

Dear customer

ROHM Co., Ltd. ("ROHM"), on the 1st day of April, 2024, has absorbed into merger with 100%-owned subsidiary of LAPIS Technology Co., Ltd.

Therefore, all references to "LAPIS Technology Co., Ltd.", "LAPIS Technology" and/or "LAPIS" in this document shall be replaced with "ROHM Co., Ltd." Furthermore, there are no changes to the documents relating to our products other than the company name, the company trademark, logo, etc.

Thank you for your understanding.

ROHM Co., Ltd. April 1, 2024



# ML7456N

Sigfox Sub-GHz Microcontroller

## ∎Overview

ML7456N is a Sigfox Sub-GHz Microcontroller, which integrates MCU and RF Transceiver in a single chip.

RF frequency corresponds to 315MHz - 920MHz. It applies to Sigfox, it is low consumption and implements long-range wireless communication.

MCU equips with an 16-bit CPU nX-U16/100(A35 core) and integrated with program memory(Flash memory), data memory(RAM), data Flash and rich peripheral functions such as the multiplier/divider, CRC generator, DMA controller, Clock generator, Simplified RTC, Timer, General Purpose Ports, UART, Synchronous serial port, 1<sup>2</sup>C bus interface unit(Master, Slave), Buzzer, Voltage Level Supervisor(VLS), Successive approximation type A/D converter, D/A converter , Analog comparator, Safety function(IEC60730/60335 Class B), and so on.

The CPU nX-U16/100 is capable of efficient instruction execution in 1-instruction 1-clock mode by pipeline architecture parallel processing.

The built-in on-chip debug function enables debugging and programming the software. Also, ISP(In-System Programming) function supports the Flash programming in production line.

- Product Name ML7456N-700AGD
- Application Remote control Home, Building Security Sensor Network Smart Meters Logistics Tracking Infrastructure Monitoring Monitoring system





## Features

- Sigfox / IEEE802.15.4g , Sigfox RF chip (ML7414)(\*1)
  - Supported standard
    - ♦ Sigfox Revision 2.E
    - ♦ ETSI EN 300 220(Europe)
    - ♦ EN 13757-4:2013(Wireless M-Bus)
    - ♦ RCR STD-30(III and IV types)
    - ♦ ARIB STD-T67
    - ♦ ARIB STD-T108
  - RF frequency: 315MHz 960MHz supported
  - Realized high resolution modulation by using fractional N type PLL direct modulation
  - Modulation formats: BPSK (TX only), 4GFSK/4GMSK, GFSK/GMSK, FSK/MSK (MSK indicates FSK at modulation index = 0.5.)
  - Data transmission rate: 0.1 to 100 kbps
  - Data encoding/decoding by HW: NRZ, Manchester, 3 out of 6
  - Data whitening by HW
  - Programmable frequency channel filters
  - Programmable frequency deviation function
  - TX/RX data inverse function
  - 36MHz oscillator circuits/TCXO (36MHz) direct input supported
  - Programmable oscillator's circuit pins load capacitance
  - Super-power-saving low speed RC oscillator circuit
  - Low speed clock adjustment function
  - Frequency fine tuning function (using fractional N type PLL)
  - Synchronous serial peripheral interface(SPI)
  - On-chip TX PAPower control function
  - TX power fine tuning function (±0.2 dB)
  - TX power automatic ramping control
  - External TX PA control function
  - RSSI indicator and threshold judgment function
  - High speed carrier checking function
  - AFC function (IF frequency automatic adjustment by Fractional N type PLL adjustment)
  - Antenna diversity function
  - Automatic wake-up, auto SLEEP function (32kHz clock direct inputor internal RC oscillator circuit selectable)
  - General purpose timer (2ch)
  - TEST PATTERN GENERATOR (PN9, CW, 01 PATTERN, ALL"1", ALL"0" OUTPUT)
  - Packet mode function
    - ♦ Wireless M-BUS packet format (Format A/B)
    - $\diamond \quad \text{General purpose packet format (Format C/D)}$
    - ♦ Max. 255-byte (Format A/B), 2047-byte (Format C/D) packet length
    - $\Leftrightarrow \quad \text{TX FIFO (64 byte), RX FIFO (64 byte)}$
    - ♦ RX Preamble pattern detection (Max.4 byte)
    - ♦ Automatic TX preamble length generation (Max.length 16383 byte)
    - $\diamond$  SyncWord setting function (Max. 4byte  $\times$  2 type)
    - Program CRC function (CRC32/CRC16/CRC8 selectable, fully programmable polynomial)
    - ♦ Address check function (C-field/M-field/A-field in Wireless M-Bus can be detected)
    - \* Proprietary packet format is possible depending on setting
    - ♦ FEC function (IEEE802.15.4g compliant)

\*Please refer to "ML7414 Application Note Hardware details" about RF part in detail.

- MCU 16 bit CPU nX-U16/100 A35 core chip(ML62Q1532)
- CPU
  - 16-bit RISC CPU: nX-U16/100 (A35 core)
  - Instruction system: 16-bit length instructions
  - Instruction set: Transfer, arithmetic operations, comparison, logic operations, multiplication/division, bit manipulations, bit logic operations, jump, conditional jump, call return stack manipulations, arithmetic shift, and so on
  - Built-in On-chip debug function
  - Built-in ISP (In-System Programming) function
  - Minimum instruction execution time Approximately 30.5 µs (at 32.768 kHz system clock) Approximately 62.5ns/41.6ns (at 16 MHz/24MHz system clock)
- Coprocessor for multiplication and division
  - Multiplication : 16bit × 16bit (operation time : 4 cycles)
  - Division : 32bit ÷ 16bit (operation time : 8 cycles)
  - Division : 32bit ÷ 32bit (operation time : 16 cycles)
  - Multiply-accumulate (non-saturating) : 16bit × 16bit + 32bit (operation time : 4 cycles)
  - Multiply-accumulate (saturating) : 16bit × 16bit + 32bit (operation time : 4 cycles)
  - Signed or Unsigned is selectable
- Internal memory
  - Program memory area 64Kbyte
  - Rewrite count: 100 cycles
  - Write unit: 32bit (4byte)
  - Erase unit: 16Kbyte/1Kbyte
  - Erase/Write temperature: 0 °C to +40 °C
  - Data Flash memory area 4Kbyte
  - Rewrite count 10,000 cycles
  - Write unit: 8bit (1byte)
  - Erase unit: all area/128byte
  - Erase/Write temperature: -40 °C to +85 °C

Back Ground Operation (CPU can work while erasing and rewriting)

This product uses Super Flash® technology licensed from Silicon Storage Technology, Inc.

