>Figure 23-9 Operation Waveforms of A/D Conversion with Upper/Lower Limit |                          |                     |                       |                    |       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                | en set SADIMD1 bit to 0, | in the case of mate | ched to the limit ran | ges (SALMD1 to     | 0))   |  |  |  |  |  |
| Operating clock<br>(SAD_CLK)<br>SALEN                                                                                                                                                                                                                                                                                                          |                          |                     | ,                     |                    |       |  |  |  |  |  |
| A/D conversion<br>on channel 0                                                                                                                                                                                                                                                                                                                 |                          |                     |                       |                    |       |  |  |  |  |  |
| A/D conversion<br>on channel 1                                                                                                                                                                                                                                                                                                                 |                          |                     |                       |                    |       |  |  |  |  |  |
| SADULS0                                                                                                                                                                                                                                                                                                                                        |                          |                     |                       |                    |       |  |  |  |  |  |
| SADINT<br>SADIMOD=                                                                                                                                                                                                                                                                                                                             | 0x00h/0x01h              | No u                | <br>pdate SADULS0 ar  | nd no interrupt re | quest |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                | Figure 23-10 Operation   | Waveforms of A/D    | Conversion with Ur    | per/Lower Limit    |       |  |  |  |  |  |

(when set SADIMD1 bit to 0, in the case of not matched to the limit ranges (SALMD1 to 0))



The interrupt occurs regardless of matching result of upper/lower limit.

Figure 23-11 Operation Waveforms of A/D Conversion with Upper/Lower Limit (SADIMD1 = 1)

### 23.3.2 How to test the Successive Approximation Type A/D Converter

The self test can be performed by A/D-converting the full scale, zero scale and internal reference voltage. Follow this procedure to check if the successive approximation type A/D converter works correctly. (n=0 to 13)

- (1) A/D convert AINn pin. (conversion result 1)
- (2) A/D convert AIN=full scale by setting the SADTMOD register (SADTMOD=0x01).
- (3) A/D convert the AINn pin. (conversion result 2)
- (4) A/D convert AIN=zero scale by setting the SADTMOD register (SADTMOD=0x02).
- (5) A/D convert the AINn pin. (conversion result 3)
- (6) A/D convert AIN=internal reference voltage(approx.1.0V) by setting the SADTMOD register (SADTMOD=0x03).
- (7) A/D convert the AINn pin. (conversion result 4)
- (8) Confirm conversion result 1 =conversion result 2 =conversion result 3 =conversion result 4.
- Use the same AINn pin for the A/D conversion in (1), (3), (4) and (7).
  (9) Confirm the conversion result in (2), (4) and (6) is different each other and also different from the result in (1), (3), (5) and (7).

#### 23.4 Notes on SA-ADC

#### 23.4.1 Sampling Time Setting

Sampling time of the SA-ADC should satisfy the following formula:

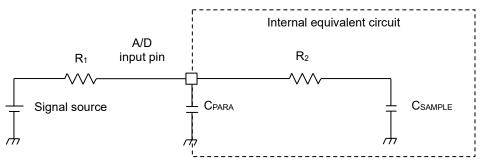
Sampling time > 
$$9(C_{SAMPLE} + C_{PARA})(R_1 + R_2)$$

To calculate sampling time more precisely, use the following formula:

Sampling time = 
$$\left\{ log_e(2^n) + log_e\left(\frac{C_{SAMPLE}}{C_{SAMPLE} + C_{PARA}}\right) \right\} (C_{SAMPLE} + C_{PARA})(R_1 + R_2)$$

C<sub>PARA</sub> varies depending on board-layout and connected parts. Please check the accuracy of SA-ADC with the actual board.

R<sub>1</sub> : Input impedance of external resistor


R<sub>2</sub> : Internal resistor value which is the sum of the internal resistor and the ON register of the switch

 $C_{SAMPLE}$  : Sample hold capacitor

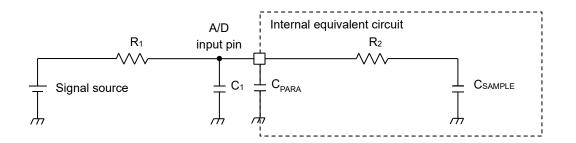
C<sub>PARA</sub>: Parasitic capacitance of the A/D input line.(Measure the capacitance between the A/D input line and V<sub>SS</sub>.)

n : Resolution of SA-ADC

The following diagram shows the equivalent circuit in this case:



| VREF                        | R₂[kΩ] | CSAMPLE[pF] |
|-----------------------------|--------|-------------|
| 2.1V≤V <sub>REF</sub> ≤2.4V | 170k   | 5pF         |
| 2.4V≤V <sub>REF</sub> ≤2.7V | 20k    | 5pF         |
| 2.7V≤V <sub>REF</sub> ≤5.5V | 10k    | 5pF         |


The values above are reference values.

Set the sampling time for  $V_{REF}$  condition that includes the lowest voltage of the usage range of  $V_{REF}$ . If the sampling time above is unsatisfied, connect the external capacitor near by A/D input pin to satisfy the following formula.

$$(C_1 + C_{PARA}) > 2^n C_{SAMPLE}$$
  
Sampling time  $> 9C_{SAMPLE}R_2$ 

#### C<sub>1</sub> : External capacitor

The equivalent circuit when the external capacitor C<sub>1</sub> is connected is as follows:



Note that the voltage at the A/D input pin transitionally changes due to the external capacitor  $C_1$  and the external resistor  $R_1$ . Therefore, when sampling data, wait until the voltage is stabilized. If the stabilization timing is unknown, perform A/D conversion once, then wait for time constant  $\tau$  (= $R_1C_1$ ) to  $4\tau$  or so and perform A/D conversion again. Confirm that the difference between values is small, and then sample data.

#### 23.4.2 Noise Suppression

In order to prevent deterioration in accuracy of A/D conversion, operate the A/D converter in the environment with little noise.

The following processes are recommended for noise reduction:

- Perform A/D conversion in the HALT mode.
- Do not have clock input/output to and from a pin located in the vicinity of the pin in which A/D conversion is in progress.
- Do not have clock input/output to and from the pin in which A/D conversion is in progress and other A/D conversion pins.

In addition, the capacitor for noise suppression should be connected between VREF and VSS, as well as between VDD and VSS. When connecting, place the capacitor in the immediate vicinity of LSI using short wiring.

# **Chapter 28 On-Chip Debug Function**

## 28. On-Chip Debug Function

#### 28.1 General Description

This function is used by connecting the host PC and LSI through the on-chip debug emulator (hereafter referred to as "On-chip emulator").

On-board debugging or programming is available by using the program development environment software (debugger) installed on the host PC.

### 28.1.1 Features

- The following debug functions are provided using the debugger by connecting LSI and On-chip emulator
  - Emulation
    - Real time emulation
    - Single step emulation
  - Break
    - Hardware break point break (four points)
    - RAM data matching break
    - Sequential break
    - Stack overflow/underflow break
    - Unused ROM area access break
    - RAM parity error break
  - Real time watch
  - CPU resource display/change
    - Program memory reference/disassembly
    - RAM and SFR display/change
    - Register display/change in the CPU
  - Program download
    - Program download/read/erase to/from flash memory
    - Data write/read/erase to/from data flash
  - Peripheral circuit operation continue/stop control during break Target peripheral circuits : External interrupt, Low-speed time base counter, 16-bit timer, Functional timer, UART, Analog module (Successive approximation type A/D converter, VLS)
- The following program download function is provided using the flash multi-writer by connecting LSI and On-chip emulator.
  - Program download
    - Erasing/Programming the program memory space
    - Erasing/Programming the data flash memory area

### 28.1.2 Configuration

When using the on-chip debug function, two methods are available for power supply to LSI as described below:

- Use the 3.3 VOUT power supply (+3.3 V/100 mA) of On-chip emulator
- Use the power supply of the target system (V\_{DD}=1.8 V to 5.5 V)

### 28.1.2.1 Using 3.3 VOUT Power Supply (+3.3 V/100 mA) of On-chip Emulator

Figure 28-1 shows a connection example when using the 3.3 VOUT power supply (+3.3 V/100 mA) of On-chip emulator.

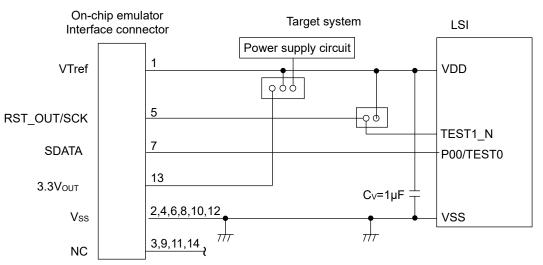
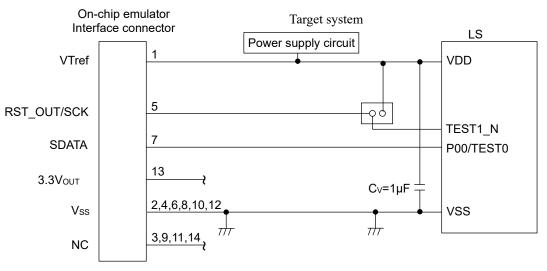




Figure 28-1 Connection Example When Using On-chip Emulator 3.3 VOUT Power Supply

### 28.1.2.2 Using Power Supply of Target System (V<sub>DD</sub>=1.8 V to 5.5 V)

Figure 28-2 shows a connection example when using the power supply ( $V_{DD}$ =1.8 V to 5.5 V) of the target system.





#### 28.1.3 List of Pins

The following pins are used for the on-chip debug function.

| Signal name I/O |   | Function                                   |
|-----------------|---|--------------------------------------------|
| TEST1_N         | I | On-chip debug function signal input        |
| P00/TEST0 I/O   |   | On-chip debug function signal input/output |

### 28.2 How to Use On-chip Debug Function

See manual of the debugger for how to use the on-chip debug function using On-chip emulator and the debugger. See manual of the flash multi-writer for how to download a program using On-chip emulator and flash multi-writer.

#### 28.3 Precautions

[Note] on usage of the on-chip debug function.

- Make TEST1\_N pin able to be connected to VDD with a jumper or something when not using the on-chip debug function.
- Validate the ROM code on user production board without the On-chip emulator.
- Disconnect On-chip emulator when measuring the current consumption of the target system. If On-chip emulator remains connected, the current consumption increases as the on-chip debug circuit inside the LSI works for the communication.
- When using the 3.3 VOUT power supply of On-chip emulator, do not apply power of the target system to the VDD pin of LSI. If both power supplies are connected, On-chip emulator may be damaged, or an electric shock or fire may occur.
- LSI used to debug a program is not covered by the product warranty. Do not use the LSI for mass-production.
- A reset due to unused ROM area access does not occur in the on-chip debug mode regardless of code option settings.
- A RAM parity error reset does not occur in the on-chip debug mode and the break operation occurs instead.
- If the contents of the data memory are displayed in the debugger in a state where a RAM parity error may occur (including when the RAM is not initialized), a RAM parity error may occur even if the RAM area is not displayed.
- The all interrupts and watchdog timer operation always stop while the debugger is in the break state.
- On-chip emulator might be affected by the external environments such as the host PC, USB cable, On-chip emulator interface cable and the target system. Please confirm proper environments before using on-chip emulator.
- If adding an external capacitor to the TEST1\_N pin, prepare a jumper function on the board so that the capacitor gets dis-connectable when using the debugger or Flash multi-writer.

### 28.4 Operation of Peripheral Circuits during breaks in the on-chip debug mode

The debugger allows users to choose whether to continue or stop operating the peripheral circuits during the break state on the debugger.

Table 28-1 shows the optional items, the target peripherals and how the operation is controlled. Each optional item is displayed with a check box on the debugger. See manual of the debugger for more details on how to use the function.

 Table 28-1
 Peripheral controls during the break on the debugger

| Optional item              | Peripheral Circuit              | Description                                                                                                                                                                                  |  |  |
|----------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| External Interrupt         | External Interrupt              | If the item is checked on, the target LSI accepts the<br>external input during the break.<br>If the item checked off, the target LSI does not accept the<br>external input during the break. |  |  |
| LTBR1                      | LTBR1 of Low-speed Time<br>Base | If the item is checked on, operation of the peripheral<br>operation continues during the break.<br>If the item checked off, operation of the peripheral stops<br>during the break.           |  |  |
| LTBR0                      | LTBR0 of Low-speed Time<br>Base | If the item is checked on, operation of the peripheral<br>operation continues during the break.<br>If the item checked off, operation of the peripheral stops<br>during the break.           |  |  |
| General Timer              | 16-bit Timer                    | If the item is checked on, operation of the peripheral<br>operation continues during the break.<br>If the item checked off, operation of the peripheral stops<br>during the break.           |  |  |
| Functional Timer           | Functional Timer                | If the item is checked on, operation of the peripheral<br>operation continues during the break.<br>If the item checked off, operation of the peripheral stops<br>during the break.           |  |  |
| UART                       | UART                            | If the item is checked on, operation of the peripheral<br>operation continues during the break.<br>If the item checked off, operation of the peripheral stops<br>during the break.           |  |  |
| Analog Module<br>(ADC/VLS) | SA-ADC and VLS                  | If the item is checked on, operation of the peripheral<br>operation continues during the break.<br>If the item checked off, operation of the peripheral stops<br>during the break.           |  |  |

#### 28.5 Reset in the On-Chip Debug Tool

By executing reset from the debug tool, RSTAT register POR bit is set to "1". However, low-speed crystal oscillation and VLS functions are not reset. If it is necessary to start them from initial state, set these pertinent SFRs to initial value. Then execute reset from debug tools.

# **Chapter 29 Safety Function**

## 29. Safety Function

### 29.1 General Description

ML62Q2500 group has the safety functions to make a safe stop in case a failure is detected by executing the selfdiagnosis software, available to support IEC60730/60335 Class B.

### 29.1.1 Features

| Function Name                                          | Description                                                                                                                               | Control by SFR |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| RAM guard                                              | Protect from the miss-writing to the specified RAM area                                                                                   | Available      |
| SFR guard                                              | Protect from the miss-writing to the specified SFR                                                                                        | Available      |
| Successive<br>approximation type A/D<br>converter test | Successive approximation type AD converter test function                                                                                  | Available      |
| RAM parity error<br>detection                          | RAM parity error check and generates a reset on error (enable/disable reset by SFR, with reset status flag and parity error flag)         | Available      |
| ROM unused area<br>access reset                        | Make a reset in case the CPU executes an instruction in the unused area (enable/disable reset by the code option, with reset status flag) | -              |
| Clock mutual monitoring                                | Monitor to check whether the oscillation of the high-speed and low-speed<br>clocks are normal                                             | Available      |
| CRC calculation                                        | Detect data error in the flash memory or data error in communications                                                                     | Available      |
| UART self-test function                                | Make the UART self-test                                                                                                                   | Available      |
| SSIO self-test function                                | Make the SSIO self-test                                                                                                                   | Available      |
| I <sup>2</sup> C self-test function                    | Make the I <sup>2</sup> C self-test function                                                                                              | Available      |
| WDT counter read                                       | WDT counter read function                                                                                                                 | Available      |
| Port output level self-test<br>function                | General port self-test function                                                                                                           | Available      |
| Clock backup function<br>and the self-test             | Switch automatically to the low-speed RC oscillation in case the low-speed<br>crystal oscillation stopped                                 | Available      |
| MCU status interrupt                                   | Control interrupts generated by RAM parity error, automatic CRC calculation completion, and data flash erase/program completion.          | Available      |

### 29.2 Description of Registers

### 29.2.1 List of Registers

| A daha a a             | Nama                                        | Sym      | bol    |     | 0:   | Initial |
|------------------------|---------------------------------------------|----------|--------|-----|------|---------|
| Address                | Name                                        | Byte     | Word   | R/W | Size | Value   |
| 0xF0B0                 | RAM Guard Setting Register 0                | RAMGD    | -      | R/W | 8    | 0x00    |
| 0xF0B1<br>to<br>0xF0B3 | Reserved                                    | -        | -      | -   | -    | -       |
| 0xF0B4                 | OFP Owerd Outline Devictor 0                | SFRGD0L  | 050000 | R/W | 8/16 | 0x00    |
| 0xF0B5                 | SFR Guard Setting Register 0                | SFRGD0H  | SFRGD0 | R/W | 8    | 0x00    |
| 0xF0B6                 | CED Quard Setting Deviator 1                | SFRGD1L  |        | R/W | 8/16 | 0x00    |
| 0xF0B7                 | SFR Guard Setting Register 1                | SFRGD1H  | SFRGD1 | R/W | 8    | 0x00    |
| 0xF0B8<br>to<br>0xFBB  | Reserved                                    | -        | -      | -   | -    | -       |
| 0xF0BC                 | RAM Parity Setting Register                 | RASFMOD  | -      | R/W | 8    | 0x00    |
| 0xF0BD                 | Reserved                                    | -        | -      | -   | -    | -       |
| 0xF0BE                 | Communication Test Setting Desister 0       | COMFT0L  | COMFT0 | R/W | 8/16 | 0x00    |
| 0xF0BF                 | Communication Test Setting Register 0       | COMFT0H  | COMPTU | R/W | 8    | 0x00    |
| 0xF050                 | MCU Status Interrupt Enable Register        | MCINTEL  | -      | R/W | 8    | 0x00    |
| 0xF051                 | Reserved                                    | -        | -      | -   | -    | -       |
| 0xF052                 | MCU Status Interrupt Register               | MCISTATL | -      | R   | 8    | 0x00    |
| 0xF053                 | Reserved                                    | -        | -      | -   | -    | -       |
| 0xF054                 | MCLL Status Interrupt Clear Desister (L/LL) | MCINTCLL |        | W   | 8    | 0x00    |
| 0xF055                 | MCU Status Interrupt Clear Register (L/H)   | MCINTCLH | -      | W   | 8    | 0x00    |

### 29.2.2 RAM Guard Setting Register (RAMGD)

RAMGD is a SFR used to disable writing the RAM. Data in the specified RAM area is protectable.

| Addr<br>Acce<br>Acce<br>Initia | F<br>e: 8                  | )xF0B0<br>R/W<br>3 bit<br>)x00 | (RAMG | BD)        |         |    |   |   |   |   |   |   |   |      |      |      |
|--------------------------------|----------------------------|--------------------------------|-------|------------|---------|----|---|---|---|---|---|---|---|------|------|------|
|                                | 15                         | 14                             | 13    | 12         | 11      | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2    | 1    | 0    |
| Word                           |                            |                                |       |            |         |    |   |   | - |   |   |   |   |      |      |      |
| Byte                           |                            |                                |       |            | - RAMGD |    |   |   |   |   |   |   |   |      |      |      |
| Bit                            | -                          | -                              | -     | -          | -       | -  | - | - | - | - | - | - | - | RGD2 | RGD1 | RGD0 |
| R/W                            | R                          | R                              | R     | R          | R       | R  | R | R | R | R | R | R | R | R/W  | R/W  | R/W  |
| Initial<br>value               | 0                          | 0                              | 0     | 0          | 0       | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0    | 0    |
| Bit No.                        | No. Bit symbol Description |                                |       |            |         |    |   |   |   |   |   |   |   |      |      |      |
| 7 to 3                         | -                          |                                |       | Reserv     | ed bits |    |   |   |   |   |   |   |   |      |      |      |
| 0.4- 0                         |                            | D0 1-                          |       | <b>T</b> 1 | 1.11    |    |   |   |   | , |   |   |   |      |      |      |

| 1105   | -       | Nesel veu bits                                                                 |
|--------|---------|--------------------------------------------------------------------------------|
| 2 to 0 | RGD2 to | These bits are used to choose a protect area for writing on the RAM.           |
|        | RGD0    | 000: All RAM area writable and readable (Initial value)                        |
|        |         | 001: 0x0:0EFC0 to 0x0:0EFFF (64 byte) is unwritable and readable               |
|        |         | 010: 0x0:0EF80 to 0x0:0EFFF (128 byte) is unwritable and readable              |
|        |         | 011: 0x0:0EF00 to 0x0:0EFFF (256 byte) is unwritable and readable              |
|        |         | 100: 0x0:0EE00 to 0x0:0EFFF (512 byte) is unwritable and readable              |
|        |         | 101: Do not use (0x0:0EE00 to 0x0:0EFFF (512 byte) is unwritable and readable) |
|        |         | 110: Do not use (0x0:0EE00 to 0x0:0EFFF (512 byte) is unwritable and readable) |
|        |         | 111: Do not use (0x0:0EE00 to 0x0:0EFFF (512 byte) is unwritable and readable) |
|        |         |                                                                                |

### 29.2.3 SFR Guard Setting Register 0 (SFRGD0)

SFRGD0 is a SFR used to disable writing certain SFRs. Data in the specified SFR area is protectable.

| Acc<br>Acc       | lress:<br>ess:<br>ess siz<br>al value |    | 0xF0B4<br>R/W<br>8/16 bit<br>0x0000 | (SFRG | D0L/SF | RGD0 | ), 0xF0l | B5(SFF | RGD0H) | ) |       |       |       |       |       |       |
|------------------|---------------------------------------|----|-------------------------------------|-------|--------|------|----------|--------|--------|---|-------|-------|-------|-------|-------|-------|
|                  | 15                                    | 14 | 13                                  | 12    | 11     | 10   | 9        | 8      | 7      | 6 | 5     | 4     | 3     | 2     | 1     | 0     |
| Word             | SFRGD0                                |    |                                     |       |        |      |          |        |        |   |       |       |       |       |       |       |
| Byte             |                                       |    |                                     | SFR   | GD0H   |      |          |        |        |   |       | SFR   | GD0L  |       |       |       |
| Bit              | -                                     | -  | -                                   | -     | -      | -    | -        | -      | -      | - | SGD05 | SGD04 | SGD03 | SGD02 | SGD01 | SGD00 |
| R/W              | R                                     | R  | R                                   | R     | R      | R    | R        | R      | R      | R | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0                                     | 0  | 0                                   | 0     | 0      | 0    | 0        | 0      | 0      | 0 | 0     | 0     | 0     | 0     | 0     | 0     |

Common description of each bits :

It is configured writable/unwritable target SFRs

0: Target SFRs are writable and readable (Initial value)

1: Target SFRs are unwritable and readable

| Bit No. | Bit symbol name | Description (target SFRs)                                                  |
|---------|-----------------|----------------------------------------------------------------------------|
| 15 to 6 | -               | Reserved bits                                                              |
| 5       | SGD05           | WDTMOD register; see Chapter "10 Watchdog timer"                           |
| 4       | SGD04           | BCKCONn and BRECONn registers (n=0 to 3); see Chapter "4 Power management" |
| 3       | SGD03           | RASFMOD register; see this chapter.                                        |
| 2       | SGD02           | SFRs described in chapter 22. VLS.                                         |
| 1       | SGD01           | SFRs described in chapter 6. Clock Generation Circuit.                     |
| 0       | SGD00           | SFRs described in chapter 5 Interrupt                                      |

1

0

### 29.2.4 SFR Guard Setting Register 1 (SFRGD1)

SFRGD1 is a SFR used to disable writing certain SFRs. Data in the specified SFR area is protectable.

| Addres<br>Access<br>Access<br>Initial v | s:<br>s size | :  | 0xF0B6(\$<br>R/W<br>8/16 bit<br>0x0000 | SFRGE | 01L/SF | RGD1), | 0xF0E | 37(SFR | GD1H) |   |   |   |   |   |  |
|-----------------------------------------|--------------|----|----------------------------------------|-------|--------|--------|-------|--------|-------|---|---|---|---|---|--|
|                                         | 15           | 14 | 13                                     | 12    | 11     | 10     | 9     | 8      | 7     | 6 | 5 | 4 | 3 | 2 |  |

| Word             |       |   |   |     |      |   |   | SFF | RGD1  |       |       |     |       |       |       |       |
|------------------|-------|---|---|-----|------|---|---|-----|-------|-------|-------|-----|-------|-------|-------|-------|
| Byte             |       |   |   | SFR | GD1H |   |   |     |       |       |       | SFF | RGD1L |       |       |       |
| Bit              | SGD1F | - | - | -   | -    | - | - | -   | SGD17 | SGD16 | SGD15 | -   | SGD13 | SGD12 | SGD11 | SGD10 |
| R/W              | R/W   | R | R | R   | R    | R | R | R   | R/W   | R/W   | R/W   | R   | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0     | 0 | 0 | 0   | 0    | 0 | 0 | 0   | 0     | 0     | 0     | 0   | 0     | 0     | 0     | 0     |

Common description of each bits :

It is configured writable/unwritable target SFRs in chapter 17. GPIO.

- 0: Target SFRs are writable and readable (Initial value)
- 1: Target SFRs are unwritable and readable

| Bit No. | Bit symbol<br>name | Description (target SFRs)   |
|---------|--------------------|-----------------------------|
| 15      | SGD1F              | SFRs related to the port XT |
| 14 to 8 | -                  | Reserved bits               |
| 7       | SGD17              | SFRs related to the port 7  |
| 6       | SGD16              | SFRs related to the port 6  |
| 5       | SGD15              | SFRs related to the port 5  |
| 4       | -                  | Reserved bit                |
| 3       | SGD13              | SFRs related to the port 3  |
| 2       | SGD12              | SFRs related to the port 2  |
| 1       | SGD11              | SFRs related to the port 1  |
| 0       | SGD10              | SFRs related to the port 0  |

### 29.2.5 RAM Parity Setting Register (RASFMOD)

RASFMOD is a special function register (SFR) used to control the RAM parity error reset function. The RAM parity error is detectable and the RAM parity error reset is generatable. The reset flag by a RAM parity error can be checked by the reset status register (SRSTAT). See Chapter 3 "Reset Function" for details about the reset flag.

| Address:0xF0BAccess:R/WAccess size:8 bitInitial value:0x00 |                     |                 | R/W<br>3 bit | C(RASF                           | MOD)                         |                                                 |                                 |         |        |          |          |          |           |          |         |         |
|------------------------------------------------------------|---------------------|-----------------|--------------|----------------------------------|------------------------------|-------------------------------------------------|---------------------------------|---------|--------|----------|----------|----------|-----------|----------|---------|---------|
|                                                            | 15                  | 14              | 13           | 12                               | 11                           | 10                                              | 9                               | 8       | 7      | 6        | 5        | 4        | 3         | 2        | 1       | 0       |
| Word                                                       |                     |                 |              |                                  |                              |                                                 |                                 |         | -      |          |          |          |           |          |         |         |
| Byte                                                       |                     |                 |              |                                  | -                            |                                                 |                                 |         |        |          |          | RASE     | MOD       |          |         |         |
| Bit                                                        | -                   | -               | -            | -                                | -                            | -                                               | -                               | -       | PERF   | -        | -        | -        | -         | -        | -       | PEREN   |
| R/W                                                        | R                   | R               | R            | R                                | R                            | R                                               | R                               | R       | R/W    | R        | R        | R        | R         | R        | R       | R/W     |
| Initial<br>value                                           | 0                   | 0               | 0            | 0                                | 0                            | 0                                               | 0                               | 0       | 0      | 0        | 0        | 0        | 0         | 0        | 0       | 0       |
| Bit No                                                     | •                   | Bit sym<br>name |              | •                                |                              |                                                 |                                 |         | D      | escript  | ion      |          |           |          |         |         |
| 7                                                          | PE                  | RF              |              | Write "<br>When<br>(SRST<br>0: D | 1" to th<br>PEREN<br>AT) car | is bit to<br>l is set<br>n be use<br>l (Initial | clear.<br>to "1" to<br>ed to ch | o enab  | ne RAM |          |          |          | on, the i | reset st | atus re | ∋gister |
| 6 to 1                                                     | o 1 - Reserved bits |                 |              |                                  |                              |                                                 |                                 |         |        |          |          |          |           |          |         |         |
| 0                                                          | PE                  | REN             |              | 0: D                             |                              | d (Initial                                      |                                 | able th | ne RAM | parity e | error re | set func | tion.     |          |         |         |

### 29.2.6 Communication Test Setting Register (COMFT0)

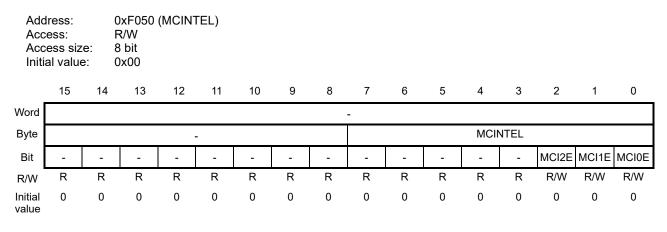
COMFT0 is a SFR used to control the communication test function, which enables the loop back test with transmit data in the serial communication units. See Section 29.3.1 "Communication Function Self Test" for more details. As the I<sup>2</sup>C bus unit and the I<sup>2</sup>C master are equipped with the function to read the transmit data, the function can be used for testing. For details, see Chapter 13 "I<sup>2</sup>C Bus".

| Address:       | 0xF0BE(COMFT0/COMFT0L), 0xF0BF(COMFT0H) |
|----------------|-----------------------------------------|
| Access:        | R/W                                     |
| Access size:   | 8/16 bit                                |
| Initial value: | 0x0000                                  |

|     | 15 | 14 | 13 | 12         | 11  | 10 | 9 | 8          | 7    | 6       | 5 | 4 | 3 | 2          | 1          | 0          |  |  |
|-----|----|----|----|------------|-----|----|---|------------|------|---------|---|---|---|------------|------------|------------|--|--|
| ワ-ド |    |    |    |            |     |    |   | CON        | 1FT0 |         |   |   |   |            |            |            |  |  |
| バイト |    |    |    | COMP       | тон |    |   |            |      | COMFT0L |   |   |   |            |            |            |  |  |
| ビット | -  | -  | -  | CMFT1<br>2 | -   | -  | - | CMFT0<br>8 | -    | -       | - | - | - | CMFT0<br>2 | CMFT0<br>1 | CMFT0<br>0 |  |  |
| R/W | R  | R  | R  | R/W        | R   | R  | R | R/W        | R    | R       | R | R | R | R/W        | R/W        | R/W        |  |  |
| 初期値 | 0  | 0  | 0  | 0          | 0   | 0  | 0 | 0          | 0    | 0       | 0 | 0 | 0 | 0          | 0          | 0          |  |  |

Common description of each bits :

It is configured enable/disable the self-test for target communication function.


0: Target function is disabled. (Initial value)

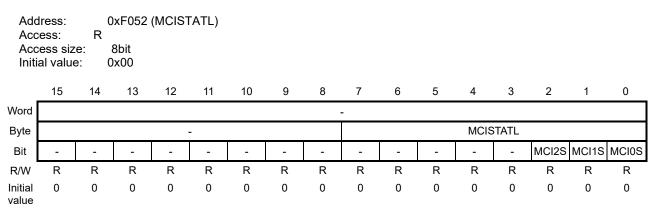
1: Target function is enabled.

| Bit No.  | Bit symbol name | Description (target) |
|----------|-----------------|----------------------|
| 15 to 13 | -               | Reserved bits        |
| 12       | CMFT12          | SSIOF0               |
| 11 to 9  | -               | Reserved bits        |
| 8        | CMFT08          | SSIO0                |
| 7 to 3   | -               | Reserved bits        |
| 2        | CMFT02          | UART2                |
| 1        | CMFT01          | UART1                |
| 0        | CMFT00          | UART0                |

### 29.2.7 MCU Status Interrupt Enable Register (MCINTEL)

MCINTEL is a SFR used to control enabling/disabling three types of interrupt status on the microcontroller.




Common description of each bits :

- It is configured enable/disable target interrupt.
  - 0: Target interrupt is disabled. (Initial value)
  - 1: Target interrupt is enabled.

| Bit No. | Bit symbol name | Description (target interrupt)                                     |  |  |  |  |  |  |
|---------|-----------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| 7 to 3  | -               | Reserved bits                                                      |  |  |  |  |  |  |
| 2       | MCI2E           | The interrupt at the completion of data flash erasing/programming. |  |  |  |  |  |  |
| 1       | MCI1E           | The interrupt at the completion of automatic CRC calculation.      |  |  |  |  |  |  |
| 0       | MCI0E           | The interrupt at the occurrence of RAM parity error.               |  |  |  |  |  |  |

### 29.2.8 MCU Status Interrupt Register (MCISTATL)

MCISTATL is a read-only SFR used to indicate status of the three types of interrupts. The MCI2S bit to MCI0S bit is initialized, in addition to reset function, by writing "1" to the same number of bit in the MCINTCL register.



Common description of each bits :

It is to indicate status of target interrupt.

- 0: Target interrupt has not been generated. (Initial value)
- 1: Target interrupt has been generated.

| Bit No. | Bit symbol name | Description (target interrupt)                                     |  |  |  |  |  |  |  |
|---------|-----------------|--------------------------------------------------------------------|--|--|--|--|--|--|--|
| 7 to 3  | -               | Reserved bits                                                      |  |  |  |  |  |  |  |
| 2       | MCI2S           | The interrupt at the completion of data flash erasing/programming. |  |  |  |  |  |  |  |
| 1       | MCI1S           | The interrupt at the completion of automatic CRC calculation.      |  |  |  |  |  |  |  |
| 0       | MCI0S           | The interrupt at the occurrence of RAM parity error.               |  |  |  |  |  |  |  |

#### [Note]

If the MCISTATL register is not zero, a request to interrupt controller is not given when a new interrupt occurs. Clear the MCISTATL register with the MCINTCL register before that time.

### 29.2.9 MCU Status Interrupt Clear Register L/H (MCINTCLL, MCINTCLH)

MCINTCL is a write-only special function register (SFR) used to clear the MCU status interrupts.

If the MCI2C bit to MCI0C bit is set to "1", the interrupt request indicated by the same number of bit in the MCISTATL register gets cleared.

This register always returns "0x0000" for reading.

| Address:<br>Access:<br>Access size:<br>Initial value: |          | 0xF054(MCINTCLL), 0xF055(MCINTCLH)<br>W<br>8/16 bit<br>0x0000 |    |    |    |    |   |   |          |   |   |   |   |       |       |       |
|-------------------------------------------------------|----------|---------------------------------------------------------------|----|----|----|----|---|---|----------|---|---|---|---|-------|-------|-------|
|                                                       | 15       | 14                                                            | 13 | 12 | 11 | 10 | 9 | 8 | 7        | 6 | 5 | 4 | 3 | 2     | 1     | 0     |
| Word                                                  |          |                                                               |    |    |    |    |   |   | -        |   |   |   |   |       |       |       |
| Byte                                                  | MCINTCLH |                                                               |    |    |    |    |   |   | MCINTCLL |   |   |   |   |       |       |       |
| Bit                                                   | MCIR     | -                                                             | -  | -  | -  | -  | - | - | -        | - | - | - | - | MCI2C | MCI1C | MCI0C |
| R/W                                                   | W        | R                                                             | R  | R  | R  | R  | R | R | R        | R | R | R | R | W     | W     | W     |
| Initial<br>value                                      | 0        | 0                                                             | 0  | 0  | 0  | 0  | 0 | 0 | 0        | 0 | 0 | 0 | 0 | 0     | 0     | 0     |

Common description of each bits; bit 2 to 0 :

It is to indicate status of target interrupt.

