

Dear customer

ROHM Co., Ltd. ("ROHM"), on the 1st day of April, 2024, has absorbed into merger with 100%-owned subsidiary of LAPIS Technology Co., Ltd.

Therefore, all references to "LAPIS Technology Co., Ltd.", "LAPIS Technology" and/or "LAPIS" in this document shall be replaced with "ROHM Co., Ltd." Furthermore, there are no changes to the documents relating to our products other than the company name, the company trademark, logo, etc.

Thank you for your understanding.

ROHM Co., Ltd. April 1, 2024

Overvoltage detection threshold 2 nd overvoltage detection threshold Undervoltage detection threshold	4.225 V, 4.325V, 2.0 V,	Detection accuracy: $\pm 25 \text{ mV}$ (0 to 60°C) Detection accuracy: $\pm 35 \text{ mV}$ (0 to 60°C) Detection accuracy: $\pm 50 \text{ mV}$ (0 to 60°C)
• Overcurrent detection function Discharge overcurrent detection threshold Charge overcurrent detection threshold Short circuit detection threshold	70 mV, -30 mV, 300 mV,	Detection accuracy: $\pm 15 \text{ mV}$ (0 to 60°C) Detection accuracy: $\pm 15 \text{ mV}$ (0 to 60°C) Detection accuracy: $\pm 20 \text{ mV}$ (0 to 60°C)

- Temperature detection function : With external NTC (10 k Ω , B=3435) and 4.7 k Ω resistor Discharge inhibition temperature: detection 70 °C or higher, release 65 °C or lower Charge inhibition temperature : detection -5 °C or lower/50°C or higher, release 0 °C or higher/45°C or lower
- Detection delay timer built-in Overvoltage/undervoltage detection delay time : 2sec 2nd overvoltage detection delay time : 8sec Open-wire detection delay time : 3.6sec TEST MODE reduces each detection delay time as 0.1sec by controlling the TEST pin input.
- Three type of charge/discharge enable signal output/ Selected from CMOS / Nch open drain / Pch open drain (high voltage tolerant output)
- Detection voltages and detection delay times are modified by product code.

•	Low current consumption Normal operation state Power-down state	(-40 to 85°C) : 4.5 μA (typ.), : 0.1 μA (typ.),	10 μA (max) 1.0 μA (max)
•	Supply voltage	: +5 V to +25 V	
•	Operating temperature	: -40°C to +85°C	
•	Package	: 20-pin TSSOP	

Application

• Power tools and Garden tools Cordless Cleaner

Part number

ML5243-xxxTD (xxx: code number) The detection voltage, etc., depends on the code number. The parameters for the 001 code are listed in this data sheet. Please refer to the code list for codes other than 001.

Pin Configuration (top view)

	Description	Л					
Pin No.	Pin name	I/O		Description			
1	VDD	—	Power supply input pin. Connect an external CR filter for noise rejection.				
2	V5	Ι	Battery cell 5 high voltage in	out pin.			
3	V4		Battery cell 5 low voltage inp	ut and Battery cell 4 high	n voltage input pin.		
4	V3	I	Battery cell 4 low voltage inp	ut and Battery cell 3 high	n voltage input pin.		
5	V2	Ι	Battery cell 3 low voltage inp	ut and Battery cell 2 high	n voltage input pin.		
6	V1	Ι	Battery cell 2 low voltage inp	ut and Battery cell 1 high	n voltage input pin.		
7	GND	Ι	Ground pin.				
8	ISENSE	I	Current sense resistor input to the detecting current betw used.	pin. Connect a resistor o een this pin and the GNI	f the resistance value correspo D pin. Should be tied to GND if	nding not	
9	N.C.		No connected. Connect to G	ND or Leave it electrical	ly unconnected.		
10	DCHG	0	Discharge enable pin. Output type is selected from asserted level is selected fro	CMOS / NMOS open dr m "L" level/"H" level.	ain / PMOS open drain. And its	\$	
11	CHG	0	Charge enable pin. Output type is selected from asserted level is selected fro	Charge enable pin. Output type is selected from CMOS / NMOS open drain / PMOS open drain. And its asserted level is selected from "I " level/"H" level			
12	VRSNS	Ю	Load/charger connection det input level.	Load/charger connection detecting input pin. Load or charger presence is decided by this input level.			
13	PF	0	2 nd overvoltage alarm output PMOS open drain. And its as	2 nd overvoltage alarm output. Output type is selected from CMOS / NMOS open drain / PMOS open drain. And its asserted level is selected from "L" level/"H" level.			
14	GND		Ground pin.				
15	TEST	I	Detection delay time reduced Every detection delay time is Internal $10k\Omega$ pull-down resis	d test input pin. reduced by setting the v stor is connected.	voltage of this pin as VREG pin	level.	
16	TSNS	Ι	Input pin for high/low temperature charge/discharge inhibition detection. Connect a thermistor between this pin and GND. Should be tied to the VNTC pin through $10k\Omega$ resistor if not used				
17	VNTC	0	Thermistor power supply. Should be connected to TSNS through a 4.7 k Ω resistor. If not used, this 4.7 k Ω resistor should be connected.				
			Pins to specify battery cell nu	umber. Either the VREG	or the GND level should be ap	plied.	
18,19	CS0,CS1	Ю	CS1	CS0	Number of connected Battery cells		
			GND	GND	5 cell		
					4 cell		
			Ruilt-in 3.3 V regulator outou	t nin Should be tied to G	SND through a 1 uE or larger		
20	VREG	0	capacitor. Do not use this pir	as power supply for an	external circuit.		

