

ML62Q2033/2035/2043/2045

16-bit micro controller

GENERAL DESCRIPTION

ML62Q2033/2035/2043/2045 are high performance CMOS 16-bit microcontrollers equipped with an 16-bit CPU nX-U16/100 and integrated with program memory (Flash memory), data memory (RAM), data Flash (Erase unit:128byte, Write unit:1byte) and rich peripheral functions such as the multiplier/divider, Clock generator, PWM generator, Timer, General Purpose Ports, UART, I2C bus interface unit(Master, Slave), Successive approximation type 12bit A/D converter, 8bit D/A converter, PGA (Programable Gain Amp) and so on.

The CPU nX-U16/100 is capable of efficient instruction execution in 1-instruction 1-clock mode by pipeline architecture parallel processing.

The built-in on-chip debug function enables debugging and programming the software. Also, ISP (In-System Programming) function supports the Flash programming in production line.

Applications

Consumer and Industrial equipment (e.g., Household appliances, Housing equipment, Office equipment, Measurement instrumentation, etc)

Note:

This product cannot be applicable for automotive use, automatic train control systems, and railway safety systems.

Please contact ROHM sales office in advance if contemplating the integration of this product into applications that requires high reliability, such as transportation equipment for ships and railways, communication equipment for trunk lines, traffic signal equipment, power transmission systems, core systems for financial terminals and various safety control devices.

Product list

Table1 shows the conbination of ML62Q2033/2035/2043/2045 memory variations and package type.

	Table 1 Product List										
Program memory	Data memory (RAM)	Data Flash	20pin TSSOP20	24pin WQFN24							
32Kbyte	2Kbvte	4Kbyte	ML62Q2035	ML62Q2045							
16Kbyte	Zicoyle	4NDyte	ML62Q2033	ML62Q2043							

Please see the last 2 pages "Notes for product usage" and "Notes" in this document on use with this product.

ROHM Co...Ltd.

FEATURES

- CPU
 - 16-bit RISC CPU : nX-U16/100 (A35 core)
 - Instruction system : 16-bit length instructions
 - : Transfer, arithmetic operations, comparison, logic operations, Instruction set multiplication/division, bit manipulations, bit logic operations, jump, conditional
 - jump, call return stack, manipulations, arithmetic shift, and so on
 - Built-in On-chip debug function (connect to the ROHM on-chip debug emulator)
 - Minimum instruction execution time : 1 count of system clock Approximately 30.5µs/62.5ns (at 32.768kHz/16MHz system clock)
- Coprocessor for multiplication and division
 - Signed or Unsigned is selectable

Parameter	Expression	Operation time [cycle]
Multiplication	16bit × 16bit	4
Division	32bit ÷ 16bit	8
DIVISION	32bit ÷ 32bit	16
Multiply-accumulate (non-saturating)	16bit × 16bit + 32bit	4

- Operating voltage and temperature
 - Operating voltage : V_{DD} = 4.5 to 5.5V
 - Operating temperature : -40°C to +105°C

Flash memory

Parameter	Program memory area	Data Flash memory area
Erase/Write count	100cycles	10,000cycles
Write unit	16bit (2byte)	8bit (1byte)
Erase unit	16Kbyte/1Kbyte	all area/128byte
Erase/Write temperature (Ta)	0°C to +40°C	-40°C to +85°C

- Background Operation (CPU can work while erasing and rewriting to the Data Flash memory area.)
- The built-in on-chip debug function and ISP (In-System Programming) function enable Flash programming

This product uses Super Flash® technology licensed from Silicon Storage Technology, Inc. Super Flash® is a registered trademark of Silicon Storage Technology, Inc.

- Data RAM area
 - Rewrite unit: 8bit/16bit (1byte/2byte)
 - Parity check function is available (interrupt or reset is generatable at Parity error)
- Clock generation circuit
 - Low-speed clock (LSCLK0)
 - Internal low-speed RC oscillation (RC32K) : Approx. 32.768kHz
 - High-speed source clock (HSOCLK) : Available for PWM generation circuit clock PLL oscillation : 64MHz
 - High-speed system clock (HSCLK)

- : 16MHz, generated by dividing HSOCLK

- Reset
 - System Resets by reset input pin, Power-On Reset, Low Level Detector (LLD) reset, Watchdog timer (WDT) overflow, WDT invalid clear, RAM parity error reset, and Progran Counter error reset (instruction access to unused ROM area)
 - Software reset by BRK instruction (reset CPU only)
 - Reset the peripherals individually/collectively by software
- Power management
 - Two stand-by mode.
 - STOP mode (All clocks are stopped)
 - HALT mode (clocks for System are stopped)
 - Individual clock input control to the peripheral blocks by software
 - Clock gear: High-speed system clock frequency is changeable dynamically
 - (1/1, 1/2, 1/4, 1/8, 1/16, 1/32 of HSCLK)