Writing "0": Invalid

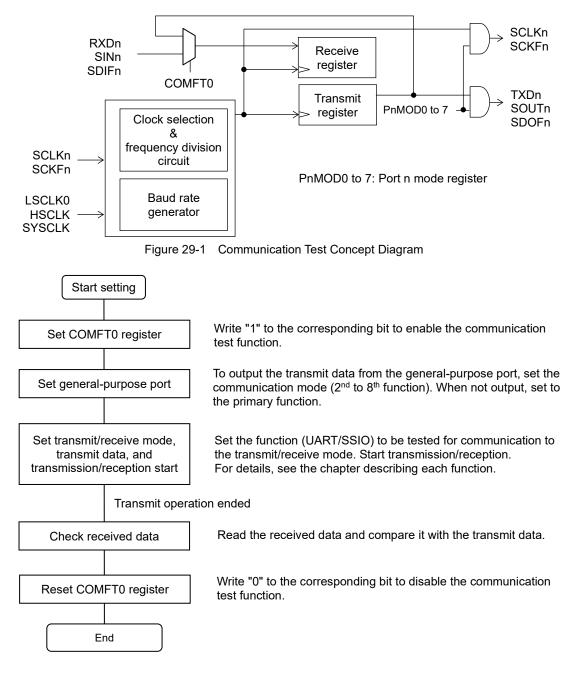
Writeing "1": Target interrupt status gets cleared.

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|---------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 15      | MCIR               | This bit is a request bit for the MCU status interrupt.<br>Write "1" to this bit before returning from the interrupt routine.<br>Writing "0":Invalid<br>Writing "1":If an unhandled interrupt exists, it generates the interrupt request again. |  |  |  |  |  |  |
| 14 to 3 | -                  | Reserved bits                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 2       | MCI2C              | The interrupt at the completion of data flash erasing/programming.                                                                                                                                                                              |  |  |  |  |  |  |
| 1       | MCI1C              | The interrupt at the completion of automatic CRC calculation.                                                                                                                                                                                   |  |  |  |  |  |  |
| 0       | MCI0C              | The interrupt at the occurrence of RAM parity error.                                                                                                                                                                                            |  |  |  |  |  |  |

#### 29.3 Description of Operation

#### 29.3.1 Communication Function Self-Test

This self test is enabled by the COMFT0 register setting.


The communication function can be tested through the self test by internally connecting transmit and receive data of UART and SSIO (synchronous serial port) of the serial communication unit.

Before testing the communication, write "1" to the corresponding bit of the COMFT0 register.

Transmit side data output can be enabled/disabled by setting the mode (secondary to octonary function) of the generalpurpose port.

For receive side data, it is not required to set the mode (2<sup>nd</sup> to 8<sup>th</sup> function) of the general-purpose port.

Figure 29-1 shows a concept diagram of the communication test. Figure 29-2 shows a flow chart of the communication test.





#### 29.3.2 Unused ROM Area Access Reset Function

This function constantly monitors the program counter (PC) of the CPU. It generates the LSI reset when it detects that the program counter (PC) executes a program located outside of the area. This function can be enabled/disabled by the code option. The reset flag due to unused ROM area access can be confirmed with the SRSTAT register. See Chapter 3 "Reset Function" for details of the reset flag.

<ROM unused area>

Program memory size : CSR:PC 128KB : 0x1:0FFC0 to 0x7:0FFFF 64KB : 0x0:0FFC0 to 0x7:0FFFF

[Note]

• CSR[3] is unused on the ML62Q2500 group. The data of CSR "0x8 to 0xF" are handled as "0x0 to 0x7".

#### 29.3.3 Clock Mutual Monitoring Function

See the application note for more details.

This function is used to monitor the low-speed clock (low-speed RC oscillation circuit) and high-speed clock (PLL oscillation circuit) to check if they are normally oscillating. The 16-bit timer and functional timer are available to implement the function.

LSCLK0 is countable by a trigger of the RC1K, enables to monitor mutually the two oscillation clocks.

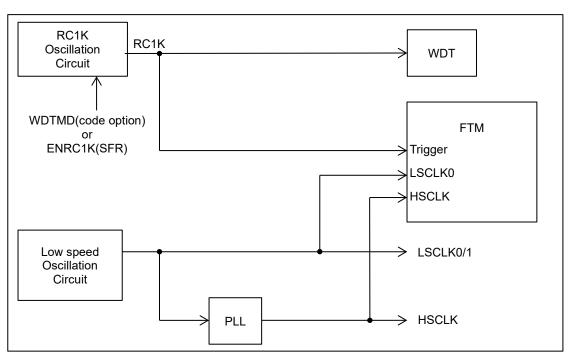



Figure 29-3 Clock Mutual Monitoring Function Block Diagram

Figure 29-4 shows an example of the monitoring operation, using 16-bit timer 0 and Functional timer 0, for the high-speed clock (PLL oscillation circuit) oscillation.

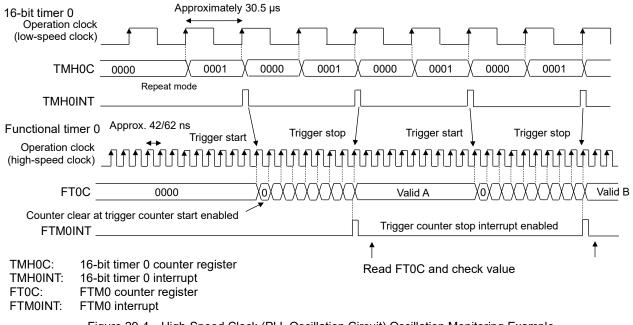



Figure 29-4 High-Speed Clock (PLL Oscillation Circuit) Oscillation Monitoring Example

Figure 29-5 describes the setting for the monitoring example shown in Figure 29-4.

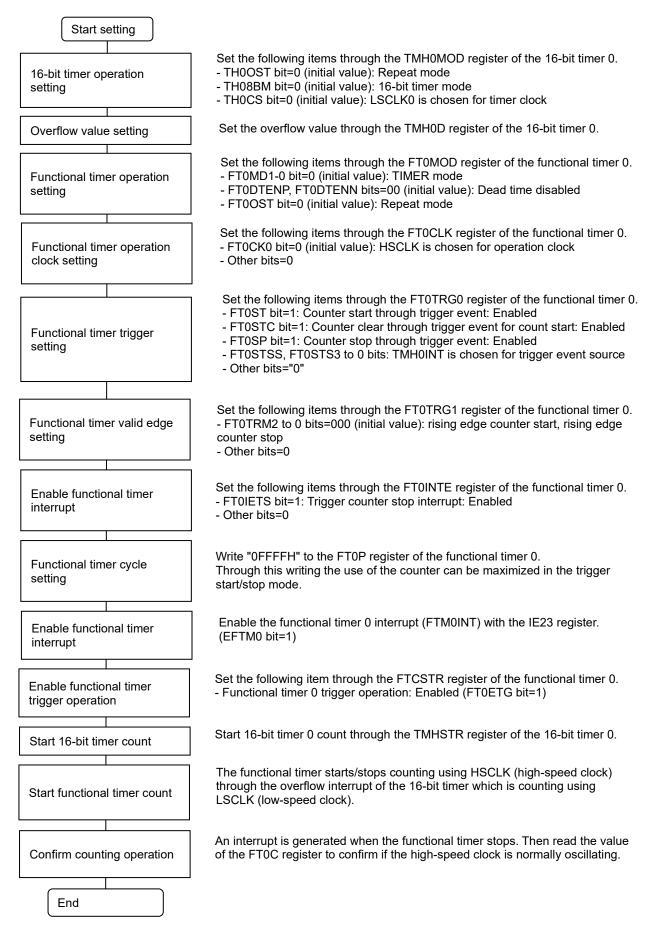



Figure 29-5 Setting of High-Speed Clock (PLL Oscillation Circuit) Oscillation Monitoring Example

#### [Note]

• For "Overflow value setting" in Figure 29-5, set the value so that the overflow period of the 16-bit timer n is to be shorter than that of the functional timer n. If the functional timer n overflows, it disables the accurate check.

#### 29.3.4 CRC Calculation

The CRC (Cyclic Redundancy Check) calculation detects data errors including arbitrary data errors. Two CRC modes are available as described below. Choose one of those depending on the intended use. See Chapter 19, "CRC Calculator" for details of its operation.

| Table 29-1 CRC Calculation Mode |                                                                               |  |  |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|
| CRC calculation                 | Description                                                                   |  |  |  |  |  |  |
| Automatic CRC                   | Automatically performs calculation of the program code area in units of 32    |  |  |  |  |  |  |
| calculation mode                | bits in the HALT/HALT-H mode.                                                 |  |  |  |  |  |  |
| Manual CRC                      | Performs calculation of arbitrary data written from the CPU or DMA controller |  |  |  |  |  |  |
| calculation mode                | in units of 8 bits.                                                           |  |  |  |  |  |  |

#### 29.3.5 WDT Counter Read

The count value can be read from the watchdog timer counter register (WDTMC). Periodic checks of the count value allow confirmation that the watchdog timer is normally counting. See Chapter 10 "Watchdog Timer" for its operation.

#### 29.3.6 Port Output Level Test

When the general-purpose port is used as an output pin, the output data can be read by setting the input/output mode. See Chapter 17 "General-purpose Port" for its operation.

#### 29.3.7 Successive Approximation Type A/D Converter Test

The self test can be performed by A/D-converting the full scale, zero scale and internal reference voltage. See "23.3.2 Test function of Successive Approximation Type A/D Converter" for details.

#### 29.3.8 Clock Backup Function and Its Test

The built-in test function automatically switches the low-speed crystal oscillation to the low-speed RC oscillation, when the oscillation is stopped.

See Chapter 6 "Clock Generation Circuit" for details.

# **Chapter 26 Flash Memory**

### 26. Flash Memory

#### 26.1 General Description

ML62Q2500 group has the flash memory in the program memory space and data flash area. For details of the program memory space and data flash area, see Chapter 2 "CPU and Memory Space". The flash memory is programmable by following three ways.

| • The ways of programmin                                     | g the flash memory                                                                      |                                        |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------|
| Programming method                                           | Tool/Register/Communication                                                             | Reference Chapter                      |
| Programming by the on-chip debug function                    | On-chip debug emulator or other flash programmers                                       | Chapter 28 "On chip<br>Debug function" |
| Self-Programming by using the special function register(SFR) | Special Function Registers(SFRs) for programming the flash memory                       | Section 26.3<br>"Self-programming"     |
| Programming by the ISP (In-<br>System Programming) function  | UART communication with an external device 3 <sup>rd</sup> Party Flash programmers (*1) | Section 26.4<br>"ISP function"         |

The ways of programming the flash memory

\*1: Contact the 3<sup>rd</sup> party makers for details about the Flash programmer.

The specification of the program memory space and data flash are is dependent of the product.

#### • Program memory space and Data flash area Overview (Size and Address)

|            | Part name           | Program n | nemory space            | Data flash area         |              |  |
|------------|---------------------|-----------|-------------------------|-------------------------|--------------|--|
|            | Faithame            | Size      | Address                 | Size                    | Address      |  |
| ML62Q2500  | ML62Q2502/2522/2532 | 64KByte   | 0x0:0000 to<br>0x0:FFFF | 4KByte                  | 0x1F:0000 to |  |
| WILOZQ2500 | ML62Q2504/2524/2534 | 128KByte  | 0x0:0000 to<br>0x1:FFFF | (128Byte x<br>32sector) | 0x1F:0FFF    |  |

#### • Program memory space and Data flash area Overview (Functions and Characteristics)

| Iten                         | n                          | Program memory space                                                                                                                                                                                                                                                             | Data flash area |  |
|------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
|                              | Chip erasing<br>(ISP only) | All area                                                                                                                                                                                                                                                                         | All area        |  |
| Erasing and programming unit | Block erasing              | 16K byte                                                                                                                                                                                                                                                                         | all area        |  |
|                              | Sector erasing             | 1K byte                                                                                                                                                                                                                                                                          | 128 byte        |  |
|                              | Programming                | asing<br>only)All areaAll arearasingAll areaAll arearasing16K byteall areaerasing1K byte128 bytenming4 byte (32bit)1 byte (8brasing<br>only)Max. 50msMax. 50msrasing<br>rasingMax. 50msMax. 50msmmingMax. 80µsMax. 40µ100 times10,000 timesature0°C to +40°C-40°C to +8ction-Yes | 1 byte (8bit)   |  |
|                              | Chip erasing<br>(ISP only) |                                                                                                                                                                                                                                                                                  |                 |  |
| Erasing and                  | Block erasing              | Max. 50ms                                                                                                                                                                                                                                                                        | Max. 50ms       |  |
| programming time             | Sector erasing             |                                                                                                                                                                                                                                                                                  |                 |  |
|                              | Programming                | Max. 80µs                                                                                                                                                                                                                                                                        | Max. 40µs       |  |
| Programmi                    | ng cycle                   | 100 times                                                                                                                                                                                                                                                                        | 10,000 times    |  |
| Erasing and program          | ming temperature           | 0°C to +40°C                                                                                                                                                                                                                                                                     | -40°C to +85°C  |  |
| Background operation         | on(BGO) function           | -                                                                                                                                                                                                                                                                                | Yes             |  |
| Erasing and programmin       | g completion Interrupt     | No                                                                                                                                                                                                                                                                               | Yes             |  |

#### 26.1.1 List of Pins

Programming by the ISP function uses the following pins.

| Pin name | I/O | Function                  |
|----------|-----|---------------------------|
| TEST1_N  | I   | clock input for ISP       |
| TEST0    | I/O | data input/output for ISP |

### 26.2 Register Description

#### 26.2.1 List of Registers

| Address | Name                   | Symb     | ool     | R/W | Size | Initial |  |
|---------|------------------------|----------|---------|-----|------|---------|--|
| Address | Name                   | Byte     | Word    | R/W | Size | Value   |  |
| 0xF090  | Elash address register | FLASHAL  | FLASHA  | R/W | 8/16 | 0xFF    |  |
| 0xF091  | Flash address register | FLASHAH  | FLASHA  | R/W | 8    | 0xFF    |  |
| 0xF092  | Electric register 0    | FLASHD0L | FLASHD0 | R/W | 8/16 | 0xFF    |  |
| 0xF093  | Flash data register 0  | FLASHD0H | FLASHDU | R/W | 8    | 0xFF    |  |
| 0xF094  | Flash data register 1  | FLASHD1L | FLASHD1 | R/W | 8/16 | 0xFF    |  |
| 0xF095  |                        | FLASHD1H | FLASHDT | R/W | 8    | 0xFF    |  |
| 0xF096  | Flash control register | FLASHCON | -       | W   | 8    | 0x00    |  |
| 0xF097  | Reserved               | -        | -       | -   | -    | -       |  |
| 0xF098  | Flash acceptor         | FLASHACP | -       | W   | 8    | 0x00    |  |
| 0xF099  | Reserved               | -        | -       | -   | -    | -       |  |
| 0xF09A  | Flash segment register | FLASHSEG | -       | R/W | 8    | 0x10    |  |
| 0xF09B  | Reserved               | -        | -       | -   | -    | -       |  |
| 0xF09C  | Flash self register    | FLASHSLF | -       | R/W | 8    | 0x00    |  |
| 0xF09D  | Reserved               | -        | -       | -   | -    | -       |  |
| 0xF09E  | Flash status register  | FLASHSTA | -       | R   | 8    | 0x00    |  |
| 0xF09F  | Reserved               | -        | -       | -   | -    | -       |  |

#### 26.2.2 Flash Address Register (FLASHA)

This is a SFR used to set the erasing and programming address.

|                  |                                                                                  | R/<br>: 8/ | •    | FLASH. | AL/FLA | SHA), | 0xF091 | (FLAS | SHAH)   |     |     |     |     |     |     |     |
|------------------|----------------------------------------------------------------------------------|------------|------|--------|--------|-------|--------|-------|---------|-----|-----|-----|-----|-----|-----|-----|
|                  | 15                                                                               | 14         | 13   | 12     | 11     | 10    | 9      | 8     | 7       | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| Word             |                                                                                  |            |      |        |        |       |        | FLA   | SHA     |     |     |     |     |     |     |     |
| Byte             | FLASHAH                                                                          |            |      |        |        |       |        |       | FLASHAL |     |     |     |     |     |     |     |
| Bit              | FA15                                                                             | FA14       | FA13 | FA12   | FA11   | FA10  | FA9    | FA8   | FA7     | FA6 | FA5 | FA4 | FA3 | FA2 | FA1 | FA0 |
| R/W              | R/W                                                                              | R/W        | R/W  | R/W    | R/W    | R/W   | R/W    | R/W   | R/W     | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| Initial<br>value | 1                                                                                | 1          | 1    | 1      | 1      | 1     | 1      | 1     | 1       | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| Bit No.          | Bit symbol Description                                                           |            |      |        |        |       |        |       |         |     |     |     |     |     |     |     |
| 15 to 0          | FA15 to FA0       These bits are used to set the erasing or programming address. |            |      |        |        |       |        | S.    |         |     |     |     |     |     |     |     |

#### [Note]

• Note that programming for the program memory space is performed by the unit of 4 bytes. Because of this, the setting values in the FA1 bit and FA0 bit are ignored.

#### 26.2.3 Flash Segment Register (FLASHSEG)

This is a SFR used to set the segment for erasing and programming the flash memory.

|                  |     | R/<br>: 81      |      | FLASH | SEG)     |         |          |          |       |         |        |        |       |       |       |       |
|------------------|-----|-----------------|------|-------|----------|---------|----------|----------|-------|---------|--------|--------|-------|-------|-------|-------|
|                  | 15  | 14              | 13   | 12    | 11       | 10      | 9        | 8        | 7     | 6       | 5      | 4      | 3     | 2     | 1     | 0     |
| Word             |     |                 |      |       |          |         |          |          |       |         |        |        |       |       |       |       |
| Byte             |     |                 |      |       |          |         |          |          |       |         |        | FLAS   | HSEG  |       |       |       |
| Bit              | -   | -               | -    | -     | -        | -       | -        | -        | -     | -       | -      | FSEG4  | FSEG3 | FSEG2 | FSEG1 | FSEG0 |
| R/W              | R   | R               | R    | R     | R        | R       | R        | R        | R     | R       | R      | R/W    | R/W   | R/W   | R/W   | R/W   |
| Initial<br>value | 0   | 0               | 0    | 0     | 0        | 0       | 0        | 0        | 0     | 0       | 0      | 1      | 0     | 0     | 0     | 0     |
| Bit No.          | ŀ   | Bit sym<br>name |      |       |          |         |          |          | D     | escript | ion    |        |       |       |       |       |
| 15 to 5          | -   |                 |      | Rese  | rved bit | s       |          |          |       |         |        |        |       |       |       |       |
| 4 to 0           | FSE | G4 to F         | SEG0 | These | e bits a | re usec | l to set | the flas | h mem | ory seg | ment a | ddress | •     |       |       |       |

Table 26-1 shows the address setting value for block erasing and Table 26-2 shows the address setting value for sector erasing.

| Segment    | Block    | Address Setting Valu<br>Address | Size    | FLASHSEG<br>register | FLASHA<br>register |
|------------|----------|---------------------------------|---------|----------------------|--------------------|
|            | Block 0  | 0x0000 to 0x3FFF                | 16KByte | _                    | 0x0000             |
|            | Block 1  | 0x4000 to 0x7FFF                | 16KByte |                      | 0x4000             |
| Segment 0  | Block 2  | 0x8000 to 0xBFFF                | 16KByte | 0x00                 | 0x8000             |
|            | Block 3  | 0xC000 to 0xFFFF                | 16KByte |                      | 0xC000             |
|            | Block 4  | 0x0000 to 0x3FFF                | 16KByte |                      | 0x0000             |
| O a mark 1 | Block 5  | 0x4000 to 0x7FFF                | 16KByte | 001                  | 0x4000             |
| Segment 1  | Block 6  | 0x8000 to 0xBFFF                | 16KByte | 0x01                 | 0x8000             |
|            | Block 7  | 0xC000 to 0xFFFF                | 16KByte |                      | 0xC000             |
|            | Block 8  | 0x0000 to 0x3FFF                | 16KByte |                      | 0x0000             |
|            | Block 9  | 0x4000 to 0x7FFF                | 16KByte | 0.400                | 0x4000             |
| Segment 2  | Block 10 | 0x8000 to 0xBFFF                | 16KByte | 0x02                 | 0x8000             |
|            | Block 11 | 0xC000 to 0xFFFF                | 16KByte | -                    | 0xC000             |
|            | Block 12 | 0x0000 to 0x3FFF                | 16KByte |                      | 0x0000             |
|            | Block 13 | 0x4000 to 0x7FFF                | 16KByte | 002                  | 0x4000             |
| Segment 3  | Block 14 | 0x8000 to 0xBFFF                | 16KByte | 0x03                 | 0x8000             |
|            | Block 15 | 0xC000 to 0xFFFF                | 16KByte | -                    | 0xC000             |
|            | Block 16 | 0x0000 to 0x3FFF                | 16KByte |                      | 0x0000             |
| Commont 4  | Block 17 | 0x4000 to 0x7FFF                | 16KByte | 0.01                 | 0x4000             |
| Segment 4  | Block 18 | 0x8000 to 0xBFFF                | 16KByte | 0x04                 | 0x8000             |
|            | Block 19 | 0xC000 to 0xFFFF                | 16KByte |                      | 0xC000             |
|            | Block 20 | 0x0000 to 0x3FFF                | 16KByte |                      | 0x0000             |
| Sogmont F  | Block 21 | 0x4000 to 0x7FFF                | 16KByte | 0x05                 | 0x4000             |
| Segment 5  | Block 22 | 0x8000 to 0xBFFF                | 16KByte | 0,005                | 0x8000             |
|            | Block 23 | 0xC000 to 0xFFFF                | 16KByte |                      | 0xC000             |
|            | Block 24 | 0x0000 to 0x3FFF                | 16KByte |                      | 0x0000             |
| Sogmont 6  | Block 25 | 0x4000 to 0x7FFF                | 16KByte | 0×06                 | 0x4000             |
| Segment 6  | Block 26 | 0x8000 to 0xBFFF                | 16KByte | 0x06                 | 0x8000             |
|            | Block 27 | 0xC000 to 0xFFFF                | 16KByte |                      | 0xC000             |
|            | Block 28 | 0x0000 to 0x3FFF                | 16KByte |                      | 0x0000             |
| Segment 7  | Block 29 | 0x4000 to 0x7FFF                | 16KByte | 0×07                 | 0x4000             |
| Segment 7  | Block 30 | 0x8000 to 0xBFFF                | 16KByte | 0x07                 | 0x8000             |
|            | Block 31 | 0xC000 to 0xFFFF                | 16KByte |                      | 0xC000             |
| Segment 31 | Block 0  | 0x0000 to 0x0FFF                | 4KByte  | 0x1F                 | 0x0000             |

#### Table 26-1 Address Setting Values for Block Erasing

|           | Table 26-2 | 2-1 Address Setting Val | ues for Sector E |                      |                    |
|-----------|------------|-------------------------|------------------|----------------------|--------------------|
| Segment   | Block      | Address                 | Size             | FLASHSEG<br>register | FLASHA<br>register |
|           | Sector 0   | 0x0000 to 0x03FF        | 1KByte           |                      | 0x0000             |
|           | Sector 1   | 0x0400 to 0x07FF        | 1KByte           |                      | 0x0400             |
| Segment 0 | :          | :                       | :                | 0x00                 | :                  |
|           | Sector 62  | 0xF800 to 0xFBFF        | 1KByte           |                      | 0xF800             |
|           | Sector 63  | 0xFC00 to 0xFFFF        | 1KByte           |                      | 0xFC00             |
|           | Sector 64  | 0x0000 to 0x03FF        | 1KByte           |                      | 0x0000             |
|           | Sector 65  | 0x0400 to 0x07FF        | 1KByte           |                      | 0x0400             |
| Segment 1 | :          | :                       | :                | 0x01                 | :                  |
|           | Sector 126 | 0xF800 to 0xFBFF        | 1KByte           |                      | 0xF800             |
|           | Sector 127 | 0xFC00 to 0xFFFF        | 1KByte           |                      | 0xFC00             |
|           | Sector 128 | 0x0000 to 0x03FF        | 1KByte           |                      | 0x0000             |
|           | Sector 129 | 0x0400 to 0x07FF        | 1KByte           |                      | 0x0400             |
| Segment 2 | :          | :                       | :                | 0x02                 |                    |
|           | Sector 190 | 0xF800 to 0xFBFF        | 1KByte           |                      | 0xF800             |
|           | Sector 191 | 0xFC00 to 0xFFFF        | 1KByte           |                      | 0xFC00             |
|           | Sector 192 | 0x0000 to 0x03FF        | 1KByte           |                      | 0x0000             |
|           | Sector 193 | 0x0400 to 0x07FF        | 1KByte           |                      | 0x0400             |
| Segment 3 | :          | :                       | :                | 0x03                 | :                  |
|           | Sector 254 | 0xF800 to 0xFBFF        | 1KByte           |                      | 0xF800             |
|           | Sector 255 | 0xFC00 to 0xFFFF        | 1KByte           |                      | 0xFC00             |
|           | Sector 256 | 0x0000 to 0x03FF        | 1KByte           |                      | 0x0000             |
|           | Sector 257 |                         |                  |                      | 0x0400             |
| Segment 4 | :          | :                       | :                | 0x04                 | :                  |
|           | Sector 318 | 0xF800 to 0xFBFF        | 1KByte           | -                    | 0xF800             |
|           | Sector 319 | 0xFC00 to 0xFFFF        | 1KByte           | -                    | 0xFC00             |
|           | Sector 320 | 0x0000 to 0x03FF        | 1KByte           |                      | 0x0000             |
|           | Sector 321 | 0x0400 to 0x07FF        | 1KByte           | -                    | 0x0400             |
| Segment 5 | :          | :                       | :                | 0x05                 | :                  |
|           | Sector 382 | 0xF800 to 0xFBFF        | 1KByte           |                      | 0xF800             |
|           | Sector 383 | 0xFC00 to 0xFFFF        | 1KByte           | -                    | 0xFC00             |
|           | Sector 384 | 0x0000 to 0x03FF        | 1KByte           |                      | 0x0000             |
|           | Sector 385 | 0x0400 to 0x07FF        | 1KByte           | -                    | 0x0400             |
| Segment 6 | :          | :                       | :                | 0x06                 | :                  |
|           | Sector 446 | 0xF800 to 0xFBFF        | 1KByte           | 1                    | 0xF800             |
|           | Sector 447 | 0xFC00 to 0xFFFF        | 1KByte           | 1                    | 0xFC00             |
|           | Sector 448 | 0x0000 to 0x03FF        | 1KByte           | 1                    | 0x0000             |
|           | Sector 449 | 0x0400 to 0x07FF        | 1KByte           | 1                    | 0x0400             |
| Segment 7 | :          | :                       | :                | 0x07                 | :                  |
| J         | Sector 510 | 0xF800 to 0xFBFF        | 1KByte           | 1                    | 0xF800             |
|           | Sector 511 | 0xFC00 to 0xFFFF        | 1KByte           | 1                    | 0xFC00             |
|           |            |                         |                  |                      |                    |

| Table 26-2-1 Address Setting Values for Sector Erasing |
|--------------------------------------------------------|
|--------------------------------------------------------|

| Segment    | Block     | Address          | Size    | FLASHSEG<br>register | FLASHA<br>register |
|------------|-----------|------------------|---------|----------------------|--------------------|
|            | Sector 0  | 0x0000 to 0x007F | 128Byte |                      | 0x0000             |
|            | Sector 1  | 0x0080 to 0x00FF | 128Byte |                      | 0x0080             |
|            | Sector 2  | 0x0100 to 0x017F | 128Byte |                      | 0x0100             |
|            | Sector 3  | 0x0180 to 0x01FF | 128Byte |                      | 0x0180             |
|            | :         | :                | :       |                      | :                  |
|            | Sector 12 | 0x0600 to 0x067F | 128Byte |                      | 0x0600             |
| Segment 21 | Sector 13 | 0x0680 to 0x06FF | 128Byte | 0x1F                 | 0x0680             |
| Segment 31 | Sector 14 | 0x0700 to 0x077F | 128Byte | UXIF                 | 0x0700             |
|            | Sector 15 | 0x0780 to 0x07FF | 128Byte |                      | 0x0780             |
|            | :         | :                | :       |                      | :                  |
|            | Sector 28 | 0x0E00 to 0x0E7F | 128Byte |                      | 0x0E00             |
|            | Sector 29 | 0x0E80 to 0x0EFF | 128Byte |                      | 0x0E80             |
|            | Sector 30 | 0x0F00 to 0x0F7F | 128Byte |                      | 0x0F00             |
|            | Sector 31 | 0x0F80 to 0x0FFF | 128Byte |                      | 0x0F80             |

#### Table 26-2-2 Address Setting Values for Sector Erasing

#### 26.2.4 Flash Data Register 0 (FLASHD0)

This is a SFR used to set programming data.

| Acce<br>Acce     | ess :<br>ess :<br>ess size<br>l value | R/<br>: 8/ | F092 (<br>W<br>16 bit<br>FFFF | FLASH                                                     | D0L/FL | ASHDO | )), 0xF( | 093 (FL | ASHD | DH)      |     |      |      |     |     |     |
|------------------|---------------------------------------|------------|-------------------------------|-----------------------------------------------------------|--------|-------|----------|---------|------|----------|-----|------|------|-----|-----|-----|
|                  | 15                                    | 14         | 13                            | 12                                                        | 11     | 10    | 9        | 8       | 7    | 6        | 5   | 4    | 3    | 2   | 1   | 0   |
| Word             |                                       |            |                               |                                                           |        |       |          | FLAS    | SHD0 |          |     |      |      |     |     |     |
| Byte             |                                       |            |                               | FLAS                                                      | HD0H   |       |          |         |      |          |     | FLAS | HD0L |     |     |     |
| Bit              | FD15                                  | FD14       | FD13                          | FD12                                                      | FD11   | FD10  | FD9      | FD8     | FD7  | FD6      | FD5 | FD4  | FD3  | FD2 | FD1 | FD0 |
| R/W              | R/W                                   | R/W        | R/W                           | R/W                                                       | R/W    | R/W   | R/W      | R/W     | R/W  | R/W      | R/W | R/W  | R/W  | R/W | R/W | R/W |
| Initial<br>value | 1                                     | 1          | 1                             | 1                                                         | 1      | 1     | 1        | 1       | 1    | 1        | 1   | 1    | 1    | 1   | 1   | 1   |
| Bit No.          | Bit symbol<br>name                    |            | ol                            |                                                           |        |       |          |         | D    | escripti | on  |      |      |     |     |     |
| 15 to 8          | FD15 to FD8                           |            | 8                             | These bits are used to set the 2 <sup>nd</sup> byte data. |        |       |          |         |      |          |     |      |      |     |     |     |
| 7 to 0           | FD7 to FD0                            |            | )                             | These bits are used to set the 1 <sup>st</sup> byte data. |        |       |          |         |      |          |     |      |      |     |     |     |

#### 26.2.5 Flash Data Register 1 (FLASHD1)

This is a SFR used to set programming data.

| Address :<br>Access :<br>Access size :<br>Initial value : |  |
|-----------------------------------------------------------|--|
|                                                           |  |

|                  | 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Word             |      |      |      |      |      |      |      | FLAS | SHD1 |      |      |      |      |      |      |      |
| Byte             |      |      |      | FLAS | HD1H |      |      |      |      |      |      | FLAS | HD1L |      |      |      |
| Bit              | FD31 | FD30 | FD29 | FD28 | FD27 | FD26 | FD25 | FD24 | FD23 | FD22 | FD21 | FD20 | FD19 | FD18 | FD17 | FD16 |
| R/W              | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Initial<br>value | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |

| Bit No. | Bit symbol<br>name | Description                                               |
|---------|--------------------|-----------------------------------------------------------|
| 15 to 8 | FD31 to FD24       | These bits are used to set the 4 <sup>th</sup> byte data. |
| 7 to 0  | FD23 to FD16       | These bits are used to set the 3 <sup>rd</sup> byte data. |

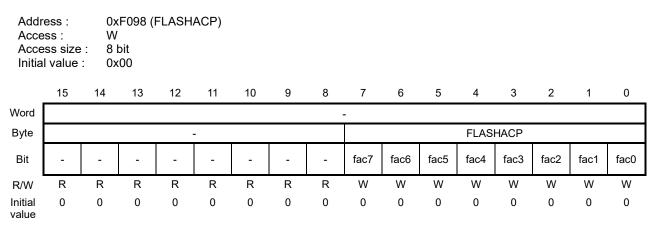
There are some differences for programming the program memory space and the data flash area.

| Programming<br>target      | Register                                                                                                       | How to start<br>programming to flash  | Description                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------|
| Program<br>memory<br>space | Four bytes specified in FLASHD0<br>register(FLASHD0H, FLASHD0L) and<br>FLASHD1 register(FLASHD1H,<br>FLASHD1L) | Writing data into<br>FLASHD1/FLASHD1H | Write data into FLASHD0 register at first and FLASHD1 register the second, in LSB first. |
| Data flash<br>area         | FLASHD0L register only (one byte) in FLASHD0 register.                                                         | Writing data into<br>FLASHD0/FLASHD0L | Data written into FLASHD0H register and FLASHD1 register are invalid.                    |

[Note]

#### Specify a segment address to the FLASHSEG at first, because it determines whether the programming is for program memory space or data flash memory.

- During programming data-flash, a CPU can execute instruction by the back ground operation function; BGO. Confirm FDPRSTA bit of FLASHSTA register for complition of programming.
- Erase data in the addresses in advance. Programmed data without erase is unguaranteed.
- Do not read or program unused areas to prevent the CPU works incorrectly.


#### 26.2.6 Flash Control Register (FLASHCON)

This is a write-only SFR used to control the block erasing and sector erasing for the flash memory. This register always returns 0x00 for reading.

|                  |     | W<br>: 8        |     | FLASH                                | CON)     |                                                    |                                                      |                                |          |          |                                         |          |         |   |           |          |
|------------------|-----|-----------------|-----|--------------------------------------|----------|----------------------------------------------------|------------------------------------------------------|--------------------------------|----------|----------|-----------------------------------------|----------|---------|---|-----------|----------|
|                  | 15  | 14              | 13  | 12                                   | 11       | 10                                                 | 9                                                    | 8                              | 7        | 6        | 5                                       | 4        | 3       | 2 | 1         | 0        |
| Word             |     |                 |     |                                      |          |                                                    |                                                      |                                | -        |          |                                         |          |         |   |           |          |
| Byte             |     |                 |     |                                      | -        |                                                    |                                                      |                                |          |          |                                         | FLAS     | HCON    |   |           |          |
| Bit              | -   | -               | -   | -                                    | -        | -                                                  | -                                                    | -                              | -        | -        | -                                       | -        | -       | - | FSERS     | FERS     |
| R/W              | R   | R               | R   | R                                    | R        | R                                                  | R                                                    | R                              | R        | R        | R                                       | R        | R       | R | W         | W        |
| Initial<br>value | 0   | 0               | 0   | 0                                    | 0        | 0                                                  | 0                                                    | 0                              | 0        | 0        | 0                                       | 0        | 0       | 0 | 0         | 0        |
| Bit No.          | .   | Bit sym<br>name |     | -                                    |          |                                                    |                                                      |                                | C        | Descrip  | tion                                    |          |         |   |           |          |
| 7 to 2           | -   |                 |     | Rese                                 | rved bi  | ts                                                 |                                                      |                                |          |          |                                         |          |         |   |           |          |
| 1, 0             | FSE | RS, FE          | ERS | Settin<br>erasi<br>00:<br>01:<br>10: | ng the F | SERS<br>block s<br>ction (I<br>lock era<br>ector e | bit to "<br>pecifiec<br>nitial va<br>asing<br>rasing | 1" starts<br>I by the<br>Ilue) | s erasir | ng the s | or block<br>sector a<br>and FL <i>A</i> | nd setti | ing the |   | bit to "1 | " starts |

#### 26.2.7 Flash Acceptor (FLASHACP)

This is a write-only SFR used to accept for erasing/programming the flash memory.