Pin Description

		5	GND=0V,	Ta=25°C
Item	Symbol	Condition	Rating	Unit
Supply voltage	Vdd	Applied to VDD pin	-0.3 to +50	V
	VIN1	Applied to V1 to V5 pins	-0.3 to V _{DD} +0.3	V
	V _{IN2}	Applied to VRSNS pin	V _{DD} -50 to V _{DD} +0.3	V
Input voltage	VIN3	Applied to CS0, CS1, ISENSE, TSNS pins	-0.3 to V _{REG} +0.3	V
	V _{IN5}	Applied to TEST pin	-0.3 to +4.8	V
	Vout1	Applied to DCHG, CHG, PF pins, if output type is CMOS. Applied to PF pin if output type is PMOS open drain	-0.3 to V _{DD} +0.3	V
Output voltage	V _{OUT2}	Applied to DCHG, CHG, PF pins, if output type is NMOS open drain.	-0.3 to +50	
	V _{OUT3}	Applied to DCHG, CHG pins, if output type is PMOS open drain.	V _{DD} -50 to V _{DD} +0.3	V
	Vout4	Applied to VREG pin	-0.3 to +4.8	V
	Vout5	Applied to VNTC pin.	-0.3 to V _{REG} +0.3	V
Power dissipation	PD	—	1.0	W
Short-circuit output current	los	Applied to DCHG, CHG, PF, VNTC pins	10	mA
Storage temperature	Тѕтс	—	-55 to +150	°C

■ Absolute Maximum Ratings

Recommended Operating Conditions

				(GND= 0 V)
Item	Symbol	Condition	Range	Unit
Supply voltage	V _{DD}	Applied to VDD pin	5 to 25	V
Operational temperature	T _{OP}		-40 to +85	°C

Electrical Characteristics

DC Characteristics

	V _{DD} =5 V to 25 V, GND=0 V, Ta=-40 to +85°				+85°C	
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Digital "H" input voltage (Note 1)	VIH	—	V _{REG} ×0.8	_	Vreg	V
Digital "L" input voltage (Note 1)	VIL	_	0	_	V _{REG} ×0.2	V
Digital "H" input current (Note 2)	Іін	Vih = Vreg	_	_	2	μA
Digital "L" input current (Note 1)	IIL	$V_{IL} = GND$	-2		_	μA
Digital "H" input current (Note 3)	Іінт	VIH = 3V	150	300	600	μA
Cell monitoring pin V5 to V1	IINVC1	normal operation mode,	-0.5	0.1	0.5	μA
Input current	IINVC2	power-down mode	-0.5	0.0	0.5	μA
"L" output voltage (Note 4)	Vol	I _{OL} = 100 μA	0	_	0.2	V
"H" output voltage (Note 4)	Vон	Iон=-100 µА	V _{DD} -0.2		Vdd	V
Pch open-drain output leakage current (Note 4)	I _{LKP}	V_{O} =0 V to V_{DD}	2		2	μA
Nch open-drain output leakage current (Note 4)	I _{LKN}	$Vo = 0 V to V_{DD}$	2	—	2	μA
VREG pin output voltage	VREG	With no load	3.0	3.3	3.7	V
VNTC pin output voltage	V _{NTC}	With 14.7 kΩ resistor connection	2.2	2.4	2.6	V
VRSNS pin pull-up resistor	Rvru	Charge overcurrent detected, Power-down mode	0.2	0.5	1.5	MΩ
VRSNS pin pull-down resistor	R _{VRD}	Discharge overcurrent detected, Short circuit detected	1	3	10	MΩ
VRSNS pin input leakage current	I _{LKVR}	Normal mode	-2	_	2	μA
TSNS pin input current	lints	V _{NSTS} =0 V to V _{REG}	-1	—	1	μA
ISENSE pin input current	linis	VISENSE= -0.1 V to 1 V	—1	—	1	μA

Note 1: Applied to CS0, CS1, and TEST pins. Note 2: Applied to CS0, CS1 pins.

Note 3: Applied to TEST pin.

Note 4: Applied to DCHG, CHG, PF pins.

Supply Current Characteristics

			V _{DD} = 5 1	to 25 V, GND=	=0 V, Ta=-40 t	o +85°C
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Current consumption in normal operation mode	I _{DD}	No output load (Note1)	_	4.5	10	μA
Current consumption in power-down mode	IDDS	No output load	—	0.1	1.0	μA

(Note1) 4.7k Ω resistor is connected between VNTC and TSNS pins, and 10k Ω resistor is connected between TSNS and GND pins.