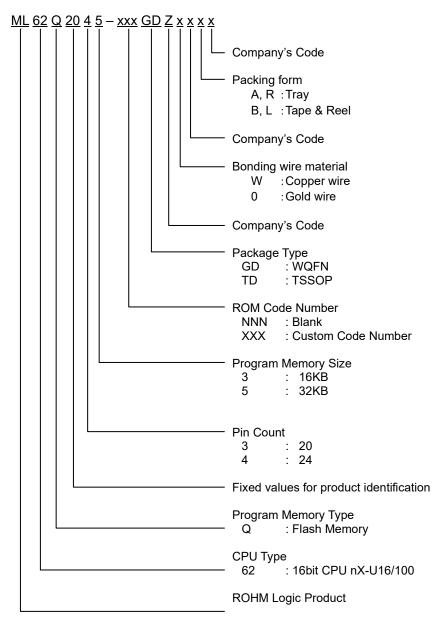
- Interrupt controller
 - Non-maskable interrupt source : 1 (Internal sources: WDT)
 - Maskable interrupt sources : 22 (included the external interrupt 4 sources)
 - Four step interrupt levels
 - External interrupt ports (EXI)
- : 4 (selectable from Max.8 pins) with sampling filter and edge(rise, fall, both) selection.
- General-purpose ports (GPIO)
 I/O port
- : Max. 20 (Including pins for shared functions)
- Carrier frequency output function (for IR communication)
- Watchdog timer (WDT) : 1 channel
 - Overflow period : 8selectable (7.8, 15.6, 31.3, 62.5, 125, 500, 2000, 8000ms)
 - Selectable window function (enable or disable): configurable clear enable period (50% or 75% of overflow period) with invalid clear. When disable, interrupts the first overflow and resets the second overflow. When enable, reset occurs for the first overflow.
 - Selectable WDT operation : select Enable or Disable by code option
 - Selectable operation during HALT mode (Continue counting/Stop counting)
 - WDT counter operation monitoring function (Readable WDT counter)
- Operational timer : 6 channels
 - Various modes (Continuous, One shot, capture, and PWM mode)
 - Event trigger (external terminal, 16bit timer, operational timer, comparator) input is available
 - Selectable counter clock from various sources (LSCLK0, HSCLK(16MHz), HSOCLK(64MHz), divided by 1 to 8 of external pin input)
 - Logic AND output with several channel output (Operational timer output, comparator output, and external pin input) is available
- 16-bit General timers : 1 channel
 - Selectable counter clock from various sources (LSCLK, HSCLK (16MHz), and external clock divided by 1 to 8)
- UART (Half-duplex/Full-duplex communication mode): 2 channels Selectable from 5 to 8bit length, parity or no parity, odd parity or even parity, 1 stop bit or 2 stop bits, Positive logic or Negative logic, LSB first or MSB first
 - Sampling filter for receiving data and start bit
 - Built-in baud rate generator (HSCLK@16MHz: 300bps to 2Mbps, LSCLK: up to 2400bps)
- I²C bus : 1 channel
 - Select from Master mode or Slave mode: 1channel. Master mode only: 1channel
 - Standard mode (100kbps), fast mode (400kbps) and 1Mbps mode (1Mbps)
 - 7bit address format
 - Master mode: Handshake (Clock synchronization), 10bit Master address format is supported
 - Slave mode: Clock stretch function,
- Successive approximation type 12bit A/D converter (SA-ADC) : input 5 channels
 - Conversion time: Min. 1.375µs / ch (When the conversion clock frequency is 16MHz)
 - Reference voltages (V_{ADCREF}) are selectable from VDD pin input voltage or Internal reference voltage (V_{ADCREF}, Approx. 2.5V)
 - Dedicated result register for each channel
 - Interrupt by Continuous conversion and Trigger start
- Programable-Gain-Amp (PGA) : 1 channel
 - Amplification factor : 4/ 8/16/ 32
 - Voltage input pin is selectable (AIN0/ AIN1/ AIN2/ AIN3)
- Analog comparator (CMP): 3 channels
 - Selectable interrupt from the comparator output (rising edge or falling edge) and sampling
 - Selectable reference voltage (V_{CMPREFn n=0 to 2}) from external pin input, internal reference voltage (0.8V) (V_{CMPREFI}), and D/A converter

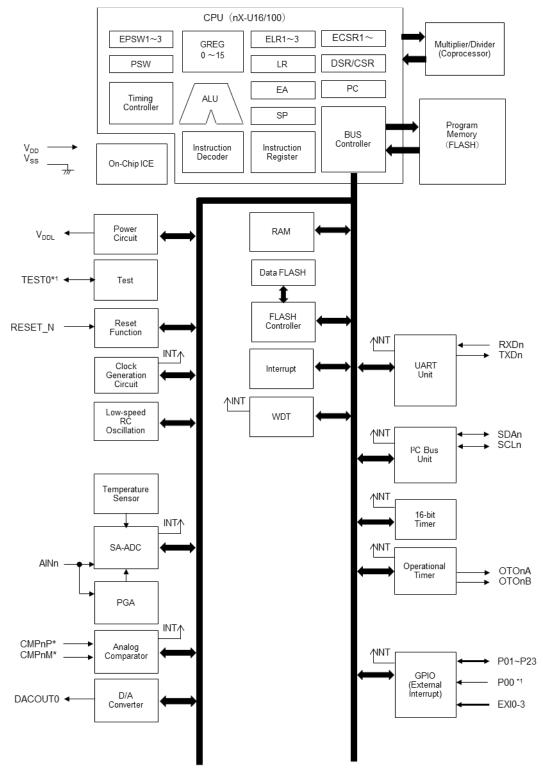
- D/A converter (DAC) : 2 channels : 8 bit
 - Resolution
 - Output impedance : 10kΩ (Typ.)
 - R-2R ladder type
 - Reference voltages (V_{DACREF}) are selectable from VDD pin input voltage or Internal reference voltage (0.8V) (V_{DACREF})
- Low Level Detector (LLD) : 1 channel
 - Reset generating
 - Sampling filter
 - Low power operation
- Safety Function
 - RAM/SFR guard
 - RAM parity error detection
 - ROM unused area access reset (instruction access)
 - WDT counter monitoring
 - SA-ADC test
 - Communication loop back test (UART, I²C bus(master))
 - GPIO test
- Shipping package

Package	Body size	Pin pitch	Packing form and Product name					
Раскауе	(including lead) [mm × mm]	[mm]	Tray	Tape & Reel				
20 pin plastic TSSOP	6.5 × 4.4 (6.5 × 6.4)	0.65	ML62Q2033-xxxTDZWARZ ML62Q2035-xxxTDZWARZ	ML62Q2033-xxxTDZWATZ ML62Q2035-xxxTDZWATZ				
24 pin plastic WQFN	4.0 × 4.0 (-)	0.50	ML62Q2043-xxxGDZW5AY ML62Q2045-xxxGDZW5AY	ML62Q2043-xxxGDZW5BY ML62Q2045-xxxGDZW5BY				

xxx: ROM code number, (NNN: ROM code is blank)

How To Read The Part Number




Figure 1 Part Number

Main Function List

							Table	2 Ma	ain Fu	unctio				T					
		1		Pin		1	In	iterru	pt		Tin	ner		Commu	nication		Ana	alog	1
Part number	Total pin	Power pin	Reset Input pin	General purpose I/O pin ^{*1}	General purpose I/O pin (LED drive is supported)	External interrupt pin	External interrupt source	Non maskable interrupt source	Internal maskable interrupt source	16bit Timer [ch]	16bit oprational Timer [ch]	16bit operational Timer [Port]	Watchdog Timer [ch]	UART [ch]	I ² C bus unit (Master / Slave) [ch]	12bit Successive type A/D converter [ch]	Analog Comparator [ch]	D/A converter [dh]	PGA [ch]
ML62Q2033 ML62Q2035	20				15							10							
ML62Q2035 ML62Q2043		3	1	1		8	4	1	18	1	6		1	2	1	5	3	2	1
ML62Q2045	24				19							13							

*1: Shared with pins debug input.