These bits are used to accept for erasing/programming the flash memory in order to prevent an unintended erasing/programming operation.

When "0xFA" and "0xF5" are written to the FLASHACP in this order, the erasing or programming function is enabled only once. For subsequent erasing or programming, "0xFA" and "0xF5" must be written to FLASHACP each time.

Even if other instructions are executed between the instruction that writes "0xFA" and "0xF5" to the FLASHACP, the erasing or programming function is still valid.

If data other than "0xF5" is written to the FLASHACP after "0xFA" is written, "0xFA" becomes invalid. In this case, it needs to write "0xFA" again.

#### [Note]

• A flash memory data in processing to program is not guaranteed, if this register is written any data when FLASHSTA is not 0x0.

#### 26.2.8 Flash Self Register (FLASHSLF)

This is a SFR used to enable erasing and programming the flash memory. When system clock is the low-speed clock, it is not writable.

| Acce<br>Acce     | ess :<br>ess :<br>ess size<br>l value | R/<br>: 81     | W  | (FLASH        | SLF)     |                      |                               |       |         |          |        |         |        |         |         |          |
|------------------|---------------------------------------|----------------|----|---------------|----------|----------------------|-------------------------------|-------|---------|----------|--------|---------|--------|---------|---------|----------|
|                  | 15                                    | 14             | 13 | 12            | 11       | 10                   | 9                             | 8     | 7       | 6        | 5      | 4       | 3      | 2       | 1       | 0        |
| Word             |                                       |                |    |               |          |                      |                               |       | -       |          |        |         |        |         |         |          |
| Byte             |                                       |                |    |               | -        |                      |                               |       |         |          |        | FLAS    | HSLF   |         |         |          |
| Bit              | -                                     | -              | -  | -             | -        | -                    | -                             | -     | -       | -        | -      | -       | -      | -       | -       | FSELF    |
| R/W              | R                                     | R              | R  | R             | R        | R                    | R                             | R     | R       | R        | R      | R       | R      | R       | R       | R/W      |
| Initial<br>value | 0                                     | 0              | 0  | 0             | 0        | 0                    | 0                             | 0     | 0       | 0        | 0      | 0       | 0      | 0       | 0       | 0        |
| Bit No.          | Bi                                    | t symb<br>name | ol |               |          |                      |                               |       | [       | Descript | tion   |         |        |         |         |          |
| ' to 1           | -                                     |                |    | Reser         | ved bits | 6                    |                               |       |         |          |        |         |        |         |         |          |
| )                | FSELF                                 |                |    | compl<br>0: E | eted era | asing/p<br>d (Initia | able er<br>rogram<br>l value) | ming. | ınd pro | grammi   | ng the | flash m | emory. | This bi | t is ke | pt after |

[Note]

A flash memory data in processing to program is not guaranteed, if this register is written any data when FLASHSTA is not 0x0.

#### 26.2.9 Flash Status Register (FLASHSTA)

This is a read-only SFR used to check status of the flash memory.

|                  |                                                                                                                                                                               | R<br>: 81       |    | FLASH   | STA)    |    |   |   |    |           |      |      |   |   |             |             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|---------|---------|----|---|---|----|-----------|------|------|---|---|-------------|-------------|
| _                | 15                                                                                                                                                                            | 14              | 13 | 12      | 11      | 10 | 9 | 8 | 7  | 6         | 5    | 4    | 3 | 2 | 1           | 0           |
| Word             |                                                                                                                                                                               |                 |    |         |         |    |   |   | -  |           |      |      |   |   |             |             |
| Byte             | -                                                                                                                                                                             |                 |    |         |         |    |   |   |    |           | FLAS | HSTA |   |   |             |             |
| Bit              | -                                                                                                                                                                             | -               | -  | -       | -       | -  | - | - | -  | -         | -    | -    | - | - | FDPRS<br>TA | FDERS<br>TA |
| R/W              | R                                                                                                                                                                             | R               | R  | R       | R       | R  | R | R | R  | R         | R    | R    | R | R | R           | R           |
| Initial<br>value | 0                                                                                                                                                                             | 0               | 0  | 0       | 0       | 0  | 0 | 0 | 0  | 0         | 0    | 0    | 0 | 0 | 0           | 0           |
| Bit No.          | Bi                                                                                                                                                                            | t symbo<br>name | ol |         |         |    |   |   | De | escriptio | on   |      |   |   |             |             |
| 7 to 2           | -                                                                                                                                                                             |                 | F  | Reserve | ed bits |    |   |   |    |           |      |      |   |   |             |             |
| 1                | FDPRSTAThis bit is used to indicate whether the data flash area is in the state of programming.0:Not in the state of programming (Initial value)1:In the state of programming |                 |    |         |         |    |   |   |    |           |      |      |   |   |             |             |
| 0                | FDERSTA This bit is used to indicate whether the data flash area is in the state of erasing.<br>0: Not in the state of erasing (Initial value)<br>1: In the state of erasing  |                 |    |         |         |    |   |   |    |           |      |      |   |   |             |             |

This register is used when erasing or programming the data flash memory.

| Erasing/Programming<br>target | Availability to read<br>this register while<br>erasing/programming | Description                                                  |
|-------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| Program memory space          | Unavailable                                                        | Do not use the FLASHSTA register.                            |
| Data flash area               | Available                                                          | Start erasing/programming the flash checking the bit is "0". |

The CPU stops running the program codes while erasing or programming the program flash memory, therefore FLASHSTA is not readable in that case.

As the Back Ground Operation (BGO) function allows the CPU continue running the program codes, make a process for the next erasing and programming by checking the FDERSTA bit or FDPRSTA bit to see if the erasing or programming is completed.

#### [Note]

• Perform the erasing or programming after checking the FDERSTA bit or FDPRSTA bit are "0". Do not perform the erasing or programming when either the FDERSTA bit or the FDPRSTA bit is "1".

#### 26.3 Self-programming

The self-programming is the function to program (erase and program) the program memory space and data flash area using SFRs.

Table 26-3 shows the self-programming specifications for each of the program memory space and data flash area.

|                                                                  |                                       | Program memory space                                                                                                                           | Data flash area                                                                   |  |  |  |  |
|------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
|                                                                  |                                       | (Segment 0 to 7)                                                                                                                               | (segment 31)                                                                      |  |  |  |  |
| Programming                                                      | Erasing block                         | 16 Kbyte                                                                                                                                       | all area                                                                          |  |  |  |  |
| unit                                                             | Erasing sector                        | 1 Kbyte                                                                                                                                        | 128 byte                                                                          |  |  |  |  |
| unit                                                             | Programming                           | 4 byte                                                                                                                                         | 1 byte                                                                            |  |  |  |  |
|                                                                  | ation during<br>rase or program       | Stop program processing (after<br>completion of erasing/programming,<br>resume program processing)                                             | Continue program processing through<br>the background operation (BGO)<br>function |  |  |  |  |
| Confirmation of end of<br>block/sector erasing or<br>programming |                                       | Confirmation not required (as program run is stopped during erasing/programming)                                                               | Confirmation can be made through<br>FLASHSTA register                             |  |  |  |  |
| block/sector er                                                  | rea where<br>rasing has been<br>blied | Every bit becomes "1" (the bit written with "0" by writing becomes "0" from "1")                                                               |                                                                                   |  |  |  |  |
| Note on data                                                     | programming                           | Erase the area to be reprogrammed (data programmed without erasing is<br>unguaranteed)                                                         |                                                                                   |  |  |  |  |
| unint                                                            | to prevent<br>ended<br>ogramming      | Flash self-register (FLASHSLF) and flash acceptor (FLASHACP) incorporated (*1)                                                                 |                                                                                   |  |  |  |  |
|                                                                  | nemory<br>ogramming                   | Supported only when system clo                                                                                                                 | ock is the high-speed clock (*2)                                                  |  |  |  |  |
| Note on user program<br>programming                              |                                       | Before programming the user program,<br>prepare a program for self-programming<br>in the program code area which is not<br>erased/reprogrammed | -                                                                                 |  |  |  |  |
| Remappir                                                         | ng function                           | User program update, etc. can be<br>performed by simultaneously using<br>remapping function                                                    | -                                                                                 |  |  |  |  |

Table 26-3 Self-programming of Program Memory Space and Data Flash Area

\*1: After the programming is enabled by the FLASHSLF register, if "0xFA" and "0xF5" are written to the flash acceptor (FLASHACP), block/sector erase or reprogram is enabled only once.

\*2: See Chapter 6 "Clock Generation Circuit" for enabling oscillation of the high-speed oscillation circuit and switching the system clock.

#### 26.3.1 Notes on Debugging Self-programming Code

When debugging the area within the scope of program for self-programming (from setting the flash acceptor to writing the flash data register 0, 1) using U16 development environment (debugger), use the debugger according to the precautions described in Table 26-4.

| Table 26-4 Notes on Debugging Self-programming |
|------------------------------------------------|
|------------------------------------------------|

| Limited<br>function   | Notes                                                                                                                                                                                                                                                                                                                     |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Breakpoint<br>setting | Do not perform the real time execution with break points set in the scope of program for self-<br>programming (from setting the flash acceptor to setting the flash data register0, 1).<br>Otherwise, the flash memory may not be reprogrammed if break points occur within the scope of<br>program for self-programming. |
| Step<br>execution     | Do not perform the step execution within the scope of program for self-programming.<br>Otherwise, the flash memory may not be reprogrammed if the step execution is performed within the<br>scope of program for self-programming.                                                                                        |

#### 26.3.2 Programming Program Memory Space

In the program memory space (flash memory), block erase in units of 16 Kbytes, sector erase in units of 1 Kbyte, and reprogram in units of 4 bytes can be executed.

Figure 26-1 shows the flow diagram for erasing the program memory space.

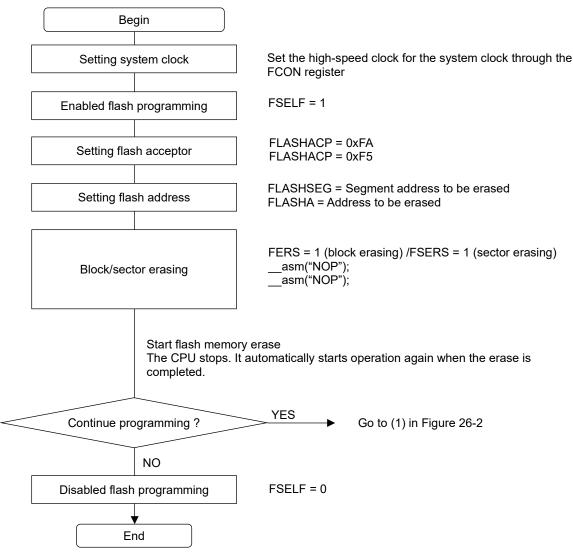



Figure 26-1 Flow Diagram for Erasing Program Memory Space

- Only erase areas irrelevant to program processing. If erasing the area where program processing is in progress, the LSI works incorrectly.
- During block/sector erasing, the CPU stops the operation for maximum 50 ms whereas peripheral circuits continue operation. Therefore, clear the WDT counter accordingly.
- For block/sector erasing, place two NOP instructions following the instruction used to set FERS/FSERS bits of the FLASHCON register to "1".

Figure 26-2 shows the flow diagram for programming the program memory space.

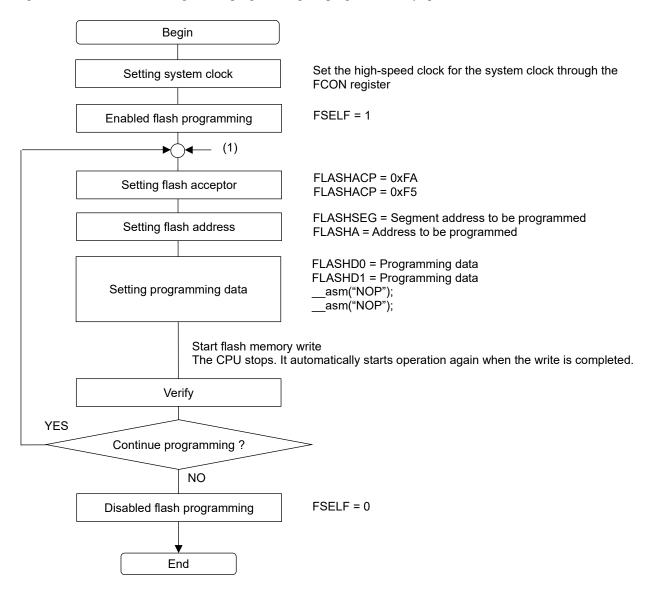



Figure 26-2 Flow Diagram for Programming Program Memory Space

- Only erase areas irrelevant to program processing. If erasing the area where program processing is in progress, the LSI works incorrectly.
- During the programming, the CPU stops the operation for maximum 80 µs whereas peripheral circuits continue operation. Therefore, clear the WDT counter accordingly.
- For data programming setting, place two NOP instructions following the instruction used to set the programming data in the FLASHD1 register.

#### 26.3.3 Programming Data Flash Area

In the data flash area (flash memory), block erase in all area, sector erase in units of 128 bytes, and programming in units of 1 byte can be executed. During block/sector erase or program in the data flash area, the CPU continues program processing using the background operation (BGO) function.

Figure 26-3 shows the flow diagram for erasing the data flash area.

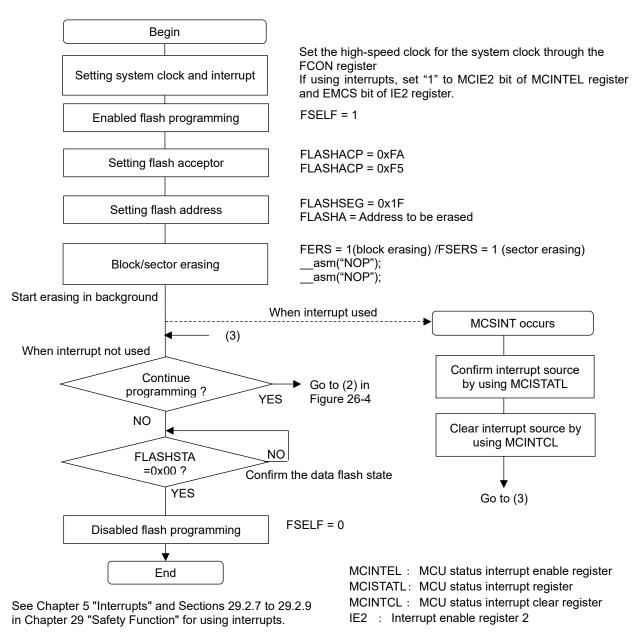



Figure 26-3 Flow Diagram for Erasing Data Flash Area

- The CPU continues program processing even while data flash erasing is in progress. An entering to the STOP/STOP-D/HALT-D/HALT-H mode is not available during the erasing. In addition, set the FSELF bit of the FLASHSLF register to "0" after the erasing is completed.
- The data flash area is unreadable during erasing.
- For block/sector erasing, place two NOP instructions following the instruction used to set FERS/FSERS bits of the FLASHCON register to "1".

Figure 26-4 shows the flow diagram for programming the data flash area.

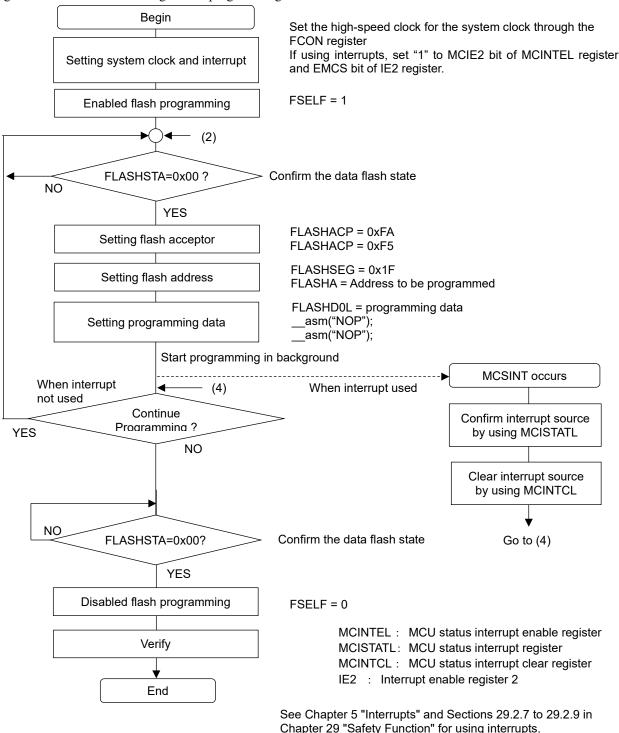



Figure 26-4 Flow Diagram for Programming Data Flash Area

- The CPU continues program processing even while data flash programming is in progress. An entering to the STOP/STOP-D/HALT-D/HALT-H mode is not available during the programming. In addition, set the FSELF bit of the FLASHSLF register to "0" (erase/program disabled) after the programming ended.
- The data flash area is unreadable during programming.
- For data programming setting, place two NOP instructions following the instruction used to set the programming data in the FLASHD0L register.

#### 26.3.4 Notes on use of self-programming

Table 26-5 shows the notes on the use of self-programming (block erasing/sector erasing/programming).

| Table 26-5 | Notes or  | ו Use of | Self-progra | mmina |
|------------|-----------|----------|-------------|-------|
| 10010 20 0 | 110100 01 | 100001   | oon progre  |       |

| Item                                                                                                           | Notes                                                                                                                                                 |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| System clock during use of self-<br>programming                                                                | Set to high-speed clock.<br>See Chapter "6 Clock Generation Circuit" for enabling the high-speed clock<br>oscillation and switching the system clock. |  |  |
| If power outage or forced termination due to a reset occurs                                                    | Data in flash memory is not guaranteed.<br>Perform block/sector erase again then program data.                                                        |  |  |
| If LSI does not start up due to<br>occurrence of power outage or forced<br>termination during programming (*1) | Program the program again using on-chip debug emulator or ISP function.                                                                               |  |  |
| Access to SFRs related flash control.                                                                          | Do not perform to write to the FLASHACP/FLASHSLF register during self-<br>programming; when FLASHSTA is not 0x0.                                      |  |  |

\*1: While programming the block or sector including address 0:0000 of the program area is in progress.

#### 26.4 In-System Programming Function

The In-System Programming (ISP) function is used to program a program memory space or data flash area through 2-wired synchronous serial port communication with an external device.

#### 26.4.1 Programming Procedure

Figure 26-5 shows the flow diagram for programming the flash memory using the ISP function.

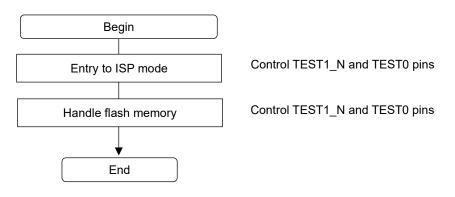



Figure 26-5 Flow Diagram for Programming Flash Memory Using ISP Function

#### 26.4.2 Communication Method

Table 26-6 describes the communication method of the ISP function.

| Item                 | Description                     |  |
|----------------------|---------------------------------|--|
| Communication Method | 2-wired synchronous serial port |  |
| Data format          | 8-bit length, MSB first         |  |
| Baud rate            | 1.5 to 2.5MHz                   |  |

#### 26.4.3 Control Command

3-byte commands are used to make the communication in the ISP function. Table 26-7 shows the ISP mode commands.

| Table 26-7 ISP<br>Command |                                                                           | 1 <sup>st</sup> byte | nmand List<br>2 <sup>nd</sup> byte   | 3 <sup>rd</sup> byte                                                                                          |
|---------------------------|---------------------------------------------------------------------------|----------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Mode entry command (1)    |                                                                           | 0xAB                 | 0x63                                 | 0x59                                                                                                          |
| Entry                     | Mode entry command (2)                                                    | 0xA4                 | 0x55                                 | 0x0D                                                                                                          |
|                           | Entry confirmation command *1                                             | 0x01                 | (Read) 0x06                          | (Read) 8'b111x_xxxx                                                                                           |
|                           | Initial setting command (1)                                               | 0x1A                 | 0x00                                 | 0x08                                                                                                          |
|                           | Initial setting command (2)                                               | 0x1A                 | 0x00                                 | 0x00                                                                                                          |
|                           | Initial setting command (3)                                               | 0xC0                 | 0x00                                 | 0x01                                                                                                          |
|                           | Initial setting command (4)                                               | 0xC0                 | 0x00                                 | 0x05                                                                                                          |
|                           | Initial setting command (5)                                               | 0xC0                 | 0x00                                 | 0x03                                                                                                          |
|                           | Initial setting command (6)                                               | 0xCE                 | 0x00                                 | 0x01                                                                                                          |
|                           | Initial setting command (7)                                               | 0xCE                 | 0x00                                 | 0x00                                                                                                          |
| Initial setting           | Initial setting command (8)                                               | 0x96                 | 0xFF                                 | 0xFF                                                                                                          |
|                           | Initial setting command (9)                                               | 0x98                 | 0xFF                                 | 0xFF                                                                                                          |
|                           | Initial setting command (10)                                              | 0x9A                 | 0xFF                                 | 0xFF                                                                                                          |
|                           | Initial setting command (11)                                              | 0x9C                 | 0xFF                                 | 0xFF                                                                                                          |
|                           | Initial setting command (12)                                              | 0x9E                 | 0xFF                                 | 0xFF                                                                                                          |
|                           | Initial confirmation command (1) *1                                       | 0x01                 | (Read) 0x06                          | (Read) 0xC0                                                                                                   |
|                           | Initial confirmation command (2) *1                                       | 0x91                 | (Read) 0x00                          | (Read) 0x00                                                                                                   |
|                           | Segment setting command                                                   | 0xC6                 | 0x00                                 | (segment value) 0x00-0x1F                                                                                     |
| Common                    | Address setting command                                                   | 0xC8                 | Higher 8 bits                        | Lower 8 bits                                                                                                  |
| setting                   | BUSY confirmation command *1                                              | 0xC5                 | (Read) 0x00: IDLE<br>other :not IDLE | (Read) 0x1F                                                                                                   |
| Block erasing             | Block erasing command                                                     | 0xC2                 | 0x00                                 | 0x05                                                                                                          |
| Chip erasing              | Chip erasing command                                                      | 0xC2                 | 0x00                                 | 0x06                                                                                                          |
| For programing<br>data    | Data setting command H<br>; in program code area (higher 2bytes)          | 0xD2                 | Higher Byte                          | Lower Byte                                                                                                    |
|                           | Data setting command L<br>; in program code area (lower 2bytes)           | 0xCA                 | Higher Byte                          | Lower Byte                                                                                                    |
|                           | Data setting command D<br>; in data flash area                            | 0xCA                 | 0xFF                                 | 1Byte data                                                                                                    |
|                           | Programming command                                                       | 0xC2                 | 0x00                                 | 0x04                                                                                                          |
| For verify                | Expected data setting command H<br>; in program code area (higher 2bytes) | 0xE4                 | Higher Byte                          | Lower Byte                                                                                                    |
|                           | Expected data setting command L<br>; in program code area (lower 2bytes)  | 0xE2                 | Higher Byte                          | Lower Byte                                                                                                    |
|                           | Expected data setting command D<br>; in data flash area                   | 0xE4                 | 0xFF                                 | 1Byte data                                                                                                    |
|                           | Verify command                                                            | 0xC2                 | 0x00                                 | 0x02                                                                                                          |
|                           | Verify confirmation command *1<br>; collation result of expected data     | 0xE7                 | (Read) 0x00                          | (Read) 0x03 : OK<br>0x01 : OK at current cycle,<br>but has been NG in the<br>past cycles.<br>0x00 or 0x02: NG |
|                           | Stack clear command 1                                                     | 0xD2                 | 0x00                                 | 0x00                                                                                                          |
|                           | Stack clear command 2                                                     | 0xCA                 | 0x00                                 | 0x00                                                                                                          |
|                           | Stack clear command 3                                                     | 0xE6                 | 0x00                                 | 0x03                                                                                                          |

 Accessing to the program code area is performed in units of four bytes. Set four byte boundaries (0H/4H/8H/CH) for lower four bits of the address. Accessing to the data flash area is performed in units of one byte.

## • All commands except some confirmation commands (\*1) are reflected when a next command is sent. 26.4.3.1 Command Timing

See data sheet for AC specifications.

Transmit one command within 80 us interval. Retry communication after 200 us as an interval time if communication is However, it have timeout function. The timeout is to quit the ISP mode if a specific command is not received for a certain period of time. when in the ISP mode.

Transmit one of following command within 800 ms interval in the ISP mode.

- Initial setting command (1) + any commands
- Expected data setting command H + any commands
- Expected data setting command D + any commands
- BUSY confirmation command

The execution timing of the command except entry and confirming commands (mode entry command (1)(2), entry confirmation command, initial confirmation command (1)(2), BUSY confirmation command, verify confirm command), is at first positive edge of TEST1\_N of next command.

#### 26.4.4 How to Entry ISP Mode

Figure 26-6 shows flow diagram and timing diagram to entry ISP mode.

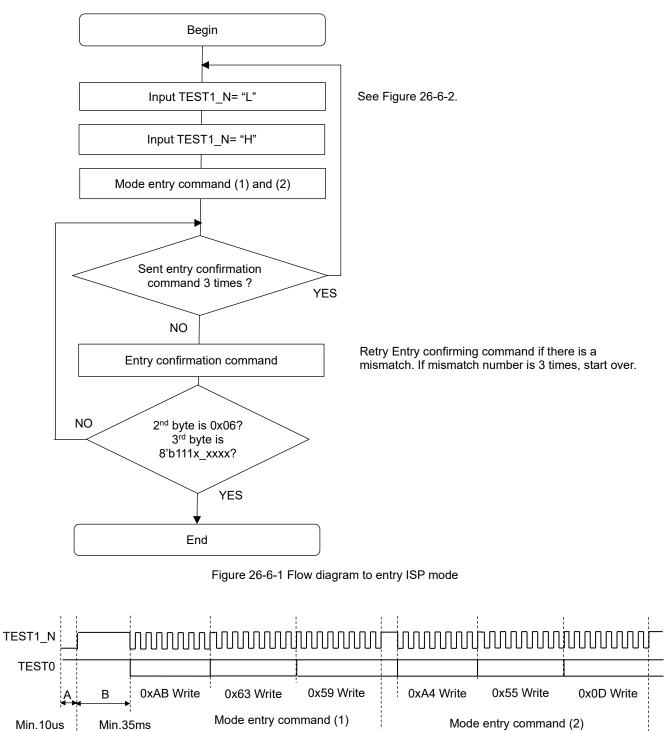
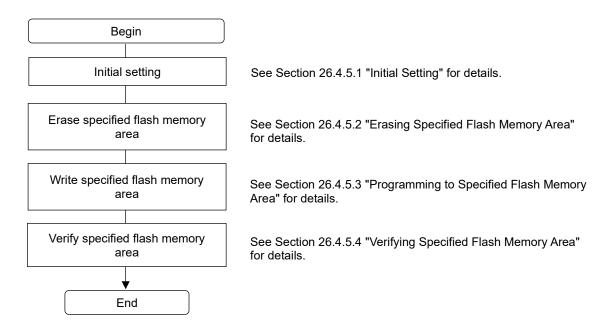
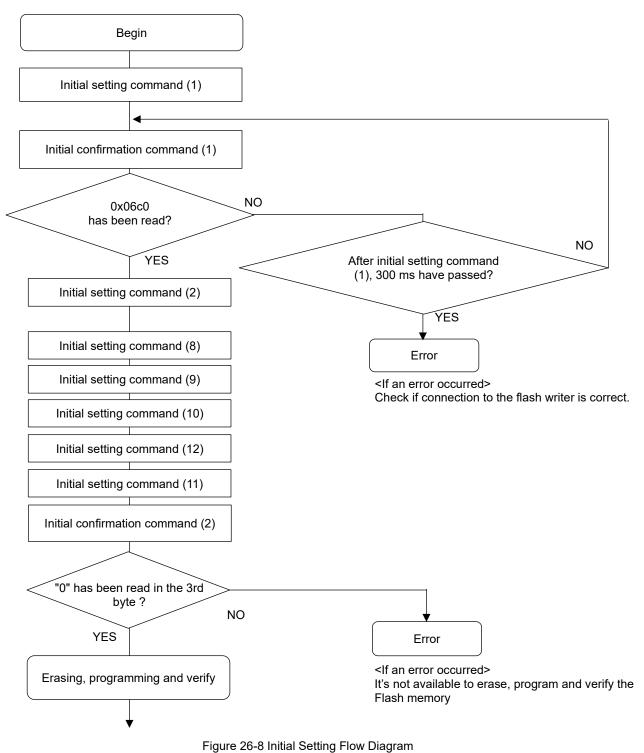



Figure 26-6-2 Timing diagram to entry ISP mode

#### 26.4.5 Handling the Flash Memory

Figure 26-7 shows the flow diagram for erasing/programming the flash memory after transition to the ISP mode.





Figure 26-7 Flow Diagram for Erasing/Programming Flash Memory (Overview)

[Note]

### LAPIS Technology Co., Ltd.

#### 26.4.5.1 Initial Setting

Figure 26-8 shows the initial setting flow.



Transmit command to avoid a timeout. See Section "26.4.3.1 Command Timing".

#### 26.4.5.2 Erasing Data in Specified Flash Memory Area

Figure 26-9 shows the flow diagram for erasing data in specified flash memory area.



Figure 26-9 Flow Diagram for Erasing in Specified Flash Memory Area

- Transmit command to avoid a timeout. See Section "26.4.3.1 Command Timing".
- Transmit any command after 'initial setting command (7)' if other command will not be transmit.

#### 26.4.5.3 Programming to Specified Flash Memory Area

Figure 26-10 shows the flow diagram for programming to the specified flash memory area.

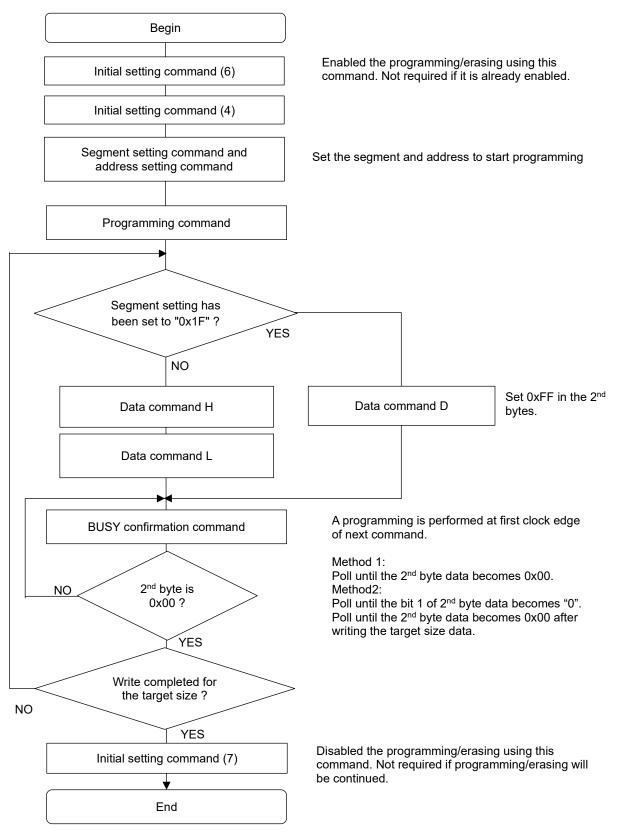
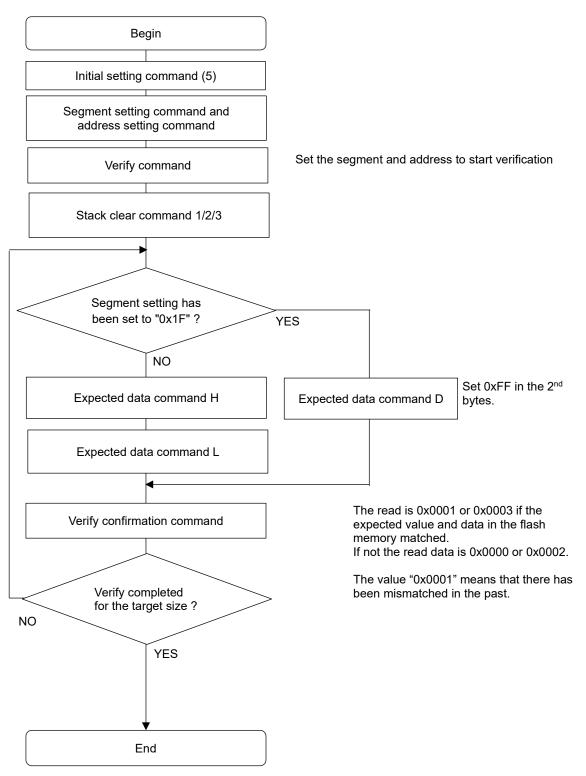




Figure 26-10 Flow Diagram for Programming to Specified Flash Memory Area

- Transmit command to avoid a timeout. See Section "26.4.3.1 Command Timing".
- Transmit any command after 'initial setting command (7)' if other command will not be transmit.

#### 26.4.5.4 Verifying data in Specified Flash Memory Area

Figure 26-11 shows the flow diagram for verifying data in the specified flash memory area.





#### [Note]

• Transmit command to avoid a timeout. See Section "26.4.3.1 Command Timing".

#### 26.4.6 Advanced Control of Flash Memory Erasing/Programming

This section describes how to implement shorter Flash memory erasing/programing/verify time.

The programming flow shown in section 26.4.5.3 is to confirm the busy signal after transmitting the erase command or the programming data before transmitting a next command or data. The processing time is reducible by transmitting the commands during the time the BUSY signal is released ( $t_{busy}$ ).

The mismatch results are stacked, so the confirming each sending expect data is not needed. The stacked result is cleared by clear command.

#### 26.4.6.1 Timing to transmit command of Advanced Control

The LSI executes erasing/programming instructions to the Flash memory when it receives commands for the erasing/programming. It requires the Busy time ( $t_{busy}$ ) as an interval time to accept the next communication command. Therefore, transmit the communication commands for erasing/programming the Flash memory with an interval of longer than  $t_{busy}$ .