 Data RAM area 8Kbyte Rewrite unit: 8bit/16bit Parity check function is available (interrupt / reset is generatable at Parity error)

• Clock Generation Circuit

- Low-speed clock (LSCLK)
  - Internal low-speed RC oscillation: Approximately 32.768 kHz
  - External low-speed clock input (ML62Q1500/ML62Q1800 and ML62Q1700 group only) : Approximately 32.768 kHz
  - External low-speed crystal oscillation (ML62Q1500/ML62Q1800 and ML62Q1700 group only) : 32.768 kHz crystal resonator is connectable.
  - 3 selectable crystal oscillation mode (Tough, Normal, and Low current consumption) -Tough mode: Largest oscillation allowance to make highest resistance against leakage between the pins -Normal mode: Normal oscillation allowance and current consumption
- -Low current consumption mode: Smallest oscillation allowance to make lower current consumption • High-speed clock (HSCLK)
- PLL oscillation: 2 selectable oscillation frequency (24MHz and 16MHz) by code option
- Watch Dog Timer (WDT): built-in independent clock for WDT (RC1K: Approximately 1kHz)

- Reset
  - Reset by reset input pin
  - Reset by Power-On Reset
  - Reset by WDT overflow
  - Reset by WDT invalid clear
  - Reset by RAM parity error
  - Reset by unused ROM area access (instruction access)
  - Reset by voltage level supervisor (VLS)
  - Software reset by BRK instruction (reset CPU only)
  - Reset the peripherals individually
  - Collective reset to the all control pins and peripheral circuits.
- Power management
  - HALT mode: CPU stops executing instruction, peripheral circuits continue working
  - HALT-H mode: CPU stops executing instruction, high-speed clock oscillation stops and peripheral circuits continue working with low-speed clock
  - STOP mode: CPU and peripheral circuits stops executing instruction, both high-speed oscillation and low-speed oscillation stops.
  - STOP-D mode: CPU and peripheral circuits stops executing instruction, both high-speed oscillation and low-speed oscillation stops. The internal logic voltage (V<sub>DDL</sub>) goes down to reduce the current consumption
  - (RAM)

data is retained).

- Clock gear: High-speed system clock frequency can be changed (1/1, 1/2, 1/4, 1/8, 1/16 or 1/32 of HSCLK)
- Block Control Function: Powers down the unused function blocks (reset the block or stop supplying the clock)
- Interrupt controller
  - External interrupt ports : max. 6
  - Non-maskable interrupt source: 1 (Internal source: WDT)
  - Maskable interrupt sources: max. 51
  - Four step interrupt levels
- Watchdog timer (WDT)
  - Selectable Operating clock : select RC1K or LSCLK by code option
  - Overflow period: 8selectable (7.8ms, 15.6ms, 31.3ms, 62.5ms, 125ms, 500ms, 2s and 8s)
  - Selectable window function (enable or disable): configurable clear enable period (50% or 75% of overflow period)
  - Selectable WDT operation : select Enable or Disable by code option
  - Readable WDT counter : WDT counter monitor function
- DMA (Direct Memory Access) controller
  - Channel : 2channels
  - Transfer unit: 8bit/16bit
  - Transfer count: 1 to 1024
  - Transfer cycle: 2 cycle transfer
  - · Transfer address: Fixed addressing mode, inclement addressing mode , and decrement addressing mode
  - Transfer target: Special Function Register (SFR)/RAM → SFR/RAM (Transfer from/to Flash is not supported)
  - Transfer request: External pins, Serial communication unit, Successive approximation type A/D converter, 16bit timer, and Functional timer
- Low-speed Time base counter
  - Generate 8 frequency (128Hz to1Hz) internal pulse signals by dividing the Low-speed clock (LSCLK)
  - Selectable 3 interrupts from eight frequency internal pulse signals
  - 1Hz or 2Hz output from general purpose port
  - Built-in Frequency adjust function (Adjust range: Approximately -488ppm to +488ppm, adjust resolution: Approximately 0.119ppm)

- Simplified RTC
  - Channel: 1 channel
  - Count by a unit for one second from "00 min. 00 sec" to "59 min. 59 sec"
  - Selectable Periodical interrupt request from four periods (0.5s, 1s, 30s or 60s)
  - · Built-in minute and second writing error protraction function
- Functional timer
  - Channel: Max. 6 channels (output 4 channels)
  - Built-in timer, capture, and PWM function by 16 bit counter
  - Continuous mode, One shot mode is available
  - Two types of PWM output with the same period and different duties, and complementary PWM output with the dead time
  - · Monitor input signal duty and the period by capture function
  - · Generate periodical interrupts, duty interrupts, and interrupts coincided with set value.
  - · Counter Start, Stop, Counter clear triggered by an external inputs or Timer
  - · Generate Emergency stop and emergency stop interrupt triggered by an external input
  - · Same start/stop among different channels of the functional timer
  - · Selectable counter clock(external clock or divided by 1 to 128 of LSCLK or HSCLK) for each channels
- 16bit General timers
  - Channel: Max. 6 channels (output 2 channels)
  - 8 bits timer mode and 16-bit timer mode
  - (16bit x 1channel can be used as 8bit x 2channels)
  - · Same start/stop among different channels of 16bit (8bit) timer
  - Timer output (toggled by overflow)
  - · Selectable counter clock (external clock or divided by 1 to 128 of LSCLK or HSCLK) for each channels
- Serial communication unit
  - Synchronous Serial Port (SSIO) mode or UART mode is selectable
  - Channel: Max. 2 channels

< Synchronous Serial Port mode >

- Selectable from Master and Slave
- Selectable from LSB first or MSB first
- Selectable 8-bit length or 16-bit length

## < UART mode>

- Selectable from Full-duplex communication mode or Half-duplex communication mode
- 5 to 8 bit length, parity or no parity, odd parity or even parity, 1 stop bit or 2 stop bits
- Selectable from Positive logic or Negative logic
- Selectable from LSB first or MSB first
- Configurable wide range communication speed
  - 32.768kHz operation clock : 1 bit/s to 4,800 bit/s
  - 24MHz operation clock : 600 bit/s to 3M bit/s
    - 16MHz operation clock : 300 bit/s to 2M bit/s
- Built-in baud rate generator
- I<sup>2</sup>C bus unit (Master / Slave)
  - Selectable from Master mode or Slave mode
  - Channel: 1 channel

## < Master function >

- Standard mode (100 kbit/s), fast mode (400 kbit/s) and 1Mbps mode(1Mbit/s)
- Handshake (Clock synchronization)
- 7bit address format (10bit address format is supported)
- < Slave function >

- Standard mode (100 kbit/s), fast mode (400 kbit/s) and 1Mbps mode(1Mbit/s)
- Clock stretch function
- 7bit address format
- I<sup>2</sup>C bus Master
  - Channel: 1 channel
  - Standard mode (100 kbit/s), fast mode (400 kbit/s) and 1Mbps mode(1Mbit/s)
  - Handshake (Clock synchronization)
  - 7bit address format (10bit address format is supported)
- General-purpose ports (GPIO)
  - I/O port: Max. 15 (Including one pin for on-chip debug and pins for other shared functions)
  - Input port: Max. 2 (Including a shared function)
  - External interrupt port: Max. 6
  - LED driver port : Max. 12
  - Carrier frequency output function (for IR communication)
- Successive approximation type A/D converter(SA-ADC)
  - Channel: Max. 5 channels
  - Resolution: 10bit
  - · Conversion time: Min. 2.25µs/channel (When the conversion clock speed is 8MHz)
  - Reference voltages are selectable
    - $(V_{DD} pin / Internal reference voltage(V_{REFI} = Approximately 1.55V) / External reference voltage (V_{REF} pin))$
  - · Selected channel repeat conversion
  - · Dedicated result register for each channel
  - · Interrupt determining by upper limit or lower limit threshold of conversion result
- Voltage Level Supervisor (VLS)
  - Accuracy:  $\pm 4\%$
  - Threshold voltage: 12 selectable (from 1.85V to 4.00V)
  - Functional Voltage level detection reset (VLS reset)
  - Functional Voltage level detection interrupt (VLS0 interrupt)
- Analog comparator
  - Channel: Max. 2 channels
  - Selectable interrupt from the comparator output (rising edge or falling edge)
  - Comparable with external input and internal reference voltage (0.8V)
- D/A converter
  - Channel: Max. 1 channel
  - Resolution: 8bit
  - Output impedance: 6k ohm (Typ.)
  - · R-2R ladder type
- Buzzer
  - 4 buzzer mode (Continuous sound, Single sound, Intermittent sound 1 and Intermittent sound 2)
  - frequencies (4.096kHz to 293Hz)
  - 15 step duty (1/16 to 15/16)
  - · Selectable from positive logic buzzer output or negative logic buzzer output
  - CRC(Cyclic Redundancy Check) generator
    - Generation equation:  $X^{16}+X^{12}+X^5+1$
    - Selectable from LSB first or MSB first
    - · Built-in Automatic program memory CRC calculation mode in HALT mode