	-		V _{DD} =	18 V, GND	<u>=0 V, Ta=0</u>	to 60°C
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Overvoltage detection threshold	Vov		4.200	4.225	4.250	V
Overvoltage release threshold	Vovr		3.975	4.025	4.075	V
2 nd Overvoltage detection threshold	Vsov	_	4.290	4.325	4.360	V
2 nd Overvoltage release threshold	V _{SOVR}	_	4.225	4.275	4.325	V
Undervoltage detection threshold	Vuv	_	1.95	2.00	2.05	V
Undervoltage release threshold	Vuvr	_	2.95	3.00	3.05	V
Open-wire detection/release threshold	Vow		0.5	0.6	0.7	V
Discharge overcurrent detection threshold	Vocu		55	70	85	mV
Charge overcurrent detection threshold	V _{oco}		-45	-30	-15	mV
Short circuit detection threshold	VSHRT	_	280	300	320	mV
High temperature charge inhibition detection TSNS pin threshold	Vснd	Ι	1.07	1.12	1.17	V
High temperature charge inhibition Release TSNS pin threshold	V _{CHR}	_	1.15	1.22	1.29	V
High temperature discharge inhibition detection TSNS pin threshold	Vdhd	-	0.72	0.77	0.82	V
High temperature discharge inhibition release TSNS pin threshold	V _{DHR}	—	0.80	0.85	0.90	V
Low temperature charge inhibition detection TSNS pin threshold	Vccd	—	2.08	2.13	2.18	V
Low temperature charge inhibition release TSNS pin threshold	Vccr	Ι	1.99	2.06	2.13	V
Charger connection detection VRSNS pin threshold	V _{PC}	Power-up from power-down mode	V _{DD} x 0.35	$V_{DD} x 0.5$	V _{DD} x 0.65	V
Charger removal detection	Vplu	Charge overcurrent detection	0	0.2	0.4	V
VRSNS pin threshold	Vpld	Power-down mode	V _{DD} x 0.65	V _{DD} x 0.75	V _{DD} x 0.85	V
Load removal detection VRSNS pin threshold	V _{RL}	Discharge overcurrent detection, short circuit detection	1.0	1.2	1.4	V
VREG drop detection threshold	Vureg	—	2.1	2.4	2.7	V
VREG drop release threshold	V _{RREG}		2.3	2.6	2.9	V

• Code 001: Detection/Release Threshold Characteristics (Ta = 0 to 60 °C)

	,	,	VD	D=18 Ù, GNE	D=0 V, Ta=0	to 60°C
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Cell voltage monitor cycle	t DET	—	300	400	500	ms
Overvoltage detection delay	tov	—	5×t _{DET}		6×t _{DET}	ms
2 nd Overvoltage detection delay	t _{SOV}	_	$20 \times t_{DET}$	_	21 × t _{DET}	ms
Undervoltage detection delay	tu∨	—	5×t _{DET}		6×t _{DET}	ms
Open-wire detection/release delay	tow	_	9×t _{DET}		10 × t _{DET}	ms
Discharge overcurrent detection delay	tocu	—	250	500	750	ms
Charge overcurrent detection delay	toco	_	50	100	150	ms
Short circuit detection delay	t _{SHRT}	—	0.2	0.5	1.0	ms
Temperature monitor cycle	tрт	—	300	400	500	ms
Temperature measurement time	tтм	—	1.9	3.9	5.5	ms
Temperature detection/release delay	t tdr	—	1 × t _{PT}	_	2×t _{PT}	ms
Load removal detection delay	torl	Discharge overcurrent state, short circuit state	50	100	150	ms
Charger removal detection delay	tосна	Charge overcurrent state	50	100	150	ms
Cell voltage monitor cycle for test mode	t _{DETT}	TEST pin = "H", Ta=25°C	75	100	125	ms
Overvoltage detection delay for test mode	tovт	TEST pin = "H", Ta=25°C	0	_	1 × t _{DETT}	ms
2 nd Overvoltage detection delay for test mode	tsovт	T TEST pin = "H", Ta=25°C	0		1 × t _{DETT}	ms
Undervoltage detection delay for test mode	t _{UVT}	TEST pin = "H", Ta=25°C	0		1 × t _{DETT}	ms
Open-wire detection/release delay for test mode	towт	TEST pin = "H", Ta=25°C	0		1 × t _{dett}	ms
Temperature monitor cycle for test mode	t _{PTT}	TEST pin = "H", Ta=25°C	75	100	125	ms
Temperature detection/release delay for test mode	t tdrt	TEST pin = "H", Ta=25°C	0		1 × t _{PTT}	ms

• Code001: Detection Delay and Monitor Cycle Characteristics (Ta = 0 to 60 °C)

- Timing Diagrams
 - Overvoltage Detection and Recovery

• 2nd Overvoltage Detection and Recovery

• Undervoltage Detection and Recovery

Power-down after Undervoltage detection and Power-up

(Note) DCHG and CHG pins are CMOS output mode and "H" active

(Note) DCHG and CHG pin are CMOS output mode and "H" active. The status is assumed to be undervoltge state.

10/28

• Discharge Over-current Detection and Recovery from it with Load Removal

(Note) DCHG and CHG pins are CMOS output mode and "H" active

• Charge Over-current Detection and Recovery from it with Charger Removal

(Note) DCHG and CHG pins are CMOS output mode and "H" active

• Short Circuit detection and Recovery from it with Load Removal

• High temperature Charge inhinition detection and Recovery

(Note) DCHG and CHG pins are CMOS output mode and "H" active

⁽Note) DCHG and CHG pins are CMOS output mode and "H" active

• Low Temperature Charge Inhibition Detection and Recovery

(Note) DCHG and CHG pins are CMOS output mode and "H" active

High Temperature Discharge Inhibition and Recovery

(Note) DCHG and CHG pins are CMOS output mode and "H" active

Functional Description

• States of ML5243

The ML5243 has the following twelve states which depend on individual cell voltages and the input levels of the ISENSE and TSNS pins.