BLOCK DIAGRAM

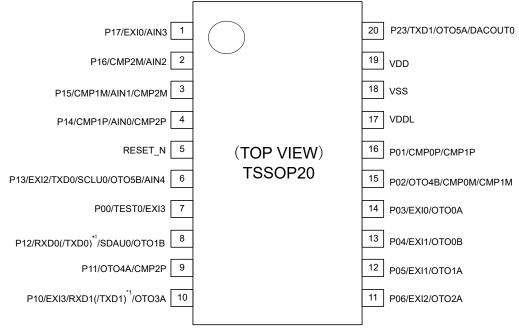
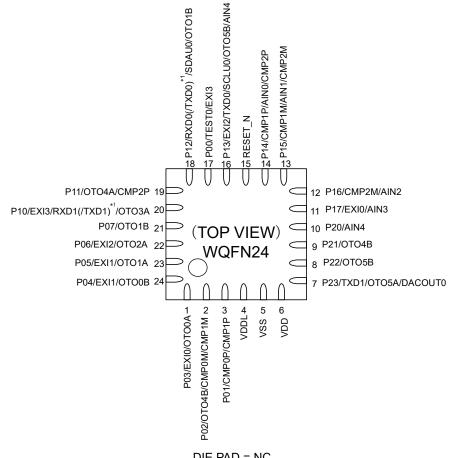

*1 : Not available as the input port when connecting to the on-chip debug emulator.

Figure 2 Block Diagram

FEDL62Q2045-02 ML62Q2033/2035/2043/2045


ROHM Co., Ltd.

PIN CONFIGURATION

*1: RXDn pin is shareable with TXDn pin by SFR setting

Fig.3-1 20 pin TSSOP

DIE PAD = NC *1: RXDn pin is shareable with TXDn pin by SFR setting

Fig.3-2 24 pin WQFN

PIN LIST

Table 3 Pin List

Pin	No		1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th
Pin	INO.		function	function	function	function	function	function	function	function
ML62Q203x	ML62Q204x	Pin name	GPI/ EXI	UART*	I ² C	ОТМ	CMP/DAC	ADC	CMP	CMP/ADC
19	6	VDD	-	-	-	-	-	-	-	-
18	5	VSS	-	-	-	-	-	-	-	-
17	4	VDDL	-	-	-	-	-	-	-	-
16	3	P01	-	-	-	-	CMP0P	-	CMP0P/ CMP1P	CMP0P
15	2	P02	-	-	-	OTO4B	CMP0M	-	CMP0M/ CMP1M	CMP0M
14	1	P03	EXI0	-	-	OTO0A	-	-	-	-
13	24	P04	EXI1	-	-	OTO0B	-	-	-	-
12	23	P05	EXI1	-	-	OTO1A	-	-	-	-
11	22	P06	EXI2	-	-	OTO2A	-	-	-	-
-	21	P07	-	-	-	OTO1B	-	-	-	-
10	20	P10	EXI3	RXD1* ¹ (/TXD1)* ²	-	ОТОЗА	-	-	-	-
9	19	P11	-	-	-	OTO4A	CMP2P	-	CMP2P	CMP2P
8	18	P12	-	RXD0*1 (/TXD0)*2	SDAU0	OTO1B	-	-	-	-
7	17	P00/TEST0	EXI3	-	-	-	-	-	-	-
6	16	P13	EXI2	TXD0*1	SCLU0	OTO5B	-	AIN4	-	-
5	15	RESET_N	-	-	-	-	-	-	-	-
4	14	P14	-	-	-	-	CMP1P	AIN0	CMP1P/ CMP2P	AIN0 /CMP1P
3	13	P15	-	-	-	-	CMP1M	AIN1	CMP1M/ CMP2M	AIN1 /CMP1M
2	12	P16	-	-	-	-	CMP2M	AIN2	CMP2M	AIN2 /CMP2M
1	11	P17	EXI0	-	-	-	-	AIN3	-	-
-	10	P20	-	-	-	-	-	AIN4	-	-
-	9	P21	-	-	-	OTO4B	-	-	-	-
-	8	P22	-	-	-	OTO5B	-	-	-	-
20	7	P23	-	TXD1* ¹	-	OTO5A	DACOUT0	-	-	-
DIE		NC	-	-	-	-	-	-	-	-

*1: The UARTpin use with a combination of the same suffix pins

 $^{\star 2}$: RXDn pin is shareable with TXDn pin by SFR setting

PIN DESCRIPTION

"I/O" Field in the below table define the pin type ("-" : power supply pin, "I" : Input pin, "O" : Out put pin, "I/O" bi-directional pin)

			ole 4 Pir	n Description
Function	Functional pin name	LSI pin name	I/O	Description
	-	VSS	-	Negative power supply pin (-) Define this terminal potential as Vss.
Power	_	VDD	-	Positive power supply pin (+). Connect a capacitor C_V (more than 1µF) between this pin and VSS. Define this terminal potential as V_{DD}
	-	VDDL	-	Power supply for internal logic (internal regulator's output). Connect a capacitor $C_L(1\mu F)$ between this pin and VSS
Debug ISP	TEST0	P00/ TEST0	I/O	Input/output for testing This pin which is shared with P00 is used as on-chip debug interface and ISP function and is initialized as pull-up input mode by the system reset.
Reset	RESET_N	RESET_N	I	Reset input. Appling this pin "L" level shifts MCU to system reset mode. Appling this pin "H" level shifts MCU to program running mode. No pull-up resistor is built-in.
General input port (GPI)	P00	P00/ TEST0	I/O	General purpose input. - Input with Pull-up (initial value) - Input without Pull-up Not available as general inputs when using the on-chip debug interface or ISP function.
	P01 to P07	P01 to P07		General purpose input/output - High-impedance (initial value)
General port (GPIO)	P10 to P17	P10 to P17	I/O	- Input with Pull-up - Input without Pull-up - CMOS output
	P20 to P23	P20 to P23		- N channel (N-ch) open drain output - P channel (P-ch) open drain output
Career frequency output	-	P13 P23	0	Career frequency output
i	EXI0	P03 P17		External Maskable Interrupt 0 input
External Interrupt	EXI1	P04 P05		External Maskable Interrupt 1 input
(1 st function)	EXI2	P06 P13		External Maskable Interrupt 2 input
	EXI3	P00 P10		External Maskable Interrupt 3 input
	OTO0A	P03		Operational Timer 0 A output
	OTO0B	P04		Operational Timer 0 B output
	OTO1A	P05		Operational Timer 1 A output
	OTO1B	P07 P12		Operational Timer 1 B output
Operational Timer	OTO2A	P06		Operational Timer 2 A output
(4 th function)	OTO3A	P10	0	Operational Timer 3 A output
	OTO4A	P11		Operational Timer 4 A output
	OTO4B	P02 P21	1	Operational Timer 4 B output
	OTO5A	P23	1	Operational Timer 5 A output
	OTO5B	P13 P22	1	Operational Timer 5 B output
l ² C Bus	SCLU0	P13		I ² C Unit0 Clock input/output
(3 rd function)	SDAU0	P12	I/O	I ² C Unit0 Data input/output