The timing of command transmit is calculated as follows. Command transfer time :  $t_{cmd} = (24[bit] / transfer rate[bps])$ Wait time :  $t_{wait} = Busy time : t_{busy} - (t_{cmd} \times number of commands)$ 

Figure 26-12 shows an example of command transmit for programming with using BUSY confirmation command. When the transfer rate is 2Mbps and programming data in program code area: Send the commands so that the interval between the first clocks of the two "BUSY confirmation command" is t<sub>busy</sub> or more.

 $= 24 \text{ bit} / 2 \text{Mbps} = 12 [\mu \text{s}]$  $t_{cmd}$  $t_{busy} - (t_{cmd} \times 2) = 80 - 12 \times 2 = 56 \ [\mu s]$ twait Data command H t<sub>cmd</sub>× 2 Data command L BUSY confirmation command Flash Memory under programming  $(t_{busy} = 80 \mu s)$ Data command H t<sub>cmd</sub>× 2 Data command L BUSY confirmation command Flash Memory under programming  $(t_{busy} = 80 \mu s)$ 

Figure 26-12 Advanced control #1 of programming the program code area

Figure 26-13 shows an example of using "data command H" instead of "BUSY confirmation command".

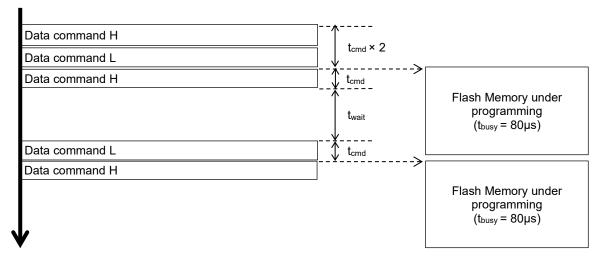



Figure 26-13 Advanced control #2 of programming the program code area

Figure 26-14 shows an example for programming to data flash area. When the transfer rate is 2Mbps and programming data in data flash area: Send the command "Data command D" so that the command acceptance interval is t<sub>busy</sub> or more.

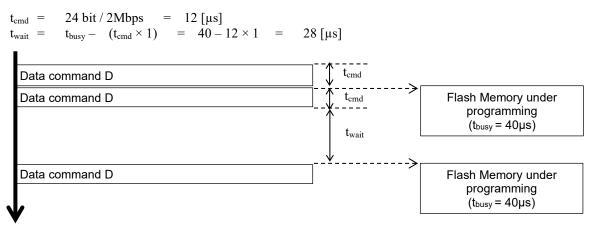



Figure 26-14 Advanced control of programming to the data flash

## 26.4.6.2 Erasing Data in Specified Flash Memory Area (Advanced control)

Figure 26-15 shows the flow diagram for erasing the specified flash memory area by the advanced control.

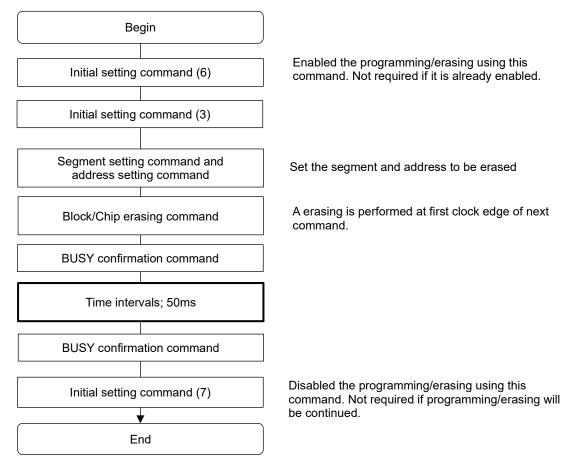



Figure 26-15 Flow Diagram for Erasing Specified Flash Memory Area (Advanced Control)

### [Note]

- Transmit command to avoid a timeout. See Section "26.4.3.1 Command Timing".
- Transmit any command after 'initial setting command (7)' if other command will not be transmit.

## 26.4.6.3 Programming to Specified Flash Memory Area (Advanced control)

Figure 26-16 shows the flow diagram for programming to the specified flash memory area by the advanced control.

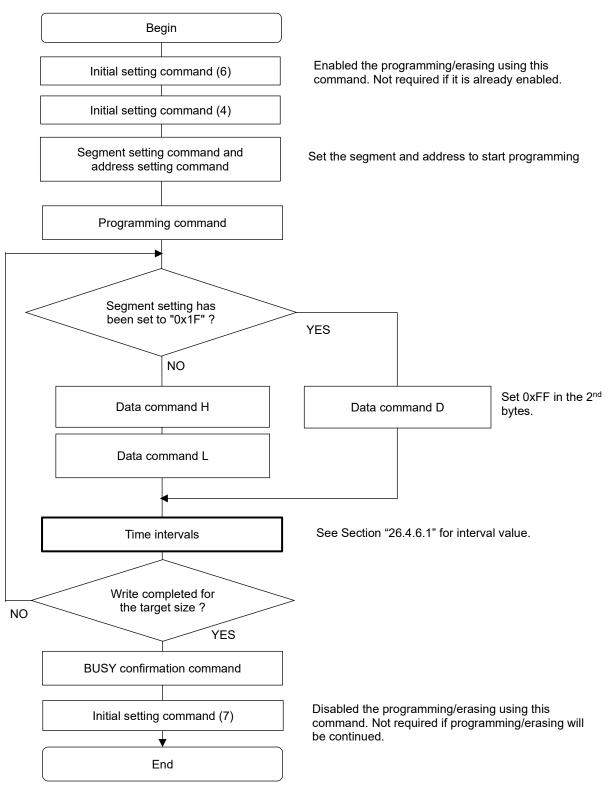



Figure 26-16 Flow Diagram for Programming Specified Flash Memory Area (Advanced Control)

[Note]

- Transmit command to avoid a timeout. See Section "26.4.3.1 Command Timing".
- Transmit any command after 'initial setting command (7)' if other command will not be transmit.

## 26.4.6.4 Verifying Data in Specified Flash Memory Area (Advanced control)

Figure 26-17 shows the flow diagram for verifying data in the specified flash memory area by the advanced control.

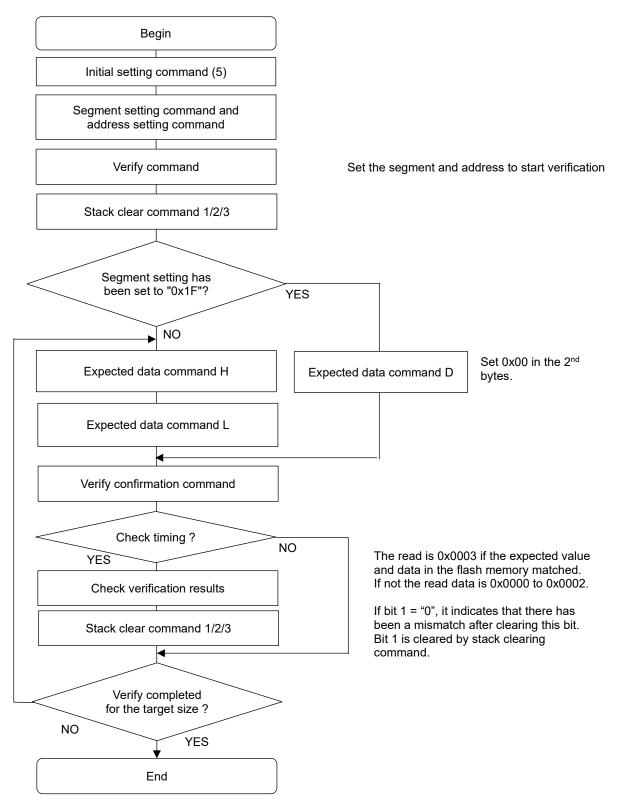
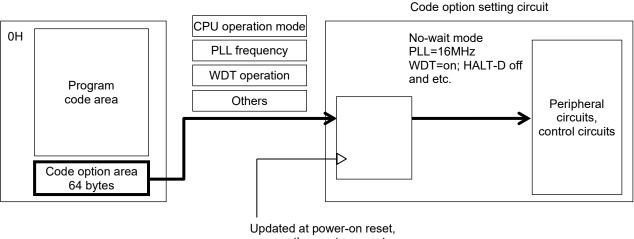



Figure 26-17 Flow Diagram for Verifying Specified Flash Memory Area (advanced control)

#### [Note]

- Transmit command to avoid a timeout. See Section "26.4.3.1 Command Timing".
- Transmit any command after 'stack clear command 3' if other command will not be transmit.

# **Chapter 30 Code Option**


## 30. Code Option

## 30.1 General Description

The code option is used to choose a CPU operating mode, PLL reference frequency, watchdog timer operation etc. depending on values written in the code option area of the program memory area.

The hardware automatically refers to data in the code option area when the microcontroller starts up due to one of system resets described below to set each function.

The code option area can be erased or programmed through the on-chip debug function, self-rewrite function of flash memory, or ISP function.



or any other system reset

Figure 30-1 Code Option Overview

## 30.1.1 Function List

- Readable configured code options from SFRs
- Enabling or disabling the unused ROM area access reset
- Enabling or disabling the remapping function
- The software remap or hardware remap is selectable for the remap function
- Enabling or disabling the watchdog timer operation
- Enabling or disabling the watchdog timer operation at HALT/HALT-H, HALT-D
- PLL reference frequency (1MHz / 16MHz / 24MHz)
- CPU operation mode (wait mode or no-wait mode)
- Enabling or disabling a clock back-up function of LSCLK1
- Configured V<sub>DDL</sub> voltage

## 30.2 Description of Code Option

## 30.2.1 Reading from SFRs

The address of code option area is dependent of the size of the program memory space (flash memory). The address of SFRs for reading is fixed.

| SFR address | Degister Name | Symbo    | R/W     | Size |      |
|-------------|---------------|----------|---------|------|------|
| SFR address | Register Name | Byte     | Word    | R/W  | Size |
| 0xF920      | Code Option 0 | CODEOP0L | CODEOP0 | R    | 8/16 |
| 0xF921      |               | CODEOP0H | CODEOFU | R    | 8    |
| 0xF922      | Code Option 1 | CODEOP1L |         | R    | 8/16 |
| 0xF923      | Code Option 1 | CODEOP1H | CODEOP1 | R    | 8    |
| 0xF924      | Code Option 2 | CODEOP2L | CODEOP2 | R    | 8/16 |
| 0xF925      |               | CODEOP2H | CODEOP2 | R    | 8    |

[Note]

There are available to read the code option values from SFRs, if INITE flag bit of Reset Status Register (RSTAT) is "0".

## 30.2.2 Code Option 0 (CODEOP0)

| Address:                 | (See Table 30-1)                                                                |
|--------------------------|---------------------------------------------------------------------------------|
| SFR address for reading: | 0xF920 (CODEOP0L/CODEOP0), 0xF921(CODEOP0H)                                     |
| Access to SFR :          | R                                                                               |
| Access size to SFR:      | 8/16 bit                                                                        |
| Initial value:           | 0xFFFF (Erased or factory default setting for products with blank flash memory) |

|                  | 15 | 14 | 13 | 12         | 11   | 10 | 9 | 8           | 7     | 6 | 5 | 4    | 3            | 2 | 1 | 0         |
|------------------|----|----|----|------------|------|----|---|-------------|-------|---|---|------|--------------|---|---|-----------|
| Word             |    |    |    |            |      |    |   | COD         | EOP0  |   |   |      |              |   |   |           |
| Byte             |    |    |    | CODE       | OP0H |    |   |             |       |   |   | CODE | EOP0L        |   |   |           |
| Bit              | -  | -  | -  | PCER<br>MD | -    | -  | - | REMA<br>PMD | LS1BU | - | - | -    | WDTP<br>WMD1 |   | - | WDTM<br>D |
| R/W              | R  | R  | R  | R          | R    | R  | R | R           | R     | R | R | R    | R            | R | R | R         |
| Initial<br>value | 1  | 1  | 1  | 1          | 1    | 1  | 1 | 1           | 1     | 1 | 1 | 1    | 1            | 1 | 1 | 1         |

| Bit No.  | Bit symbol<br>name | Description                                                                                                                                                                                                                                      |
|----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 13 | -                  | Reserved bits. Set "1" to all bits.                                                                                                                                                                                                              |
| 12       | PCERMD             | This bit is used to choose to enable/disable the unused ROM area access reset.<br>See Chapter 29.3.2 "Unused ROM Area Access Reset Function" for the unused ROM area<br>access reset.<br>0: Disabled<br>1: Enabled (Initial value)               |
| 11 to 9  | -                  | Reserved bits. Set "1" to all bits.                                                                                                                                                                                                              |
| 8        | REMAPMD            | This bit is used to choose to enable/disable the remapping function (software remap or<br>hardware remap) operation.<br>See Chapter 2.8 "Remapping Function" for details of the remapping function.<br>0: Enabled<br>1: Disabled (Initial value) |
| 7        | LS1BU              | This bit is used to enable /disable a back-up function of LSCLK1.<br>0: Disabled<br>1: Enabled (Initial value)                                                                                                                                   |
| 6 to 4   | -                  | Reserved bits. Set "1" to all bits.                                                                                                                                                                                                              |
| 3        | WDTPWMD1           | This bit is used to choose to enable/disable the watchdog timer (WDT) operation in HALT-D<br>mode, if WDTMD = "1".<br>0: Disabled<br>1: Enabled (Initial value)                                                                                  |
| 2        | WDTPWMD0           | This bit is used to choose to enable/disable the watchdog timer (WDT) operation in<br>HALT/HALT-H mode, if WDTMD = "1".<br>0: Disabled<br>1: Enabled (Initial value)                                                                             |
| 1        | -                  | Reserved bit. Set "1" to this bit.                                                                                                                                                                                                               |
| 0        | WDTMD              | <ul> <li>This bit is used to choose to enable/disable the watchdog timer (WDT) operation.</li> <li>0: Disabled</li> <li>1: Enabled (Initial value)</li> </ul>                                                                                    |

## 30.2.3 Code Option 1 (CODEOP1)

| Address:<br>SFR address for reading: | (See Table 30-1)<br>0xF922 (CODEOP1L/CODEOP1), 0xF923(CODEOP1H)                 |
|--------------------------------------|---------------------------------------------------------------------------------|
| Access to SFR :                      | R                                                                               |
| Access size to SFR:                  | 8/16 bit                                                                        |
| Initial value:                       | 0xFFFF (Erased or factory default setting for products with blank flash memory) |

|                  | 15 | 14 | 13 | 12   | 11   | 10 | 9 | 8   | 7    | 6    | 5 | 4   | 3          | 2          | 1          | 0          |
|------------------|----|----|----|------|------|----|---|-----|------|------|---|-----|------------|------------|------------|------------|
| Word             |    |    |    |      |      |    |   | COD | EOP1 |      |   |     |            |            |            |            |
| Byte             |    |    |    | CODE | OP1H |    |   |     |      |      |   | COD | EOP1L      |            |            |            |
| Bit              | -  | -  | -  | -    | -    | -  | - | -   | -    | VLMD | - | -   | PLLMD<br>1 | PLLMD<br>0 | CPUM<br>D1 | CPUM<br>D0 |
| R/W              | R  | R  | R  | R    | R    | R  | R | R   | R    | R    | R | R   | R          | R          | R          | R          |
| Initial<br>value | 1  | 1  | 1  | 1    | 1    | 1  | 1 | 1   | 1    | 1    | 1 | 1   | 1          | 1          | 1          | 1          |

| Bit No. | Bit symbol<br>name | Description                                                                                                                                 |                                                                                                                                                                                                                                        |                 |                    |  |  |  |  |  |
|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|--|--|--|--|--|
| 15 to 7 | -                  | Reserved bits                                                                                                                               | Reserved bits. Set "1" to all bits.                                                                                                                                                                                                    |                 |                    |  |  |  |  |  |
| 6       | VLMD               |                                                                                                                                             | et 0 to this bit if VDDL is not down in the condition except the STOP-D/HALT-D.<br>it is 1, a wake-up time from the HALT-H for PLL16/24M is longer than when it is 0.                                                                  |                 |                    |  |  |  |  |  |
| 5, 4    | -                  | Reserved bits                                                                                                                               | . Set "1" to all bits.                                                                                                                                                                                                                 |                 |                    |  |  |  |  |  |
| 3, 2    | PLLMD1,<br>PLLMD0  | 00: 1MHz<br>01: Do no<br>10: 24 MI<br>11: 16 MI<br>The following                                                                            | <ul> <li>01: Do not use</li> <li>10: 24 MHz</li> <li>11: 16 MHz (Initial value)</li> <li>he following table shows the relation between the PLL frequency and the maximum perating frequency of CPU and peripheral circuits.</li> </ul> |                 |                    |  |  |  |  |  |
|         |                    | PLL                                                                                                                                         | uency                                                                                                                                                                                                                                  |                 |                    |  |  |  |  |  |
|         |                    | frequency                                                                                                                                   | Peripheral circuit                                                                                                                                                                                                                     | CPU (wait mode) | CPU (no-wait mode) |  |  |  |  |  |
|         |                    | 24MHz                                                                                                                                       | 24MHz                                                                                                                                                                                                                                  | 24MHz           | 6MHz               |  |  |  |  |  |
|         |                    | 16MHz                                                                                                                                       | 16MHz                                                                                                                                                                                                                                  | 16MHz           | 8MHz               |  |  |  |  |  |
|         |                    | 1MHz                                                                                                                                        | 1MHz                                                                                                                                                                                                                                   | 1MHz            | 1MHz               |  |  |  |  |  |
|         |                    | See Chapter 2 "CPU and Memory Space" and Appendix C "Instruction Execution Cycle" for the CPU operation modes (wait mode and no-wait mode). |                                                                                                                                                                                                                                        |                 |                    |  |  |  |  |  |
| 1, 0    | CPUMD1,<br>CPUMD0  | 00: Prohi<br>01: Wait i<br>10: Prohi                                                                                                        | bited to use (wait mo                                                                                                                                                                                                                  | : mode)         |                    |  |  |  |  |  |

## 30.2.4 Code Option 2 (CODEOP2)

| Address:                 | (See Table 30-1)                                                                |
|--------------------------|---------------------------------------------------------------------------------|
| SFR address for reading: | 0xF924 (CODEOP2L/CODEOP2), 0xF925 (CODEOP2H)                                    |
| Access to SFR :          | R                                                                               |
| Access size to SFR:      | 8/16 bit                                                                        |
| Initial value:           | 0xFFFF (Erased or factory default setting for products with blank flash memory) |

|                  | 15           | 14      | 13    | 12    | 11         | 10         | 9          | 8          | 7 | 6 | 5 | 4    | 3    | 2 | 1 | 0 |
|------------------|--------------|---------|-------|-------|------------|------------|------------|------------|---|---|---|------|------|---|---|---|
| Word             |              | CODEOP2 |       |       |            |            |            |            |   |   |   |      |      |   |   |   |
| Byte             |              |         |       |       | OP2H       |            |            |            |   |   |   | CODE | OP2L |   |   |   |
| Bit              | CREM<br>APMD | CRES2   | CRES1 | CRES0 | CREA1<br>5 | CREA1<br>4 | CREA1<br>3 | CREA1<br>2 | - | - | - | -    | -    | - | - | - |
| R/W              | R            | R       | R     | R     | R          | R          | R          | R          | R | R | R | R    | R    | R | R | R |
| Initial<br>value | 1            | 1       | 1     | 1     | 1          | 1          | 1          | 1          | 1 | 1 | 1 | 1    | 1    | 1 | 1 | 1 |

| Bit No.  | Bit symbol<br>name  | Description                                                                                                                                                                                                                                        |
|----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15       | CREMAPMD            | This bit is used to control the initial value of Flash Remap Address Register (REMAPADD) at the system reset.                                                                                                                                      |
|          |                     | <ul><li>0: The initial value of the REMAPADD consists of CREA15 to 12 bits and CRES1 to 0 bits</li><li>1: The initial value of the REMAPADD is 0x00</li></ul>                                                                                      |
|          |                     | If setting this bit to "0", The initial value of the REMAPADD consists of CREA15 to 12 bits and CRES1 to 0 bits. For details on REMAPADD, see Section 2.7.3 "Flash Remap Address Register (REMAPADD)".                                             |
|          |                     | The MCU remaps to the address specified with the CREA15 to 12 bits and the CRES1 to 0 bits every time at the system reset. See also Section 2.8.3 "Code Option Remap". The remap function is enabled by setting REMAPMD bit of the Code Options 0. |
| 14 to 12 | CRES2 to<br>CRES0   | These bits are used to set the initial values of RES2 to RES0 bits of the Flash Remap<br>Address Register (REMAPADD).<br>RES2 and RES1 are reserved bits.                                                                                          |
| 11 to 8  | CREA15 to<br>CREA12 | These bits are used to set the initial values of REA15 to REA12 bits of the Flash Remap<br>Address Register (REMAPADD).                                                                                                                            |
| 7 to 0   | -                   | Reserved bits. Set "1" to all bits.                                                                                                                                                                                                                |

CPU instruction execution start address after releasing the reset

| Reset                          | REMAPMD | CREMAPMD | Remap function    | CPU instruction execution start<br>address   |  |  |
|--------------------------------|---------|----------|-------------------|----------------------------------------------|--|--|
|                                | 1       | 1        | Disabled          | 0x0000                                       |  |  |
| CPU reset<br>(BRK instruction) | 1       | 0        | Disabled          |                                              |  |  |
|                                | 0       | 1        | Enabled           | Address set in the REMAPADD                  |  |  |
|                                | 0       | 0        | Software remap    | register                                     |  |  |
|                                | 1       | 1        | Disabled          | 0x0000                                       |  |  |
| <b>.</b>                       | 1       | 0        | Disabled          | 0x0000                                       |  |  |
| System reset                   | 0       | 1        | Enabled           | Initial data of the REMAPADD                 |  |  |
|                                | 0       | 0        | Code option remap | register<br>(data set by the Code Options 2) |  |  |

See Section 2.7.3 "Flash Remap Address Register (REMAPADD)" and Section 2.8.3 "Code Option Remap".

## 30.3 Code Option Data Setting

The address of code option area is dependent of the size of the program memory space (flash memory). Table 30-1 shows addresses of code option areas for each product.

| Table 30-1 List of Addresses of Code Option Areas for Each Product |
|--------------------------------------------------------------------|
|--------------------------------------------------------------------|

|                     | Program              |                   | Address  |          |          |  |  |  |  |
|---------------------|----------------------|-------------------|----------|----------|----------|--|--|--|--|
| Product name        | memory space<br>size | Code Option area  | CODEOP2  | CODEOP1  | CODEOP0  |  |  |  |  |
| ML62Q2502/2522/2532 | 64K byte             | 0x0:FFC0~0x0:FFFF | 0x0:FFD4 | 0x0:FFD2 | 0x0:FFD0 |  |  |  |  |
| ML62Q2504/2524/2534 | 128K byte            | 0x1:FFC0~0x1:FFFF | 0x1:FFD4 | 0x1:FFD2 | 0x1:FFD0 |  |  |  |  |

Figure 30-2 shows an example of a code option setting program (for products with the program memory space=64 Kbytes). The setting is described in the start-up file (ML622xxx.ASM) of each product. Set every unused bit of the code option data area to "1".

For products with blank flash memory, every bit has been set to "1" as the factory default setting.

|              | Offenh , address                                                                  |
|--------------|-----------------------------------------------------------------------------------|
| dw           | Offc0h ; address<br>Offffh; Offc0h                                                |
| dw<br>dw     | Offffh; Offc2h                                                                    |
| dw<br>dw     |                                                                                   |
|              | •                                                                                 |
| dw           |                                                                                   |
| dw           | Offffh; Offc8h                                                                    |
| dw           | Offffh; Offcah                                                                    |
| dw           | Offffh; Offcch                                                                    |
| dw           | Offffh; Offceh                                                                    |
| dw           | 0eef8h ; 0ffd0h(CODEOP0)                                                          |
|              | OM area access reset disabled, remapping operation enabled, WDT operation disable |
| dw           | Offf9h ; Offd2h(CODEOP1)                                                          |
| -            | ency 24 MHz, CPU wait mode                                                        |
| dw           | 04dffh ; 0ffd4h(CODEOP2)                                                          |
|              | g address(0:d000h)                                                                |
| dw           | Offffh; Offd6h                                                                    |
| dw           | ·, ·                                                                              |
| dw           |                                                                                   |
| dw           |                                                                                   |
| dw           | Offffh; Offdeh                                                                    |
| cseg #0 at 0 | ffe0h ; address                                                                   |
|              | Offffh; Offe0h                                                                    |

Figure 30-2 Example of Code Option Data Program (for Products with the Program Memory Space = 64 Kbytes)

#### [Note]

 For the code option data definition, always use the dw directive instruction to configure the data in the unit of word.

# **Chapter 31 Auxiliary Function**

## 31. Auxiliary Function

## 31.1 General Description

- Indication of Product ID
- Indication of unique chip ID (32bit); reading from FLASH
- Bit swap for 32bit data; converting MSB/LSB.
- Byte swap for 32bit data; converting Big/Little endian.

## 31.2 Description of Registers

## 31.2.1 List of Registers

| Address | Nama                            | Sym    | bol     |     | Size | Initial value |
|---------|---------------------------------|--------|---------|-----|------|---------------|
| Address | Name                            | Byte   | Word    | R/W | Size | Initial value |
| 0xF930  | Draduat ID register 0           | PID0L  | PID0    | R   | 8/16 | *1            |
| 0xF931  | Product ID register 0           | PID0H  | PIDU    | R   | 8    | *1            |
| 0xF932  | Broduct ID register 1           | PID1L  | PID1    | R   | 8/16 | 0x22          |
| 0xF933  | Product ID register 1           | PID1H  |         | R   | 8    | 0x06          |
| 0xF940  | Converting Rose Data register I | CNVBD0 | CNVBDL  | R/W | 8/16 | Undefined     |
| 0xF941  | Converting Base Data register L | CNVBD1 | CINVEDL | R/W | 8    | Undefined     |
| 0xF942  | Converting Rose Data register L | CNVBD2 | CNVBDH  | R/W | 8/16 | Undefined     |
| 0xF943  | Converting Base Data register H | CNVBD3 | CIVODO  | R/W | 8    | Undefined     |
| 0xF944  | Bit Swan Deput register I       | CNVAD0 | CNVADL  | R   | 8/16 | Undefined     |
| 0xF945  | Bit Swap Result register L      | CNVAD1 | CINVADL | R   | 8    | Undefined     |
| 0xF946  | Bit Swan Deput register H       | CNVAD2 | CNVADH  | R   | 8/16 | Undefined     |
| 0xF947  | Bit Swap Result register H      | CNVAD3 | CIIVADH | R   | 8    | Undefined     |
| 0xF948  | Puto Swap Regult register I     | CNVED0 | CNVEDL  | R   | 8/16 | Undefined     |
| 0xF949  | Byte Swap Result register L     | CNVED1 | GINVEDL | R   | 8    | Undefined     |
| 0xF94A  | Puto Swap Popult register H     | CNVED2 | CNVEDH  | R   | 8/16 | Undefined     |
| 0xF94B  | Byte Swap Result register H     | CNVED3 | CIVEDH  | R   | 8    | Undefined     |

\*1: It depends on product.

## 31.2.2 Product ID Register 0,1 (PID0, PID1)

This is a SFR to indicate product ID.

| Address :       | 0xF930 (PID0L/PID0), 0xF931(PID0H), 0xF932 (PID1L/PID1), 0xF933(PID1H), |
|-----------------|-------------------------------------------------------------------------|
| Access :        | R                                                                       |
| Access size :   | 8/16 bit                                                                |
| Initial value : | PID1: 0622, PID0:5xx0                                                   |
|                 |                                                                         |

|                  | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   | 7     | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|
| Word             |     |     |     |     |     |     |     | PI  | D1    |     |     |     |     |     |     |     |
| Byte             |     |     |     | PIE | D1H |     |     |     | PID1L |     |     |     |     |     |     |     |
| Bit              | -   | -   | -   | -   | d53 | d52 | d51 | d50 | d43   | d42 | d41 | d40 | d33 | d32 | d31 | d30 |
| R/W              | R   | R   | R   | R   | R   | R   | R   | R   | R     | R   | R   | R   | R   | R   | R   | R   |
| Initial<br>value | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 0   | 0     | 0   | 1   | 0   | 0   | 0   | 1   | 0   |
|                  | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   | 7     | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| Word             |     |     |     |     |     |     |     | PI  | D0    |     |     |     |     |     |     |     |
| Byte             |     |     |     | PIE | D0H |     |     |     |       |     |     | PIE | DOL |     |     |     |
| Bit              | d23 | d22 | d21 | d20 | d13 | d12 | d11 | d10 | d03   | d02 | d01 | d00 | ex3 | ex2 | ex1 | ex0 |
| R/W              | R   | R   | R   | R   | R   | R   | R   | R   | R     | R   | R   | R   | R   | R   | R   | R   |
| Initial<br>value | 0   | 1   | 0   | 1   | 0/1 | 0/1 | 0/1 | 0/1 | 0/1   | 0/1 | 0/1 | 0/1 | 0   | 0   | 0   | 0   |

| Bit No. | Bit symbol<br>name | Description                                                                                                                                                                                            |
|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 to 4 | -                  | It indicates 6-digit number of product name.<br>The upper 20-bit number is fixed at "0x6225". The lower 8-bit number depends on the<br>product name.                                                   |
| 3 to 0  | -                  | It indicates 1 character from A to F as extended identifier of product.<br>If the product name has "P" or "T", it is ignored.<br>If the product name has no alphabet, this indicates "0" in principle. |

Ex) ML62Q2534 : "0x0622\_5340"

## 31.2.3 Converting Base Data Register L/H (CNVBDL, CNVBDH)

This is a SFR to set a conversion source data.

| Address :                 | 0xF940 (CNVBD0/CNVBDL), 0xF941 (CNVBD1), 0xF942 (CNVBD2/CNVBDH), 0xF943 (CNVBD3) |
|---------------------------|----------------------------------------------------------------------------------|
| Access :<br>Access size : | R/W<br>8/16 bit                                                                  |
| Initial value :           | Undefined                                                                        |

|                  | 15     | 14  | 13  | 12  | 11   | 10  | 9   | 8   | 7      | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|------------------|--------|-----|-----|-----|------|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|
| Word             |        |     |     |     |      |     |     | CNV | BDH    |     |     |     |     |     |     |     |
| Byte             | CNVBD3 |     |     |     |      |     |     |     | CNVBD2 |     |     |     |     |     |     |     |
| Bit              | d31    | d30 | d29 | d28 | d27  | d26 | d25 | d24 | d23    | d22 | d21 | d20 | d19 | d18 | d17 | d16 |
| R/W              | R/W    | R/W | R/W | R/W | R/W  | R/W | R/W | R/W | R/W    | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| Initial<br>value | 0/1    | 0/1 | 0/1 | 0/1 | 0/1  | 0/1 | 0/1 | 0/1 | 0/1    | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 |
|                  | 15     | 14  | 13  | 12  | 11   | 10  | 9   | 8   | 7      | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| Word             |        |     |     |     |      |     |     | CNV | 'BDL   |     |     |     |     |     |     |     |
| Byte             |        |     |     | CNV | /BD1 |     |     |     |        |     |     | CNV | BD0 |     |     |     |
| Bit              | d15    | d14 | d13 | d12 | d11  | d10 | d9  | d8  | d7     | d6  | d5  | d4  | d3  | d2  | d1  | d0  |
| R/W              | R/W    | R/W | R/W | R/W | R/W  | R/W | R/W | R/W | R/W    | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| Initial<br>value | 0/1    | 0/1 | 0/1 | 0/1 | 0/1  | 0/1 | 0/1 | 0/1 | 0/1    | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 |

## 31.2.4 Bit Swap Result Register L/H (CNVADL, CNVADH)

This is a SFR to read a bit-swap converted data. The bit-swap is a conversion that reverses bit by bit.

| Address :<br>Access :<br>Access size<br>Initial value | F<br>: 8 | xF944 (<br>?<br>/16 bit<br>Indefine |    | 00/CN∖ | ′ADL), ( | )xF945 | (CNVA | AD1), 0: | xF946 ( | (CNVAI | D2/CN∖ | /ADH), | 0xF947 | 7 (CNV | AD3) |
|-------------------------------------------------------|----------|-------------------------------------|----|--------|----------|--------|-------|----------|---------|--------|--------|--------|--------|--------|------|
| 15                                                    | 14       | 13                                  | 12 | 11     | 10       | 9      | 8     | 7        | 6       | 5      | 4      | 3      | 2      | 1      | 0    |

| -                |     |     |     | .=  |      |     | •   | •      | •   | •   | •   | •   | °.  | -   | •   | •   |
|------------------|-----|-----|-----|-----|------|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|-----|
| Word             |     |     |     |     |      |     |     | CNV    | ADH |     |     |     |     |     |     |     |
| Byte             |     |     |     | CN∖ |      |     |     | CNVAD2 |     |     |     |     |     |     |     |     |
| Bit              | d0  | d1  | d2  | d3  | d4   | d5  | d6  | d7     | d8  | d9  | d10 | d11 | d12 | d13 | d14 | d15 |
| R/W              | R   | R   | R   | R   | R    | R   | R   | R      | R   | R   | R   | R   | R   | R   | R   | R   |
| Initial<br>value | 0/1 | 0/1 | 0/1 | 0/1 | 0/1  | 0/1 | 0/1 | 0/1    | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 |
|                  | 15  | 14  | 13  | 12  | 11   | 10  | 9   | 8      | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| Word             |     |     |     |     |      |     |     | CNV    | ADL |     |     |     |     |     |     |     |
| Byte             |     |     |     | CN∖ | /AD1 |     |     |        |     |     |     | CNV | AD0 |     |     |     |
| Bit              | d16 | d17 | d18 | d19 | d20  | d21 | d22 | d23    | d24 | d25 | d26 | d27 | d28 | d29 | d30 | d31 |
| R/W              | R   | R   | R   | R   | R    | R   | R   | R      | R   | R   | R   | R   | R   | R   | R   | R   |
| Initial<br>value | 0/1 | 0/1 | 0/1 | 0/1 | 0/1  | 0/1 | 0/1 | 0/1    | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 |

## 31.2.5 Byte Swap Result Register L/H (CNVEDL, CNVEDH)

This is a SFR to read a byte-swap converted data. The bit-swap is a conversion that reverses byte by byte.