- 1. Initial state
- 2. Normal state
- 3. Overvoltage state
- 4. 2nd Overvoltage state
- 5. Undervoltage state (including power-down mode)
- 6. Open-wire state
- 7. Discharge overcurrent state
- 8. Charge overcurrent state
- 9. Short circuit state
- 10. High temperature charge inhibition state
- 11. Low temperature charge inhibition state
- 12. High temperature discharge inhibition state

Each state is described below.

1. Initial State

The initial state refers to the period while the battery cells are being connected to the ML5243 and connection of all the battery cells specified by the CS0 and CS1 pins is completed, before transitioning to the normal state.

In the initial state, when the VREG pin voltage is below the VREG drop detection threshold V_{UREG}, the DCHG pin output is discharge inhibited state and the CHG pin output is charge permitted state.

When the VREG pin level reaches or exceeds the VREG drop release threshold V_{RREG} , individual cell voltage monitoring takes place. If all the battery cells specified by the CS0 and CS1 pins reach or exceed the undervoltage release threshold V_{UVR} , the system transitions to the normal state. Overvoltage, overcurrent and temperature detection is also performed in parallel.

2. Normal State

The normal state refers to the period where all the battery cell voltages do not reach or exceed the overvoltage/undervoltage detection threshold, the ISENSE pin voltage is below the overcurrent detection threshold, and the TSNS pin voltage is below the high temperature detection threshold or above the low temperature detection threshold. In the normal state, both the DCHG and CHG pin outputs are set as both charge and discharge is permitted.

Individual cell voltages are monitored every 0.4 second for performing overvoltage/undervoltage detection, while the pack temperature is also monitored using an external thermistor every 0.4 second. The ISENSE pin voltage is always monitored to detect overcurrent in parallel.

3. Overvoltage State

When any one or more battery cell voltages reach or exceed the overvoltage detection threshold V_{OV} for longer than the overvoltage detection delay time t_{OV} , the system enters the overvoltage state. If the ML5243 detects that voltage of all cell is below the overvoltage detection threshold V_{OV} for consecutive two times, detection delay time counting is cleared.

In the overvoltage state, the CHG pin output is set to charge disabled, while the DCHG pin output maintains the value in the previous state.

Battery cell voltages decrease gradually by self-discharge or by a connected light load. When all of them reach or decrease below the overvoltage detection release threshold V_{OVR} , the system recovers from the overvoltage state.

4. 2nd overvoltage state

When more than one battery cell voltage reaches or exceeds the 2^{nd} overvoltage detection threshold V_{SOV} , and when it past longer than the 2^{nd} overvoltage detection delay time t_{SOV} since the ML5243 has detected it, the system enters the 2^{nd} overvoltage state. If the ML5243 detects that voltage of all cell is below the 2^{nd} overvoltage detection threshold V_{SOV} for consecutive two times, detection delay time counting is cleared.

In the 2nd overvoltage state, the PF pin output is set to 2nd overcharge detected state, while the DCHG pin output maintains the value in the previous state.

Battery cell voltages decrease gradually by self-discharge or a connected light load. When all of them reach or decrease below the 2^{nd} overvoltage detection release threshold V_{SOVR} , the system recovers from the 2^{nd} overvoltage state.

5. Undervoltage State

When more than one battery cell voltage reaches or decreases below the undervoltage detection threshold V_{UV} , and when it past longer than the undervoltage detection delay time t_{UV} since the ML5243 has detected it, the system enters the undervoltage state. If the ML5243 detects that voltage of all cell is above the undervoltage detection threshold V_{UV} for consecutive two times, detection delay time counting is cleared.

In the undervoltage state, the DCHG pin output is set to discharge disabled, while the CHG pin output maintains the value in the previous state.

In the undervoltage state, a 500 k Ω pull-up resistor is connected between the VRSNS pin and VDD. When the VRSNS pin voltage increases and reaches or exceeds the charger removal detection VRSNS threshold V_{PLD}, the system enters power-down mode to reduce current consumption.

In the undervoltage state, if the 2nd overvoltage is already detected, the ML5243 status doesn't be changed to power-down and VRSNS pin pull-up resistor is not connected.

If the VRSNS pin voltage reaches or decreases below the charger detection voltage V_{PC} , the system wakes up all the circuits to resume monitoring individual battery cell voltages.

If the system was in the overvoltage, undervoltage, high temperature or any overcurrent state before entering power-down mode, these error flags are cleared during power-down. After wake-up, if these errors are detected again for longer than the specified detection delay time, the system reenters the corresponding error state.

Battery cell voltages increase gradually while charging, and if all cell voltages reach or exceed the undervoltage detection release threshold V_{UVR} , the system recovers from the undervoltage state.