Function	Functional pin name	LSI pin name	I/O	Description
	RXD0	P12	Ι	UART0 received data input
UART	TXD0	P13	0	UART0 transmission data output
(2 nd function)	RXD1	P10	I	UART1 received data input
	TXD1	P23	0	UART1 transmission data output
Successive approximation type A/D converter (SA-ADC) (6/8 th function)	AIN0 to AIN4	P14 P15 P16 P17 P13 P20	I	SA-ADC channel 0 to 4 analog input
D/A converter (5 th function)	DACOUT0	P23	ο	D/A converter 0 output (select by SFR)
	CMP0P	P01		Analog comparator 0 Noninverting input
	CMP0M	P02		Analog comparator 0 Inverting input
Analog	CMP1P	P01 P14		Analog comparator 1 Noninverting input
comparator (5/7/8 th function)	CMP1M	P02 P15		Analog comparator 1 Inverting input
	CMP2P	P11 P14		Analog comparator 2 Noninverting input
	CMP2M	P15 P16		Analog comparator 2 Inverting input

TERMINATION OF UNUSED PINS

Table 5 shows the processing of unused pins.

Table 5 Termination of unused pins

Pin	pin termination
RESET_N	Connect to VDD
P00/TEST0	Open with the initial condition of pulled-up input mode
P01 to P07 P10 to P17 P20 to P23	Open the pins with the initial condition of Hi-impedance (input/output invalid) mode.

[Note]

 Terminate unused input pins according to the table 5 in order to avoid unexpected through-current in the pins.

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

					(Vss = 0V)	
Parameter	Symbol	Cone	dition	Rating	Unit	
Power supply voltage 1	V _{DD}			-0.3 to +6.5		
Power supply voltage 2	Vddl	т. –	+25°C	-0.3 to +2.0	- V	
Input voltage	Vin	ia = ·	+25°C	-0.3 to V _{DD} +0.3*1	V	
Output voltage1	Vout1			-0.3 to V _{DD} +0.3*1		
"L" lovel output ourrept	1		1pin	-40*2		
"H" level output current	Іоитн	T 10500	Total	-150* ²		
		Ta = +25°C 1pin		+40	– mA	
"L" level output current	Ιουτι		Total	+150		
Power dissipation	PD	Ta = +25°C		1	W	
Storage temperature	T _{STG}		-	-55 to +150 ^{*3}	°C	

*1: 6.5V or lower

*2: The current flowing out the LSI through the pin is described in the negative number. The applicable maximum current is the absolute value.

For example, -1mA means the maximum current 1mA flows out the LSI through the pin.

*3: Please observe a storage conditions shown in the document "Board Mounting (soldering)" about the storage conditions until implementation.

[Note]

Stresses above the absolute maximum ratings listed in the above table may cause permanent damage to the device.

These are stress ratings only and functional operation of the device at these conditions is not implied.

Recommended Operating Conditions

				(Vss = 0V)
Parameter	Symbol	Condition	Range	Unit
Operating temperature (Ambient)	Та	-	-40 to +105	
Operating temperature (Chip-Junction)	Tj	-	-40 to +115	- °C
Operating voltage 1	V _{DD}	-	4.5 to 5.5	V
Operating frequency (CPU)	f _{OP}	V _{DD} =4.5 to 5.5V	30k to 16M	Hz
VDDL pin external capacitance	CL	-	1.0 ±30%	μF

Thermal characteristics

The maximum chip-junction temperature, T_{jmax}, is estimated using the following equation.

 $T_{j max} = T_{a max} + P_{D max} \times \theta_{ja}$ $T_{a max}$: maximum ambient temperature $P_{D max}$: LSI maximum power dissipation θ_{ja} : Package junction to ambient thermal resistance

Design a Mounting board by considering heat radiation such as power dissipation and ambient temperature to satisfy the recommended conditions.

The following table shows the each package's thermal resistance for thermal design reference estimated by simulation based on the PCB (printed circuit board) conditions define as a below.

Parameter	Symbol	Deekege type	PCB co	Linit	
	Symbol	Package type	L1	L2	- Unit
Thermal	0	TSSOP20	72.32	68.83	
resistance	θja	WQFN24	38.86	34.81	°C/W

PCB conditions:

PCB name	L1	L2	Unit			
PCB size (L / W / T)	114.3 / 76.2 / 1.6	114.3 / 76.2 / 1.6	mm			
Number of layers	1	2	layer			
Wiring density	60% (top layer)	60% (top and bottom layer)	-			
Wind condition	Windlessness (0m/s)					

The thermal resistance of WQFN is the simulated value when the exposed die pad part (100%) is soldered with the board.

Current Consumption

(V_DD=4.5 to 5.5V, V_SS =0V, Ta=-40 to +105°C, unless otherwise specified)

	Cond					ring uit					
Parameter	Operating mode	circuit state *1	Min.	Typ.*2	Ma	ax.	Unit	Measuring circuit			
	Operating mode	Circuit State	IVIIII.	Typ.	Tj≤+95°C	Tj≤+115°C		Me			
IDD1	STOP	All clocks are stopped.	-	80	120	130					
IDD2-1R	HALT (Hi-speed oscillation off)	RC32K is oscillating. PLL is stopped.	-	90	140	150	μA	1			
IDD3	CPU running in SYSCLK=32.768kHz	RC32K is oscillating. PLL is stopped.	-	100	160			I			
IDD5-H16	CPU running in wait-mode SYSCLK=16MHz	PLL is oscillating as PLL16M mode. HSCLK = 16MHz	-	3.3	4	.2	mA				

*1: WDT is operating except IDD1, and all clocks peripheral circuits are stopped by block control.