- Safety Function (IEC60730/60335 Class B)
  - · Automatic switching to the internal low-speed RC oscillation in case the low-speed crystal oscillation stopped
  - RAM/SFR guard
  - Automatic program memory CRC calculation
  - RAM parity error detection
  - ROM unused area access reset (instruction access)
  - Clock mutual monitoring
  - WDT counter monitoring
  - SA-ADC test
  - UART test
  - · Synchronous serial I/O test
  - I<sup>2</sup>C bus test
  - GPIO test
- Operating Voltage 2.6V to 3.6V
- ♦ Operating temperature -40°C to 85°C (Guaranteed Operation) -30°C to 75°C (Guaranteed RF characteristics)
- Current consumption

| Sleep m | ode  | 3.45uA (RF=IDD_SLP1/MCU=IDD2-2) |
|---------|------|---------------------------------|
| TX      | 20mW | 44.7mA (RF=IDD_TX20/MCU=IDD5)   |
| RX      |      | 18.2mA (RF=IDD_RX/MCU=IDD5)     |

Package

48 pin WQFN Lead free, RoHS Compliant

(\*1)Supported Standard and frequency differs from products ML7456N-700AGDZ0ANL Sigfox(RC3), ARIB STD-T108

## Related Documents

Please refer to "ML7414 Application Note Hardware details" about RF part in details.

Please refer to "ML62Q1000 Series User's Manual" about MCU part of ML61Q1532 in details. ML7456N uses a part of pins of ML62Q1532. Prioritize this document information about the pin explanation, the number of equipped functions which relates to the number of pins.

Replace pin names between this document and "ML62Q1000 User's Manual" as following the table.

| This document | ML62Q1000 Series User's Manual |
|---------------|--------------------------------|
| VDDIO_MCU     | VDD                            |
| REG_CORE_MCU  | VDDL                           |

### Description Convention

 Numbers description
 '0xnn' indicates hexadecimal. '0bnn' indicates binary. Example: 0x11= 17(decimal), 0b11= 3(decimal)

2) Registers description
 Registers are described as follows.
 [<register name>: B<Bank No> <register address>] register

Example: [RF\_STATUS: B0 0x0B(3-0)] Register name: RF\_STATUS Bank No: 0 Register address: 0x0B

3) Bit name description
 Bit names are described as follows.
 <bit name> ([<register name>: B<Bank No> <register address>(<bit location>)])

Example: SET\_TRX([RF\_STATUS: B0 0x0B(3-0)]) Register name: RF\_STATUS Bank No: 0 Register address: 0x0B Bit: Bit3 to bit0

## ■Block Diagram

•Whole/RF part



## MCU part

Block diagram of MCU part ML62Q1500/1800 group



\* : Indicates the shared function of general ports. For available pins, refer to the pin list and pin definitions.

\*1 : Shared UART and Synchronous Serial Port.

\*2 : Not available as the input port when connecting to the on-chip debug emulator.

\*3 : Not available as the input port when connecting to the crystal resonator.

## ■PIN Layout



Note: GND pad in the middle of the LSI is reverse side (name: reversed side GND).

## ■PIN List

Table PIN List(1/2)

| Pin No. | PIN Name<br>(Primary<br>Function) | Primary<br>Function<br>Others      | 2 <sup>nd</sup><br>function<br>communications | 3 <sup>rd</sup><br>function<br>communications | 4 <sup>th</sup> function<br>communications | 5 <sup>th</sup><br>function<br>Timers | 6 <sup>th</sup><br>function<br>Others | 7 <sup>th</sup><br>function<br>Others | 8 <sup>th</sup><br>function<br>ADC |
|---------|-----------------------------------|------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------------|
| 1       | VBG                               | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 2       | REG OUT                           | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 3       | VDDIO MCU                         | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 4       | REG CORE RF                       | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 5       | XIN                               | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 6       | REG CORE MCU                      | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 7       | RESET_N *1                        | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 8       | P00/TEST *2                       | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 9       | P01                               | DACOUT0                            | -                                             | -                                             | -                                          | -                                     | TBCOUT0                               | TBCOUT1                               | -                                  |
| 10      | XOUT                              | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 11      | P02                               | EXI0<br>EXTRG0                     | SU0_RXD0<br>SU0_SIN                           | -                                             | -                                          | FTM0P                                 | OUTLSCLK                              | CMP0M                                 | -                                  |
| 12      | P03                               | EXI1<br>EXTRG1                     | SU0_TXD0<br>SU0_SOUT                          | SU0_TXD1                                      | I2CU0_SDA                                  | FTM0N                                 | OUTHSCLK                              | CMP0P                                 | AIN11                              |
| 13      | VDDIO_RF                          | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 14      | EXT_CLK                           | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 15      | SDO                               | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 16      | P04                               | EXI2<br>EXTRG2                     | SU0_SCLK                                      | -                                             | I2CU0_SCL                                  | TMH0OUT                               | -                                     | -                                     | -                                  |
| 17      | P06                               | -                                  | -                                             | -                                             | I2CM0_SDA                                  | -                                     | -                                     | -                                     | -                                  |
| 18      | P07                               | -                                  | SU0_RXD1                                      | SU0_RXD0                                      | I2CM0_SCL                                  | -                                     | -                                     | -                                     | -                                  |
| 19      | SCLK                              | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 20      | SCEN                              | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 21      | SDI                               | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 22      | GPIO_RF0                          | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 23      | GPIO_RF1                          | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 24      | GPIO_RF2                          | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 25      | GPIO_RF3                          | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 26      | P17                               | EXI3<br>EXTRG3                     | SU0_RXD1                                      | SU0_RXD0                                      | -                                          | FTM1P                                 | TBCOUT0                               | BZ0P                                  | AIN0                               |
| 27      | P20                               | -                                  | SU0_TXD1                                      | -                                             | -                                          | FTM1N                                 | TBCOUT1                               | BZ0N                                  | AIN1                               |
| 28      | P21                               | EXI4<br>EXTRG4                     | SU1_RXD0<br>SU1_SIN                           | -                                             | -                                          | FTM2P                                 | OUTLSCLK                              | -                                     | AIN2                               |
| 29      | PA_OUT                            | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 30      | P22                               | -                                  | SU1_TXD0<br>SU1_SOUT                          | SU1_TXD1                                      | I2CM0_SDA                                  | FTM2N                                 | OUTHSCLK                              | -                                     | AIN3                               |
| 31      | REG_PA                            | -                                  | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 32      | P23                               | EXI5<br>EXTRG5<br>V <sub>REF</sub> | SU1_SCLK                                      | -                                             | I2CM0_SCL                                  | TMH2OUT                               | -                                     | -                                     | $V_{\text{REFO}}$                  |