6. Open-wire state

When more than one battery cell voltage reaches or decreases below the open-wire detection threshold V_{O_V} , and when it past longer than the open-wire detection delay time t_{O_V} since the ML5243 has detected it, the system enters the open-wire state. If the ML5243 detects that voltage of all cell exceeds the open-wire detection threshold V_{OW} for once, the detection delay time counting is cleared. In the open-wire state, CHG pin output is set to charge disabled. Because open-wire detection threshold V_{OW} is lower than undervoltage detection threshold V_{UV} , and undervoltage detection delay time t_{UV} is shorter than open-wire detection delay time t_{OW} , in the open-wire state the status is also in the undervoltage state, and DCHG pin output is set to discharge disabled.

When every cell voltage reaches or exceeds the open-wire detection threshold V_{OW} , and when it past longer than the open-wire detection delay time t_{OW} since the ML5243 has detected it, the system

recovers from the open-wire state and CHG pin output is set to charge enabled. If the ML5243 detects that voltage of more than one cell voltage reaches or decrease below the open-wire detection threshold V_{OW} for once, the release delay time counting is cleared.

7. Discharge Overcurrent State

When the load is connected and ISENSE pin voltage reaches or exceeds the discharge overcurrent detection threshold V_{OCU} for longer than the discharge overcurrent detection delay time t_{OCU} , the system enters the discharge overcurrent state, regardless of the individual battery cell voltages. In the discharge overcurrent state, the DCHG pin output is set to discharge inhibiting state.

In the discharge overcurrent state, the VRSNS pin is pulled-down to GND with a 3 $M\Omega$ resistor and a backflow prevention diode.

The system recovers from the discharge overcurrent state when the VRSNS pin level reaches or decrease below the load removal detection threshold V_{RL} for longer than the load removal detection delay time t_{ORL} .

8. Charge Overcurrent State

When the charger is connected and ISENSE pin voltage reaches or exceeds the charge overcurrent detection threshold V_{OCO} for longer than the charge overcurrent detection delay time t_{OCO} , the system enters the charge overcurrent state, regardless of the individual battery cell voltages. In the charge overcurrent state the CHG pin output is set to charge inhibiting state, while the DCHG pin output maintains the value in the previous state.

In the charge overcurrent state, a 500 k Ω pull-up resistor is connected between the VRSNS pin and VDD pin. The system recovers from the charge overcurrent state when the VRSNS pin voltage reaches or exceeds the charger removal detection threshold V_{PLU} for longer than the charger removal detection delay time t_{OCHG}.

9. Short Circuit State

When the pack is overloaded and the ISENSE pin voltage reaches or exceeds the short circuit detection threshold V_{SHRT} for longer than the short circuit detection delay time t_{SHRT} , the system enters the short circuit state, regardless of the battery cell voltages.

In the short circuit state, a 3 M Ω pull-down resistor is connected between the VRSNS pin and the GND pin through a backflow prevention diode.

The system recovers from the short circuit state when the VRSNS pin level reaches or decreases below the load removal detection threshold V_{RL} for longer than the load removal detection delay time t_{ORL} .

10. High Temperature Charge inhibition State

Pack temperature is monitored using an external thermistor every 0.4 seconds regardless of the battery cell voltages and current measuring. When the TSNS pin voltage reaches or decrease below the high temperature charge inhibition detection threshold V_{CHD} for longer than the temperature detection/release delay time t_{TDR} the system enters the high temperature charge inhibition state. In this state, the CHG pin output is in the charge inhibition state.

If the TSNS pin voltage reaches or exceeds the high temperature charge inhibition release TSNS pin threshold V_{CHR} for longer than the temperature detection/release delay time t_{TDR} , the system recovers from the high temperature charge inhibition state and the CHG pin output is in the charge enable state.

11. Low Temperature Charge Inhibition State

Pack temperature is monitored using an external thermistor every 0.4 seconds regardless of the battery cell voltages and current measuring. When the TSNS pin voltage reaches or exceeds the low temperature charge inhibition detection threshold V_{CCD} for longer than the temperature detection/release delay time t_{TDR} the system enters the low temperature charge inhibition state. In this state, the CHG pin output is in the charge inhibition state.

If the TSNS pin voltage reaches or decrease below the low temperature charge inhibition release TSTN pin threshold V_{CCR} for longer than the temperature detection/release delay time t_{TDR} , the system recovers from the low temperature charge inhibition state and the CHG pin output is in the charge enable state.

12. High Temperature Discharge Inhibition State

Pack temperature is monitored using an external thermistor every 0.4 seconds regardless of the battery cell voltages and current measuring. When the TSNS pin voltage reaches or decrease below the high temperature discharge inhibition detection threshold V_{DHD} for longer than the temperature detection/release delay time t_{TDR} the system enters the high temperature discharge inhibition state. In this state, the DCHG pin output is in the discharge inhibition state.

If the TSNS pin voltage reaches or exceeds the high temperature discharge inhibition release TSNS pin threshold V_{DHR} for longer than the temperature detection/release delay time t_{TDR} , the system recovers from the high temperature discharge inhibition state and the DCHG pin output is in the discharge enable state.

Selecting the Number of Battery Cells

Cell count is selectable from predefined 3 values using the CS0 and CS1 pins. Its configuration is given in the table below.

CS1	CS0	Battery cell number	Unused Vn pins
GND	GND	5 cell	None
GND	VREG	4 cell	V1
VREG	GND		V1, V2
VREG	VREG	3 cell	V1, V2

Code001: output pin status of each state

The table below shows the output pin status of each state.