 Address :
 0xF948 (CNVED0/CNVEDL), 0xF949 (CNVED1), 0xF94A (CNVED2/CNVEDH), 0xF94B (CNVED3)

 Access :
 R

 Access size :
 8/16 bit

 Initial value :
 Undefined

| _                | 15     | 14  | 13  | 12  | 11   | 10  | 9   | 8   | 7      | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|------------------|--------|-----|-----|-----|------|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|
| Word             |        |     |     |     |      |     |     | CNV | EDH    |     |     |     |     |     |     |     |
| Byte             | CNVED3 |     |     |     |      |     |     |     | CNVED2 |     |     |     |     |     |     |     |
| Bit              | d7     | d6  | d5  | d4  | d3   | d2  | d1  | d0  | d15    | d14 | d13 | d12 | d11 | d10 | d9  | d8  |
| R/W              | R      | R   | R   | R   | R    | R   | R   | R   | R      | R   | R   | R   | R   | R   | R   | R   |
| Initial<br>value | 0/1    | 0/1 | 0/1 | 0/1 | 0/1  | 0/1 | 0/1 | 0/1 | 0/1    | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 |
|                  | 15     | 14  | 13  | 12  | 11   | 10  | 9   | 8   | 7      | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| Word             |        |     |     |     |      |     |     | CNV | 'EDL   |     |     |     |     |     |     |     |
| Byte             |        |     |     | CNV | 'ED1 |     |     |     |        |     |     | CNV | ED0 |     |     |     |
| Bit              | d23    | d22 | d21 | d20 | d19  | d18 | d17 | d16 | d31    | d30 | d29 | d28 | d27 | d26 | d25 | d24 |
| R/W              | R      | R   | R   | R   | R    | R   | R   | R   | R      | R   | R   | R   | R   | R   | R   | R   |
| Initial<br>value | 0/1    | 0/1 | 0/1 | 0/1 | 0/1  | 0/1 | 0/1 | 0/1 | 0/1    | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 |

## 31.3 Description of Operation

## 31.3.1 How to Confirm Unique ID

A LSI chip of ML62Q2500 group has unique ID with 32-bit. It is to read from test area in data memory space. Its address is different for each product.

| Product name | Program Memory size | Data Memory Space Address to read. |
|--------------|---------------------|------------------------------------|
| ML62Q25x2    | 64KByte             | 0x1:03F8~B                         |
| ML62Q25x4    | 128KByte            | 0x2:03F8~B                         |

| Table 31-1 | Address    | to read | for each  | product |
|------------|------------|---------|-----------|---------|
|            | / (a a 000 |         | 101 00011 | produce |

## 31.3.2 Data Swap Function

Set data to CNVBDL and CNVBDH registers, then Read a bit-swap result from CNVADL/CNVADH registers and a byte-swap result from CNVEDL/CNVEDH registers.

Ex)

In the case that CNVBDH = 0x1234, CNVBDL = 0x5678,

Result :

CNVADH = 0x1E6A, CNVADL = 0x2C48CNVEDH = 0x7856, CNVADL = 0x3412

# Appendix

## Appendix A SFR List

The SFR list is show below. Access "Reserved" register is not guaranteed. Please do not access them. Initial value with \*1 depend on code option that is set. See Chapter "30 Code option". Initial value with \*2 depend on product. See Chapter "31 Auxiliary Function".

| A -1-1            | News                                           | Sym      | Symbol   |     |      | Initial |
|-------------------|------------------------------------------------|----------|----------|-----|------|---------|
| Address           | Name                                           | Byte     | Word     | R/W | Size | value   |
| 0xF000            | Data segment register                          | DSR      | -        | R/W | 8    | 0x00    |
| 0xF001            | Reserved                                       | -        | -        | -   | -    | _       |
| 0xF002            |                                                | FHCKMODL |          | R/W | 8/16 | 0x00    |
| 0xF003            | High-speed clock mode register                 | FHCKMODH | FHCKMOD  | R/W | 8    | 0x43    |
| 0xF004            |                                                | FLMODL   |          | R/W | 8/16 | 0x00    |
| 0xF005            | Low-speed clock mode register                  | FLMODH   | FLMOD    | R/W | 8    | 0x00    |
| 0xF006            |                                                | FCON     |          | R/W | 8/16 | 0x00    |
| 0xF007            | Clock control register                         | FCON1    | FCONW    | R/W | 8    | 0x00    |
| 0xF008            | High-speed clock wake up time setting register | FHWUPT   | -        | R/W | 8    | 0x00    |
| 0xF009<br>~0xF00B | Reserved                                       | -        | -        | -   | -    | -       |
| 0xF00C            |                                                | FBUSTAT  |          | R/W | 8/16 | 0x01    |
| 0xF00D            | Backup Clock Status register                   | FBUSTATH | FBUSTATW | R   | 8    | 0x01    |
| 0xF00E            | Reserved                                       | -        | -        | -   | -    | -       |
| 0xF00F            | Reserved                                       | -        | -        | -   | -    | -       |
| 0xF010            | Watchdog timer control register                | WDTCON   | -        | R/W | 8    | 0x00    |
| 0xF011            | Reserved                                       | -        | -        | -   | -    | -       |
| 0xF012            | Watchdog timer mode register                   | WDTMOD   | _        | R/W | 8    | 0x06    |
| 0xF013            | Reserved                                       | -        | _        | -   | -    | -       |
| 0xF014            |                                                | WDTMCL   | - WDTMC  | R   | 8/16 | 0x00    |
| 0xF015            | Watchdog timer counter register                | WDTMCH   |          | R   | 8    | 0x00    |
| 0xF016            | Watchdog timer status register                 | WDTSTA   | _        | R   | 8    | 0x01    |
| 0xF017            | Reserved                                       | -        | _        | -   | -    | -       |
| 0xF018            | Stop code acceptor                             | STPACP   | _        | W   | 8    | 0x00    |
| 0xF019            | Reserved                                       | -        | _        | -   | -    | -       |
| 0xF01A            |                                                | SBYCONL  |          | W   | 8/16 | 0x00    |
| 0xF01B            | Standby control register                       | SBYCONH  | SBYCON   | R/W | 8    | 0x00    |
| 0xF01C            | Standby prohibition flag register              | SBYEFLG  | _        | R   | 8    | 0x00    |
| 0xF01D<br>~0xF01F | Reserved                                       | -        | -        | -   | -    | -       |
| 0xF020            |                                                | IE0      |          | R/W | 8/16 | 0x00    |
| 0xF021            | Interrupt enable register 01                   | IE1      | IE01     | R/W | 8    | 0x00    |
| 0xF022            |                                                | IE2      |          | R/W | 8/16 | 0x00    |
| 0xF023            | Interrupt enable register 23                   | IE3      | IE23     | R/W | 8    | 0x00    |
| 0xF024            |                                                | IE4      |          | R/W | 8/16 | 0x00    |
| 0xF025            | Interrupt enable register 45                   | IE5      | IE45     | R/W | 8    | 0x00    |
| 0xF026            |                                                | IE6      |          | R/W | 8/16 | 0x00    |
| 0xF027            | Interrupt enable register 67                   | IE7      | IE67     | R/W | 8    | 0x00    |
| 0xF028            |                                                | IRQ0     |          | R/W | 8/16 | 0x00    |
| 0xF029            | Interrupt request register 01                  | IRQ1     | IRQ01    | R/W | 8    | 0x00    |
| 0xF02A            |                                                | IRQ2     |          | R/W | 8/16 | 0x00    |
| 0xF02R            | Interrupt request register 23                  | IRQ3     | IRQ23    | R/W | 8    | 0x00    |
| 0xF02C            |                                                | IRQ4     |          | R/W | 8/16 | 0x00    |
| 0xF02D            | Interrupt request register 45                  | IRQ5     | IRQ45    | R/W | 8    | 0x00    |
| 0xF02E            |                                                | IRQ6     |          | R/W | 8/16 | 0x00    |
| 0xF02E            | Interrupt request register 67                  | IRQ7     | IRQ67    | R/W | 8    | 0x00    |

| A daha a a        | Nama                                         | Sym      | bol     |          | 0:        | Initial   |
|-------------------|----------------------------------------------|----------|---------|----------|-----------|-----------|
| Address           | Name                                         | Byte     | Word    | R/W      | Size      | value     |
| 0xF030            | Interrupt level control enable register      | ILEN     | -       | R/W      | 8         | 0x00      |
| 0xF031            | Reserved                                     | -        | -       | -        | -         | -         |
| 0xF032            | Current interrupt level management register  | CIL      | -       | R/W      | 8         | 0x00      |
| 0xF033            | Interrupt level mask register                | MCIL     | -       | R/W      | 8         | 0x00      |
| 0xF034            | Interment level constrained in sister O      | ILC00    |         | R/W      | 8/16      | 0x00      |
| 0xF035            | Interrupt level control register 0           | ILC01    | ILC0    | R/W      | 8         | 0x00      |
| 0xF036            |                                              | ILC10    |         | R/W      | 8/16      | 0x00      |
| 0xF037            | Interrupt level control register 1           | ILC11    | ILC1    | R/W      | 8         | 0x00      |
| 0xF038            |                                              | ILC20    |         | R/W      | 8/16      | 0x00      |
| 0xF039            | Interrupt level control register 2           | ILC21    | ILC2    | R/W      | 8         | 0x00      |
| 0xF03A            |                                              | ILC30    |         | R/W      | 8/16      | 0x00      |
| 0xF03B            | Interrupt level control register 3           | ILC31    | ILC3    | R/W      | 8         | 0x00      |
| 0xF03C            |                                              | ILC40    |         | R/W      | 8/16      | 0x00      |
| 0xF03D            | Interrupt level control register 4           | ILC41    | ILC4    | R/W      | 8         | 0x00      |
| 0xF03E            |                                              | ILC50    |         | R/W      | 8/16      | 0x00      |
| 0xF03F            | Interrupt level control register 5           | ILC51    | ILC5    | R/W      | 8         | 0x00      |
| 0xF040            |                                              | ILC60    |         | R/W      | 8/16      | 0x00      |
| 0xF040            | Interrupt level control register 6           | ILC61    | ILC6    | R/W      | 8         | 0x00      |
| 0xF041<br>0xF042  |                                              | ILC70    |         | R/W      | -         |           |
|                   | Interrupt level control register 7           |          | ILC7    |          | 8/16      | 0x00      |
| 0xF043            |                                              | ILC71    |         | R/W      | 8         | 0x00      |
| 0xF044            | External interrupt control register 0        | EICON0L  | EICON0  | R/W      | 8/16      | 0x00      |
| 0xF045            |                                              | EICON0H  |         | R/W      | 8         | 0x00      |
| 0xF046            | Reserved                                     | -        | -       | -        | -         | -         |
| 0xF047            | Reserved                                     | -        | -       | -        | -         | -         |
| 0xF048            | External interrupt mode register 0           | EIMOD0L  | EIMOD0  | R/W      | 8/16      | 0x00      |
| 0xF049            |                                              | EIMOD0H  | Liniobo | R/W      | 8         | 0x00      |
| 0xF04A            | Reserved                                     | -        | -       | R        | 8         | 0x00      |
| 0xF04B            | Reserved                                     | -        | -       | R        | 8         | 0x00      |
| 0xF04C            | External interrupt port selection register 0 | EIPSEL0L | EIPSEL0 | R/W      | 8/16      | 0x00      |
| 0xF04D            | External interrupt port selection register o | EIPSEL0H | EIFSELU | R/W      | 8         | 0x00      |
| 0xF04E            | Reserved                                     | -        | -       | -        | -         | -         |
| 0xF04F            | Reserved                                     | -        | -       | -        | -         | -         |
| 0xF050            | MCU Status Interrupt Enable Register         | MCINTEL  | -       | R/W      | 8         | 0x00      |
| 0xF051            | Reserved                                     | -        | -       | -        | -         | -         |
| 0xF052            | MCU Status Interrupt Register                | MCISTATL | -       | R        | 8         | 0x00      |
| 0xF053            | Reserved                                     | -        | -       | -        | -         | -         |
| 0xF054            |                                              | MCINTCLL |         | W        | 8         | 0x00      |
| 0xF055            | MCU Status Interrupt Clear Register (L/H)    | MCINTCLH | 1 -     | W        | 8         | 0x00      |
| 0xF056            | Reserved                                     | -        | -       | -        | -         | -         |
| 0xF050            | Reserved                                     | -        |         | _        | _         | _         |
| 0xF058            |                                              | RSTATL   |         | -<br>R/W | -<br>8/16 | Undefined |
| 0xF059            | Reset status register                        | RSTATH   | RSTAT   | R/W      | 8         | Undefined |
| 0xF059<br>0xF05A  | Safety function reset status register        | SRSTAT   |         | R/W      | 0<br>8    | Undefined |
|                   |                                              | JRJIAI   | -       | F\$/ VV  | 0         | Undenned  |
| 0xF05B            | Reserved                                     |          | -       | -        | -         | -         |
| 0xF05C            | Software reset acceptor                      | SOFTRACP | -       | W        | 8         | 0x00      |
| 0xF05D            | Reserved                                     | -        | -       | -        | -         | -         |
| 0xF05E            | Software reset control register              | SOFTRCON | -       | R/W      | 8         | 0x00      |
| 0xF05F            | Reserved                                     | -        | -       | -        | -         | -         |
| 0xF060<br>~0xF06F | Reserved                                     | -        | -       | -        | -         | -         |
| 0xF070            | Block clock control register 0               | BCKCON0L | BCKCON0 | R/W      | 8/16      | 0x1F      |

|                   |                                             | Sym           | Symbol    |            |           | Initial      |
|-------------------|---------------------------------------------|---------------|-----------|------------|-----------|--------------|
| Address           | Name                                        | Byte          | Word      | R/W        | Size      | value        |
| 0xF071            |                                             | BCKCON0H      |           | R/W        | 8         | 0x01         |
| 0xF072            | Block clock control register 1              | BCKCON1L      | BCKCON1   | R/W        | 8/16      | 0x03         |
| 0xF073            |                                             | BCKCON1H      | DOROONI   | R/W        | 8         | 0x11         |
| 0xF074            | Block clock control register 2              | BCKCON2L      | BCKCON2   | R/W        | 8/16      | 0x73         |
| 0xF075            |                                             | BCKCON2H      | DONOONZ   | R/W        | 8         | 0x08         |
| 0xF076            | Block clock control register 3              | BCKCON3L      | BCKCON3   | R/W        | 8/16      | 0x01         |
| 0xF077            |                                             | BCKCON3H      |           | R/W        | 8         | 0x00         |
| 0xF078            | Block reset control register 0              | BRECONOL      | BRECON0   | R/W        | 8/16      | 0x1F         |
| 0xF079            |                                             | BRECON0H      |           | R/W        | 8         | 0x01         |
| 0xF07A            | Block reset control register 1              | BRECON1L      | BRECON1   | R/W        | 8/16      | 0x03         |
| 0xF07B            |                                             | BRECON1H      |           | R/W        | 8         | 0x11         |
| 0xF07C            | Block reset control register 2              | BRECON2L      | BRECON2   | R/W        | 8/16      | 0x73         |
| 0xF07D            |                                             | BRECON2H      |           | R/W        | 8         | 0x08         |
| 0xF07E            | Block reset control register 3              | BRECON3L      | BRECON3   | R/W        | 8/16      | 0x01         |
| 0xF07F            | Deserved                                    | BRECON3H      |           | R/W        | 8         | 0x00         |
| 0xF080            | Reserved                                    | -             | -         | -          | -         | -            |
| 0xF081<br>~0xF085 | Reserved                                    | -             | -         | -          | -         | -            |
| 0xF086            | High speed time base clock setting register | HTBDR         | -         | R/W        | 8         | 0x00         |
| 0xF087<br>~0xF08F | Reserved                                    | -             | -         | -          | -         | -            |
| 0xF090            | Flash address register                      | FLASHAL       | FLASHA    | R/W        | 8/16      | 0xFF         |
| 0xF091            |                                             | FLASHAH       | FLASHA    | R/W        | 8         | 0xFF         |
| 0xF092            | Flash data register 0                       | FLASHD0L      | - FLASHD0 | R/W        | 8/16      | 0xFF         |
| 0xF093            |                                             | FLASHD0H      |           | R/W        | 8         | 0xFF         |
| 0xF094            | Flash data register 1                       | FLASHD1L      | FLASHD1   | R/W        | 8/16      | 0xFF         |
| 0xF095            | -                                           | FLASHD1H      |           | R/W        | 8         | 0xFF         |
| 0xF096            | Flash control register                      | FLASHCON      | -         | W          | 8         | 0x00         |
| 0xF097            | Reserved                                    | -             | -         | -          | -         | -            |
| 0xF098            | Flash acceptor                              | FLASHACP      | -         | W          | 8         | 0x00         |
| 0xF099            | Reserved                                    | -             | -         | -          | -         | -            |
| 0xF09A            | Flash segment register                      | FLASHSEG      | -         | R/W        | 8         | 0x10         |
| 0xF09B            | Reserved                                    |               | -         | -          | -         | -            |
| 0xF09C<br>0xF09D  | Flash self register<br>Reserved             | FLASHSLF      | -         | R/W        | 8         | 0x00         |
| 0xF09D<br>0xF09E  | Flash status register                       | -<br>FLASHSTA | -         | -<br>R     | - 8       | -<br>0x00    |
| 0xF09E<br>0xF09F  | Reserved                                    |               | -         | - R        | 0<br>-    | -            |
| 0xF09F<br>0xF0A0  | Flash remap address register                | REMAPADD      | -         | -<br>R/W   | - 8       | *1           |
| 0xF0A1            | Reserved                                    |               | -         | -          | -         | -            |
| ~0xF0A3<br>0xF0A4 | Reserved                                    |               |           |            | -         |              |
| 0xF0A4<br>0xF0A5  | Reserved                                    | -             | -         | -          |           | -            |
| 0xF0A5<br>0xF0A6  | Reserved                                    | -             | -         | -          | -         | -            |
| 0xF0A7            | Reserved                                    | -             | -         | -          | -         | -            |
| ~0xF0AF<br>0xF0B0 | RAM Guard Setting Register 0                | RAMGD         | _         | R/W        | 8         | 0x00         |
| 0xF0B0            | Reserved                                    |               | -         | 11/11      | U         | 0,00         |
| 0xF0B1<br>0xF0B2  | Reserved                                    | -             | -         | -          | -         | -            |
| 0xF0B2            | Reserved                                    | -             | -         | -          | -         | -            |
| 0xF0B3<br>0xF0B4  |                                             | -<br>SFRGD0L  | -         | -<br>R/W   | -<br>8/16 | -<br>0x00    |
| 0xF0B4<br>0xF0B5  | SFR Guard Setting Register 0                | SFRGDOL       | SFRGD0    | R/W<br>R/W | 8/16      | 0x00<br>0x00 |
| UXEORO            |                                             | SEKGDUH       |           | r///       | Ø         | UXUU         |

|                   |                                                             | Sym     | ibol    | DAM | 0.   | Initial |
|-------------------|-------------------------------------------------------------|---------|---------|-----|------|---------|
| Address           | Name                                                        | Byte    | Word    | R/W | Size | value   |
| 0xF0B6            | SFR Guard Setting Register 1                                | SFRGD1L | SFRGD1  | R/W | 8/16 | 0x00    |
| 0xF0B7            |                                                             | SFRGD1H | GIRODI  | R/W | 8    | 0x00    |
| 0xF0B8<br>~0xF0BB | Reserved                                                    | -       | -       | -   | -    | -       |
| 0xF0BC            | RAM Parity Setting Register                                 | RASFMOD | -       | R/W | 8    | 0x00    |
| 0xF0BD            | Reserved                                                    | -       | -       | -   | -    | -       |
| 0xF0BE            | Communication Test Setting Register 0                       | COMFT0L | COMFT0  | R/W | 8/16 | 0x00    |
| 0xF0BF            |                                                             | COMFT0H |         | R/W | 8    | 0x00    |
| 0xF0C0<br>~0xF0C3 | Reserved                                                    | -       | -       | -   | -    | -       |
| 0xF0C4            | Clock backup test mode acceptor                             | FBTACP  | -       | W   | 8    | 0x00    |
| 0xF0C5            | Reserved                                                    | -       | -       | -   | -    | -       |
| 0xF0C6            | Clock backup test mode register                             | FBTCON  | -       | R/W | 8    | 0x00    |
| 0xF0C7            | Reserved                                                    | -       | -       | -   | -    | -       |
| 0xF0C8<br>~0xF0CF | Reserved                                                    | -       | -       | -   | -    | -       |
| 0xF0D0            | Automatic CRC Calculation Start Address                     | CRCSADL | 000040  | R/W | 8/16 | 0x00    |
| 0xF0D1            | Setting Register                                            | CRCSADH | CRCSAD  | R/W | 8    | 0x00    |
| 0xF0D2            | Automatic CRC Calculation End Address                       | CRCEADL |         | R/W | 8/16 | 0xFC    |
| 0xF0D3            | Setting Register                                            | CRCEADH | CRCEAD  | R/W | 8    | 0xFF    |
| 0xF0D4            | Automatic CRC Calculation Start Segment<br>Setting Register | CRCSSEG | -       | R/W | 8    | 0x00    |
| 0xF0D5            | Reserved                                                    | -       | -       | -   | -    | -       |
| 0xF0D6            | Automatic CRC Calculation End Segment<br>Setting Register   | CRCESEG | -       | R/W | 8    | 0x0F    |
| 0xF0D7            | Reserved                                                    | -       | -       | -   | -    | -       |
| 0xF0D8            | CRC Calculation Data Register                               | CRCDATA | -       | R/W | 8    | 0x00    |
| 0xF0D9            | Reserved                                                    | -       | -       | -   | -    | -       |
| 0xF0DA            |                                                             | CRCRESL | 000050  | R/W | 8/16 | 0xFF    |
| 0xF0DB            | CRC Calculation Result Register                             | CRCRESH | CRCRES  | R/W | 8    | 0xFF    |
| 0xF0DC            | CRC Calculation Mode Register                               | CRCMOD  | -       | R/W | 8    | 0x00    |
| 0xF0DD<br>~0xF1FF | Reserved                                                    | -       | -       | -   | -    | -       |
| 0xF200            |                                                             | P0DI    |         | R   | 8/16 | 0xFF    |
| 0xF201            | Port 0 data register                                        | P0DO    | P0D     | R/W | 8    | 0x00    |
| 0xF202            | Port 0 mode register 0                                      | P0MOD0  | -       | R/W | 8/16 | 0x05    |
| 0xF203            | Reserved                                                    | -       | -       | -   | -    | -       |
| 0xF204            | Port 0 modo register 22                                     | P0MOD2  | DOMODOO | R/W | 8/16 | 0x00    |
| 0xF205            | Port 0 mode register 23                                     | P0MOD3  | P0MOD23 | R/W | 8    | 0x00    |
| 0xF206            | Port 0 modo register 45                                     | P0MOD4  |         | R/W | 8/16 | 0x00    |
| 0xF207            | Port 0 mode register 45                                     | P0MOD5  | P0MOD45 | R/W | 8    | 0x00    |
| 0xF208            | Port 0 modo register 67                                     | P0MOD6  | DOMOD67 | R/W | 8/16 | 0x00    |
| 0xF209            | Port 0 mode register 67                                     | P0MOD7  | P0MOD67 | R/W | 8    | 0x00    |
| 0xF20A            | Port 0 pulso modo registor                                  | P0PMDL  |         | R/W | 8/16 | 0x00    |
| 0xF20B            | Port 0 pulse mode register                                  | P0PMDH  | P0PMD   | R/W | 8    | 0x00    |
| 0xF20C            | Port 0 pulso solection register                             | P0PSLL  | DODOL   | R/W | 8/16 | 0x00    |
| 0xF20D            | Port 0 pulse selection register                             | P0PSLH  | P0PSL   | R/W | 8    | 0x00    |
| 0xF20E            | Percented                                                   | -       |         | -   | -    | -       |
| 0xF20F            | Reserved                                                    | -       | ] -     | -   | -    | -       |
| 0xF210            | Dort 1 data register                                        | P1DI    | D4D     | R   | 8/16 | 0xFF    |
| 0xF211            | Port 1 data register                                        | P1DO    | P1D     | R/W | 8    | 0x00    |
| 0xF212            | Port 1 mode register 01                                     | P1MOD0  | P1MOD01 | R/W | 8/16 | 0x00    |

| A dalara a a      | Nama                            | Symbol |          |      | Size | Initial |
|-------------------|---------------------------------|--------|----------|------|------|---------|
| Address           | Name                            | Byte   | Word     | R/W  | Size | value   |
| 0xF213            |                                 | P1MOD1 |          | R/W  | 8    | 0x00    |
| 0xF214            | Port 1 mode register 23         | P1MOD2 | P1MOD23  | R/W  | 8/16 | 0x00    |
| 0xF215            | Fort 1 mode register 25         | P1MOD3 | F INOD23 | R/W  | 8    | 0x00    |
| 0xF216<br>0xF217  | Reserved                        | -      | -        | -    | -    | -       |
| 0xF218            | Reserved                        | -      | -        | -    | -    | -       |
| 0xF219            | Port 1 mode register 7          | P1MOD7 | -        | R/W  | 8    | 0x00    |
| 0xF21A            | Dert 1 mulae mode register      | P1PMDL |          | R/W  | 8/16 | 0x00    |
| 0xF21B            | Port 1 pulse mode register      | P1PMDH | P1PMD    | R/W  | 8    | 0x00    |
| 0xF21C            | Dout 1 mulas selection register | P1PSLL | D4DCI    | R/W  | 8/16 | 0x00    |
| 0xF21D            | Port 1 pulse selection register | P1PSLH | P1PSL    | R/W  | 8    | 0x00    |
| 0xF21E            | Deserved                        |        |          |      |      |         |
| 0xF21F            | Reserved                        | -      | -        | -    | -    | -       |
| 0xF220            | Dort 2 data register            | P2DI   | DOD      | R    | 8/16 | 0xFF    |
| 0xF221            | Port 2 data register            | P2DO   | P2D      | R/W  | 8    | 0x00    |
| 0xF222            | Port 2 mode register 01         | P2MOD0 |          | R/W  | 8/16 | 0x00    |
| 0xF223            | Port 2 mode register 01         | P2MOD1 | P2MOD01  | R/W  | 8    | 0x00    |
| 0xF224            |                                 | P2MOD2 | POMODOO  | R/W  | 8/16 | 0x00    |
| 0xF225            | Port 2 mode register 23         | P2MOD3 | P2MOD23  | R/W  | 8    | 0x00    |
| 0xF226            |                                 | P2MOD4 |          | R/W  | 8/16 | 0x00    |
| 0xF227            | Port 2 mode register 45         | P2MOD5 | P2MOD45  | R/W  | 8    | 0x00    |
| 0xF228            |                                 | P2MOD6 | DOMODO7  | R/W  | 8/16 | 0x00    |
| 0xF229            | Port 2 mode register 67         | P2MOD7 | P2MOD67  | R/W  | 8    | 0x00    |
| 0xF22A            |                                 | P2PMDL | DODMD    | R/W  | 8/16 | 0x00    |
| 0xF22B            | Port 2 pulse mode register      | P2PMDH | P2PMD    | R/W  | 8    | 0x00    |
| 0xF22C            |                                 | P2PSLL |          | R/W  | 8/16 | 0x00    |
| 0xF22D            | Port 2 pulse selection register | P2PSLH | P2PSL    | R/W  | 8    | 0x00    |
| 0xF22E            | Deserved                        |        |          | -    | -    | -       |
| 0xF22F            | Reserved                        | -      | -        | -    | -    | -       |
| 0xF230            |                                 | P3DI   | DOD      | R    | 8/16 | 0xFF    |
| 0xF231            | Port 3 data register            | P3DO   | P3D      | R/W  | 8    | 0x00    |
| 0xF232            |                                 | P3MOD0 | DOMODO4  | R/W  | 8/16 | 0x00    |
| 0xF233            | Port 3 mode register 01         | P3MOD1 | P3MOD01  | R/W  | 8    | 0x00    |
| 0xF234            | Dant 2 mada na sistan 22        | P3MOD2 | DaMODaa  | R/W  | 8/16 | 0x00    |
| 0xF235            | Port 3 mode register 23         | P3MOD3 | P3MOD23  | R/W  | 8    | 0x00    |
| 0xF236            | Port 3 mode register 45         | P3MOD4 |          | R/W  | 8/16 | 0x00    |
| 0xF237            |                                 | P3MOD5 | P3MOD45  | R/W  | 8    | 0x00    |
| 0xF238            | Port 3 modo register 67         | P3MOD6 | D3MOD67  | R/W  | 8/16 | 0x00    |
| 0xF239            | Port 3 mode register 67         | P3MOD7 | P3MOD67  | R/W  | 8    | 0x00    |
| 0xF23A<br>~0xF24F | Reserved                        | -      | -        | -    | -    | -       |
| 0xF250            | Port 5 data register            | P5DI   | DED      | R    | 8/16 | 0xFF    |
| 0xF251            | Port 5 data register            | P5DO   | P5D      | R/W  | 8    | 0x00    |
| 0xF252            | Peganyad                        | -      |          | -    | -    | -       |
| 0xF253            | Reserved                        |        | 1 -      | -    | -    | -       |
| 0xF254            | Port 5 modo register 22         | P5MOD2 | DEMODOO  | R/W  | 8/16 | 0x00    |
| 0xF255            | Port 5 mode register 23         | P5MOD3 | P5MOD23  | R/W  | 8    | 0x00    |
| 0xF256            | P5MOD4                          |        | R/W      | 8/16 | 0x00 |         |
| 0xF257            | Port 5 mode register 45         | P5MOD5 | P5MOD45  | R/W  | 8    | 0x00    |
| 0xF258            | Port 5 modo register 67         | P5MOD6 | DEMODEZ  | R/W  | 8/16 | 0x00    |
| 0xF259            | Port 5 mode register 67         | P5MOD7 | P5MOD67  | R/W  | 8    | 0x00    |

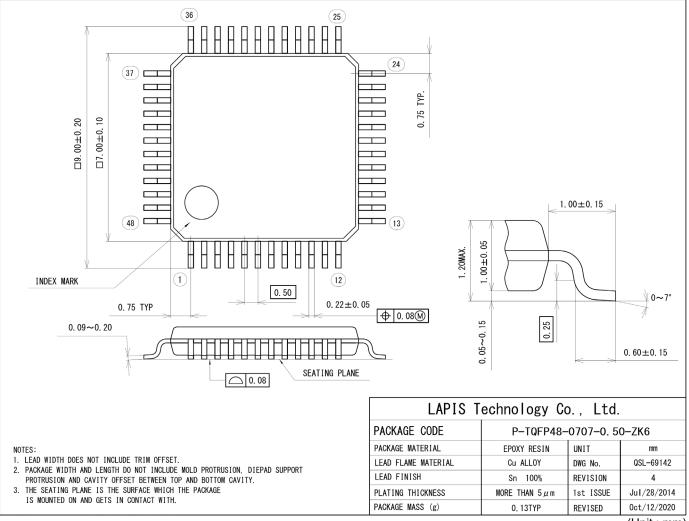
|                   | Nome                            | Sym                  | <b>D</b> 444 | Size       | Initial   |              |
|-------------------|---------------------------------|----------------------|--------------|------------|-----------|--------------|
| Address           | Name                            | Byte                 | Word         | R/W        | Size      | value        |
| 0xF25A<br>~0xF25F | Reserved                        | -                    | -            | -          | -         | -            |
| 0xF260            | Port 6 data register            | P6DI                 | P6D          | R          | 8/16      | 0xFF         |
| 0xF261            |                                 | P6DO                 | FOD          | R/W        | 8         | 0x00         |
| 0xF262            | Port 6 mode register 01         | P6MOD0               | P6MOD01      | R/W        | 8/16      | 0x00         |
| 0xF263            |                                 | P6MOD1               |              | R/W        | 8         | 0x00         |
| 0xF264            | Port 6 mode register 2          | P6MOD2               | -            | R/W        | 8/16      | 0x00         |
| 0xF265            | Reserved                        | -                    | -            | -          | -         | -            |
| 0xF266<br>~0xF26F | Reserved                        | -                    | -            | -          | -         | -            |
| 0xF270            | Port 7 data register            | P7DI                 | P7D          | R          | 8/16      | 0xFF         |
| 0xF271            |                                 | P7DO                 | 178          | R/W        | 8         | 0x00         |
| 0xF272            | Port 7 mode register 01         | P7MOD0               | P7MOD01      | R/W        | 8/16      | 0x00         |
| 0xF273            | 5                               | P7MOD1               |              | R/W        | 8         | 0x00         |
| 0xF274            | Port 7 mode register 23         | P7MOD2               | P7MOD23      | R/W        | 8/16      | 0x00         |
| 0xF275            |                                 | P7MOD3               |              | R/W        | 8         | 0x00         |
| 0xF276<br>~0xF279 | Reserved                        | -                    | -            | -          | -         | -            |
| 0xF27A            | Port 7 pulse mode register      | P7PMDL               | P7PMD        | R/W        | 8/16      | 0x00         |
| 0xF27B            | For 7 puise mode register       | P7PMDH               |              | R/W        | 8         | 0x00         |
| 0xF27C            | Port 7 pulse selection register | P7PSLL               | P7PSL        | R/W        | 8/16      | 0x00         |
| 0xF27D            |                                 | P7PSLH               | 17132        | R/W        | 8         | 0x00         |
| 0xF27E<br>~0xF2EF | Reserved                        | -                    | -            | -          | -         | -            |
| 0xF2F0            | PORTXT data input register      | PXTDI                | -            | R          | 8         | 0x03         |
| 0xF2F1            | Reserved                        | -                    | -            | -          | -         | -            |
| 0xF2F2            | DODIVI mode nomister 01         | PXTMOD0              | DYTMOD04     | R/W        | 8/16      | 0x00         |
| 0xF2F3            | PORTXT mode register 01         | PXTMOD1              | PXTMOD01     | R/W        | 8         | 0x00         |
| 0xF2F4<br>~0xF2FF | Reserved                        | -                    | -            | -          | -         | -            |
| 0xF300            |                                 | TMH0DL               | TMUOD        | R/W        | 8/16      | 0xFF         |
| 0xF301            | 16-bit timer 0 data register    | TMH0DH               | TMH0D        | R/W        | 8         | 0xFF         |
| 0xF302            | 16 hit timer 0 counter register | TMH0CL               | TMH0C        | R/W        | 8/16      | 0x00         |
| 0xF303            | 16-bit timer 0 counter register | TMH0CH               | ПИПОС        | R/W        | 8         | 0x00         |
| 0xF304            | 16-bit timer 0 mode register    | TMH0MODL             | TMH0MOD      | R/W        | 8/16      | 0x00         |
| 0xF305            |                                 | TMH0MODH             |              | R/W        | 8         | 0x00         |
| 0xF306            | Reserved                        | -                    | -            | -          | -         | -            |
| 0xF307            | Reserved                        | -                    | -            | -          | -         | -            |
| 0xF308            | 16-bit timer 1 data register    | TMH1DL               | TMH1D        | R/W        | 8/16      | 0xFF         |
| 0xF309            |                                 | TMH1DH               |              | R/W        | 8         | 0xFF         |
| 0xF30A            | 16-bit timer 1 counter register | TMH1CL               | TMH1C        | R/W        | 8/16      | 0x00         |
| 0xF30B            | 5                               | TMH1CH               |              | R/W        | 8         | 0x00         |
| 0xF30C            | 16-bit timer 1 mode register    | TMH1MODL             | TMH1MOD      | R/W        | 8/16      | 0x00         |
| 0xF30D            | -                               | TMH1MODH             |              | R/W        | 8         | 0x00         |
| 0xF30E            | Reserved                        | -                    | -            | -          | -         | -            |
| 0xF30F            | Reserved                        |                      | -            | -          | -         | -            |
| 0xF310            | 16-bit timer 2 data register    | TMH2DL               | TMH2D        | R/W        | 8/16<br>° | 0xFF         |
| 0xF311            |                                 | TMH2DH               |              | R/W        | 8/16      | 0xFF         |
| 0xF312<br>0xF313  | 16-bit timer 2 counter register | TMH2CL<br>TMH2CH     | TMH2C        | R/W<br>R/W | 8/16<br>8 | 0x00<br>0x00 |
| 0xF313<br>0xF314  |                                 | TMH2CH<br>TMH2MODL   |              | R/W        | 8/16      | 0x00<br>0x00 |
| 0xF314<br>0xF315  | 16-bit timer 2 mode register    | TMH2MODL<br>TMH2MODH | TMH2MOD      | R/W        | 8/16      | 0x00<br>0x00 |
| UXF315            |                                 |                      |              | K/VV       | ŏ         | UXUU         |