*2: On the condition of V_{DD} =5.0V, Ta=+25°C

On-chip Oscillator

(V_{DD}=4.5 to 5.5V, V_{SS} =0V, Ta=-40 to +105°C, unless otherwise specified)

			•		•		· · ·
Parameter	Symbol	Condition		Rating	Unit	Measuring	
Falameter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit
RC32K	f _{RCL1}	Ta= -20 to +85°C	Тур. -1.5%	32.768	Тур. +1.5%	kHz	
frequency	IRCL1	Ta= -40 to +105°C	Тур. -2.0%	32.708	Тур. +2.0%	κπz	
PLL oscillation	f	Ta= -20 to +85°C with RC32K	Тур. -1.5%	64	Тур. +1.5%	MHz	1
frequency	f _{PLL1}	Ta= -40 to +105°C with RC32K	Тур. -2.0%	04	Тур. +2.0%		
PLL oscillation stabilization time	T _{PLL}	-	-	-	2	ms	

*: The frequency is the factory default specification. It may vary depending on the board mounting.

Input / Output pin 1

		(V _{DI}	; =0V, Ta=-4	10 to +105°	C, unless c	therwis	e specified)	
Parameter	Symbol	Condition			Rating		Unit	Measuring
Falameter	Symbol			Min.	Тур.	Max.	Unit	circuit
Output voltage1 "H"/"L" level (all input/output port)	VOH1	IOH1=-10n	V _{DD} -1.5	-	-			
	VOHI	IOH1=-4m/	٩	V _{DD} -0.5	-	-		
	VOL1	IOL1=+10r	nA	-	-	1.5		
		IOL1=+4m	-	-	0.5			
Output voltage2			IOL2=+15mA	-	-	0.7	V	2
"L" level (all input/output port	VOL2	When N-ch open drain output mode is selected	IOL2=+8mA	-	-	0.5		
except TEST0)		10 00100100	IOL2=+3mA	-	-	0.4		
Output voltage2 "H" level	When P-ch open drain output mode	IOL2=-10mA	V _{DD} -1.5	-	-			
(all input/output port except TEST0)		is selected	IOL2=-4mA	V _{DD} -0.5	-	-		

(V _{DD} =4.5 to 5.5V, V _{SS} =0V, Ta=-40 to +105°C, unless otherwise specified)											
Parameter	Symbol	Condition		Rating		Unit	Measuring				
Falameter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit				
Input current1	IIH1	VIH1=V _{DD}	-	-	1						
(RESET_N)	IIL1	VIL1=Vss	-1 ^{*1}	-	-	μA					
	IIL2	VIL2=V _{SS} (pull-up mode) *2	-1500 ^{*1}	-1000 ^{*1}	-300 ^{*1}						
Input current2 (P00/TEST0)	V/IIL2	VIL2=V _{SS} (pull-up mode) *2	3.7	5.0	15	kΩ					
	IIH2Z	VIH2=V _{DD} (High impedance mode) 1			4						
	IIL2Z	VIL2=V _{SS} (High impedance mode)	-1 ^{*1}	-	-	μA	4				
	IIL3	VIL1=V _{SS} (pull-up mode) *2	-250 ^{*1}	-125 ^{*1}	-30 ^{*1}						
Input current3 (all input port except RESET_N,	V/IIL3	VIL1= Vss (pull-up mode) *2	22	40	150	kΩ					
P00/TEST0, input/output port)	IIH3Z	VIH1=V _{DD} (High impedance mode)	-	-	1						
	IIL3Z	VIL1=V _{SS} (High impedance mode)	-1 ^{*1}	-	-	μA					
Input voltage1	VIH1	-	0.7 × V _{DD}	-	V _{DD}	v	_				
(all input port, input/output port)	VIL1	-	0	-	0.3 × V _{DD}	V	5				
Pin capacitance (RESET_N, all input port, input/output port)	CPIN	f=10kHz Ta=25°C	-	-	10	pF	-				

*1: The current flowing out the LSI through the pin is described in the negative number. The applicable maximum current is the absolute value. For example, -1mA means the maximum current 1mA flows out the LSI through the pin. *2: Measurement conditions: Typ: VDD = 5.0V, Max: VDD = 4.5V, Min: VDD = 5.5V

Input / Output pin 2

(V_{DD}=4.5 to 5.5V, V_{SS} =0V, Ta=-40 to +105°C, unless otherwise specified)

			D-4.0 to 0.0 v, vss -		Rating	- ,	Linit	Measuring
Parameter	Symbol	Conditio	n	Min.	Тур.	Max.	Unit	circuit
"H" level output current1 * ⁶	IOH1	1pin	-	-10* ^{3*5}	-	-		
"H" level output total current1 * ^{1*4}		Total of group A or B **	Ta=-40 to 85 °C	-25 ^{*5}	-	-		
	IOH3	(duty ≤ 50%)	Ta=-40 to 105 °C	-12 ^{*5}	-	-		
	10113	All pin total	Ta=-40 to 85 °C	-50 ^{*5}	-	-		
		(duty ≤ 50%)	Ta=-40 to 105 °C	-24 ^{*5}	-	-		
"L" level output current1 *6	IOL1	1pin (CMOS output mode)	-	-	-	10* ³ mA		
"L" level output current2 * ⁶	IOL2	1pin (N-ch open drain output mode)	-	-	-	15* ³		3
		Total of group A or B **	Ta=-40 to 85°C	-	-	25		
"L" level output total		(N-ch open drain output mode, duty≤50%)	Ta=-40 to105°C	-	-	15		
current *2*4	IOL3		Ta=-40 to 85°C	-	-	50		
		(N-ch open drain output mode, duty≤50%)	Ta=-40 to 105°C	-	-	30		
Output leak	IOOH	VOH=V _{DD} (High imp	edance mode)	-	-	+1		
(all input/output port)	IOOL	VOL=Vss (High impe	edance mode)	-1* ⁵	-	-	μA	

** : Group A is "P00 to P07 and P10 to P12", group B is "P13 to P17 and P20 to P23".

*1: Sink-out current from VDD to the output pin, which can guarantee the device operation.

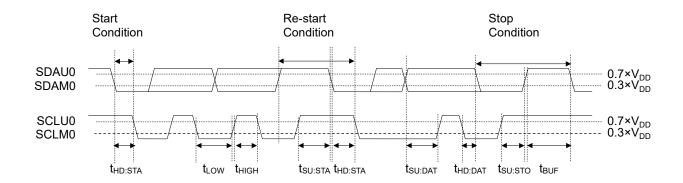
*2: Sink-in current from the output pin to VSS, which can guarantee the device operation.

*3: Do not exceed total current.