	CHG	DCHG	PF	VRSNS	VREG
Initial state	"H"	"L"	"L"	"Hi-Z"	3.3V
Normal state	"H"	"H"	"L"	"Hi-Z"	3.3V
Overvoltage state	"Hi-Z"	"H"	"L"	"Hi-Z"	3.3V
2nd Overvoltage state	"Hi-Z"	"H"	"H"	"Hi-Z"	3.3V
Undervoltage state	"Н"	"L"	"L"	500kΩpull-up	3.3V
Power down state	"Hi-Z"	"L"	"L"	500kΩpull-up	0V
Open-wire state	"Hi-Z"	"L"	"L"	500kΩpull-up	3.3V
Discharge overcurrent	"Ц; 7"	"т"	«т »	2MOpull down	3 3V
state	111-2	L	L	Sivis 2 puil-down	5.5 V
Charge overcurrent	"Hi_7"	"Ц"	" Т"	500kOpull-up	3 3V
state	111-22	11	Ľ	500Kszpuli-up	5.5 V
Short circuit state	"Hi-Z"	"L"	"L"	3MΩpull-down	3.3V
High temperature	"Ц; 7"	"Ц"	" Г"	"Ц; 7"	3 3V
charge inhibit state	111-22	11	L	111 - Z	5.5 V
High temperature	"Ц"	"т"	" т"	"Ц; 7"	3 3V
discharge inhibit state	11	L	L	111-Z	5.5 V
Low temperature	"Ц; 7"	"Ц"	"Г"	"Ц; 7"	3 3V
charge inhibit state	111-Z	11	L	111-Z	5.5 V

Power-on/Power-off Sequence

Battery cells can be connected in any order, but it is recommend that the GND and VDD pins are connected first, and then connection continues from lower to higher voltage cells. There are no restrictions on the power supply voltage rise time at power-on, and power-off sequence or power supply voltage fall time at power-off.

After power-on, the system usually transitions to the normal state. However, it may transition to the undervoltage state due to chattering at power-on or other reasons. If it has transitioned to the undervoltage state and moved to power-down mode, apply the charger connection detection threshold V_{PC} or lower level to the VRSNS pin to power it up again.

In the battery connection, if it takes long time to set all the battery cells, the ML5243 might detect overvoltage/2nd overvoltage/undervoltage.

Handling VDD Pin and V1 to V5 Pins

Since the VDD pin is the power supply input, put a noise elimination RC filter in front of the VDD input for stabilization. If the drive current requirement on the CHG, DCHG and PF pins is large, the resistor value of this noise filter should be adjusted so that the voltage drop across the resistor is smaller than 1 V.

The V1 to V5 pins are the monitor pins for individual cell voltages. Put a noise elimination RC filter in front of each battery cell to prevent false detection. On a system with less than 5 battery cells, unused Vn pins should be tied to GND.

Handling VREG Pin

The VREG pin is the power source of the built-in regulator which supplies power to the internal modules. Connect a 1 μ F or larger capacitor between this pin and GND for stabilization. Do not use it as a power supply for external circuits since the supply current of the built-in regulator is limited.

• Unused Pin Treatment

The following table shows how to handle unused pins.

Unused pins	Recommended treatment		
Vn	Connected to GND		
VNTC	Tied to the TSNS pin with a 4.7k Ω resistor		
TSNS	Tied to the GND with a $10k\Omega$ resistor		
VRSNS	Tied to the GND		
ISENSE	Tied to the GND		
CHG	Open		
DCHG	Open		
PF	Open		

Reducing each detection delay time

By setting the TEST pin as VREG level, cell voltage monitoring cycle and temperature monitoring cycle is reduced to 100ms(typ) and each detection delay time is reduced down to 1 monitoring cycle minimum.

• Setting the CHG, DCHG and PF pin output level CHG pin output level is shown.

	CHG pin output level ("H" active output)					
	CMOS	N-ch open drain	P-ch open drain			
Initial state	"H" level	"Hi-Z" level	"H" level			
Normal state	"H" level	"Hi-Z" level	"H" level			
Overvoltage state	"L" level	"L" level	"Hi-Z" level			
2 nd Overvoltage state	"L" level	"L" level	"Hi-Z" level			
Undervoltage state	"H" level	"Hi-Z" level	"H" level			
Power down state	"L" level	"L" level	"Hi-Z" level			
Open-wire state	"L" level	"L" level	"Hi-Z" level			
Discharge overcurrent state	"H" level	"Hi-Z" level	"H" or "Hi-Z" level			
Charge overcurrent state	"L" level	"L" level	"H" level			
Short circuit state	"H" level	"Hi-Z" level	"H" or "Hi-Z" level			
High temperature charge inhibit state	"L" level	"L" level	"H" level			
High temperature discharge inhibit state	"L" level	"L" level	"H" level			
low temperature charge inhibit state	"L" level	"L" level	"H" level			