| A status s s      | Nama                            | Sym              | bol     |        | 0:   | Initial   |
|-------------------|---------------------------------|------------------|---------|--------|------|-----------|
| Address           | Name                            | Byte             | Word    | R/W    | Size | value     |
| 0xF316            | Reserved                        | -                | -       | -      | -    | -         |
| 0xF317            | Reserved                        | -                | -       | -      | -    | -         |
| 0xF318            | 16-bit timer 3 data register    | TMH3DL           | TMH3D   | R/W    | 8/16 | 0xFF      |
| 0xF319            |                                 | TMH3DH           |         | R/W    | 8    | 0xFF      |
| 0xF31A            |                                 | TMH3CL           | TN41100 | R/W    | 8/16 | 0x00      |
| 0xF31B            | 16-bit timer 3 counter register | TMH3CH           | ТМНЗС   | R/W    | 8    | 0x00      |
| 0xF31C            |                                 | TMH3MODL         |         | R/W    | 8/16 | 0x00      |
| 0xF31D            | 16-bit timer 3 mode register    | TMH3MODH         | TMH3MOD | R/W    | 8    | 0x00      |
| 0xF31E            | Reserved                        | -                | -       | -      | -    | -         |
| 0xF31F            | Reserved                        | -                | -       | -      | -    | _         |
| 0xF320            |                                 | TMH4DL           |         | R/W    | 8/16 | 0xFF      |
| 0xF321            | 16-bit timer 4 data register    | TMH4DH           | TMH4D   | R/W    | 8    | 0xFF      |
| 0xF322            |                                 | TMH4CL           |         | R/W    | 8/16 | 0x00      |
| 0xF323            | 16-bit timer 4 counter register | TMH4CH           | TMH4C   | R/W    | 8    | 0x00      |
| 0xF324            |                                 | TMH4MODL         |         | R/W    | 8/16 | 0x00      |
| 0xF325            | 16-bit timer 4 mode register    | TMH4MODH         | TMH4MOD | R/W    | 8    | 0x00      |
| 0xF325<br>0xF326  |                                 |                  |         | 17/77  | υ    | 0,00      |
| ~0xF326           | Reserved                        | -                | -       | -      | -    | -         |
| 0xF340            | 40 hittimen etert register      | TMHSTRL          | TMHSTR  | W      | 8/16 | 0x00      |
| 0xF341            | 16-bit timer start register     | TMHSTRH          | IMHSIR  | W      | 8    | 0x00      |
| 0xF342            |                                 | TMHSTPL          | TMUGTO  | W      | 8/16 | 0x00      |
| 0xF343            | 16-bit timer stop register      | TMHSTPH          | TMHSTP  | W      | 8    | 0x00      |
| 0xF344            |                                 | TMHSTATL         |         | R      | 8/16 | 0x00      |
| 0xF345            | 16-bit timer status register    | TMHSTATH TMHSTAT | R       | 8      | 0x00 |           |
| 0xF346            | Reserved                        | _                | _       | -      | -    | _         |
| 0xF347            | Reserved                        | _                | _       | _      | _    | -         |
| 0xF350            |                                 | TMHXDL           |         | R/W    | 8/16 | 0xFF      |
| 0xF351            | 16-bit timer X data register    | TMHXDH           | TMHXD   | R/W    | 8    | 0xFF      |
| 0xF352            |                                 | TMHXCL           |         | R/W    | 8/16 | 0x00      |
| 0xF353            | 16-bit timer X counter register | TMHXCH           | TMHXC   | R/W    | 8    | 0x00      |
| 0xF354            |                                 | TMHXMODL         |         | R/W    | 8/16 | 0x00      |
| 0xF355            | 16-bit timer X mode register    | TMHXMODH         | TMHXMOD | R/W    | 8    | 0x00      |
| 0xF356            | Reserved                        | -                | _       | -      | -    | -         |
| 0xF357            | Reserved                        | -                |         | _      |      |           |
| 0xF357<br>0xF358  | 16-bit timer X start register   | -<br>TMHXSTR     |         | W      | - 8  | -<br>0x00 |
| 0xF358            | Reserved                        |                  |         |        | -    | 0,00      |
| 0xF359<br>0xF35A  | 16-bit timer X stop register    | -<br>TMHXSTP     | -       | -<br>W | - 8  | -<br>0x00 |
| 0xF35A<br>0xF35B  | Reserved                        |                  | -       | vv     | υ    | 0,00      |
|                   |                                 | -<br>TMHXSTAT    | -       | -      | - 8  | -         |
| 0xF35C            | 16-bit timer X status register  |                  | -       | R      | 0    | 0x00      |
| 0xF35D<br>~0xF37F | Reserved                        | -                |         | -      | -    | -         |
| 0xF380            | FTM common update register      | FTCUD            | -       | W      | 8    | 0x00      |
| 0xF381            | Reserved                        | -                | -       | -      | -    | -         |
| 0xF382            | FTM common control register     | FTCCONL          | FTCCON  | R/W    | 8/16 | 0x00      |
| 0xF383            |                                 | FTCCONH          | FTCCON  | R/W    | 8    | 0x00      |
| 0xF384            | ETM common start register       | FTCSTRL          | ETCETD  | W      | 8/16 | 0x00      |
| 0xF385            | FTM common start register       | FTCSTRH          | FTCSTR  | W      | 8    | 0x00      |
| 0xF386            |                                 | FTCSTPL          | FTOOTO  | W      | 8/16 | 0x00      |
| 0xF387            | FTM common stop register        | FTCSTPH          | FTCSTP  | W      | 8    | 0x00      |
| 0xF388            |                                 | FTCSTATL         |         | R      | 8/16 | 0x00      |
| 0xF389            | FTM common status register      | FTCSTATH         | FTCSTAT | R      | 8    | 0x00      |
| 0.4 000           | 1                               | 1.001/111        |         |        | U U  | 5700      |

| A status a s      | Nama                                                         | Name               |                |            | 0:        | Initial      |
|-------------------|--------------------------------------------------------------|--------------------|----------------|------------|-----------|--------------|
| Address           | Name                                                         | Byte               | Word           | R/W        | Size      | value        |
| 0xF38A<br>~0xF39F | Reserved                                                     | -                  |                | -          | -         | -            |
| 0xF3A0            | Low-speed Time Base Counter register                         | LTBR0              | LTBR01         | R/W        | 8/16      | 0x00         |
| 0xF3A1            |                                                              | LTBR1              |                | R/W        | 8         | 0x00         |
| 0xF3A2<br>0xF3A3  | Low-speed Time Base Counter Control register                 | LTBCON0<br>LTBCON1 | LTBCON         | R/W        | 8/16      | 0x03         |
|                   |                                                              |                    |                | R/W        | 8         | 0x02         |
| 0xF3A4<br>0xF3A5  | Reserved                                                     | -                  | -              | -          | -         | -            |
|                   | Reserved                                                     |                    | -              | -          | -         | -            |
| 0xF3A6<br>0xF3A7  | Low-speed Time Base Counter Frequency<br>Adjustment register |                    | LTBADJ         | R/W<br>R/W | 8/16      | 0x00<br>0x00 |
| 0xF3A7<br>0xF3A8  |                                                              | LTBADJH<br>LTBINTL |                | R/W        | 8<br>8/16 | 0x00<br>0x60 |
| 0xF3A8<br>0xF3A9  | Low-speed Time Base Counter Interrupt selection register     | LTBINTL            | LTBINT         | R/W        |           |              |
|                   | Selection register                                           | LIBINIH            |                | R/W        | 8         | 0x71         |
| 0xF3AA<br>~0xF3FF | Reserved                                                     | -                  |                | -          | -         | -            |
| 0xF400            | FTM0 cycle register                                          | FT0PL              | FT0P           | R/W        | 8/16      | 0xFF         |
| 0xF401            |                                                              | FT0PH              | 1101           | R/W        | 8         | 0xFF         |
| 0xF402            | FTM0 event A register                                        | FT0EAL             | FT0EA          | R/W        | 8/16      | 0x00         |
| 0xF403            |                                                              | FT0EAH             |                | R/W        | 8         | 0x00         |
| 0xF404            | FTM0 event B register                                        | FT0EBL             | FT0EB          | R/W        | 8/16      | 0x00         |
| 0xF405            |                                                              | FT0EBH             | TIOLD          | R/W        | 8         | 0x00         |
| 0xF406            | FTM0 dead time register                                      | FT0DTL             | FT0DT          | R/W        | 8/16      | 0x00         |
| 0xF407            |                                                              | FT0DTH             | TTODT          | R/W        | 8         | 0x00         |
| 0xF408            | FTM0 counter register                                        | FT0CL              | FT0C           | R/W        | 8/16      | 0x00         |
| 0xF409            |                                                              | FT0CH              |                | R/W        | 8         | 0x00         |
| 0xF40A            | FTM0 status register                                         | FT0STAT            | -              | R          | 8         | 0x30         |
| 0xF40B            | Reserved                                                     | -                  | -              | -          | -         | -            |
| 0xF40C            | ETM0 mode register                                           | <b>FT0MODL</b>     | FT0MOD         | R/W        | 8/16      | 0x00         |
| 0xF40D            | FTM0 mode register                                           | FT0MODH            | FIONIOD        | R/W        | 8         | 0x40         |
| 0xF40E            | FTM0 clock register                                          | <b>FT0CLKL</b>     | FT0CLK         | R/W        | 8/16      | 0x00         |
| 0xF40F            |                                                              | FT0CLKH            | FICER          | R/W        | 8         | 0x00         |
| 0xF410            | FTM0 trigger register 0                                      | FT0TRG0L           | FT0TRG0        | R/W        | 8/16      | 0x00         |
| 0xF411            |                                                              | FT0TRG0H           | FIUIKGU        | R/W        | 8         | 0x00         |
| 0xF412            | FTM0 trigger register 1                                      | FT0TRG1L           | FT0TRG1        | R/W        | 8/16      | 0x00         |
| 0xF413            |                                                              | FT0TRG1H           | - TUINGT       | R/W        | 8         | 0x00         |
| 0xF414            | FTM0 interrupt enable register                               | FT0INTEL           | <b>FT0INTE</b> | R/W        | 8/16      | 0x00         |
| 0xF415            |                                                              | FT0INTEH           |                | R/W        | 8         | 0x00         |
| 0xF416            | FTM0 interrupt status register                               | FT0INTSL           | FT0INTS        | R          | 8/16      | 0x00         |
| 0xF417            |                                                              | FT0INTSH           | 1.101110       | R          | 8         | 0x00         |
| 0xF418            | FTM0 interrupt clear register                                | FT0INTCL           |                | W          | 8         | 0x00         |
| 0xF419            |                                                              | FT0INTCH           | _              | W          | 8         | 0x00         |
| 0xF41A<br>~0xF41F | Reserved                                                     | -                  | -              | -          | -         | -            |
| 0xF420            |                                                              | FT1PL              | FT 1 D         | R/W        | 8/16      | 0xFF         |
| 0xF421            | FTM1 cycle register                                          | FT1PH              | FT1P           | R/W        | 8         | 0xFF         |
| 0xF422            |                                                              | FT1EAL             |                | R/W        | 8/16      | 0x00         |
| 0xF423            | FTM1 event A register                                        | FT1EAH             | FT1EA          | R/W        | 8         | 0x00         |
| 0xF424            |                                                              | FT1EBL             |                | R/W        | 8/16      | 0x00         |
| 0xF425            | FTM1 event B register                                        | FT1EBH             | FT1EB          | R/W        | 8         | 0x00         |
| 0xF426            |                                                              | FT1DTL             |                | R/W        | 8/16      | 0x00         |
| 0xF427            | FTM1 dead time register                                      | FT1DTH             | FT1DT          | R/W        | 8         | 0x00         |
| 0xF428            | FTM1 counter register                                        | FT1CL              | FT1C           | R/W        | 8/16      | 0x00         |

| <b>A</b> -1 -1    | Nama                                        | Name      |          |                | 0:   | Initial |
|-------------------|---------------------------------------------|-----------|----------|----------------|------|---------|
| Address           | Name                                        | Byte      | Word     | R/W            | Size | value   |
| 0xF429            |                                             | FT1CH     |          | R/W            | 8    | 0x00    |
| 0xF42A            | FTM1 status register                        | FT1STAT   | -        | R              | 8    | 0x30    |
| 0xF42B            | Reserved                                    | -         | -        | -              | -    | -       |
| 0xF42C            | FTM1 mode register                          | FT1MODL   | FT1MOD   | R/W            | 8/16 | 0x00    |
| 0xF42D            |                                             | FT1MODH   | TTIMOD   | R/W            | 8    | 0x40    |
| 0xF42E            | FTM1 clock register                         | FT1CLKL   | FT1CLK   | R/W            | 8/16 | 0x00    |
| 0xF42F            |                                             | FT1CLKH   | THOER    | R/W            | 8    | 0x00    |
| 0xF430            | FTM1 trigger register 0                     | FT1TRG0L  | FT1TRG0  | R/W            | 8/16 | 0x00    |
| 0xF431            |                                             | FT1TRG0H  | TTTIKG   | R/W            | 8    | 0x00    |
| 0xF432            | FTM1 trigger register 1                     | FT1TRG1L  | FT1TRG1  | R/W            | 8/16 | 0x00    |
| 0xF433            |                                             | FT1TRG1H  | FILKGI   | R/W            | 8    | 0x00    |
| 0xF434            | ETM1 interment on oble register             | FT1INTEL  | FT1INTE  | R/W            | 8/16 | 0x00    |
| 0xF435            | FTM1 interrupt enable register              | FT1INTEH  |          | R/W            | 8    | 0x00    |
| 0xF436            |                                             | FT1INTSL  |          | R              | 8/16 | 0x00    |
| 0xF437            | FTM1 interrupt status register              | FT1INTSH  | FT1INTS  | R              | 8    | 0x00    |
| 0xF438            |                                             | FT1INTCL  |          | W              | 8/16 | 0x00    |
| 0xF439            | FTM1 interrupt clear register               | FT1INTCH  | FT1INTC  | W              | 8    | 0x00    |
| 0xF43A<br>~0xF4FF | Reserved                                    | -         | -        | -              | -    | -       |
| 0xF500            |                                             | SIO0BUFL  |          | R/W            | 8/16 | 0x00    |
| 0xF501            | Serial port 0 transmission/reception buffer | SIO0BUFH  | SIO0BUF  | R/W            | 8    | 0x00    |
| 0xF502            |                                             | SIO0STATL | CLOOCTAT | R              | 8/16 | 0x00    |
| 0xF503            | Serial port 0 status register               | SIO0STATH | SIO0STAT | W              | 8    | 0x00    |
| 0xF504            |                                             | SIO0CONL  | SIONCON  | R/W            | 8/16 | 0x00    |
| 0xF505            | Serial port 0 control register              | SIO0CONH  |          | R/W            | 8    | 0x00    |
| 0xF506            |                                             | SIO0MODL  |          | R/W            | 8/16 | 0x00    |
| 0xF507            | Serial port 0 mode register                 | SIO0MODH  | SIO0MOD  | R/W            | 8    | 0x00    |
| 0xF508            | Serial port 0 interval setting register     | SIO0DLYL  | -        | R/W            | 8    | 0x00    |
| 0xF509            | Reserved                                    | -         | -        | -              | -    | -       |
| 0xF50A            | Serial port 0 interrupt control register    | SIO0ICNL  | -        | R/W            | 8    | 0x00    |
| 0xF50B<br>~0xF57F | Reserved                                    | -         | -        | -              | -    | -       |
| 0xF580            |                                             | SF0CTRLL  | 0500751  | R/W            | 8/16 | 0x00    |
| 0xF581            | SIOF0 control register                      | SF0CTRLH  | SF0CTRL  | R/W            | 8    | 0x00    |
| 0xF582            |                                             | SF0INTCL  |          | R/W            | 8/16 | 0x00    |
| 0xF583            | SIOF0 interrupt control register            | SF0INTCH  | SF0INTC  | R/W            | 8    | 0x00    |
| 0xF584            |                                             | -         | 0507510  |                | 40   |         |
| 0xF585            | SIOF0 transfer interval control register    | -         | SF0TRAC  | R/W            | 16   | 0x0002  |
| 0xF586            |                                             | -         | 050055   | <b>D A C A</b> | 4.0  | 0 5000  |
| 0xF587            | SIOF0 baud rate register                    | -         | SF0BRR   | R/W            | 16   | 0x5002  |
| 0xF588            |                                             | SF0SRRL   |          | R              | 8/16 | 0x00    |
| 0xF589            | SIOF0 status register                       | SF0SRRH   | SF0SRR   | R              | 8    | 0x14    |
| 0xF58A            |                                             | SF0SRCL   | -        | W              | 8    | 0x00    |
| 0xF58B            | SIOF0 status clear register (L/H)           | SF0SRCH   | -        | W              | 8    | 0x00    |
| 0xF58C            |                                             | SF0FSRL   |          | R              | 8/16 | 0x00    |
| 0xF58D            | SIOF0 FIFO status register                  | SF0FSRH   | SF0FSR   | R              | 8    | 0x00    |
| 0xF58E            |                                             | SF0DWRL   | R/W      | 8/16           | 0x00 |         |
| 0xF58F            | SIOF0 writing data register                 | SF0DWRH   | SF0DWR   | R/W            | 8    | 0x00    |
| 0xF590            |                                             | SF0DRRL   |          | R              | 8/16 | 0x00    |
| 0xF591            | SIOF0 reading data register                 | SF0DRRH   | SF0DRR   | R              | 8    | 0x00    |
| 0xF592            | Reserved                                    | -         | -        | -              |      | -       |
| 5AT 03Z           | 1,0001104                                   | _         | —        | _              | _    | _       |

|                 |                                                    | Sym                | bol       | <b>D 1 1</b> | e.        | Initial   |
|-----------------|----------------------------------------------------|--------------------|-----------|--------------|-----------|-----------|
| Address         | Name                                               | Byte               | Word      | R/W          | Size      | value     |
| ~0xF5FF         |                                                    |                    |           |              |           |           |
| 0F600           | UART0 reception buffer                             | UA0BUF0            | -         | R            | 8         | 0x00      |
| 0F601           | UART0 transmission buffer                          | UA0BUF1            |           | R/W          | 8         | 0x00      |
| 0F602           | UART0 status register                              | UA0STAT            | -         | R            | 8         | 0x00      |
| 0F603           | UART0 status clear register                        | UA0STAC            |           | W            | 8         | 0x00      |
| 0F604           | UART0 control register                             | UA0CON             | -         | R/W          | 8         | 0x00      |
| 0F605           | Reserved                                           | -                  | -         | -            | -         | -         |
| 0F606           | UART0 mode register                                | UA0MODL            | UA0MOD    | R/W          | 8/16      | 0x00      |
| 0F607           |                                                    | UA0MODH            | U.A.OMICE | R/W          | 8         | 0x00      |
| 0F608           | UART0 interrupt enable register                    | UA0INTE            | -         | R/W          | 8         | 0x00      |
| 0F609           | Reserved                                           | -                  | -         | -            | -         | -         |
| 0F60A           | UART0 baud rate register                           | UA0BRTL            | UA0BRT    | R/W          | 8/16      | 0xFF      |
| 0F60B           | OARTO baud fale register                           | UA0BRTH            | UAUBILI   | R/W          | 8         | 0x0F      |
| 0F60C           | UART0 baud rate adjustment register                | UA0BRC             | -         | R/W          | 8         | 0x00      |
| 0F60D<br>~0F60F | Reserved                                           | -                  | -         | -            | -         | -         |
| 0F610           | UART1 reception buffer                             | UA1BUF0            | -         | R            | 8         | 0x00      |
| 0F611           | UART1 transmission buffer                          | UA1BUF1            | -         | R/W          | 8         | 0x00      |
| 0F612           | UART1 status register                              | UA1STAT            | -         | R            | 8         | 0x00      |
| 0F613           | UART1 status clear register                        | UA1STAC            | -         | W            | 8         | 0x00      |
| 0F614           | UART1 control register                             | UA1CON             | -         | R/W          | 8         | 0x00      |
| 0F615           | Reserved                                           | -                  | -         | -            | -         | -         |
| 0F616           |                                                    | UA1MODL            | UA1MOD    | R/W          | 8/16      | 0x00      |
| 0F617           | UART1 mode register                                | UA1MODH            |           | R/W          | 8         | 0x00      |
| 0F618           | UART1 interrupt enable register                    | UA1INTE            | -         | R/W          | 8         | 0x00      |
| 0F619           | UART1 reception buffer                             | -                  | -         | -            | -         | -         |
| 0F61A           | UART1 transmission buffer                          | UA1BRTL            |           | R/W          | 8/16      | 0xFF      |
| 0F61B           | UART1 status register                              | UA1BRTH            | UA1BRT    | R/W          | 8         | 0x0F      |
| 0F61C           | UART1 status clear register                        | UA1BRC             | -         | R/W          | 8         | 0x00      |
| 0F61D<br>~0F61F | Reserved                                           | -                  | -         | -            | -         | -         |
| 0F620           | UART2 reception buffer                             | UA2BUF0            | -         | R            | 8         | 0x00      |
| 0F621           | UART2 transmission buffer                          | UA2BUF1            | -         | R/W          | 8         | 0x00      |
| 0F622           | UART2 status register                              | UA2STAT            | -         | R            | 8         | 0x00      |
| 0F623           | UART2 status clear register                        | UA2STAC            | -         | W            | 8         | 0x00      |
| 0F624           | UART2 control register                             | UA2CON             | -         | R/W          | 8         | 0x00      |
| 0F625           | Reserved                                           | -                  | -         | -            | -         | -         |
| 0F626<br>0F627  | UART2 mode register                                | UA2MODL<br>UA2MODH | UA2MOD    | R/W          | 8/16<br>8 | 0x00      |
|                 | LIADT2 interrupt anable register                   |                    |           | R/W          | -         | 0x00      |
| 0F628           | UART2 interrupt enable register                    | UA2INTE            | -         | R/W          | 8         | 0x00      |
| 0F629           | Reserved                                           |                    | -         | -            | -         |           |
| 0F62A           | UART2 baud rate register                           |                    | UA2BRT    | R/W          | 8/16      | 0xFF      |
| 0F62B<br>0F62C  | LIAPT2 baud rate adjustment register               | UA2BRTH<br>UA2BRC  |           | R/W          | 8<br>8    | 0x0F      |
| 0F62D           | UART2 baud rate adjustment register<br>Reserved    | -                  | -         | R/W<br>-     | о<br>-    | 0x00<br>- |
| ~0F77F          |                                                    | 101101400          |           |              | -         | 0.00      |
| 0xF780          | I <sup>2</sup> C bus unit 0 mode register          | I2U0MSS            | -         | R/W          | 8         | 0x00      |
| 0xF781          | Reserved                                           | -                  | -         | -            | -         | -         |
| 0xF782          | I <sup>2</sup> C bus unit 0 receive register       | I2U0RD             | -         | R            | 8         | 0x00      |
| 0xF783          | Reserved                                           | -                  | -         | -            | -         | -         |
| 0xF784          | I <sup>2</sup> C bus unit 0 slave address register | I2U0SA             | -         | R/W          | 8         | 0x00      |

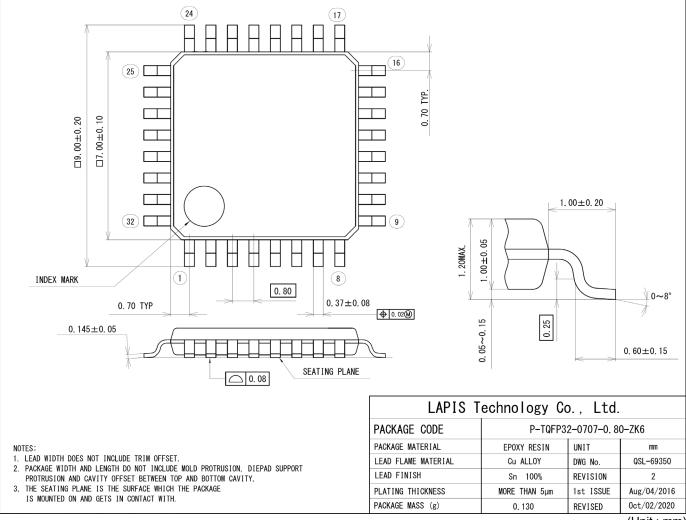

|                   | Name                                                 |           | bol         | DAM | <u>.</u> | Initial |
|-------------------|------------------------------------------------------|-----------|-------------|-----|----------|---------|
| Address           | Name                                                 | Byte      | Word        | R/W | Size     | value   |
| 0xF785            | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF786            | I <sup>2</sup> C bus unit 0 transmit data register   | I2U0TD    | -           | R/W | 8        | 0x00    |
| 0xF787            | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF788            | I <sup>2</sup> C bus unit 0 control register         | I2U0CON   | -           | R/W | 8        | 0x00    |
| 0xF789            | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF78A            | I <sup>2</sup> C bus unit 0 mode register            | I2U0MODL  | I2U0MOD     | R/W | 8/16     | 0x00    |
| 0xF78B            |                                                      | I2U0MODH  |             | R/W | 8        | 0x02    |
| 0xF78C            | I <sup>2</sup> C bus unit 0 status register          | I2U0STAT  | I2U0STR     | R   | 8/16     | 0x00    |
| 0xF78D            |                                                      | I2U0ISR   |             | R   | 8        | 0x00    |
| 0xF78E            | I <sup>2</sup> C bus unit 0 status clear register    | I2U0SCLRL | I2U0SCLR    | W   | 8/16     | 0x00    |
| 0xF78F            |                                                      | I2U0SCLRH |             | W   | 8        | 0x00    |
| 0F790<br>~0F7C1   | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF7C2            | I <sup>2</sup> C bus master 0 receive register       | I2M0RD    | -           | R   | 8        | 0x00    |
| 0xF7C3            | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF7C4            | I <sup>2</sup> C bus master 0 slave address register | I2M0SA    | -           | R/W | 8        | 0x00    |
| 0xF7C5            | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF7C6            | I <sup>2</sup> C bus master 0 transmit data register | I2M0TD    | -           | R/W | 8        | 0x00    |
| 0xF7C7            | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF7C8            | I <sup>2</sup> C bus master 0 control register       | I2M0CON   | -           | R/W | 8        | 0x00    |
| 0xF7C9            | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF7CA            | l <sup>2</sup> C bus master 0 mode register          | I2M0MODL  | I2M0MOD     | R/W | 8/16     | 0x00    |
| 0xF7CB            |                                                      | I2M0MODH  |             | R/W | 8        | 0x02    |
| 0xF7CC            | l <sup>2</sup> C bus master 0 status register        | I2M0STAT  | - I2M0STR   | R   | 8/16     | 0x00    |
| 0xF7CD            |                                                      | I2M0ISR   |             | R   | 8        | 0x00    |
| 0xF7CE            | l <sup>2</sup> C bus master 0 status clear register  | I2M0SCLRL | I2M0SCLR    | W   | 8/16     | 0x00    |
| 0xF7CF            |                                                      | I2M0SCLRH | IZIVIUSUEIX | W   | 8        | 0x00    |
| 0xF7D0<br>~0xF7FF | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF800            | SA ADC mode register                                 | SADMODL   | SADMOD      | R/W | 8/16     | 0x00    |
| 0xF801            | SA-ADC mode register                                 | SADMODH   | SADMOD      | R/W | 8        | 0x00    |
| 0xF802            |                                                      | SADCONL   | CADCON      | R/W | 8/16     | 0x00    |
| 0xF803            | SA-ADC control register                              | SADCONH   | SADCON      | R/W | 8        | 0x00    |
| 0xF804            | SA ADC conversion interval register                  | SADSTML   | SADSTM      | R/W | 8/16     | 0x00    |
| 0xF805            | SA-ADC conversion interval register                  | SADSTMH   | SADSTM      | R/W | 8        | 0x00    |
| 0xF806            | Reference voltage control register                   | VREFCON   | -           | R/W | 8        | 0x00    |
| 0xF807            | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF808            | SA-ADC interrupt mode register                       | SADIMOD   | -           | R/W | 8        | 0x00    |
| 0xF809            | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF80A            | SA-ADC trigger register                              | SADTRG    | -           | R/W | 8        | 0x00    |
| 0xF80B            | Reserved                                             | -         | -           | -   | _        | -       |
| 0xF80C            | SA ADC apph/a register 0                             | SADEN0L   |             | R/W | 8/16     | 0x00    |
| 0xF80D            | SA-ADC enable register 0                             | SADEN0H   | SADEN0      | R/W | 8        | 0x00    |
| 0xF80E            | SA-ADC enable register 1                             | SADEN1L   |             | R/W | 8/16     | 0x00    |
| 0xF80F            |                                                      | SADEN1H   | SADEN1      | R/W | 8        | 0x00    |
| 0xF810<br>~0xF81F | Reserved                                             | -         | -           | -   | -        | -       |
| 0xF820            |                                                      | SADLMODL  |             | R/W | 8/16     | 0x00    |
| 0xF821            | SA-ADC upper/lower limit mode register               | SADLMODH  | SADLMOD     | R/W | 8        | 0x00    |
| 0xF822            |                                                      | SADUPLL   |             | R/W | 8/16     | 0xF0    |
| 0xF823            | SA-ADC upper limit setting register                  | SADUPLH   | SADUPL      | R/W | 8        | 0xFF    |

| Address           | News                                           | Sym      | R/W     | Size | Initial |       |
|-------------------|------------------------------------------------|----------|---------|------|---------|-------|
|                   | Name                                           | Byte     | Word    | R/W  | Size    | value |
| 0xF824            | SA-ADC lower limit setting register            | SADLOLL  | SADLOL  | R/W  | 8/16    | 0x00  |
| 0xF825            |                                                | SADLOLH  | 0,10202 | R/W  | 8       | 0x00  |
| 0xF826            | SA-ADC upper/lower limit status register 0     | SADULS0L | SADULS0 | R    | 8/16    | 0x00  |
| 0xF827            | SA-ADC upper/lower inflit status register o    | SADULS0H | SADULSU | R    | 8       | 0x00  |
| 0xF828            | Reserved                                       | -        | -       | -    | -       | -     |
| 0xF829            | Reserved                                       | -        | -       | -    | -       | -     |
| 0xF82A            | SA-ADC upper/lower limit status clear register | SADULC0L | SADULC0 | W    | 8/16    | 0x00  |
| 0xF82B            | 0                                              | SADULC0H | SADULCU | W    | 8       | 0x00  |
| 0xF82C<br>~0xF82F | Reserved                                       | -        | -       | -    | -       | -     |
| 0xF830            | SA-ADC test mode register                      | SADTMOD  | -       | R/W  | 8       | 0x00  |
| 0xF831<br>~0xF83D | Reserved                                       | -        | -       | -    | -       | -     |
| 0xF83E            |                                                | SADRL    | CADD    | R    | 8/16    | 0x00  |
| 0xF83F            | SA-ADC result register                         | SADRH    | SADR    | R    | 8       | 0x00  |
| 0xF840            |                                                | SADR0L   | 04000   | R    | 8/16    | 0x00  |
| 0xF841            | SA-ADC result register 0                       | SADR0H   | SADR0   | R    | 8       | 0x00  |
| 0xF842            |                                                | SADR1L   | 04554   | R    | 8/16    | 0x00  |
| 0xF843            | SA-ADC result register 1                       | SADR1H   | SADR1   | R    | 8       | 0x00  |
| 0xF844            |                                                | SADR2L   |         | R    | 8/16    | 0x00  |
| 0xF845            | SA-ADC result register 2                       | SADR2H   | SADR2   | R    | 8       | 0x00  |
| 0xF846            |                                                | SADR3L   | 04550   | R    | 8/16    | 0x00  |
| 0xF847            | SA-ADC result register 3                       | SADR3H   | SADR3   | R    | 8       | 0x00  |
| 0xF848            |                                                | SADR4L   | SADR4   | R    | 8/16    | 0x00  |
| 0xF849            | SA-ADC result register 4                       | SADR4H   |         | R    | 8       | 0x00  |
| 0xF84A            |                                                | SADR5L   | SADR5   | R    | 8/16    | 0x00  |
| 0xF84B            | SA-ADC result register 5                       | SADR5H   |         | R    | 8       | 0x00  |
| 0xF84C            |                                                | SADR6L   |         | R    | 8/16    | 0x00  |
| 0xF84D            | SA-ADC result register 6                       | SADR6H   | SADR6   | R    | 8       | 0x00  |
| 0xF84E            |                                                | SADR7L   |         | R    | 8/16    | 0x00  |
| 0xF84F            | SA-ADC result register 7                       | SADR7H   | SADR7   | R    | 8       | 0x00  |
| 0xF850            |                                                | SADR8L   |         | R    | 8/16    | 0x00  |
| 0xF851            | SA-ADC result register 8                       | SADR8H   | SADR8   | R    | 8       | 0x00  |
| 0xF852            |                                                | SADR9L   |         | R    | 8/16    | 0x00  |
| 0xF853            | SA-ADC result register 9                       | SADR9H   | SADR9   | R    | 8       | 0x00  |
| 0xF854            |                                                | SADR10L  |         | R    | 8/16    | 0x00  |
| 0xF855            | SA-ADC result register 10                      | SADR10H  | SADR10  | R    | 8       | 0x00  |
| 0xF856            |                                                | SADR11L  |         | R    | 8/16    | 0x00  |
| 0xF857            | SA-ADC result register 11                      | SADR11H  | SADR11  | R    | 8       | 0x00  |
| 0xF858            |                                                | SADR12L  |         | R    | 8/16    | 0x00  |
| 0xF859            | SA-ADC result register 12                      | SADR12H  | SADR12  | R    | 8       | 0x00  |
| 0xF85A            |                                                | SADR13L  |         | R    | 8/16    | 0x00  |
| 0xF85B            | SA-ADC result register 13                      | SADR13H  | SADR13  | R    | 8       | 0x00  |
| 0xF85C<br>~0xF88F | Reserved                                       | -        | -       | -    |         | -     |
| 0xF890            | Voltage level supervisor 0 control register    | VLS0CON  | -       | R/W  | 8       | 0x00  |
| 0xF891            | Reserved                                       | -        | _       | -    | -       | -     |
| 0xF892            | Voltage level supervisor 0 mode register       | VLS0MOD  | -       | R/W  | 8       | 0x00  |
| 0xF893            | Reserved                                       | -        | -       | -    | -       | -     |
| 0xF894            | Voltage level supervisor 0 level register      | VLS0LV   | _       | R/W  | 8       | 0x0E  |
| 0xF895            | Reserved                                       | -        | -       | -    | -       | -     |
| 0.4 000           |                                                |          |         | L    |         |       |

| Address           | Name                                         | Sym      | R/W     | Size     | Initial |           |
|-------------------|----------------------------------------------|----------|---------|----------|---------|-----------|
| Address           | Indifie                                      | Byte     | Word    | 1.7, 4.4 | Size    | value     |
| 0xF896            | Voltage level supervisor 0 sampling register | VLS0SMP  | -       | R/W      | 8       | 0x00      |
| 0xF897<br>~0xF91F | Reserved                                     | -        | -       | -        | -       | -         |
| 0xF920            | Code Option 0                                | CODEOP0L | CODEOP0 | R        | 8/16    | *1        |
| 0xF921            | Code Option 0                                | CODEOP0H | CODEOPU | R        | 8       | *1        |
| 0xF922            | Code Option 1                                | CODEOP1L | CODEOP1 | R        | 8/16    | *1        |
| 0xF923            | Code Option 1                                | CODEOP1H | CODEOFT | R        | 8       | *1        |
| 0xF924            | Code Option 2                                | CODEOP2L | CODEOP2 | R        | 8/16    | *1        |
| 0xF925            |                                              | CODEOP2H | CODEOFZ | R        | 8       | *1        |
| 0xF926<br>~0xF92F | Reserved                                     | -        | -       | -        | -       | -         |
| 0xF930            | Draduat ID register 0                        | PID0L    | PID0    | R        | 8/16    | *2        |
| 0xF931            | Product ID register 0                        | PID0H    | PIDU    | R        | 8       | *2        |
| 0xF932            | Draduat ID register 1                        | PID1L    | PID1    | R        | 8/16    | 0x22      |
| 0xF933            | Product ID register 1                        | PID1H    | PIDT    | R        | 8       | 0x06      |
| 0xF834<br>~0xF93F | Reserved                                     | -        | -       | -        | -       | -         |
| 0xF940            | Converting Base Data register L              | CNVBD0   | CNVBDL  | R/W      | 8/16    | Undefined |
| 0xF941            |                                              | CNVBD1   | CINVBDL | R/W      | 8       | Undefined |
| 0xF942            | Converting Rose Data register H              | CNVBD2   | CNVBDH  | R/W      | 8/16    | Undefined |
| 0xF943            | Converting Base Data register H              | CNVBD3   | СПУВОН  | R/W      | 8       | Undefined |
| 0xF944            | Bit Swap Result register L                   | CNVAD0   | CNVADL  | R        | 8/16    | Undefined |
| 0xF945            |                                              | CNVAD1   | CINVADL | R        | 8       | Undefined |
| 0xF946            | Bit Swap Result register H                   | CNVAD2   | CNVADH  | R        | 8/16    | Undefined |
| 0xF947            |                                              | CNVAD3   |         | R        | 8       | Undefined |
| 0xF948            | Byte Swap Result register L                  | CNVED0   | CNVEDL  | R        | 8/16    | Undefined |
| 0xF949            |                                              | CNVED1   |         | R        | 8       | Undefined |
| 0xF94A            | Byte Swap Result register H                  | CNVED2   | CNVEDH  | R        | 8/16    | Undefined |
| 0xF94B            |                                              | CNVED3   |         | R        | 8       | Undefined |
| 0xF94C<br>~0xFFFF | Reserved -                                   |          | -       | -        | -       | -         |