### ML7456N

| Pin No. | PIN Name<br>(Primary Function) | Primary<br>Function<br>Others | 2 <sup>nd</sup><br>function<br>communications | 3 <sup>rd</sup><br>function<br>communications | 4 <sup>th</sup> function<br>communications | 5 <sup>th</sup><br>function<br>Timers | 6 <sup>th</sup><br>function<br>Others | 7 <sup>th</sup><br>function<br>Others | 8 <sup>th</sup><br>function<br>ADC |
|---------|--------------------------------|-------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------------|
| 33      | VDD PA                         | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 34      | AMON                           | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 35      | LNA_P                          | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 36      | VDD_RF                         | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 37      | P62                            | -                             | -                                             | -                                             | -                                          | FTM4N                                 | -                                     | CMP1P                                 | -                                  |
| 38      | LP                             | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 39      | VDD_CP                         | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 40      | P63                            | -                             | -                                             | -                                             | -                                          | FTM4P                                 | -                                     | CMP1M                                 | -                                  |
| 41      | IND1                           | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 42      | GND_VCO                        | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 43      | IND2                           | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 44      | VB_EXT                         | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 45      | VDD_VCO                        | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 46      | XT0                            | PI00                          | -                                             | -                                             | -                                          | -                                     | _                                     | -                                     | -                                  |
| 47      | XT1                            | PI01                          | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |
| 48      | VDD_REG                        | -                             | -                                             | -                                             | -                                          | -                                     | -                                     | -                                     | -                                  |

### Table PIN List(2/2)

\*1 Connect RESET\_N pin to VDD when On-chip debug function is not used. \*2 Connect P00/TEST0 pin to VDD when On-chip debug function is not used.

## ■PIN Definitions

|       |   | I/O Definition        |      | S | ymbols in reset state |    |   | Active Level |
|-------|---|-----------------------|------|---|-----------------------|----|---|--------------|
| Ι     | : | Digital input         | Ι    | : | Input state           | Н  | : | H level      |
| 0     | : | Digital output        | 0    | : | Output state          | L  | : | L level      |
| Is    | : | Schmitt trigger input | Hi-Z | : | High impedance        | OD | : | Open drain   |
| IO    | : | Digital input/output  |      |   |                       | Р  | : | Rising       |
| IA    | : | Analog input          |      |   |                       | Ν  | : | Falling      |
| OA    | : | Analog output 1       |      |   |                       |    |   |              |
| Oah   | : | Analog output 2       |      |   |                       |    |   |              |
| IOA   | : | Analog input/output   |      |   |                       |    |   |              |
| Irf   | : | RF input              |      |   |                       |    |   |              |
| Orf   | : | RF output             |      |   |                       |    |   |              |
| VDDIO | : | I/O power supply      |      |   |                       |    |   |              |
| VDDRF | : | RF power supply       |      |   |                       |    |   |              |
| GND   | : | Ground                |      |   |                       |    |   |              |

## MCU Part

The following Table shows each function's pin lists of ML7456N MCU part. "-" indicates the VDD pin, "(I)" indicates the input pin, "O" indicates the output pin and "(I/O)" indicates the input/output pin.

| Function                | Signal name | Pin name              | I/O | Description                                                                                                                                                                                                                                                                                                              | Logic    |
|-------------------------|-------------|-----------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                         | -           | Reserved<br>Side GND  | -   | Negative Power Supply                                                                                                                                                                                                                                                                                                    | -        |
| Power                   | -           | V <sub>DDIO_MCU</sub> | -   | Positive Power Supply<br>Connect a Capacitor Cv between VDDIO_MCU and Vss                                                                                                                                                                                                                                                | -        |
|                         | -           | REG_COR<br>E_MCU      | -   | Power supply pin for internal logic (internal regulator's output).<br>Connect a Capacitor $C_L(1\mu F)$ between this pin and $V_{SS}$                                                                                                                                                                                    | -        |
| Test                    | TEST0       | P00                   | I/O | Input for testing, is used as on-chip debug interface<br>and ISP function. If this pin is used for on-chip debug,<br>this pin can not be used for general port. P00 is<br>initialized as pull-up input mode by the system reset.                                                                                         | -        |
|                         | Vrefo       | P23                   | —   | Reference voltage output                                                                                                                                                                                                                                                                                                 | -        |
| System                  | RESET_N     | RESET_N               | I   | Reset input.<br>Applying "L" level shifts the MCU in system reset<br>mode.<br>Applying "H" level shifts the CPU in program running<br>mode.<br>Used for on-chip debug interface and ISP function.<br>No pull-up resistor is installed.                                                                                   | Negative |
|                         | XT0         | XT0                   | I   | Low speed crystal oscillation pins<br>Connect 32 768kHz crystal resonator and Connect                                                                                                                                                                                                                                    | -        |
|                         | XT1         | XT1                   | 0   | capacitors between the pin and $V_{SS}$ .                                                                                                                                                                                                                                                                                |          |
|                         | OUTLSCLK    | P02<br>P21            | 0   | Low-speed clock output.                                                                                                                                                                                                                                                                                                  | -        |
|                         | OUTHSCLK    | P03<br>P22            | 0   | High-speed clock output.                                                                                                                                                                                                                                                                                                 | -        |
|                         | PI00,PI01   | XT0,XT1               | Ι   | General purpose input.<br>Not available as general inputs when using the crystal<br>oscillator, because this pin is combined use with<br>Low-speed oscillator pin.                                                                                                                                                       | Positive |
| General Purpose<br>Port | P00         | P00                   | I/O | General purpose I/O port<br>- High-impedance<br>- Input with Pull-UP (initial value)<br>- Input without Pull-UP<br>- CMOS output<br>- N-channel open drain output<br>Not available to use as general port when using for<br>on-chip debug interface or ISP function, because this<br>pin is combined use with TEST0 pin. | Positive |
|                         | P01 to P07  | P01 to P07            |     | General purpose I/O                                                                                                                                                                                                                                                                                                      |          |
|                         | P17         | P17                   |     | - High-impedance (initial value)                                                                                                                                                                                                                                                                                         |          |
|                         | P20 to P23  | P20 to P23            | I/O | - Input with Pull-UP                                                                                                                                                                                                                                                                                                     | Positive |
|                         | P62 to P63  | P62 to P63            |     | - CMOS output<br>- N-channel open drain output                                                                                                                                                                                                                                                                           |          |

## LAPIS Technology Co., Ltd.

#### ML7456N

| Function      | Signal name | Pin name | I/O | Description                                        | Logic    |
|---------------|-------------|----------|-----|----------------------------------------------------|----------|
|               | SU0_TXD0    | P03      | 0   | Serial communication unit0 UART0 data output       | Positive |
|               |             | P02      |     | Seriel communication unit@ Full duploy data input  | Positive |
|               | SU0_RXD0    | P07      | I   | Serial communication unito Full-duplex data input  |          |
|               |             | P17      |     | Serial communication unito OARTO data input        |          |
| Sorial        | SU0_TXD1    | P03      | 0   | Serial communication unit0 Full-duplex data output | Positive |
| Communication |             | P20      |     | Serial communication unit0 UART1 data output       |          |
| unit          | SU0_RXD1    | P07      | Ι   | Sorial communication unito LIAPT1 data input       | Positive |
| (LIART mode)  |             | P17      |     | Serial communication unito OARTT data input        |          |
|               | SU1_TXD0    | P22      | 0   | Serial communication unit1 UART0 data output       | Positive |
|               |             | D21      | -   | Serial communication unit1 Full-duplex data input  | Positive |
|               | 301_KAD0    | FZI      |     | Serial communication unit1 UART0 data input        |          |
|               | SU1 TXD1    | P22      | 0   | Serial communication unit1 Full-duplex data input  | Positive |
|               |             | 1 22     | Ŭ   | Serial communication unit1 UART0 data input        |          |

| LOGIC             |
|-------------------|
| al data Positive  |
| al clock Positive |
| al data Positive  |
| al data Positive  |
| al clock Positive |
| al data Positive  |
| Positive          |
| Positive          |
| Positive          |
|                   |
|                   |
| Positive          |
|                   |
|                   |