	CHG pin output level ("L" active output)					
	CMOS	N-ch open drain	P-ch open drain			
Initial state	"L" level	"L" level	"Hi-Z" level			
Normal state	"L" level	"L" level	"Hi-Z" level			
Overvoltage state	"H" level	"Hi-Z" level	"H" level			
2 nd Overvoltage state	"H" level	"Hi-Z" level	"H" level			
Undervoltage state	"L" level	"L" level	"Hi-Z" level			
Power down state	"H" level	"Hi-Z" level	"H" level			
Open-wire state	"H" level	"Hi-Z" level	"H" level			
Discharge overcurrent	"I " lovol	"I " lovol	"Hi Z" loval			
state	L level	L level				
Charge overcurrent	"H" lovol	"Hi 7" lovol	"H" loval			
state						
Short circuit state	"L" level	"L" level	"Hi-Z" level			
High temperature	"H" lovol	"Hi-7" lovol	"H" ovol			
charge inhibit state						
High temperature	"H" ovol	"Hi-7" 0/0	"H" 0\/0			
discharge inhibit state			i level			
Low temperature	"H" ovo	"Hi-7" 0/0	"H" lovel			
charge inhibit state			i level			

DCHG nin output level is shown

	DCHG pin output level ("H" active output)					
	CMOS	N-ch open drain	P-ch open drain			
Initial state	"L" level	"L" level	"Hi-Z" level			
Normal state	"H" level	"Hi-Z" level	"H" level			
Overvoltage state	"H" level	"Hi-Z" level	"H" level			
2 nd Overvoltage state	"H" level	"Hi-Z" level	"H" level			
Undervoltage state	"L" level	"L" level	"Hi-Z" level			
Power down state	"L" level	"L" level	"Hi-Z" level			
Open-wire state	"L" level	"L" level	"Hi-Z" level			
Discharge overcurrent state	"L" level	"L" level	"Hi-Z" level			
Charge overcurrent state	"H" level	"Hi-Z" level	"H" level			
Short circuit state	"L" level	"L" level	"Hi-Z" level			
High temperature charge inhibit state	"H" level	"Hi-Z" level	"H" level			
High temperature discharge inhibit state	"L" level	"L" level	"Hi-Z" level			
Low temperature charge inhibit state	"H" level	"Hi-Z" level	"H" level			

DCHG pin output level ("L" active output) CMOS N-ch open drain P-ch open drain "H" level Initial state "H" level "Hi-Z" level "L" level "Hi-Z" level "L" level Normal state "Hi-Z" level "L" level Overvoltage state "L" level "Hi-Z" level 2nd Overvoltage state "L" level "L" level "Hi-Z" level "Hi-Z" level "Hi-Z" level "H" level "H" level Undervoltage state "H" level "H" level Power down state Open-wire state "H" level "H" level Discharge overcurrent "H" level "Hi-Z" level "H" level state Charge overcurrent "L" level "L" level "Hi-Z" level state Short circuit state "H" level "Hi-Z" level "H" level High temperature "L" level "L" level "Hi-Z" level charge inhibit state High temperature "Hi-Z" level "H" level "H" level discharge inhibit state Low temperature "L" level "L" level "Hi-Z" level charge inhibit state

PF pin output level is shown.

	PF pin output level ("H" active output)					
	CMOS	N-ch open drain	P-ch open drain			
2 nd Overvoltage state	"H" level	"Hi-Z" level	"H" level			
other state	"L" level	"L" level	"Hi-Z" level			

	PF pin output level ("L" active output)				
	CMOS	N-ch open drain	P-ch open drain		
2 nd Overvoltage state	"L" level	"L" level	"Hi-Z" level		
other state	"H" level	"Hi-Z" level	"H" level		

• Redefinition of Detection/Release Threshold Range and Step (product code) The detection/release thresholds can be redefined as shown in the following table. Since some combinations are unavailable, contact us for details.

Detecting voltage	Symbol	Threshold range	Threshold step	
Overvoltage detection threshold	Vov	3.65 V to 4.35 V	25 mV	
Overvoltage release threshold	V _{OVR}	3.5 V to 4.25 V	25 mV	
2 nd Overvoltage detection threshold	Vsov	3.85 V to 4.45 V	25 mV	
2 nd Overvoltage release threshold	VSOVR	3.7 V to 4.35 V	25 mV	
Undervoltage detection threshold	Vuv	1.5 V to 3.0 V	100 mV	
Undervoltage release threshold	V _{UVN}	2.3 V to 3.5 V	100 mV	
Charge overcurrent detection threshold	Voco	-30 mV to -100 mV	10 mV	
Discharge overcurrent detection threshold	Vocu	50 mV to 300 mV	50 mV	
Short circuit detection threshold	VSHRT	100 mV to 500 mV	100 mV	
High temperature Discharge inhibition detection threshold	Vdhd	0.6 V to 1.2 V	10 mV	
High temperature Charge inhibition detection threshold	V _{CHD}	0.7 V to 1.3 V	10 mV	
Low temperature Charge inhibition detection threshold	VCCD	2.0 V to 2.2 V	10 mV	

Redefinition of Detection Delay Time of Overvoltage/2nd overvoltage/undervoltage detection

Detection delay time		Settable time(cycles for detection)					Unit	
Overvoltage/undervoltage detection delay time	1 to 2	3 to 4	5 to 6	7 to 8	9 to 10	11 to 12	13 to 14	cycle
2 nd overvoltage detection delay time	5 to 6	10 to 11	20 to 21	30 to 31	40 to 41	_	_	cycle
Open-wire detection/release delay time	1 to 2	3 to 4	5 to 6	7 to 8	9 to 10	11 to 12	13 to 14	cycle

The detection delay times can be redefined as shown in the following table.