## Appendix B Package Dimensions

## 48pin TQFP

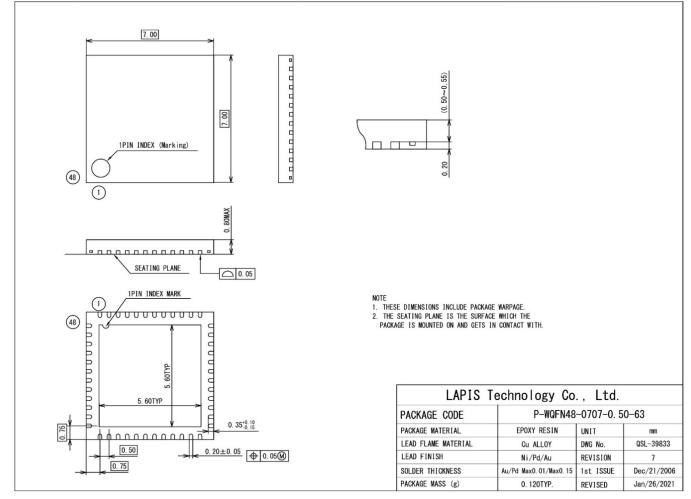



(Unit : mm)

### [Note] Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

## 32pin TQFP




(Unit : mm)

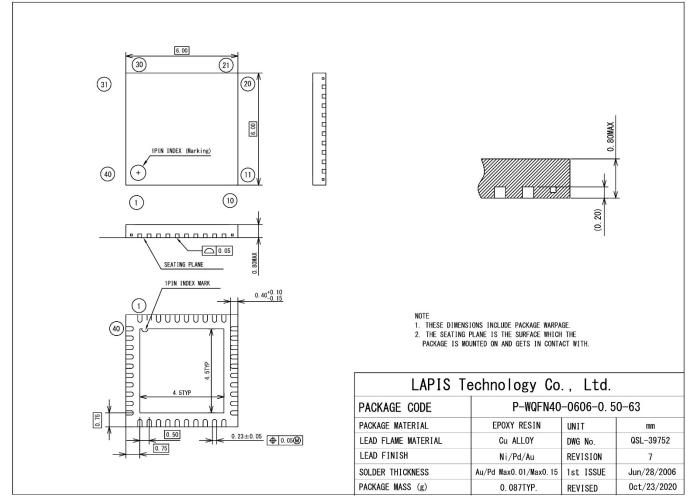
## [Note] Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

## 48pin WQFN



(Unit : mm)


#### [Note] Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

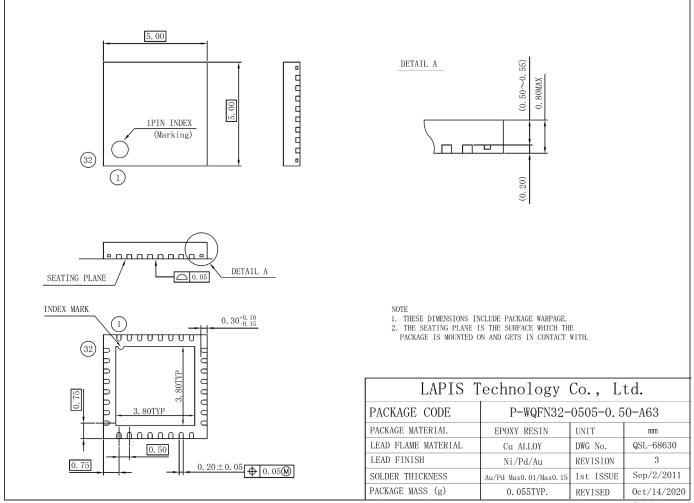
#### [Note] Notes for the package with exposed die pad

The die pad is exposed on the bottom of WQFN package. Make the die pad electrically open when soldering onto the PCB.

## 40pin WQFN



(Unit : mm)


#### [Note] Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

#### [Note] Notes for the package with exposed die pad

The die pad is exposed on the bottom of WQFN package. Make the die pad electrically open when soldering onto the PCB.

## 32pin WQFN



(Unit : mm)

#### [Note] Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

#### [Note] Notes for the package with exposed die pad

The die pad is exposed on the bottom of WQFN package. Make the die pad electrically open when soldering onto the PCB.

## Appendix CInstruction Execution Cycle

ML62Q2500 group has two CPU operating modes defined as the no wait mode and wait mode, in which there are some cases the instruction execution cycles are different each other.

| CPU Operation Mode | Description                                                                                                                                                 |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| No wait mode       | There is no increase of the instruction execution cycle, as there is no wait cycle for reading the program memory during the instruction execution.         |  |  |  |
| Wait mode          | There are some increases of the instruction execution cycle, as there are some wait cycles for reading the program memory during the instruction execution. |  |  |  |

Tables on following pages show the all instructions of nX-U16/100 core and the execution cycles in the two CPU modes. "-" indicates that there is no memory access during the instruction execution. See "Example of Instruction execution cycle" for details on how to read the table.

| (1)         |             | (2)-1           | (2)-2                | (3)-1           | (3)-2               | (4)                     | (5)                           |   |  |
|-------------|-------------|-----------------|----------------------|-----------------|---------------------|-------------------------|-------------------------------|---|--|
|             |             |                 | Min. execution cycle |                 | ROM reference cycle |                         |                               |   |  |
| Instruction |             | No wait<br>mode | Wait mode            | No wait<br>mode | Wait mode           | Effect of DSR<br>access | Effect of [EA+]<br>addressing |   |  |
| ADD         | ER <i>n</i> | ER <i>m</i>     | 1                    | 1               | -                   | -                       | -                             | - |  |
| В           | Cadr        |                 | 2                    | 6               | -                   | -                       | -                             | 1 |  |
|             | ER <i>n</i> |                 | 2                    | 6               | -                   | -                       | -                             | 1 |  |
| L           | ER <i>n</i> | [EA]            | 1                    | 1               | 1                   | 5                       | 1                             | - |  |
|             |             | [EA+]           | 1                    | 1               | 1                   | 5                       | 1                             | - |  |

Example of Instruction execution cycle

[How to read the table]

1) These are the instructions of nX-U16/100(A35 core)

 The execution cycle of each instruction. The values in column (2)-1 are execution cycles in no wait mode. The values in column (2)-2 are execution cycles in wait mode.

- 3) Additional execution cycle when the instruction refers to ROM. The values in column (3)-1 are minimum cycles for reading when the instruction refers to ROM. The values in column (3)-2 are execution cycles that added waiting cycle into the values in (3)-1.
- Additional execution cycle when the instruction reads the address allocated in segment 1 or larger. One cycle is added in spite of the CPU operating mode. For more details, see the section 1.3.4 "DSR Prefix Instructions" in the nX-U16/100 core instruction manual.

 Additional execution effected by the instruction with the [EA+] addressing. One cycle is added in spite of the CPU operating mode. For more details, see the section 3.3 "Instruction Execution Times" in the nX-U16/100 core instruction manual.

# Arithmetic Instructions

|        |             |             | Min. exec       | ution cycle | ROM refer       | ence cycle | Effect of     | Effect of [EA+] |
|--------|-------------|-------------|-----------------|-------------|-----------------|------------|---------------|-----------------|
|        | Instructior | ו           | No wait<br>mode | Wait mode   | No wait<br>mode | Wait mode  | DSR<br>access | addressing      |
| ADD    | ER <i>n</i> | ER <i>m</i> | 1               | 1           | -               | -          | -             | -               |
| ADD    |             | #imm7       | 1               | 1           | -               | -          | -             | -               |
| ADD    | R <i>n</i>  | R <i>m</i>  | 1               | 1           | -               | -          | -             | -               |
| ADD    |             | #imm8       | 1               | 1           | -               | -          | -             | -               |
| ADDC   | R <i>n</i>  | R <i>m</i>  | 1               | 1           | -               | -          | -             | -               |
| ADDC   |             | #imm8       | 1               | 1           | -               | -          | -             | -               |
| AND    | R <i>n</i>  | R <i>m</i>  | 1               | 1           | -               | -          | -             | -               |
| AND    | R/I         | #imm8       | 1               | 1           | -               | -          | -             | -               |
| CMP    | R <i>n</i>  | R <i>m</i>  | 1               | 1           | -               | -          | -             | -               |
| CIVIP  | RN          | #imm8       | 1               | 1           | -               | -          | -             | -               |
| CMPC   | R <i>n</i>  | R <i>m</i>  | 1               | 1           | -               | -          | -             | -               |
| CIVIFC |             | #imm8       | 1               | 1           | -               | -          | -             | -               |
| MOV    | ER <i>n</i> | ER <i>m</i> | 1               | 1           | -               | -          | -             | -               |
| NOV    |             | #imm7       | 1               | 1           | -               | -          | -             | -               |
| MOV    | R <i>n</i>  | R <i>m</i>  | 1               | 1           | -               | -          | -             | -               |
| NOV    | R/I         | #imm8       | 1               | 1           | -               | -          | -             | -               |
| OR     | R <i>n</i>  | R <i>m</i>  | 1               | 1           | -               | -          | -             | -               |
| UK     | R/I         | #imm8       | 1               | 1           | -               | -          | -             | -               |
| VOD    | De          | R <i>m</i>  | 1               | 1           | -               | -          | -             | -               |
| XOR    | R <i>n</i>  | #imm8       | 1               | 1           | -               | -          | -             | -               |
| CMP    | ER <i>n</i> | ER <i>m</i> | 1               | 1           | -               | -          | -             | -               |
| SUB    | R <i>n</i>  | R <i>m</i>  | 1               | 1           | -               | -          | -             | -               |
| SUBC   | R <i>n</i>  | R <i>m</i>  | 1               | 1           | -               | -          | -             | -               |

# Shift instructions

|             |            |                 | Min. exect | ution cycle     | ROM refer | ence cycle    | Effect of  | Effect of [EA+] |
|-------------|------------|-----------------|------------|-----------------|-----------|---------------|------------|-----------------|
| Instruction |            | No wait<br>mode | Wait mode  | No wait<br>mode | Wait mode | DSR<br>access | addressing |                 |
| SLL Rn      | R <i>m</i> | 1               | 1          | -               | -         | -             | 1          |                 |
| SLL         |            | #width          | 1          | 1               | -         | -             | -          | 1               |
| SLLC        | Dn         | R <i>m</i>      | 1          | 1               | -         | -             | -          | 1               |
| SLLC        | R <i>n</i> | #width          | 1          | 1               | -         | -             | -          | 1               |
| SRA         | R <i>n</i> | R <i>m</i>      | 1          | 1               | -         | -             | -          | 1               |
| SKA         |            | #width          | 1          | 1               | -         | -             | -          | 1               |
| SRL         | R <i>n</i> | R <i>m</i>      | 1          | 1               | -         | -             | -          | 1               |
| SRL RI      | #width     | 1               | 1          | -               | -         | -             | 1          |                 |
|             | R <i>n</i> | R <i>m</i>      | 1          | 1               | -         | -             | -          | 1               |
| SRLC        |            | #width          | 1          | 1               | -         | -             | -          | 1               |

### Load/Store instructions

| ERn         | (EA)           | No wait<br>mode<br>1 | Wait mode  | No wait<br>mode | Wait mode | DSR    | Effect of [EA+]<br>addressing |
|-------------|----------------|----------------------|------------|-----------------|-----------|--------|-------------------------------|
| ERn         | [EA+]          | 1                    |            |                 |           | access | addressing                    |
| ERn         |                |                      | 1          | 1               | 5         | 1      | -                             |
| ERn         | 150 1          | 1                    | 1          | 1               | 5         | 1      | -                             |
| ER <i>n</i> | [ERm]          | 1                    | 1 / 2 (*1) | 1               | 5         | 1      | 1                             |
|             | Disp16[ERm]    | 2                    | 2          | 1               | 5         | 1      | 1                             |
|             | Disp6[BP]      | 2                    | 2          | 1               | 5         | 1      | 1                             |
|             | Disp6[FP]      | 2                    | 2          | 1               | 5         | 1      | 1                             |
|             | Dadr           | 2                    | 2          | 1               | 5         | 1      | 1                             |
|             | [EA]           | 1                    | 1          | 1               | 5         | 1      | -                             |
|             | [EA+]          | 1                    | 1          | 1               | 5         | 1      | -                             |
| L           | [ER <i>m</i> ] | 1                    | 1 / 2 (*1) | 1               | 5         | 1      | 1                             |
| R <i>n</i>  | Disp16[ERm]    | 2                    | 2          | 1               | 5         | 1      | 1                             |
|             | Disp6[BP]      | 2                    | 2          | 1               | 5         | 1      | 1                             |
|             | Disp6[FP]      | 2                    | 2          | 1               | 5         | 1      | 1                             |
|             | Dadr           | 2                    | 2          | 1               | 5         | 1      | 1                             |
| XR <i>n</i> | [EA]           | 2                    | 2          | 2               | 10        | 1      | -                             |
|             | [EA+]          | 2                    | 2          | 2               | 10        | 1      | -                             |
| QR <i>n</i> | [EA]           | 4                    | 4          | 4               | 15        | 1      | -                             |
| QINI        | [EA+]          | 4                    | 4          | 4               | 15        | 1      | -                             |
| ER <i>n</i> | [EA]           | 1                    | 1          | -               | -         | -      | -                             |
|             | [EA+]          | 1                    | 1          | -               | -         | -      | -                             |
|             | [ER <i>m</i> ] | 1                    | 1 / 2 (*1) | -               | -         | -      | 1                             |
|             | Disp16[ERm]    | 2                    | 2          | -               | -         | -      | 1                             |
|             | Disp6[BP]      | 2                    | 2          | -               | -         | -      | 1                             |
|             | Disp6[FP]      | 2                    | 2          | -               | -         | -      | 1                             |
|             | Dadr           | 2                    | 2          | -               | -         | -      | 1                             |
| R <i>n</i>  | [EA]           | 1                    | 1          | -               | -         | -      | -                             |
| ST          | [EA+]          | 1                    | 1          | -               | -         | -      | -                             |
| 51          | [ER <i>m</i> ] | 1                    | 1 / 2 (*1) | -               | -         | -      | 1                             |
|             | Disp16[ERm]    | 2                    | 2          | -               | -         | -      | 1                             |
|             | Disp6[BP]      | 2                    | 2          | -               | -         | -      | 1                             |
|             | Disp6[FP]      | 2                    | 2          | -               | -         | -      | 1                             |
|             | Dadr           | 2                    | 2          | -               | -         | -      | 1                             |
| VDr         | [EA]           | 2                    | 2          | -               | -         | -      | -                             |
| XR <i>n</i> | [EA+]          | 2                    | 2          | -               | -         | -      | -                             |
| 0.0.0       | [EA]           | 4                    | 4          | -               | -         | -      | -                             |
| QR <i>n</i> | [EA+]          | 4                    | 4          | -               | -         | -      | -                             |

(\*1) When the immediately preceding instruction is for reading the data memory or not (not the instruction for reading the data memory / the instruction for reading the data memory)

# Control Register Access Instructions

|     |             |             | Min. exect      | ution cycle | ROM refer       | ence cycle | Effect of     | Effect of           |
|-----|-------------|-------------|-----------------|-------------|-----------------|------------|---------------|---------------------|
|     | Instruction |             | No wait<br>mode | Wait mode   | No wait<br>mode | Wait mode  | DSR<br>access | [EA+]<br>addressing |
| ADD | SP          | #signed8    | 1               | 1           | -               | -          | -             | -                   |
| MOV | ECSR        | R <i>m</i>  | 1               | 1           | -               | -          | -             | -                   |
| MOV | ELR         | ER <i>m</i> | 1               | 1           | -               | -          | -             | -                   |
|     | EPSW        | R <i>m</i>  | 1               | 1           | -               | -          | -             | -                   |
|     | ERn         | ELR         | 1               | 1           | -               | -          | -             | -                   |
|     |             | SP          | 1               | 1           | -               | -          | -             | -                   |
|     | PSW         | R <i>m</i>  | 1               | 1           | -               | -          | -             | -                   |
|     | F3W         | #unsigned8  | 1               | 1           | -               | -          | -             | -                   |
|     | R <i>n</i>  | CR <i>m</i> | 1               | 1           | -               | -          | -             | -                   |
|     | 107         | ECSR        | 1               | 1           | -               | -          | -             | -                   |
|     |             | EPSW        | 1               | 1           | -               | -          | -             | -                   |
|     |             | PSW         | 1               | 1           | -               | -          | -             | -                   |
|     | SP          | ER <i>m</i> | 1               | 1           | -               | -          | -             | -                   |

# **PUSH/POP** Instructions

|      |                | Min. exec       | ution cycle  | ROM refe        | rence cycle | Effect of     | Effect of [EA+] |
|------|----------------|-----------------|--------------|-----------------|-------------|---------------|-----------------|
|      | Instruction    | No wait<br>mode | Wait mode    | No wait<br>mode | Wait mode   | DSR<br>access | addressing      |
|      | EA             | 1               | 1            | -               | -           | -             | 1               |
| PUSH | ELR            | 1 / 2 (*1)      | 1 / 2 (*1)   | -               | -           | -             | 1               |
|      | EA,ELR         | 2/3(*1)         | 2 / 3 (*1)   | -               | -           | -             | 1               |
|      | EPSW           | 1               | 1            | -               | -           | -             | 1               |
|      | EPSW,EA        | 2               | 2            | -               | -           | I             | 1               |
|      | EPSW,ELR       | 2/3(*1)         | 2 / 3 (*1)   | -               | -           | -             | 1               |
|      | EPSW,ELR, EA   | 3 / 4 (*1)      | 3 / 4 (*1)   | -               | -           | -             | 1               |
|      | LR             | 1 / 2 (*1)      | 1 / 2 (*1)   | -               | -           | -             | 1               |
|      | LR,EA          | 2/3(*1)         | 2 / 3 (*1)   | -               | -           | -             | 1               |
|      | LR,ELR         | 2 / 4 (*1)      | 2 / 4 (*1)   | -               | -           | -             | 1               |
|      | LR,EA,ELR      | 3 / 5 (*1)      | 3 / 5 (*1)   | -               | -           | -             | 1               |
|      | LR,EPSW        | 2/3(*1)         | 2 / 3 (*1)   | -               | -           | _             | 1               |
|      | LR,EPSW,EA     | 3 / 4 (*1)      | 3 / 4 (*1)   | -               | -           | -             | 1               |
|      | LR,EPSW,ELR    | 3 / 5 (*1)      | 3 / 5 (*1)   | -               | -           | -             | 1               |
|      | LR,ELR,EPSW,EA | 4 / 6 (*1)      | 4 / 6 (*1)   | -               | -           | -             | 1               |
|      | ERn            | 1               | 1            | -               | -           | -             | 1               |
|      | QR <i>n</i>    | 4               | 4            | -               | -           | -             | 1               |
|      | R <i>n</i>     | 1               | 1            | -               | -           | _             | 1               |
|      | XRn            | 2               | 2            | -               | -           | -             | 1               |
|      | EA             | 2               | 2            | -               | -           | -             | 1               |
| POP  | EA,LR          | 3 / 4 (*1)      | 3 / 4 (*1)   | -               | -           | -             | 1               |
|      | EA,PC          | 5 / 6 (*1)      | 10 / 11(*1)  | -               | -           | -             | 1               |
|      | EA,PC,LR       | 6 / 8 (*1)      | 11 / 13 (*1) | -               | -           | -             | 1               |
|      | EA,PC,PSW      | 6 / 7 (*1)      | 11 / 13 (*1) | -               | -           | -             | 1               |
|      | EA,PC,PSW,LR   | 7 / 9 (*1)      | 12 / 14 (*1) | -               | -           | -             | 1               |
|      | EA,PSW         | 3               | 3            | -               | -           | -             | 1               |
|      | EA,PSW,LR      | 4 / 5 (*1)      | 4 / 5 (*1)   | -               | -           | -             | 1               |
|      | LR             | 1 / 2 (*1)      | 1 / 2 (*1)   | -               | -           | -             | 1               |
|      | LR,PSW         | 2 / 3 (*1)      | 2 / 3 (*1)   | -               | -           | -             | 1               |
|      | PC             | 3 / 4 (*1)      | 8 / 9 (*1)   | -               | -           | -             | 1               |
|      | PC,LR          | 4 / 6 (*1)      | 9 / 11(*1)   | -               | -           | -             | 1               |
|      | PC,PSW         | 4 / 5 (*1)      | 9 / 10 (*1)  | -               | -           | -             | 1               |
|      | PC,PSW,LR      | 5 / 7 (*1)      | 10 / 12 (*1) | -               | -           | -             | 1               |
|      | PSW            | 1               | 1            | -               | -           | -             | 1               |
|      | ERn            | 1               | 1            | -               | -           | -             | 1               |
|      | QR <i>n</i>    | 4               | 4            | -               | -           | -             | 1               |
|      | Rn             | 1               | 1            | -               | -           | -             | 1               |
|      | XR <i>n</i>    | 2               | 2            | -               | -           | -             | 1               |

(\*1) When the memory mode is SMALL or LARGE (SMALL model/LARGE model)

|      |              |              | Min. exec       | ution cycle | ROM refer       | ence cycle | Effect of     | Effect of (EA+1               |
|------|--------------|--------------|-----------------|-------------|-----------------|------------|---------------|-------------------------------|
|      | Instruction  | า            | No wait<br>mode | Wait mode   | No wait<br>mode | Wait mode  | DSR<br>access | Effect of [EA+]<br>addressing |
|      | CR <i>n</i>  | R <i>m</i>   | 1               | 1           | -               | -          | -             | -                             |
| MOV  | CER <i>n</i> | [EA]         | 1               | 1           | 1               | 5          | 1             | 1                             |
|      | GERII        | [EA+]        | 1               | 1           | 1               | 5          | 1             | 1                             |
|      | COBn         | [EA]         | 4               | 4           | 4               | 15         | 1             | 1                             |
| CQRn | [EA+]        | 4            | 4               | 4           | 15              | 1          | 1             |                               |
|      | CR <i>n</i>  | [EA]         | 1               | 1           | 1               | 5          | 1             | 1                             |
|      | UR/I         | [EA+]        | 1               | 1           | 1               | 5          | 1             | 1                             |
|      | CXR <i>n</i> | [EA]         | 2               | 2           | 2               | 10         | 1             | 1                             |
|      |              | [EA+]        | 2               | 2           | 2               | 10         | 1             | 1                             |
|      | Rn           | CR <i>m</i>  | 1               | 1           | -               | -          | -             | -                             |
| MOV  | [EA]         | CER <i>m</i> | 1               | 1           | 1               | 5          | 1             | 1                             |
|      | [EA+]        | CER <i>m</i> | 1               | 1           | 1               | 5          | 1             | 1                             |
|      | [EA]         | CQR <i>m</i> | 4               | 4           | 4               | 15         | 1             | 1                             |
|      | [EA+]        | CQR <i>m</i> | 4               | 4           | 4               | 15         | 1             | 1                             |
|      | [EA]         | CR <i>m</i>  | 1               | 1           | 1               | 5          | 1             | 1                             |
|      | [EA+]        | CR <i>m</i>  | 1               | 1           | 1               | 5          | 1             | 1                             |
|      | [EA]         | CXR <i>m</i> | 2               | 2           | 2               | 10         | 1             | 1                             |
|      | [EA+]        | CXR <i>m</i> | 2               | 2           | 2               | 10         | 1             | 1                             |

### Coprocessor Data Transfer Instructions

### EA Register Data Transfer Instructions

| Instruction |                | Min. execution cycle |           | ROM reference cycle |           | Effect of     | Effect of [EA+] |
|-------------|----------------|----------------------|-----------|---------------------|-----------|---------------|-----------------|
|             |                | No wait<br>mode      | Wait mode | No wait<br>mode     | Wait mode | DSR<br>access | addressing      |
|             | [ER <i>m</i> ] | 1                    | 1         | -                   | -         | -             | -               |
| LEA         | Disp16[ERm]    | 2                    | 2         | -                   | -         | -             | -               |
|             | Dadr           | 2                    | 2         | -                   | -         | -             | -               |

# **ALU Instructions**

| Instruction |            | Min. execution cycle |           | ROM reference cycle |           | Effect of     | Effect of (EA+1               |
|-------------|------------|----------------------|-----------|---------------------|-----------|---------------|-------------------------------|
|             |            | No wait<br>mode      | Wait mode | No wait<br>mode     | Wait mode | DSR<br>access | Effect of [EA+]<br>addressing |
| DAA         | R <i>n</i> | 1                    | 1         | -                   | -         | -             | -                             |
| DAS         | R <i>n</i> | 1                    | 1         | -                   | -         | -             | -                             |
| NEG         | R <i>n</i> | 1                    | 1         | -                   | -         | -             | -                             |

#### **Bit Access Instructions**

|             |               | Min. exec       | ution cycle | ROM refer       | ence cycle | Effect of     | Effect of [EA+] |  |
|-------------|---------------|-----------------|-------------|-----------------|------------|---------------|-----------------|--|
| Instruction |               | No wait<br>mode | Wait mode   | No wait<br>mode | Wait mode  | DSR<br>access | addressing      |  |
| SB          | Dbitadr       | 2               | 3           | -               | -          | 1             | -               |  |
| 36          | Rn.bit_offset | 1               | 1           | -               | -          | -             | -               |  |
| RB          | Dbitadr       | 2               | 3           | -               | -          | 1             | -               |  |
| RD          | Rn.bit_offset | 1               | 1           | -               | -          | -             | -               |  |
| тр          | Dbitadr       | 2               | 3           | 1               | 5          | 1             | -               |  |
| ТВ          | Rn.bit_offset | 1               | 1           | -               | -          | -             | -               |  |

### **PSW Access Instructions**

|             | Min. execution cycle |           | ROM refer       | ence cycle | Effect of     | Effect of [EA+] |  |
|-------------|----------------------|-----------|-----------------|------------|---------------|-----------------|--|
| Instruction | No wait<br>mode      | Wait mode | No wait<br>mode | Wait mode  | DSR<br>access | addressing      |  |
| EI          | 1                    | 1         | -               | -          | -             | -               |  |
| DI          | 3                    | 3         | -               | -          | -             | -               |  |
| SC          | 1                    | 1         | -               | -          | -             | -               |  |
| RC          | 1                    | 1         | -               | -          | -             | -               |  |
| CPLC        | 1                    | 1         | -               | -          | -             | -               |  |

#### Sign Extension Instruction

|       |             | Min. exect      | ution cycle | ROM reference cycle |           | Effect of     | Effect of [EA+]               |
|-------|-------------|-----------------|-------------|---------------------|-----------|---------------|-------------------------------|
| Ins   | truction    | No wait<br>mode | Wait mode   | No wait<br>mode     | Wait mode | DSR<br>access | Effect of [EA+]<br>addressing |
| EXTBW | ER <i>n</i> | 1               | 1           | -                   | -         | -             | -                             |

#### **Branch Instructions**

|             |      |                 | Min. execution cycle |                 | ROM reference cycle |               | Effect of [EA+] |
|-------------|------|-----------------|----------------------|-----------------|---------------------|---------------|-----------------|
| Instruction |      | No wait<br>mode | Wait mode            | No wait<br>mode | Wait mode           | DSR<br>access | addressing      |
| в           | Cadr | 2               | 6                    | -               | -                   | -             | 1               |
| В           | ERn  | 2               | 6 / 7 (*1)           | -               | -                   | -             | 1               |
| Ы           | Cadr | 2               | 6                    | -               | -                   | -             | 1               |
| BL          | ERn  | 2               | 6 / 7 (*1)           | -               | -                   | -             | 1               |

(\*1) When the immediately preceding instruction is for reading the data memory or not (not the instruction for reading the data memory / the instruction for reading the data memory)

#### **Conditional Relative Branch Instructions**

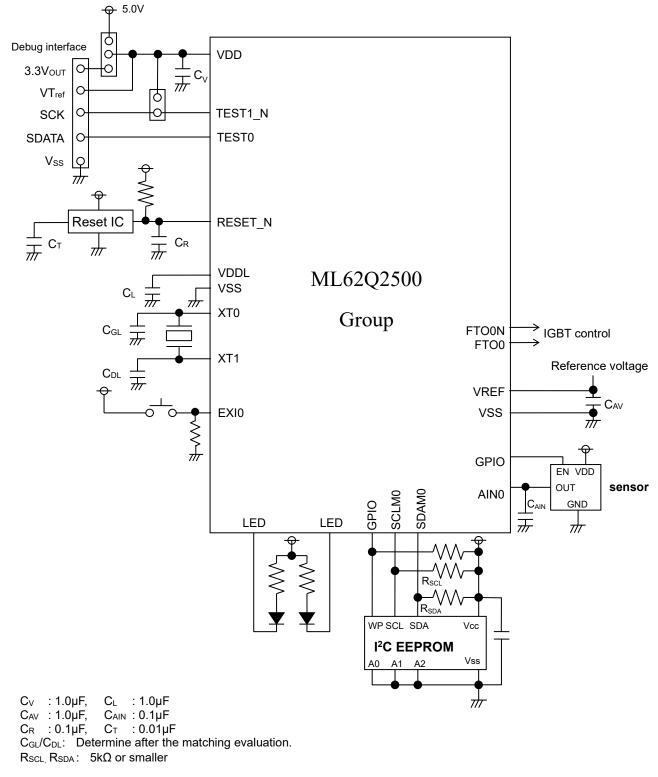
| Instruction |      | Min. exec       | cution cycle ROM |                 | ence cycle | Effect of     | Effect of [EA+] |
|-------------|------|-----------------|------------------|-----------------|------------|---------------|-----------------|
|             |      | No wait<br>mode | Wait mode        | No wait<br>mode | Wait mode  | DSR<br>access | addressing      |
| BGE         | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BLT         | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BGT         | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BLE         | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BGES        | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BLTS        | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BGTS        | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BLES        | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BNE         | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BEQ         | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BNV         | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BOV         | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BPS         | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BNS         | Radr | 1 / 2(*1)       | 1 / 7(*1)        | -               | -          | -             | 1               |
| BAL         | Radr | 2               | 7                | -               | -          | -             | 1               |

(\*1) When the branch condition is matched or not (Not matched / Matched)

#### ML62Q2500 Group User's Manual Appendix C Instruction Execution Cycle

# Multiplication and Division Instructions

| Instruction |             | Min. execution cycle |           | ROM reference cycle |           | Effect of     | Effect of [EA+] |   |
|-------------|-------------|----------------------|-----------|---------------------|-----------|---------------|-----------------|---|
|             |             | No wait<br>mode      | Wait mode | No wait<br>mode     | Wait mode | DSR<br>access | addressing      |   |
| MUL         | ER <i>n</i> | R <i>m</i>           | 9         | 9                   | -         | -             | -               | - |
| DIV         | ER <i>n</i> | R <i>m</i>           | 17        | 17                  | -         | -             | -               | - |


### Interrupts

| Instruction              |       | Min. execution cycle |           | ROM reference cycle |           | Effect of     |                               |
|--------------------------|-------|----------------------|-----------|---------------------|-----------|---------------|-------------------------------|
|                          |       | No wait<br>mode      | Wait mode | No wait<br>mode     | Wait mode | DSR<br>access | Effect of [EA+]<br>addressing |
| SWI                      | #snum | 3                    | 10        | -                   | -         | -             | 1                             |
| BRK                      |       | 7                    | 18        | -                   | -         | -             | 1                             |
| Interrupt transfer cycle |       | 3                    | 10        | -                   | -         | -             | 1                             |

### Miscellaneous

| Instruction |      | Min. execution cycle |           | ROM reference cycle |           | Effect of     | Effect of [EA+] |
|-------------|------|----------------------|-----------|---------------------|-----------|---------------|-----------------|
|             |      | No wait<br>mode      | Wait mode | No wait<br>mode     | Wait mode | DSR<br>access | addressing      |
| NOP         |      | 1                    | 1         | -                   | -         | -             | -               |
| DEC         | [EA] | 2                    | 2         | -                   | -         | 1             | 1               |
| INC         | [EA] | 2                    | 2         | -                   | -         | 1             | 1               |
| RT          |      | 2                    | 6         | -                   | -         | 1             | 1               |
| RTI         |      | 2                    | 6         | -                   | -         | 1             | 1               |

# Appendix DApplication Circuit Example



LED : P02~P07, P10~P17, P20~P27, P30~P37, P52~P57, P60~P62, P70~P73 Reset IC : BU4217 (ROHM, Nch open drain output)

### [Note]

• Place the capacitor for VDDL pin as close to the LSI power pins as possible.