| Function                       | Signal name | Pin name | I/O | Description                                       | Logic    |
|--------------------------------|-------------|----------|-----|---------------------------------------------------|----------|
|                                | FTM0P       | P02      | 0   | Functional Timer 0 P Output                       | Positive |
|                                | FTM0N       | P03      | 0   | Functional Timer 0 N Output                       | Negative |
|                                | FTM1P       | P17      | 0   | Functional Timer 1 P Output                       | Positive |
|                                | FTM1N       | P20      | 0   | Functional Timer 1 N Output                       | Negative |
|                                | FTM2P       | P21      | 0   | Functional Timer 2 P Output                       | Positive |
|                                | FTM2N       | P22      | 0   | Functional Timer 2 N Output                       | Negative |
| Eunctional Timer               | FTM4P       | P63      | 0   | Functional Timer 4 P Output                       | Positive |
|                                | FTM4N       | P62      | 0   | Functional Timer 4 N Output                       | Negative |
|                                | EXTRG0      | P02      | Ι   | Functional Timer Event Trigger Input              | -        |
|                                | EXTRG1      | P03      | Ι   | Functional Timer Event Trigger Input              | -        |
|                                | EXTRG2      | P04      | Ι   | Functional Timer Event Trigger Input              | -        |
|                                | EXTRG3      | P17      | Ι   | Functional Timer Event Trigger Input              | -        |
|                                | EXTRG4      | P21      | Ι   | Functional Timer Event Trigger Input              | -        |
|                                | EXTRG5      | P23      | -   | Functional Timer Event Trigger Input              | -        |
|                                | TMH0OUT     | P04      | 0   | 16 bit Timer 0 Output                             | Positive |
| 16 hit timer                   | TMH2OUT     | P23      | 0   | 16 bit Timer 2 Output                             | Positive |
| To bit timer                   | EXTRG0      | P02      | I   | 16 bit Timer Event Trigger Input                  | -        |
|                                | EXTRG1      | P03      | Ι   | 16 bit Timer Event Trigger Input                  | -        |
|                                | TROUTO      | P01      | 0   | The virtual frequency edjustment output signal    | Positive |
| Low-speed Time<br>Base Counter | IBCOULO     | P17      | 0   | i ne virtuai frequency adjustment output signal   |          |
|                                | TBCOUT1     | P01      | 0   | Low speed time base counter output signal 1Hz/2Hz | Positive |
| Buzzer                         | BZ0P        | P17      | 0   | Buzzer output (positive phase)                    | Positive |

## ML7456N

| Function           | Signal name      | Pin name | I/O | Description                             | Logic |
|--------------------|------------------|----------|-----|-----------------------------------------|-------|
|                    | EXI0             | P02      | I   | External Interrupt 0 Input              | -     |
|                    | EXI1             | P03      | Ι   | External Interrupt 1 Input              | -     |
| External Interrunt | EXI2             | P04      | -   | External Interrupt 2 Input              | -     |
|                    | EXI3             | P17      | -   | External Interrupt 3 Input              | -     |
|                    | EXI4             | P21      | -   | External Interrupt 4 Input              | -     |
|                    | EXI5             | P23      | -   | External Interrupt 5 Input              | -     |
|                    | V <sub>REF</sub> | P23      | -   | SA-ADC external reference voltage input | -     |
| Successive         | AIN0             | P17      | Ι   | SA-ADC channel 0 input                  | -     |
| approximation      | AIN1             | P20      | Ι   | SA-ADC channel 1 input                  | -     |
| A/D converter      | AIN2             | P21      | Ι   | SA-ADC channel 2 input                  | -     |
| (SA-ADC)           | AIN3             | P22      | Ι   | SA-ADC channel 3 input                  | -     |
|                    | AIN11            | P03      | I   | SA-ADC channel 11 input                 | -     |
|                    | CMP0P            | P03      | Ι   | Comparator input 0 (noninverting input) | -     |
| Analog             | CMP0M            | P02      | Ι   | Comparator input 0 (inverting input)    | -     |
| comparator         | CMP1P            | P62      | I   | Comparator input 1 (noninverting input) | -     |
|                    | CMP1M            | P63      | Ι   | Comparator input 1 (inverting input)    | -     |
| D/A converter      | DACOUT0          | P01      | 0   | D/A converter 0 output                  | -     |

## •RF Part

## ◦RF and Analog Pins

| Pin name | Reset<br>State | I/O | Active<br>Level | Pin Function                                  |
|----------|----------------|-----|-----------------|-----------------------------------------------|
| PA_OUT   | 0              | Orf | -               | RF antenna output                             |
| AMON     | Hi-Z           | ΙΟΑ | -               | Test (*1)                                     |
| LNA_P    | Ι              | IA  | -               | RF antenna input                              |
| LP       | -              | ΙΟΑ | -               | Pin for loop filter                           |
| IND1     | -              | ΙΟΑ | -               | Inductor connection pin for VCO tank          |
| IND2     | -              | ΙΟΑ | -               | Inductor connection pin for VCO tank          |
| VB_EXT   | -              | ΙΟΑ | -               | Pin for smoothing capacitor for internal bias |

[Note]

\*1 Used for checking analog functions at LAPIS Technology.

## ○SPI Interface Pins

| Pin name | Reset<br>State | I/O | Active<br>Level | Pin Function                                                                                                                                                                 |
|----------|----------------|-----|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDO      | Hi-Z           | 0   | H or L<br>or OD | SPI data output or DCLK output(*1)<br>* OpenDrain output is selected in the reset state. When using SDO as<br>CMOS output, set SDO_OD([SPI/EXT_PA_CTRL: B0 0x53(7)]) to 0b0. |
| SCLK     | Hi-Z           | Is  | P or N          | SPI clock input                                                                                                                                                              |
| SCEN     | Hi-Z           | Is  | L               | SPI chip enable<br>L: Enabled<br>H: Disabled                                                                                                                                 |
| SDI      | Hi-Z           | Ι   | H or L          | SPI data input<br>or DIO I/O(*1)                                                                                                                                             |

[Note]

\*1 Please refer to "DIO function"

## Regulator Pins

| Pin name        | Reset<br>State | I/O | Active<br>Level | Pin Function                                                                                   |  |  |  |
|-----------------|----------------|-----|-----------------|------------------------------------------------------------------------------------------------|--|--|--|
| VBG             | -              | Оан | -               | Pin for decoupling capacitor                                                                   |  |  |  |
| REG_OUT         | -              | Оан | -               | Requlator1 output (typ. 1.5V)                                                                  |  |  |  |
| REG_CORE_R<br>F | -              | OA  | -               | Requlator2 output (typ. 1.5V)                                                                  |  |  |  |
| REGPDIN         | Ι              | Ι   | Н               | Power down control pin for regulator<br>Fix to "L" for normal use. "H" is for deep sleep mode. |  |  |  |
| REG_PA          | -              | Оан | -               | Regulator output for PA block                                                                  |  |  |  |

ML7456N

PIN definitions (continued)