*4: The total current is on the condition of Duty≤50% (same applies to IOH1). When the duty>50% the total current is calculated by following formula. Total current = IOL3 x 50/n (When the duty is n%)
<For an example> When IOL3=100mA and n=80%, Total current = IOL3 x 50/80 = 62.5mA Current allowed per 1pin is independent of the duty and specified as IOL1 and IOL2.

Do not apply current larger than Absolute Maximum Ratings.

*5: The current flowing out the LSI through the pin is described in the negative number. The applicable maximum current is the absolute value.

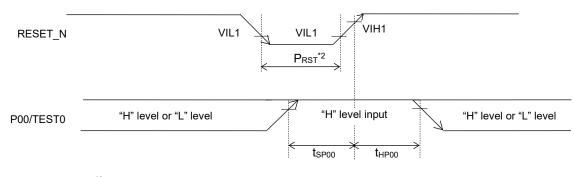

For example, -1mA means the maximum current 1mA flows out the LSI through the pin.

*6: These values are satisfied with VOH1, VOL1 and VOL2.

I²C Bus Interface

(V _{DD} =4.5 to 5.5V, V _{SS} =0V, Ta=-40 to +105°C, unless otherwise sp											pecified)
						Rating					
Parameter	Symbol	Sta	ndard M	ode	Fast Mode		1Mbps Moo		de	Unit	
		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Operating Voltage	V _{DD}	4.5	-	5.5	4.5	-	5.5	4.5	-	5.5	V
SCL clock frequency	fscl	0	-	100	0	-	400	0	-	1000	kHz
SCL hold time (start/restart condition)	t _{HD:STA}	4.0	-	-	0.6	-	-	0.26	-	-	
SCL "L" level time	t _{LOW}	4.7	-	-	1.3	-	-	0.5	-	-	
SCL "H" level time	t _{ніGн}	4.0	-	-	0.6	-	-	0.26	-	-	
SCL setup time (restart condition)	tsu:sta	4.7	-	-	0.6	-	-	0.26	-	-	ue
SDA hold time	t _{HD:DAT}	0	-	-	0	-	-	0	-	-	μs
SDA setup time	t _{SU:DAT}	0.25	-	-	0.1	-	-	0.1	-	-	
SDA setup time (stop condition)	t _{su:sto}	4.0	-	-	0.6	-	-	0.26	-	-	
Bus-free time	t BUF	4.7	-	-	1.3	-	-	0.5	-	-	

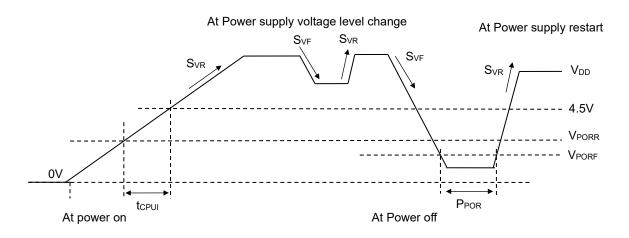
When using the I²C as the master, configure the I²C master 0 mode register(I2M0MOD) and I²C bus 0 mode register (master side, I2U0MOD) so that meet these specifications.



Reset

(V_{DD}=4.5 to 5.5V, V_{SS} =0V, Ta=-40 to +105°C, unless otherwise specified)

	,						,
Deveryoter	Current el			Rating	Linit	Measuring	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit
Reset pulse width ^{*1}	P _{RST}	-	2	-	-		
P00"H" level setup time	tsp00	-	1	-	-	ms	1
P00"H" level hold time ^{*1}	t _{HP00}	-	1	-	-		


*1: except ISP mode. Refer to the User's manual "25.4 In-System Programing Function" for the timing in ISP mode.

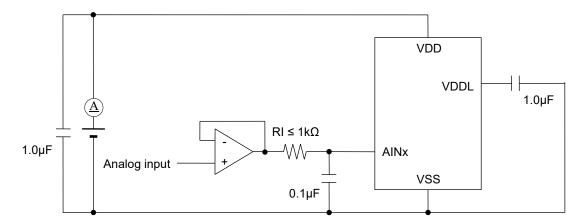
 $^{*2}: V_{\text{DD}}\text{=}4.5\text{V}$ or over at power on.

Slope of Power supply and Power On Reset

			(Vss =0V, T	a=-40 to +10)5°C, unless	otherwis	se specified)
Parameter	Symbol	Condition		Rating		Unit	Measuring
Symbol	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit
Power supply voltage rising inclination	Svr	-	-	-	60	V/ms	
Power supply voltage falling inclination	Svf	-	-	-	2	v/ms	
Power on reset	VPORR	At Power up (rising)	3.70	4.10	4.50	v	1
detection voltage	VPORF	At Power down (falling)	3.60	4.00	4.40	V	
Power on reset minimum pulse width	PPOR	-	200	-	-	μs	
CPU operation start time (from the release of reset to the CPU starts to run)	tcpui	_	11.5	16.5	-	ms	-

[Note]

- If a pulse shorter than the Power on reset minimum pulse width is asserted to V_{DD}, it may cause the MCU malfunction. Apply prevent measurement such as bypass capacitors or external reset input, and so on.
- Set V_{DD} to 4.5V or higher before starting CPU operation.


LLD characteristics

			(VSS = 0V,		05 C, unless	ounerwis	e specilieu)	
Demension	Oursels al	O an diti an		Rating		1.1	Measuring	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit	
LLD Low voltage detection level	Vlld	-	4.08	4.25	4.42	V	1	
LLD current consumption	I _{LLD}	-	-	10	-	nA	1	

(V_{SS} =0V. Ta=-40 to +105°C. unless otherwise specified)