Detection delay time		Settable time (detection cycle=400ms)			Unit			
Overvoltage/undervoltage	0.4 to	1.2 to	2.0 to	2.8 to	3.6 to	4.4 to	5.2 to	
detection delay time	0.8	1.6	2.4	3.2	4.0	4.8	5.6	Sec
2 nd overvoltage detection delay	2.0 to	4.0 to	8.0 to	12 to	16 to			
time	2.4	4.4	8.4	12.4	16.4			Sec
Open-wire detection/release delay	0.4 to	1.2 to	20.0	2.8 to	3.6 to	4.4 to	5.2 to	600
time	0.8	1.6	to 2.4	3.2	4.0	4.8	5.6	580

Temperature detection delay time and release delay time are not resettable.

• Redefinition of Overcurrent detection delay time

The detection delay times can be redefined as shown in the following table.

Detection delay time	symbol	Settable time(ms)						
Discharge overcurrent detection delay time	tocu	25	50	100	200	300	400	500
Charge overcurrent detection delay time	t _{oco}	25	50	100	200	300	400	500
Short circuit detection delay time	t SHRT	0.1	0.2	0.3	0.4	0.5		

■ Application Circuit Example 1 (5-cell system)

Recommended Values for External Components

Component	Recommended value	Component	Recommended value
Rvdd	1.5kΩ	Cis	0.01 µF
CVDD	2.2 µF	RT	4.7 kΩ
RCEL	1 kΩ to 10 kΩ	R _{NTC}	10 kΩ, B3435
CCEL	0.1 µF or more	R _G	10 kΩ
Creg	1 µF	R _{GS}	1 MΩ
Rs	1 mΩ	R _{VR}	1 kΩ
Rıs	1 kΩ		

(Note) This circuit example and the recommended values of external components are not always warranted. Evaluation on customer's application is required and select circuit and parts depend on customer's application.

■ Application Circuit Example 2 (4-cell system, overcurrent is not implemented)

Recommended Values for External Components

Component	Recommended value	Component	Recommended value
Rvdd	1.5kΩ	R⊤	4.7 kΩ
CVDD	2.2 µF	RNTC	10 kΩ, B3435
RCEL	1 kΩ to 10 kΩ		
CCEL	0.1 µF or larger		
CREG	1 µF		

(Note) This circuit example and the recommended values of external components are not always warranted. Evaluation on customer's application is required and select circuit and parts depend on customer's application.

Package Dimensions

Caution regarding surface mount type packages

Surface mount type packages are susceptible to heat applied in solder reflow and moisture absorbed during storage. Please contact your local ROHM sales representative for recommended mounting conditions (reflow sequence, temperature and cycles) and storage environment.

Revision History

		Page		
Document No.	Issue date	Before	After	Revision description
		revision	revision	
FEDL5243-01	8, March. 2019	-	-	First edition.
FEDL5243-02	19, June. 2019	15	15	overvoltage is corrected to undervoltage
		25	25	$R_T=1k\Omega$ is corrected to $4.7k\Omega$
FEDL5243-03	2, August. 2019	10	10	CHG pin status in Open-wire state, mistype is
		10	10	corrected, "L" to "Hi-Z".
		22	22	Open-wire detection/release delay time, mistype
		23	23	is corrected "2 to 4 " to "3 to 4 cycles".
FEDL5243-04	1, Dec. 2020	-	-	Changed Company name
		28	28	Changed "Notes"
FEDL5243-05	Jan. 9, 2024	1	1	Add Application Part number
		28	28	Add Notes

<u>Notes</u>

- When using LAPIS Technology Products, refer to the latest product information and ensure that usage conditions (absolute maximum ratings^{*1}, recommended operating conditions, etc.) are within the ranges specified. LAPIS Technology disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of LAPIS Technology Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of LAPIS Technology Products, please take safety at your own risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures.
 *1: Absolute maximum ratings: a limit value that must not be exceeded even momentarily.
- 2) The Products specified in this document are not designed to be radiation tolerant.
- 3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits for mass production. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related information.
- 4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology or any third party with respect to LAPIS Technology Products or the information contained in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and application examples, etc.). Therefore, LAPIS Technology shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) LAPIS Technology intends our Products to be used in a way indicated in this document. Please be sure to contact a ROHM sales office if you consider the use of our Products in different way from original use indicated in this document. For use of our Products in medical systems, please be sure to contact a LAPIS Technology representative and must obtain written agreement. Do not use our Products in applications which may directly cause injuries to human life, and which require extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us without our prior written consent.
- 6) All information contained in this document is subject to change for the purpose of improvement, etc. without any prior notice. Before purchasing or using LAPIS Technology Products, please confirm the latest information with a ROHM sales office. LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document, however, LAPIS Technology shall have no responsibility for any damages, expenses or losses arising from inaccuracy or errors of such information.
- 7) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. LAPIS Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 8) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 9) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or LAPIS Technology's Products.
- 10) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.

(Note) "LAPIS Technology" as used in this document means LAPIS Technology Co., Ltd.

Copyright 2019 – 2024 LAPIS Technology Co., Ltd.

LAPIS Technology Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan https://www.lapis-tech.com/en/