#### Miscellaneous Pins

| Pin name         | Reset<br>State | I/O     | Active<br>Level        | Pin Function                                                                |
|------------------|----------------|---------|------------------------|-----------------------------------------------------------------------------|
| XIN<br>N.C.(*2)  | I<br>-         | IA<br>- | P or N<br>-            | 36MHz crystal pin 1<br>* When using TCXO, this must be open.                |
| XOUT<br>TCXO(*2) | -              | OA      | P or N                 | 36MHz crystal pin 2<br>(TCXO input)                                         |
| EXT_CLK          | Hi-Z           | Ю       | -                      | Digital I/O (*3)<br>Reset state: External PA control signal output          |
| GPIO_RF0         | Hi-Z           | ΙΟ      | H or L<br>or<br>OD(*1) | Digital I/O (*4)<br>Reset state: Interrupt indication signal output         |
| GPIO_RF1         | Hi-Z           | Ю       | H or L<br>or<br>OD(*1) | Digital I/O (*5)<br>Reset state: Clock output                               |
| GPIO_RF2         | Hi-Z           | Ю       | H or L<br>or<br>OD(*1) | Digital I/O (*6)<br>Reset state: Antenna diversity selection control signal |
| GPIO_RF3         | Hi-Z           | ΙΟ      | H or L<br>or<br>OD(*1) | Digital I/O (*7)<br>Reset state: TX – RX selection signal output            |

[Note]

- \*1 OD is open drain output.
- \*2 When using TCXO, set TCXO\_EN = 0b1. Please make sure only one of the registers TCXO\_EN and XTAL\_EN is set to 0b1.
- \*3 Refer to [EXTCLK\_CTRL: B3 0x2C].
- \*4 Refer to [GPIO0\_CTRL: B3 0x28].
- \*5 Refer to [GPIO1\_CTRL: B3 0x29].
- \*6 Refer to [GPIO2\_CTRL: B3 0x2A].
- \*7 Refer to [GPIO3\_CTRL: B3 0x2B].

PIN definitions (continued)

## oPower Supply/GND Pins

| Pin name | Reset<br>State | I/O   | Active<br>Level | Pin Function                                                                     |
|----------|----------------|-------|-----------------|----------------------------------------------------------------------------------|
| VDD_REG  | -              | Vddio | -               | Power supply pin for Regulator<br>(Input voltage: 2.6 to 3.6 V)                  |
| VDDIO_RF | -              | Vddio | -               | Power supply for digital I/O<br>(Input voltage: 2.6 to 3.6 V)                    |
| VDD_PA   | -              | Vddio | -               | Power supply for PA block<br>(Input voltage: 2.6 to 3.6 V, depending on TX mode) |
| VDD_RF   | -              | Vddrf | -               | Power supply for RF blocks<br>(REG_OUT is connected, typ. 1.5 V)                 |
| VDD_CP   | -              | Vddrf | -               | Power supply for charge pump<br>(REG_OUT is connected, typ. 1.5 V)               |
| GND      | -              | GND   | -               | GND for VCO                                                                      |
| VDD_VCO  | -              | VDDRF | -               | Power supply for VCO<br>(REG_OUT is connected, typ. 1.5 V)                       |

## •Unused Pins Treatment

Unused pins treatment are as follows: The treatments that impair the basic operations of this LSI are not included.

|                    | Unused pins treatment                                                 |  |  |  |  |  |  |
|--------------------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| Pin Name           | Recommended treatment                                                 |  |  |  |  |  |  |
| XIN                | Open (with TCXO)                                                      |  |  |  |  |  |  |
| EXT_CLK            | Open                                                                  |  |  |  |  |  |  |
| GPIO_RF0           | Open                                                                  |  |  |  |  |  |  |
| GPIO_RF1           | Open                                                                  |  |  |  |  |  |  |
| GPIO_RF2           | Open                                                                  |  |  |  |  |  |  |
| GPIO_RF3           | Open                                                                  |  |  |  |  |  |  |
| AMON               | GND                                                                   |  |  |  |  |  |  |
| RESET_N            | Connect to VDDIO_MCU                                                  |  |  |  |  |  |  |
| P00/TEST0          | Connect to VDDIO_MCU with Pull-UP (Initial Value) that is Input mode. |  |  |  |  |  |  |
| XT0/PI00, XT1/PI01 | Set the pin to Open with HiZ (Initila Value) state.                   |  |  |  |  |  |  |
| P00                |                                                                       |  |  |  |  |  |  |
| P01 to P07         |                                                                       |  |  |  |  |  |  |
| P17                | Set the pin to Open with HiZ (Initila Value) state.                   |  |  |  |  |  |  |
| P20 to P23         |                                                                       |  |  |  |  |  |  |
| P62 to P63         |                                                                       |  |  |  |  |  |  |

### [Note]

If unused input pins, input/output pins are set to input and are high-impedance state and leave open (Input mode without Pull-UP or Input/Output mode), excess current could be drawn. Care must be taken that unused input pins and unused I/O pins should not be left open.

### Internal Pins

This product is configured woth RF and MCU parts. This chapter explains internal pins in the package.

The following table shows internal connections in the package.

#### Table. Internal Connection in the package

| MCU part Internal Pins Name | RF part Internal Pins Name |
|-----------------------------|----------------------------|
| P73                         | REGPDIN                    |
| P74                         | RESETN                     |

The following table shows the internal pins in the package.

Table. Internal Pins in the package (MCU part)

| Function        | Signal Nmae | Pin Name | I/O | Description                                                                                             | Logic    |
|-----------------|-------------|----------|-----|---------------------------------------------------------------------------------------------------------|----------|
| General Purpose | P73         | P73      | 1/0 | General Input/Output<br>•HiZ (Initial Value)<br>•Input with Pull-UP resister                            | Positiva |
| Port            | P74         | P74      | 10  | <ul> <li>Input without Pull-UP resister</li> <li>CMOS output</li> <li>N-ch Open drain output</li> </ul> | TOSHIVE  |

The following table shows the RF part's internal pins in the package.

Table. Internal Pins in the package (RF part)

| Pin Name | Input/Output | Active Level | Reset State | Description                                                                                                                                                             |
|----------|--------------|--------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESETN   | Is           | L            | I / -       | RF Hardware Reset Pin<br>L: Initialize, Stop<br>H: Operation<br>* If this pin is set to "L", RF part is initialized. Set this pin to<br>"L" when RF is deepsleep state. |
| REGPDIN  | Ι            | Н            | I / -       | RF Regulator Power Down Control Pin<br>Fix this pin to "L" when normal operation. Set this pin to "H"<br>when RF is deepsleep state.                                    |

## Electrical Characteristics

## •Absolute Maximum Ratings

Ta = -40 to +85 °C and GND = 0 V are the typical conditions if not defined specifically.

| Item                                 | Symbol             | Condition           | Rating                                                                                           | Unit |
|--------------------------------------|--------------------|---------------------|--------------------------------------------------------------------------------------------------|------|
| I/O power supply                     | Vddio<br>Vddio_mcu | -                   | -0.3 to +4.6                                                                                     | V    |
| RF power supply                      | VDDRF              | -                   | -0.3 to +2.0                                                                                     | V    |
| RF input level                       | Prfi               | Antenna input in RX | +10                                                                                              | dBm  |
| RF output voltage                    | Vrfo               | PA_OUT pin          | -0.3 to 4.6                                                                                      | V    |
| Voltage on Analog Pins 1             | VA                 | -                   | -0.3 to 2.0                                                                                      | V    |
| Voltage on Analog Pins 2             | VAH                | -                   | -0.3 to 4.6                                                                                      | V    |
| Voltage on Digital input Pins        | VIN                | -                   | -0.3 to V <sub>DDI0</sub> +0.3 <sup>*1</sup><br>-0.3 toV <sub>DDI0_MCU</sub> +0.3 <sup>*1</sup>  | V    |
| Voltage on Digital output Pins       | Vout               | -                   | -0.3 to V <sub>DDI0</sub> +0.3 <sup>*1</sup><br>-0.3 to V <sub>DDI0_MCU</sub> +0.3 <sup>*1</sup> | V    |
| Digital output current (RF part)     | Ido                | -                   | -8 to +8                                                                                         | mA   |
| Digital output current<br>(MCU part) | ID02               | -                   | -15 to +15                                                                                       | mA   |
| Power dissipation                    | Pd                 | $Ta = +25^{\circ}C$ | 1.2                                                                                              | W    |
| Storage temperature                  | Tstg               | -                   | -55 to +150                                                                                      | °C   |

\*1: It needs to be less than 4.6V

\*2: Minus sign shows current direction from internal side of LSI to pin.