Successive Approximation Type A/D Converter

		0		Rating			
Parameter	Symbol	Condition	Min.	Тур.	Max.	- Unit	
Resolution	n _{AD}	-	-	-	12	bit	
Conversion clock	fadclk	nominal value	32.768	-	16000	kHz	
		f _{ADCLK} = 16MHz	1.375	-	-		
	-	$f_{ADCLK} = 32.768 \text{kHz}$	-	518.799	-		
Conversion time	t _{CONV}	At temperature conversion (f _{ADCLK} = 4MHz)	10.5	-	-	μs	
		PGA is used (f _{ADCLK} = 16MHz)	8	-	-		
Overall error	-	$4.5V \le V_{\text{REF}} \le 5.5V$	-6	-	+6		
		f _{ADCLK} = 16MHz	-4	-	+4		
		f _{ADCLK} = 8MHz	-7	-	+7		
Integral non-linearity		f _{ADCLK} ≤ 4MHz	-8	-	+8		
error	INL _{AD}	Reference voltage = Internal reference voltage (f _{ADCLK} ≤ 8MHz)	-	±64	-		
		Reference voltage = Internal reference voltage (f _{ADCLK} ≤ 4MHz)	-30	-	+30		
		f _{ADCLK} = 16MHz	-3	-	+3		
		f _{ADCLK} = 8MHz	-5	-	+5		
Differential non linearity		f _{ADCLK} ≤ 4MHz	-7	-	+7		
Differential non-linearity error	DNLad	DNLad	Reference voltage = Internal reference voltage (f _{ADCLK} ≤ 8MHz)	-	±63	-	LSE
		Reference voltage = Internal reference voltage (f _{ADCLK} ≤ 4MHz)	-29	-	+29		
		f _{ADCLK} = 16MHz	-8	-	+8		
7 .	705	f _{ADCLK} = 8MHz	-8	-	+8		
Zero-scale error	ZSE	f _{ADCLK} ≤ 4MHz	-10	-	+10		
		Reference voltage = Internal reference voltage	-80	-	+80		
		f _{ADCLK} = 16MHz	-8	-	+8		
E.U. s s s		fadclk = 8MHz	-8	-	+8		
Full-scale error	FSE	f _{ADCLK} ≤ 4MHz	-10	-	+10		
	[Reference voltage = Internal reference voltage	-80	-	+80		
Internal reference voltage	VADCREFI	-	2.45	2.5	2.55	V	
Temperature conversion		f _{ADCLK} = 4MHz	-10		-8	LSB/	

The current flows during the ADC sampling as it takes charging. Make the output impedance of the analog signal source $1k\Omega$ or smaller. Also, putting 0.1μ F capacitor on the ADC input pin is recommended for noise reduction.

Analog comparator

(V_{DD}=4.5 to 5.5V, V_{SS}=0V, Ta=-40 to +105°C, unless otherwise specified)

Parameter	Symbol	Symbol Condition		Rating	-	Unit	Measuring
i arameter	Oymbol	Condition	Min.	Тур.	Max.	Onic	circuit
Comparator in-phase Input voltage range	Vcmr	-	0.1	-	V _{DD} -0.1	V	
Comparator Input offset	Vcmof	Ta=+25°C, V _{DD} =5.0V	-	±5	-	mV	
Comparator reference voltage	Vcmrefi	-	0.75	0.8	0.85	\vee	1
Comparator Hysteresis	V _{CHYS}	-	-	15	-	mV	
Comparator		Hysteresis mode OFF (Input amplitude \pm 100mV)	-	-	100	50	
Operation delay time	V _{CTS}	Hysteresis mode ON (Input amplitude \pm 100mV)	-	120	-	ns	

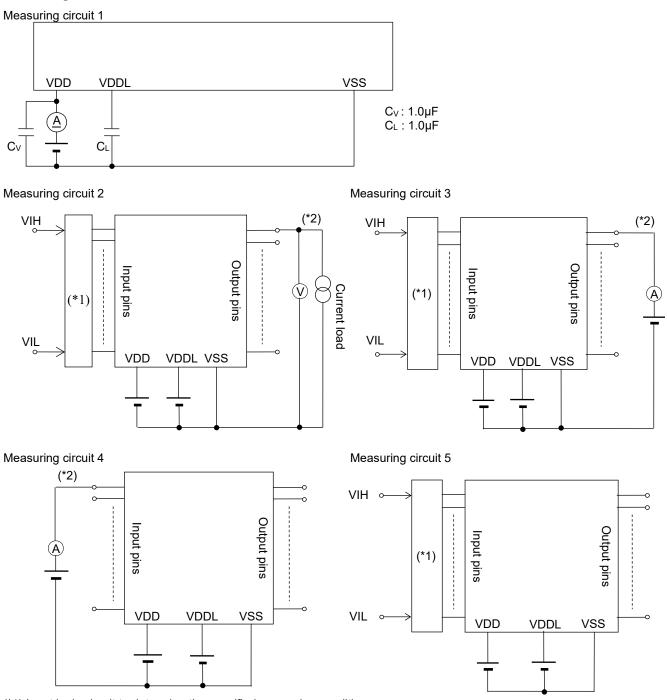
D/A Converter

(V_DD=4.5 to 5.5V, V_SS =0V, Ta=-40 to +105°C, unless otherwise specified)

Parameter	Symbol	Condition	Rating			Unit
	Symbol	Condition	Min.	Тур.	Max.	Unit
Resolution	NDA	-	-	-	8	bit
Conversion cycle	tc	-	10	-	-	μs
Integral non-linearity error	INL _{DA}	RL=4MΩ	-2	-	2	LSB
Differential non-linearity error	DNL _{DA}	RL=4MΩ	-1	-	1	
Output impedance	Ro	-	5	10	15	kΩ
Full-scale error	FSE	$V_{REF}=V_{DD}$	V _{DD} -0.025	V _{DD}	V _{DD} +0.025	
		V _{REF} =internal 0.8V reference voltage	0.725	0.8	0.875	V
DAC internal reference voltage	VDACREFI	-	0.75	0.8	0.85	

Programable Gain Amp

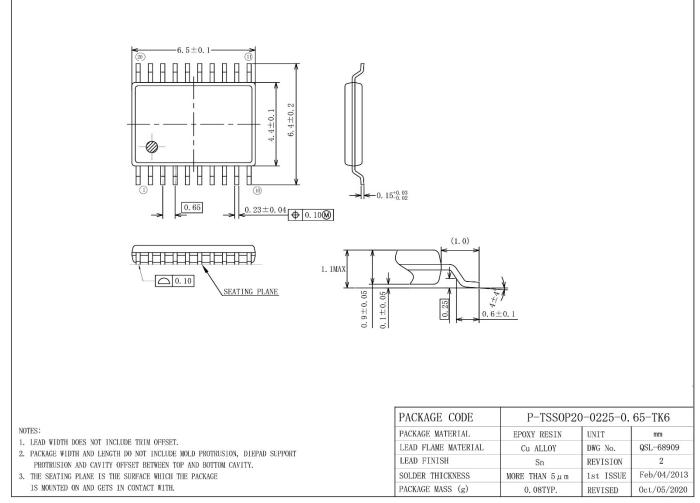
(V_DD=4.5 to 5.5V, V_SS =0V, Ta=-40 to +105°C, unless otherwise specified)