# Appendix E List of Notes

This Check List has important notes to prevent commonly-made programming mistakes and frequently overlooked or misunderstood hardware specifications of the LSI. Check each note listed in chapter by chapter when coding or evaluating the program. Number in a mark [] shows section number to refer.

#### Common to all Chapters

- □ Please see the "Notes" and the "Notes for product usage" in this document front pages.
- Word access is available for registers with the word symbol. Specify an even address for the word access. See "List of Registers" in each chapter.
- Registers for unequipped channels are not available to use. They return 0x0000 for reading. See "List of Registers" in each chapter.

#### 1. Overview

□ [1.3.4] Terminate unused input pins according to the Table 1-5 in order to avoid unexpected through-current in the pins.

### 2. CPU and Memory Space

- □ [2.5] CSR[3] is unused on the ML62Q2500 group. The data of CSR "0x8 to 0xF" are handled as "0x0 to 0x7".
- [2.5] The Code Option area (64 bytes) is not available for the program code area. For details of Code Option settings, see Chapter 30 "Code Option" and make sure the setting data is correct.
- [2.5] It is recommended to fill unused areas with data "0xFFFF" (BRK instruction) in the program memory space to ensure failsafe using the generation tool of the ROM code data. See its manual for details on how to use. See "nX-U16/100 Core Instruction Manual" for details of the BRK instruction.
- $\Box$  [2.5, 2.6] Do not read or program unused areas to prevent the CPU works incorrectly.
- □ [2.6] The contents of the RAM area are undefined at power-on and system reset. Initialize this area by the software.
- □ [2.8.2] If the entire LSI is reset through a system reset, the remapping function is disabled as the REMAPADD register is restored with the initial value.

### 3. Reset Function

- [3.3.1] The BRK instruction reset only initializes the CPU if ELEVEL is 2 or higher. Peripheral circuits and other circuits are not initialized. Use the pin reset or the watchdog timer (WDT) reset to surely initialize the LSI when an abnormality is detected.
- □ [3.3.1] Command reset in on-chip debug does not reset to crystal oscillation circuit and VLS parts. Do initialization of these functions by writing SFRs on debug, if needed. See Chapter 28 for details.
- [3.3.2] In system reset mode, the contents of data memory (RAM) and SFRs that have an undefined initial value are not initialized. Initialize them by the software.
- [3.3.4] In case of instantaneous power failure and a pulse shorter than the power-on reset reaction time is asserted to VDD, MCU may not get reset and it may malfunction. In that case, please have preventive measures such as using bypass capacitor to avoid the instantaneous voltage drop or using pin reset to initialize MCU.

### 4. Power Management

- $\Box$  [4.1.3] In order to improve the noise resistance, place the inter-power supply bypass capacitor (C<sub>V</sub>) and the internal logic voltage (V<sub>DDL</sub>) capacitor (C<sub>L</sub> : 1  $\mu$ F) in the vicinity of LSI on the user board using the shortest possible wiring without passing through via holes.
- □ [4.1.3] The internal logic voltage (VDDL pin output) is unavailable to use for an external device voltage.
- [4.2.2] Writing to the stop code acceptor is invalid on the condition both interrupts enable bits and interrupt request bits are "1", it will not get enabled for entering to the STOP/STOP-D mode.
- □ [4.2.3] The operating state does not enter the standby mode under some conditions. See "4.3.2.6 Note of entering to the standby mode" for detail conditions.
- [4.2.3] When an interrupt enabled in the interrupt enable registers (IE0 to IE7) is generated on the condition of MIE flag of the program status word (PSW) is "0", it cancels the standby mode only and the CPU does not go to the interrupt routine. For more details about MIE flag, see "nX-U16/100 Core Instruction Manual".
- □ [4.2.3] Insert two NOP instructions in the next to the instruction of that sets HLT, STP, HLTH and STPD bit to "1". The operation without the two NOP instructions is not guaranteed.
- □ [4.2.6] Do not enter the standby mode when the SOFTR bit is "1". Ensure the SOFTR bit is "0" before entering the standby mode.
- □ [4.2.9, 4.2.13] The DCKACC/RSEACC bit can be set to "0" when the multiplication/division library "muldivu8.lib" is specified. See a manual of the multiplication/division library for how to use.
- □ [4.3.2.6] Note of entering to the standby mode
- □ [4.3.2.7] Note on Return Operation from Standby Mode

- [4.3.2.7] Since up to two instructions are executed during the period between the release of standby mode and a transition to interrupt processing, place two NOP instructions next to the instruction set for the standby mode. When a master interrupt enable (MIE) flag of the program status word (PSW) in the nX-U16/100 CPU core is "1", following the execution of the two NOP instructions, the interrupt transition cycle will be executed and execution of the instruction for interrupt routine begins. If MIE is "0", following the execution of the two NOP instructions, the instruction without transition to the interrupt.
- □ [4.3.2.9] When the FHWUPT register is set to "0x01", the frequency of PLL oscillation clock gradually increases and reaches the target frequency chosen by the code option before approx. 2 ms elapse. The PLL oscillation clock during this time period can be used for the SYSCLK, however, accuracy of the frequency is not guaranteed.
- □ [4.3.3] If the clock supply is only stopped without resetting each peripheral circuit using the block control function, it may cause the output levels of the timer and communication pins to be fixed, causing the excess current to flow. Also, in the successive approximation type A/D converter, the circuits may stop their function with the current kept flowing.

#### 5. Interrupts

- $\Box$  [5.2.6 ~ 5.2.9] There is a risk of clearing other request flags of This IRQ register, if writing to the specific bit of this register. Use the bit symbol to write to the specific bit. See Section [5.3.8 Writing to IRQ01/IRQ23/IRQ45/IRQ67] for more detail.
- □ [5.2.10] Disable the interrupt level control function by resetting the ILE bit to "0" after resetting the Interrupt level control register 0 to 7 (ILC0 to ILC1) to "0x0000" and confirming the current interrupt request level register (CIL) is "0x00" when the interrupt is disabled (IE01 to IE67 registers are "0x00").
- [5.2.10] Enable the interrupt level control function by setting the ILE bit to "1" when the interrupt is disabled(IE0 to IE7 registers are "0") or master interrupt enable flag(MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.
- $\Box$  [5.2.13 ~ 5.2.20] Write to this register when the interrupt is disabled (IE01 to IE67 registers are "0x0000") or the master interrupt enable flag (MIE) is "0", otherwise, an interrupt may occur with an unexpected interrupt level.
- □ [5.3] The WDT interrupt (WDTINT) is a non-maskable interrupt. If the non-maskable interrupt occurs while an interrupt processing is in progress, abort the interrupt processing and proceed with processing the non-maskable interrupt preferentially regardless of multiple interrupts enabled/disabled.
- [5.3] For failsafe, define unused all interrupt vectors. If an unused interrupt occurs, it may indicate the possibility that the CPU went out of control. It is recommended to cause the WDT overflow reset to occur using the infinite loop to initialize the LSI.
- □ [5.3.4] Notes on Interrupt Routine (with Interrupt Level Control Disabled)
- [5.3.4] Do not enable interrupts in a subroutine called from an interrupt routine for which multiple interrupts are disabled.
   Otherwise, the program may run out of control when multiple interrupts occur.
- □ [5.3.5] For processing of non-maskable interrupt, follow the flow chart "When multiple interrupts are enabled". Registers that should be saved in the stack are ELR2 and EPSW2.
- [5.3.5] When programming in C, it is not required to write program codes for saving/restoring registers because they are generated in the C compiler. However, program codes for enabling/disabling interrupts through EI and DI instructions and for writing to the current interrupt level management register (CIL) must be written. See Section 5.3.6 "How To Write Interrupt Processing When Interrupt Level Control Enabled" for the specific program description.
- □ [5.3.6.1] Do not enable interrupts in a function called from a function for which multiple interrupts are disabled. Otherwise, the program may run out of control when the multiple interrupts occur.

### 6. Clock Generation Circuit

- □ [6.1.2] After the power-on or the system reset, LSCLK0 (32.768 kHz) is initially chosen as SYSCLK.
- □ [6.1.3] Assign HCKO function to only one LSI pin.
- □ [6.3.1] The LCKO output operation is not guaranteed in the HALT-D mode.
- □ [6.3.1.2] Place the crystal resonator as close to the LSI as possible and make sure that signals causing noise and power supply wiring are not near the crystal and its wiring.
- $\Box$  [6.3.1.2] Note that oscillation may stop due to condensation.
- [6.3.1.2] When switching to the low speed crystal oscillation clock, ensure to use the interrupt referring to the Section 6.3.1.3 "Low-Speed Clock Control".
- [6.3.2.2] When the XT32K is used for LSCLK0, the high-speed clock may become an unintended frequency due to external factors such as noise, and the MCU may operates abnormally. Please evaluate enough the apparatus/system which implemented this product.
- [6.3.4] While the CPU is running with the low-speed clock, if running the peripheral circuits with the high-speed clock which can frequently generate interrupts, the operation may fail to function properly due to the CPU becoming incapable of processing interrupts in time. If interrupts frequently occur for reasons such as short interrupt cycles of peripheral circuits, take into account the operating frequency of the CPU so that it can process interrupts in time.

### 7. Low Speed Time Base Counter

□ [7.2.2] A time base counter interrupt may occur depending on the timing to write to the LTBR01. See the program example for initializing described in Section 7.3.1 "Operation of the Low-speed Time Base Counter".

- [7.2.2] Read the LTBR01 register twice to verify the data to prevent reading uncertain data while counting-up.
- □ [7.2.3] Stop counter LTBR0 (i.e. set 0 to TB0RUN bit), before TB0CK bit is configured.
- □ [7.2.5] A time base counter interrupt may occur depending on a write timing to the LTBINT. See the program example for initializing described in "7.3.1 Operation of the Low-speed Time Base Counter".
- [7.3.1] After writing to the LTBR01 register, the time by which the first low-speed time base counter interrupt request is generated is not guaranteed. If measuring the time using the low-speed time base counter interrupt, do so with reference to the interrupt generation interval.
- □ [7.3.2] The frequency adjustment accuracy does not guarantee the accuracy including the frequency variation of the low-speed oscillation (32.768 kHz) due to temperature variations.

#### 8. 16-bit Timer

- □ [8.2.2] Set TMHnD when the 16-bit timer n is stopped (THnSTATL bits of TMHSTAT register are "0").
- □ [8.2.2] When "0x0000" is written in TMHnD in the 16-bit timer mode, "0x0001" is set in TMHnD.
- □ [8.2.2] Set TMHnD so that the timer output frequency is 1MHz or less, when timer output is used.
- □ [8.2.3] Read the TMHnC register twice to verify the valid data to prevent reading uncertain data while counting-up, if a source of timer clock is as different as one of system clock.
- □ [8.2.4] Set TMHnMOD when the timer n is stopped (THnSTAT bits of TMHSTAT/TMHXSTAT register are "0"). If it is changed while it is operating, the operation is not guaranteed.
- □ [8.3.2] After the THnRUN bit is set to "1", the first interrupt has a time error equivalent to maximum of one clock of the timer clock because the counting operation starts in synchronization with the timer clock. The 2nd timer interrupt or later interrupts have constant cycles.
- □ [8.3.2] After the THnSTP bit is set to "1", a 16-bit timer n interrupt (TMnINT) may be generated depending on the stop timing because the counting operation stops in synchronization with the timer clock.

### 9. Functional Timer

- □ [9.1.3] Assign FTOn, FTOnN to only one LSI pin each.
- $\Box$  [9.2.2] When 0x0000 is written in this register, 0x0001 is set and the read value is also becomes 0x0001.
- □ [9.2.2] Set FTnP so that the functional timer output frequency is 3MHz or less, when its output is used.
- [9.2.3, 9.2.4] In timer mode, a data set in the FTnEA/FTnEB register must be less than that set in the FTnP register.
- □ [9.2.3] In PWM1/2 mode, a data set in the FTnEA register must be 0xFFFF or less than that set in the FTnP register.
- □ [9.2.4] In PWM1 mode, a data set in the FTnEB register must be 0xFFFF or less than that set in the FTnP register.
- □ [9.2.5] In the PWM2 mode, the data set in the FTnDT register must be less than that set in the FTnEA register.
- □ [9.2.5] In the PWM2 mode, the sum of setting data in the FTnDT register and the FTnEA register must be less than that set in the FTnP register.
- □ [9.2.6] Read FTnC register twice to verify the data to prevent reading uncertain data while counting-up according to need.
- $\Box$  [9.2.8] Set the FTnMOD register when the FTMn is stopped.
- [9.2.8] Initialize this peripheral with block reset before changing to another mode, if it is in the operation state once.
- □ [9.2.10] The input pulse width must have two timer clocks or longer if FTnSTSS=0.
- $\Box$  [9.2.10] The counter forcibly stops and does not run when the emergency stop trigger source is the same as the trigger event source with the FTnETG = 1 and FTnEMGEN = 1.
- □ [9.2.11] If a level setting is chosen for the condition of the counter start and condition is matched, the count operation continues (restart the count-up from 0) even if a stop condition is satisfied in the one-shot mode.
- □ [9.2.11] The trigger may occur immediately after setting the FTnTRG1 register in the trigger event enabled.
- [9.2.13] If the FTnINTS register is not zero, a request to interrupt controller is not given when a new interrupt occurs. Clear the FTnINTS register with the FTnINTC register before that time.

#### 10. Watchdog Timer

- [10.1.1] The watchdog timer is undetectable to all the abnormal operations. Even if the CPU loses control, the watchdog timer is undetectable to the abnormality in the operation state in which the WDT counter is cleared. It is recommended that the WDT counter is cleared at one place in the main loop of the program as a fail-safe.
- □ [10.2.2] In the WDT interrupt routine (when the interrupt level (ELEVEL) of the CPU program status word (PSW) is "2"), the WDT counter is unable to get cleared.
- $\Box$  [10.2.3] See the data-sheet for frequency accuracy of RC1K.
- $\Box$  [10.3.1] In the STOP/STOP-D mode, the WDT timer is stopped.
- □ [10.3.3] When using the window function enabled mode, always define a WDT interrupt function even though no WDT interrupt occurs.
- [10.3.3] In the watchdog timer (WDT) interrupt function, as the interrupt level (ELEVEL) of the CPU program status word (PSW) becomes "2", the WDT counter is unable to get cleared. Clear the WDT when the ELEVEL is "0" or "1". It is recommended that the WDT counter is cleared at one place in the main loop of the program as a fail-safe.

## 11. Synchronous Serial Port

- [11.1.4] Be sure to use the SIN0/SOUT0/SCLK0 ports with combination in the Fig.11-3, and assign each function to only one LSI pin.
- □ [11.2.5] Be sure to set the SIOnMOD register while communication is stopped (SnEN=0). If it is rewritten during communication, data may be transmitted or received incorrectly.
- □ [11.3.3] To prevent an overrun error after the first reception, read the SIOnBUF register before setting the SnEN bit to "1".
- □ [11.3.4] To ensure that data is successfully transmitted, it is recommended that data is written when SnEN is "0" or while the transfer of previous data is in progress (SnTXF=1) in the clock type1 slave mode.

#### 12. Synchronous Serial Port with FIFO

- □ [12.1.4] Be sure to use the SDIF0/SDOF0/SCKF0/SSNF0 ports with combination in the Fig.12-3, and assign each function to only one LSI pin.
- [12.2.7] Write "1" to SF0IRQ bit while there is any unprocessed interrupt source and processing all the interrupt sources before exiting the interrupt vector will cause re-entry to the interrupt vector with no interrupt source after exiting the interrupt vector. Ensure to write "1" before exiting the interrupt vector.

#### 13. I<sup>2</sup>C Bus

- $\Box$  [13.1.4] Use external pull-up resistors for SDA pin and SCL pin referring to the I<sup>2</sup>C bus specification. The internal pull-up resistors is unsatisfied the I<sup>2</sup>C bus specification. See the data sheet for each product for the value of internal pull-up resistors.
- [13.1.4, 13.2.2] If powering off this LSI in the slave mode, it disables communications of other devices on the I<sup>2</sup>C bus. Keep this LSI powered on when it works as a slave mode until the master device is powered off.
- □ [13.1.4, 13.2.2] Do not connect multiple master devices on the I2C bus when using the master function.
- □ [13.2.2] All SFRs are shared in master mode and slave mode. If switching master/slave mode, set "0" I2U0EN bit of I2UMOD register, then Change mode and do reconfiguration each SFRs.
- □ [13.3.4] Update it without a bit access instructions in the control register setting wait state.
- □ [13.3.4] When the I2U0ST/I2M0ST bit is "1", write other bits of I2U0CON/I2M0CON register in the control register setting wait state.
- [13.4.4] If system clock is extremely slower than the communication speed, the data transmission/reception can be failed.
- □ [13.4.4] Before releasing the communication wait state, change the system clock enough speed for the communication.
- [13.4.5] To be disable the wake-up from standby mode by matching the slave address, Stop the operation by resetting I2U0EN bit to "0" before entering STOP/STOP-D/HALT-D mode.
- $\Box$  [13.5.4] When the slave device uses the clock stretch function which holds the SCLU0 pin at "L" level, the time t<sub>CYC</sub> and time t<sub>LOW</sub> are extended.
- □ [13.6.2] If entering to the STOP/STOP-D mode while the slave mode is enabled, first make sure that communication is not in progress (from coincidence of address to reception of stop condition).
- □ [13.6.4] The master device should Wait for the SYSCLK to be supplied in order to transmit the start condition after wakeup from the STOP-D/HALT-D mode by slave address matching.
- □ [13.6.4] It is supported the Standard/Fast mode (to max. 400 kbps) in the STOP-D/HALT-D mode.

### 14.UART

- [14.2.1] When the DCKUAn of Block control register 2; BCKCON2, A reading value of relevant SFR is 0x00/0x0000.
   However values written to the SFR is kept. A reading value of relevant SFR is setting value after the DCKUAn bit is returned "0". See Chapter 4 "Power Management" as for block control register.
- □ [14.2.6] Do setting for used ports and the mode/baud rate before setting "1" to UnEN bit.
- □ [14.2.7] Be sure to set the UAn0MOD register while communication is stopped (Un0EN=0).
- □ [14.2.9, 14.2.10] Be sure to set the UAnBRT and UAnBRC register while communication is stopped (UnEN=0). Do not rewrite it during communication.
- [14.3.4] The transmission is start when setting "1" to UnEN bit of UAnCON with the UnFUL bit =1. Write "1" to the UnFULC bit in the UAnSTAC register to reset the UnFUL bit, and then set "1" to the UnEN to allow transmission/reception, if the transmission data is not ready and the reception is permitted first.
- [14.3.5.3] When designing the system, consider the difference of the baud rate between the transmission side and reception side, a delay of the start bit detection, signal degradation and noise influence, then adjust the baud rate and reception timing to ensure sufficient receiving margin.

### 17. GPIO

- □ [17.2.4] The P00 pin is initially configured as the input with pull-up resistor. If input "L" level at an initial setting, the input current flows.
- □ [17.2.5 ~ 17.2.8] Be sure to set the PnMODm (m=0 to 7) registers before setting EICON0, EIMOD0 and IE1 registers. If setting the PnMOD01 register when the interrupt is enabled, unexpected interrupts may happen.
- $\Box$  [17.2.5 ~ 17.2.8] It is recommended to enable the output after setting a peripheral and shared function to prevent the unexpected output.

- $\Box$  [17.2.5 ~ 17.2.8] Don't set un-assigned shared functions on the PnmMD3-0 bits.
- [17.2.11] PI0 and PI1 are unavailable to use as input ports when using the crystal resonator for the oscillation clock. Also, PI1 is unavailable to use as an input port when using the XT1 for the external clock input. See Chapter 6 "Clock Generation Circuit" for more details on how to use the crystal oscillation or external clock input.
- □ [17.3.8] Notes for using the P00/TEST0 pin

#### 18. External Interrupt Function

- [18.2.3] If chosen high-speed clock as sampling clock source, it works without sampling when the high-speed clock does not supply; it include stop by entry to standby mode. Set to LSCLK0 as sampling clock if needed.
- $\Box$  [18.2.3] In the STOP/STOP-D mode, it works without sampling.

### 19. CRC Calculator

- □ [19.2.2 ~ 19.2.5] Automatic CRC calculation is four-byte length. Generate an expected value by four bytes. Writing to the bits 1 and bit0 are ignored; they are fixed to "1" internally during the calculation.
- [19.2.3, 19.2.5] If an address set to CRCEAD and CRCESEG is smaller than one of CRCSAD and CRCSSEG, the calculation does not execute. Do not specify segment or address out of program code area. See section 2.5 "Program Memory Space" for details of the program code area.
- [19.3.2] To perform CRC calculation in the manual mode when automatic CRC calculation is not completed, save the value in the CRCRES register before calculation. Once the CRC calculation in the manual mode is completed, move the saved value back to the CRCRES register and set the CRCAEN bit to "1". If entering the HALT/HALT-H mode, then the automatic CRC calculation can be restarted.
- [19.3.2] The final addresses at the end of the previous operation are stored in the CRCSAD and CRCSSEG registers. If values in the CRCSAD and CRCSSEG registers are overwritten with the CRCAEN bit set to "0", the calculation works incorrectly.

### 22. Voltage Level Supervisor

- □ [22.2.2] Even if resets other than the POR and RESET\_N pin reset occurred, the VLS0 remains running.
- [22.2.3] There is a limitation in each mode for entering the STOP/STOP-D mode while the VLS0 is running.
- [22.2.5] In the STOP/STOP-D mode, the VLS works without sampling regardless the setting in VLS0SM1 and VLS0SM0 bit.
- [22.3.1.1, 22.3.1.2] Entering the STOP/STOP-D mode is not allowed during the VLS stabilization time. If entering the STOP/STOP-D mode after the supervisor mode is enabled, make sure that the VLS0RF bit is set to "1", and then enter the STOP/STOP-D mode.
- [22.3.1.1] The initial value of the VLS detection voltage is 1.85V, so the MCU becomes in reset mode when the VDD is 1.85V or lower and VLS0 is specified as supervisor mode with the reset function. Therefore, set the detection voltage before enabling the VLS0 operation.
- □ [22.3.1.1] If you want to use the VLS0 reset function like a reset IC, start the VLS when the CPU initially runs at the low-speed clock after the power up.
- [22.3.1.2] When VLS0 is stopped (VLS0EN bit="0") while the VDD is lower than the specified threshold voltage (VLS0F bit="1"), the VLS0 interrupt is generated.
- □ [22.3.2.1, 22.3.2.2] Entering the STOP/STOP-D mode is not allowed while the single mode operation is in progress. Enter the STOP/STOP-D mode after the single mode operation is completed (VLS0EN bit="0").
- $\Box$  [22.3.2.2] If V<sub>DD</sub> is higher than the specified threshold voltage, the VLS0 interrupt is not generated.

#### 23. Successive Approximation Type A/D Converter

- [23.1.3] When using the SA-ADC, set PnmIE bit and PnmOE bit of port n mode register 01/23/45/67 (n: port number 1, 2, 3, 7, m: bit number 0 to 7) to "0" as "Disable input" and "Disable output", otherwise a shoot-through current may flow.
- [23.1.3] While the A/D converter is operating, an influence of the noise is reducible by preventing the switching of neighboring pins or A/D converting in the HALT mode.
- □ [23.2.3] Start the A/D conversion with one or more channels chosen by the SA-ADC enable registers (SADEN0 and SADEN1). If no channel is chosen, the operation does not start.
- □ [23.2.3] Enter STOP/STOP-D mode after checking SARUN bit is "0". It does not enter the STOP/STOP-D mode when the SARUN bit is "1".
- □ [23.2.3] When SACK2 to 0 bits are set to 0x7, it takes max. 3 clocks of the low-speed clock (LSCLK0) to start or stop the A/D conversion after setting or resetting the SARUN bit.
- [23.2.8, 23.2.9] Do not start the A/D conversion when the all bits of SACHn (n=00 to 17) are "0". In that case SARUN bit of SADCON register does not get to "1".
- □ [23.2.13] When using the A/D conversion result upper/lower limit detection function (SALEN bit =1), the interrupt can be cleared by clearing the corresponding bit of SAULS13 to SAULS00 or by resetting the LSI.
- [23.2.13] When performing the A/D conversion only one time (SALP bit =0), confirm the bit of SAULS13 to SAULS00 is "0" before setting SARUN bit to "1".

- □ [23.2.13] When performing the consecutive scan A/D conversion (SALP bit =1), confirm the bit of SAULS13 to SAULS00 is "0", before the next A/D conversion ends.
- $\Box$  [23.4] Notes on SA-ADC

#### 26. Flash Memory

- □ [26.2.2] Note that programming for the program memory space is performed by the unit of 4 bytes. Because of this, the setting values in the FA1 bit and FA0 bit are ignored.
- □ [26.2.4, 26.2.5] Specify a segment address to the FLASHSEG at first, because it determines whether the programming is for program memory space or data flash memory.
- [26.2.4, 26.2.5] During programming data-flash, a CPU can execute instruction by the back ground operation function; BGO. Confirm FDPRSTA bit of FLASHSTA register for complition of programming.
- □ [26.2.4, 26.2.5] Erase data in the addresses in advance. Programmed data without erase is unguaranteed.
- □ [26.2.4, 26.2.5] Do not read or program unused areas to prevent the CPU works incorrectly.
- □ [26.2.7, 26.2.8] A flash memory data in processing to program is not guaranteed, if this register is written any data when FLASHSTA is not 0x0.
- □ [26.2.9] Perform the erasing or programming after checking the FDERSTA bit or FDPRSTA bit are "0". Do not perform the erasing or programming when either the FDERSTA bit or the FDPRSTA bit is "1".
- □ [26.3.1] Notes on Debugging Self-programming Code
- [26.3.2] Only erase areas irrelevant to program processing. If erasing the area where program processing is in progress, the LSI works incorrectly.
- □ [26.3.2] During block/sector erasing, the CPU stops the operation for maximum 50 ms whereas peripheral circuits continue operation. Therefore, clear the WDT counter accordingly.
- □ [26.3.2, 26.3.3] For block/sector erasing, place two NOP instructions following the instruction used to set FERS/FSERS bits of the FLASHCON register to "1".
- [26.3.2] Only erase areas irrelevant to program processing. If erasing the area where program processing is in progress, the LSI works incorrectly.
- [26.3.2] During the programming, the CPU stops the operation for maximum 80 μs whereas peripheral circuits continue operation. Therefore, clear the WDT counter accordingly.
- □ [26.3.2] For data programming setting, place two NOP instructions following the instruction used to set the programming data in the FLASHD1 register.
- □ [26.3.3] The CPU continues program processing even while data flash erasing is in progress. An entering to the STOP/STOP-D/HALT-D/HALT-H mode is not available during the erasing. In addition, set the FSELF bit of the FLASHSLF register to "0" after the erasing is completed.
- □ [26.3.3] The data flash area is unreadable during erasing.
- [26.3.3] The CPU continues program processing even while data flash programming is in progress. An entering to the STOP/STOP-D/HALT-D/HALT-H mode is not available during the programming. In addition, set the FSELF bit of the FLASHSLF register to "0" (erase/program disabled) after the programming ended.
- □ [26.3.3] For data programming setting, place two NOP instructions following the instruction used to set the programming data in the FLASHD0L register.
- □ [26.3.4] Notes on use of self-programming
- □ [26.4.3] Accessing to the program code area is performed in units of four bytes. Set four byte boundaries (0H/4H/8H/CH) for lower four bits of the address. Accessing to the data flash area is performed in units of one byte.
- □ [26.4.3] All commands except some confirmation commands (\*1) are reflected when a next command is sent.
- □ [26.4.5.1 ~ 26.4.5.4, 26.4.6.2 ~ 26.4.6.4] Transmit command to avoid a timeout. See Section "26.4.3.1 Command Timing".
- [26.4.5.2~26.4.5.4, 26.4.6.2~26.4.6.4] Transmit any command after 'initial setting command (7)'/'stack clear command 3' if other command will not be transmit.

### 28. On-Chip Debug Function

- □ [28.3] Make TEST1\_N pin able to be connected to VDD with a jumper or something when not using the on-chip debug function.
- □ [28.3] Validate the ROM code on user production board without the On-chip emulator.
- [28.3] Disconnect On-chip emulator when measuring the current consumption of the target system. If On-chip emulator remains connected, the current consumption increases as the on-chip debug circuit inside the LSI works for the communication.
- [28.3] When using the 3.3 VOUT power supply of On-chip emulator, do not apply power of the target system to the VDD pin of LSI. If both power supplies are connected, On-chip emulator may be damaged, or an electric shock or fire may occur.
- □ [28.3] LSI used to debug a program is not covered by the product warranty. Do not use the LSI for mass-production.
- □ [28.3] A reset due to unused ROM area access does not occur in the on-chip debug mode regardless of code option settings.
- □ [28.3] A RAM parity error reset does not occur in the on-chip debug mode and the break operation occurs instead.
- □ [28.3] If the contents of the data memory are displayed in the debugger in a state where a RAM parity error may occur (including when the RAM is not initialized), a RAM parity error may occur even if the RAM area is not displayed.
- $\square$  [28.3] The all interrupts and watchdog timer operation always stop while the debugger is in the break state.

- □ [28.3] On-chip emulator might be affected by the external environments such as the host PC, USB cable, On-chip emulator interface cable and the target system. Please confirm proper environments before using on-chip emulator.
- □ [28.3] If adding an external capacitor to the TEST1\_N pin, prepare a jumper function on the board so that the capacitor gets dis-connectable when using the debugger or Flash multi-writer.

### 29. Safety Function

- [29.2.8] If the MCISTATL register is not zero, a request to interrupt controller is not given when a new interrupt occurs. Clear the MCISTATL register with the MCINTCL register before that time.
- □ [29.3.2] CSR[3] is unused on the ML62Q2500 group. The data of CSR "0x8 to 0xF" are handled as "0x0 to 0x7".
- □ [29.3.3] For "Overflow value setting" in Figure 29-5, set the value so that the overflow period of the 16-bit timer n is to be shorter than that of the functional timer n. If the functional timer n overflows, it disables the accurate check.

#### 30. Code Option

- [30.2.1] There are available to read the code option values from SFRs, if INITE flag bit of Reset Status Register (RSTAT) is "0".
- □ [30.3] For the code option data definition, always use the dw directive instruction to configure the data in the unit of word.

#### 31. Auxiliary Function

#### A. SFR List

□ Access "Reserved" register is not guaranteed. Please do not access them.

#### B. Package Dimensions

- The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).
- □ The die pad is exposed on the bottom of WQFN package. Make the die pad electrically open when soldering onto the PCB.

#### C. Instruction Execution Cycle

#### D. Application Circuit Example

□ Place the capacitor for VDDL pin as close to the LSI power pins as possible.

# **Revision History**

# **REVISION HISTORY**

|                |            | Pa             | ge             |                                                                                                                        |
|----------------|------------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------|
| Document No.   | Date       | Previous       | Current        | Description                                                                                                            |
|                |            | Edition        | Edition        |                                                                                                                        |
| FEUL62Q2500-01 | 2022.10.21 | _              | _              | 1 <sup>st</sup> edition.                                                                                               |
| FEUL62Q2500-02 | 2022.11.10 | 1-3            | 1-3            | [1.1] Updated description in the power management section, and corrected description about HSCLK and clock gear        |
|                |            | 9-8, 9-9, 9-12 | 9-8, 9-9, 9-12 | [9.2.3][9.2.4][9.2.7] Corrected description of clearing<br>FTnFLGA/FTnFLGB                                             |
|                |            | 9-14           | 9-14           | [9.2.8] Added note                                                                                                     |
|                |            | -              | 9-38           | [9.3.4.2] Added section; clearing FTnFLGA/FTnFLGB bit                                                                  |
|                |            | E-*            | E-*            | As each chapter is updated                                                                                             |
| FEUL62Q2500-03 | 2023.04.17 | 6-28           | 6-28           | [6.3.2.2] Corrected description in a flow.                                                                             |
|                |            | 9-11           | 9-11           | [9.2.6] Updated note as for the counter reading                                                                        |
|                |            | 9-20           | 9-20           | [9.2.13] Added note as for clearing interrupt status                                                                   |
|                |            | 23-8           | 23-8           | [23.2.2] Added a condition of 4MHz in the Fig 23-3                                                                     |
|                |            | 23-31          | 23-31          | [23.4.1] Added reference value of $R_2$ at $V_{\text{DD}}{\geq}2.7V$ and corrected $V_{\text{DD}}$ to $V_{\text{REF}}$ |
|                |            | 28-1           | 28-1           | [28.1.1] Deleted trace function                                                                                        |
|                |            | 28-3           | 28-3           | [28.3] Added note as for a RAM parity error                                                                            |
|                |            | 29-9           | 29-9           | [29.2.8] Added note as for clearing interrupt status                                                                   |
|                |            | E-*            | E-*            | As each chapter is updated                                                                                             |
| FEUL62Q2500-04 | 2024.03.26 | 1              | 1              | Updated note                                                                                                           |
|                |            | 1-1            | 1-1            | [1.1] Added use application                                                                                            |
|                |            | 1-4, 1-5       | 1-4, 1-5       | [1.1][1.1.1] Updated description for product name                                                                      |
|                |            | 1-5, 1-6       | 1-5, 1-6       | [1.1.1][1.1.2] Separated section                                                                                       |
|                |            | 4-21, 4-23     | 4-21, 4-23     | [4.3.2.2][4.3.2.6] Corrected description as for HALT-H                                                                 |
|                |            | 4-27           | 4-27           | [4.3.4] Corrected Table 4-8                                                                                            |
|                |            | 6-3            | 6-3            | [6.1.2] Corrected Table 6-4                                                                                            |
|                |            | 9-6            | 9-6            | [9.2.1] Corrected access type of the FT1INTCL/H                                                                        |
|                |            | 9-41           | 9-41           | [9.3.6.1] Corrected setting flow of the event trigger.                                                                 |
|                |            | 10-16          | 10-16          | [10.3.3] Corrected note.                                                                                               |
|                |            | 11-17, 11-18   | 11-17, 11-18   | [11.3.3] Corrected Figure11-6,11-7 and added note.                                                                     |
|                |            | 26-5           | 26-5           | [26.2.3] Corrected Table 26-1                                                                                          |
|                |            | 28-3           | 28-3           | [28.3] Correct the note.                                                                                               |
|                |            | E-6            | E-6            | Correct the note.                                                                                                      |