The current absolute value is the maximum value.

Example: -1mA shows that the maximum 1mA current flows from internal side of LSI to pin.

[Note]

Absolute Maximum Ratings are the tolerance to protect the product's physical quality, do not guarantee the normal operaton.

## •Recommended Operating Conditions

| Item                                     | Symbol | Condition                                                          | Min.    | Standard | Max.    | Unit |
|------------------------------------------|--------|--------------------------------------------------------------------|---------|----------|---------|------|
| Power Supply                             | Vddio  | VDDIO_RF pin<br>VDD_REG pin<br>VDD_PA pin<br>VDDIO_MCU pin<br>(*1) | 2.6     | 3.3      | 3.6     | V    |
| Operating temperature                    | Ta     | -                                                                  | -40     | +25      | +85     | °C   |
| Digital input rise time                  | Tir    | Digital input pins (*1)                                            | -       | -        | 20      | ns   |
| Digital input fall time                  | TIF    | Digital input pins (*1)                                            | -       | -        | 20      | ns   |
| Digital output load                      | Cdl    | All Digital Output pins                                            | -       | -        | 20      | pF   |
| Master clock frequency<br>(XIN/XOUT pin) | FMCK1  | -                                                                  | -       | 36       | -       | MHz  |
| Master clock accuracy (*2)               | Асмск1 | FSK 時                                                              | -20     | -        | +20     | ppm  |
| X' tal equivalent series resistance      | ESR    | -                                                                  | _       | -        | 80      | ohm  |
| TCXO input voltage                       | VTCXO  | DC cut<br>*TCXO opetions selected                                  | 0.8     | -        | 1.5     | Vpp  |
| Operating frequency(CPU)                 | fop    | -                                                                  | 30k     | -        | 25M     | Hz   |
| REG_CORE_MCU attached capacity           | CL     | -                                                                  | 1.0-30% | 1.0      | 1.0+30% | uF   |
| DE fraquanay                             | Eng    |                                                                    | 315     | -        | 450     | MHz  |
| Kr nequency                              | ГКF    | -                                                                  | 750     | -        | 960     | MHz  |

\*1 In the pin description, I or Is are specified as the I/O.

\*2 Indicating frequency deviation during TX-RX operation. In order to support various standards, please apply the frequency accuracy for each standard to meet the requirements.

| Specification  | Required accuracy |
|----------------|-------------------|
| ARIB STD T-108 | ±20 ppm           |

\*Below typical values indicate typical center values. They are not guaranteed values with consideration given to a variety of ICs.

## •MCU

## $\circ Power \ Consumption$

|                          |            | $(V_{DDIO_MCU}=2.6 \text{ to } 3.6V, V_{SS}=0V, Ta=-4$ | 0 to $+85$ | 5 ℃ if no          | t defined | l specifi | cally.) |
|--------------------------|------------|--------------------------------------------------------|------------|--------------------|-----------|-----------|---------|
| T4                       | Symbo      | Condition                                              |            | Standard           | 1.1       |           |         |
| Item                     | 1          | Condition                                              | Min.       | Typ.* <sup>3</sup> | Max.      | Unit      |         |
| Power                    |            | CPU is STOP-D state                                    |            | 0.0                | 22        |           |         |
| Consumption 0            | IDDU       | All oscillators are stopped                            | _          | 0.8                | 23        | μΑ        |         |
| Power                    |            | CPU is STOP state                                      |            | 1.0                | 20        |           |         |
| Consumption 1            | ויסטו      | All oscillators are stopped                            | _          | 1.0                | 26        | μΑ        |         |
| Damas                    |            | Low RC oscillation*1                                   |            |                    | 35        | μA        |         |
| Power I<br>Consumption 2 | IDD2-      | CPU is HALT state                                      | —          | 4.7                |           |           |         |
|                          | 1          | PLL oscillation is stopped                             |            |                    |           |           |         |
| Power                    |            | Low oscillator*1*4                                     |            |                    |           |           |         |
| Consumption              | 1DD2-<br>2 | CPU is HALT state                                      | —          | 3.0                | 32        | μA        |         |
| 2-2                      | 2          | PLL oscillation is stopped                             |            |                    |           |           |         |
| Power                    | כחחו       | CPU is operated with RC*1*2                            |            | 17                 | 105       |           |         |
| Consumption 3            | 1003       | PLL oscillation is stopped                             | _          | 17                 | 105       | μΑ        |         |
|                          |            | CPU is operated 16MHz *1*2                             |            |                    |           |           |         |
| Power<br>Consumption 4   | IDD4       | When PLL 16MHz oscillation                             | —          | 3.3                | 4.5       | mA        |         |
| Consumption 4            |            | $V_{DDIO\_MCU}$ =2.6 to 3.6V                           |            |                    |           |           |         |
| Devuer                   |            | CPU is operated with 24MHz*1*2                         |            |                    |           |           |         |
| Power<br>Consumption 5   | IDD5       | When PLL 24MHz oscillation                             | —          | 4.7                | 6.0       | mA        |         |
| Consumption S            |            | $V_{DDIO\_MCU}$ =2.6 to 3.6V                           |            |                    |           |           |         |

\*1:LTBC, WDT operating state, All controllable bits of Block Control Register(BCKCONn) and Block Reset Control Register (BRECONn) are set to "1".

 $^{\star 2}$  : CPU is operated with Wait mode.

 $^{*3}:V_{DDIO\_MCU}{=}3.0V, Ta{=}{+}25\,^{o}C$ 

<sup>\*4</sup>: Low current consumption mode, Noise removal filter is set to off.

### oLow Speed Crystal Oscillator Characteristics

 $(V_{DDIO\_MCU}=2.6 \text{ to } 3.6 \text{V}, V_{SS}=0 \text{V}, Ta=-40 \text{ to } +85 \text{ }^{\circ}\text{C} \text{ if not defined specifically.})$ 

| ltom                                 | Symbol           | Condition |      | Lloit  |      |      |
|--------------------------------------|------------------|-----------|------|--------|------|------|
| nem                                  | Symbol           | Condition | Min. | Тур.   | Max. | Unit |
| Crystal Oscillator<br>Frequency*1 *2 | f <sub>XTL</sub> | -         | -    | 32.768 | -    | kHz  |
| Crystal Oscillator Starting time     | T <sub>XTL</sub> | -         | -    | -      | 2    | s    |

<sup>\*1</sup>: Oscillation frequency depends on oscillator circuit, crystal oscillator and circuit constant of capacitor with attached crystal oscillator(CGL/CDL).

Matching evaluation on the implemented curcuit is neccesary because the circuit constant depends on crystal oscillator.

Receive confirmation of oscillation characteristic from oscillator manifacture with marching evaluation.

<sup>\*2</sup>: There is a possibility that the expected oscilation characterictic is not guaranteed. It depends on material, writing pattern of circuit board, writing, parasitic capacitance of crystal oscillator and pins.

Please take care of attached external circuit.

- Make the writing pattern of external circuit as short as possible.

- Make the writing pattern between capacitor of the attached crystal oscaillator and the crystal oscillator as short as possible.

- Make the external circuit writing pattern and the writing pattern that large current flows not to cross or be close each other.

- Make the external circuit writing pattern and the other signal's writing pattern not to cross.