	•					. ,	
Parameter	Quinchal	Condition	Rating			Linit	
	Symbol	Condition	Min.	Тур.	Max.	Unit	
Gain deviation*1	-	Gain=4	-0.7	-	+0.7	%	
		Gain=8	-1.0	-	+1.0		
		Gain=16	-1.5	-	+1.5		
		Gain=32	-2.0	-	+2.0		
Input offset	VINPGAOS	Ta=+25 °C, V _{DD} =5.0V	-	±5	-	mV	
Input voltage range	VINPGA	-	0.0	-	V _{DD} /Gain	V	
Output voltage range	Voutpga	-	0.0	-	V _{DD} -0.5	V	
Slew rate	Vpgasr	Gain=4, 8	2.5	-	-		
		Gain=16, 32	1.4	-	-	V/µs	

^{*1}:VINPGA=0.1*VDD/Gain to 0.9*VDD/Gain

Flash Memory

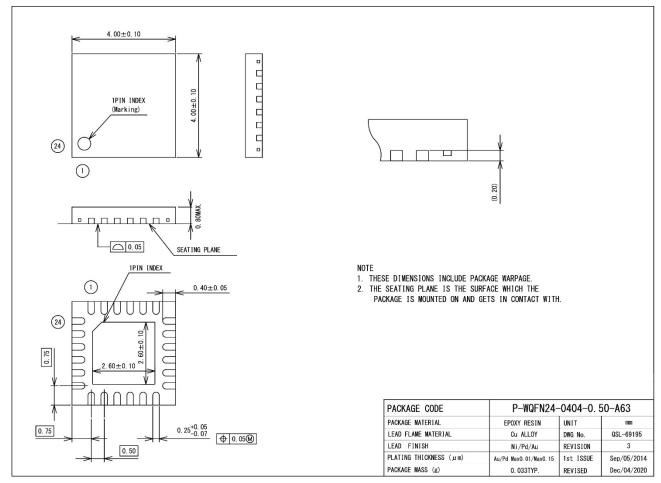
					(Vss= 0V)	
Parameter	Symbol	Cond	dition	Range	Unit	
Operating temperature	TOP	Data flash memo	ory, At write/erase	-40 to +85		
		Flash ROM, At write/erase		0 to +40	°C	
Operating voltage	V _{DD}	At write/erase		+4.5 to +5.5	V	
Maximum rewrite count	CEPD	Data Flash		10000	t ime = =	
	CEPP	Program Flash		100	- times	
Erasing unit	- E	Block erasing	Program Flash	16K		
			Data Flash	all area		
			Program Flash	1K	Byte	
	-	Sector erasing	Data Flash	128		
Erasing time (Max.)	-	Block erasing / Sector erasing		50	ms	
Writing unit		Program Flash		4	Byte	
		Data Flash		1		
Writing time (Max.)	-	Program Flash		80		
	-	Data Flash		40	μs	
Data retention period	YDR	rewriting cou	int 100 times	15	years	


Measuring circuit

(*1) Input logic circuit to determine the specified measuring conditions (*2) Measured connecting specified pins

PACKAGE DIMENSIONS

20pin TSSOP Package



(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

24pin WQFN Package

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

Note for the package with exposed die pad

The die pad is exposed on the bottom of WQFN package. Make the die pad electrically open when soldering onto the PCB.

REVISION HISTORY

Document Date	Page			
	Date	Previous Edition	Current Edition	Description
FEDL62Q2000-01	Apr 1, 2024	-	-	1 st Edition
FEDL62Q2045-02 May 24, 2024	-	-	Change the document name from FEDL62Q2000 to FEDL62Q2045	
	····· , _ ·, _ · - ·	22	22	Correction of incorrect CPU startup start time

Notes for product usage

Notes on this page are applicable to the all ROHM microcontroller products. For individual notes on each RHOM microcontroller product, refer to [Note] in the chapters of each user's manual. The individual notes of each user's manual take priority over those contents in this page if they are different.

HANDLING OF UNUSED INPUT PINS
Fix the unused input pins to the power pin or GND to prevent to cause the device performing wrong operation or
increasing the current consumption due to noise, etc. If the handlings for the unused pins are described in the chapters,
follow the instruction.

2. STATE AT POWER ON

At the power on, the data in the internal registers and output of the ports are undefined until the power supply voltage reaches to the recommended operating condition and "L" level is input to the reset pin. On ROHM microcontroller products that have the power on reset function, the data in the internal registers and output of the ports are undefined until the power on reset is generated. Be careful to design the application system does not work incorrectly due to the undefined data of internal registers and output of the ports. ACCESS TO UNUSED MEMORY

3. ACCESS TO UNUSED MEMORY If reading from unused address area or writing to unused address area of the memory, the operations are not guaranteed.

4. CHARACTERISTICS DIFFERENCE BETWEEN THE PRODUCT Electrical characteristics, noise tolerance, noise radiation amount, and the other characteristics are different from each microcontroller product. When replacing from other product to ROHM microcontroller products, please evaluate enough the apparatus/system which implemented ROHM microcontroller products.

5. USE ENVIRONMENT When using ROHM microcontroller products in a high humidity environment and an environment where dew condensation, take moisture-proof measures.

Notice

Precaution on using ROHM Products

1) When using ROHM Products, refer to the latest product information and ensure that usage conditions (absolute maximum ratings^{*1}, recommended operating conditions, etc.) are within the ranges specified. ROHM disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of ROHM Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of ROHM Products, please take safety at your own risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures.

*1: Absolute maximum ratings: a limit value that must not be exceeded even momentarily.

- 2) The Products specified in this document are not designed to be radiation tolerant.
- 3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits for mass production. ROHM disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related information.
- 4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third party with respect to ROHM Products or the information contained in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and application examples, etc.). Therefore, ROHM shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) ROHM intends our Products to be used in a way indicated in this document. Please be sure to contact a ROHM sales office if you consider the use of our Products in different way from original use indicated in this document. For use of our Products in medical systems, please be sure to contact a ROHM representative and must obtain written agreement. Do not use our Products in applications which may directly cause injuries to human life, and which require extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc. ROHM disclaims any and all liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us without our prior written consent.
- 6) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 7) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 8) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or ROHM's Products.
- 9) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

(Note) "ROHM" as used in this document means ROHM Co., Ltd.

Other Precaution

- 1) All information contained in this document is subject to change for the purpose of improvement, etc. without any prior notice. Before purchasing or using ROHM Products, please confirm the latest information with a ROHM sales office.
- 2) ROHM has used reasonable care to ensure the accuracy of the information contained in this document, however, ROHM shall have no responsibility for any damages, expenses or losses arising from inaccuracy or errors of such information.

LTSZ08023 • 01 • 003