- Make the external capacitor of crystal oscillator to connect the GND whose current fluctuation and voltage fluctuation as small as possible.

- There is a possibility that the expected oscillation characteristic is not guaranteed because of the environment of moisture absorption of board, condensation of board surface. Resin sealed of circuit board and so on are recommended.

Example of circuit diagram of Low-speed crystal oscillator



#### •External Clock Input Characteristics

 $(V_{DDIO MCU}=2.6 \text{ to } 3.6 \text{V}, V_{SS}=0 \text{V}, Ta=-40 \text{ to } +85 \text{ }^{\circ}\text{C} \text{ if not defined specifically.})$ 

| ltom              | Symbol | Condition |                              | Linit  |                              |      |
|-------------------|--------|-----------|------------------------------|--------|------------------------------|------|
| Item              | Symbol | Condition | Min.                         | Тур.   | Max.                         | Unit |
| Input Frequency   | fexck  | —         | Typ.<br>-1.0%                | 32.768 | Typ.<br>+1.0%                | kHz  |
| Input Pulse Width | tехскw | —         | 1/f <sub>EXCK</sub><br>x 0.4 |        | 1/f <sub>ЕХСК</sub><br>x 0.6 | S    |

## •On-Chip Oscillator Characteristics

 $(V_{DDIO_MCU}=2.6 \text{ to } 3.6 \text{V}, V_{SS}=0 \text{V}, Ta=-40 \text{ to } +85 \text{ }^{\circ}\text{C} \text{ if not defined specifically.})$ 

| ltom                                                                                | Sym               | Condition                                               |                                                                                                   | Linit  |               |      |
|-------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------|---------------|------|
| Item                                                                                | bol               | Condition                                               | Min.                                                                                              | Тур.   | Max.          | Unit |
| Low speed RC Oscillator                                                             | 4                 | Ta=+25 °C,<br>V <sub>DDIO_MCU</sub> =2.6 to 3.6V        | Тур.<br>-2.0%                                                                                     | 32.768 | Тур.<br>+2.0% |      |
| without software correction                                                         | IRCL1             | Ta=-40 to +85 °C,<br>V <sub>DDIO_MCU</sub> =2.6 to 3.6V | Тур.<br>-3.5%                                                                                     | 32.768 | Тур.<br>+3.5% | kHz  |
| Low speed RC Oscillator<br>Frequency 2<br>with software correction                  | f <sub>RCL2</sub> | Ta=-40 to +85 °C,<br>V <sub>DDIO_MCU</sub> =2.6 to 3.6V | Ta=-40 to +85 °C,         Typ.         32           DDIO_MCU=2.6 to 3.6V         -2.0%         32 |        | Тур.<br>+2.0% |      |
| PLL Oscillation Frequency 1<br>Internal low speed RC<br>without software correction | f <sub>PLL1</sub> | Ta=-40 to +85 °C,<br>V <sub>DDIO_MCU</sub> =2.6 to 3.6V | Typ.<br>-2.5%                                                                                     | 16/24  | Typ.<br>+2.5% |      |
| PLL Oscillation Frequency 2<br>Internal Low speed RC<br>with software correction    | f <sub>PLL2</sub> | Ta=-40 to +85 °C,<br>V <sub>DDIO_MCU</sub> =2.6 to 3.6V | Typ.<br>-1.0%                                                                                     | 16/24  | Typ.<br>+1.0% | MHZ  |
| PLL Oscillation Stable Time                                                         | T <sub>PLL</sub>  | Ta=-40 to +85 °C,<br>V <sub>DDIO_MCU</sub> =2.6 to 3.6V | -                                                                                                 | -      | 2             | ms   |
| Low speed RC1K Oscillator<br>Frequency<br>(Only for Watchdog timer)                 | frc1k             | Ta=-40 to +85 °C,<br>V <sub>DDIO_MCU</sub> =2.6 to 3.6V | 0.5                                                                                               | 1      | 2.5           | kHz  |

|                                                       |        | $(V_{DDIO_MCU}=2.6 \text{ to})$ | 3.6V, V <sub>SS</sub> =0V, Ta            | a=-40 to -              | +85 °C if | not defin | ed specifi | ically.) |
|-------------------------------------------------------|--------|---------------------------------|------------------------------------------|-------------------------|-----------|-----------|------------|----------|
| ltom                                                  | Symbol | Condition                       |                                          | Standard                |           |           | Linit      |          |
| Item                                                  | Symbol |                                 |                                          | Min.                    | Тур.      | Max.      | Unit       |          |
| "H"/"L" Level<br>Output Voltage 1<br>(P00)            | VOH1   | IOH1=-<br>Vddio_mcu             | 1mA<br>≧2.6V                             | V <sub>DD</sub><br>-0.5 | -         | -         |            |          |
| (P01 to P07)<br>(P17)<br>(P20 to P23)<br>(P62 to P63) | VOL1   | IOL1=+<br>Vddio_mcu             | 1mA<br>≧2.6V                             | -                       | -         | 0.5       | V          |          |
| "L" Level Output<br>Voltage 2<br>(P01 to P07)         |        | When N-ch Open                  | IOL2=+8mA<br>V <sub>DDIO_MCU</sub> ≧3.0V | -                       | -         | 0.5       |            |          |
| (P17)<br>(P20 to P23)<br>(P62 to P63)                 | VOLZ   | drain output selected           | IOL2=+3mA<br>V <sub>DDIO_MCU</sub> ≧2.6V | -                       | -         | 0.4       |            |          |

## $\circ Input, Output Pins Characteristics 1$

### •Input, Output Pins Characteristics

 $(V_{DDIO\_MCU}=2.6 \text{ to } 3.6 \text{V}, V_{SS}=0 \text{V}, Ta=-40 \text{ to } +85 \text{ }^{\circ}\text{C} \text{ if not defined specifically.})$ 

| ltom                                                                                | Itam Symbol Condition |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Standard            |   | Linit            |    |
|-------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---|------------------|----|
| llem                                                                                | Symbol                | Condition                                                                                                                   | Min.       Typ.       Max.         V_DD≧2.6V       -1 *3*5       -       -         V_DD≧2.6V       -20 *5       -       -         V_DD≧2.6V       -20 *5       -       -         V_DD≧2.6V       -40 *5       -       -         V_DD≧2.6V       -40 *5       -       1 *3         V_DD≧2.6V       -       -       1 *3         V_DD≧2.6V       -       -       3 *3         V_DD≧2.6V       -       -       3 *3         V_DD≧3.0V       -       -       40         V_DD≧3.0V       -       -       40 | Unit                |   |                  |    |
| "H" Level<br>Output Current<br>1 *6                                                 | IOH1                  | 1 pin                                                                                                                       | V <sub>DD</sub> ≧2.6V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1 * <sup>3*5</sup> | - | -                |    |
| "H" Level<br>Output<br>total Current<br>*1*4                                        | IOH3                  | "Sum of P00 to P07"<br>or<br>"Sum of P17, P20 to P23,<br>P62 to P63"<br>(When Duty≦50%)                                     | V <sub>DD</sub> ≧2.6V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -20 * <sup>5</sup>  | - | -                |    |
|                                                                                     |                       | Sum of all pins<br>(When Duty≦50%)                                                                                          | V <sub>DD</sub> ≧2.6V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -40 * <sup>5</sup>  |   |                  |    |
| "L" Level Output<br>Current 1 *6                                                    | IOL1                  | 1 pin<br>(When CMOS Output<br>selected)                                                                                     | V <sub>DD</sub> ≧2.6V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                   | - | 1 * <sup>3</sup> |    |
| "L" Level Output<br>Current 2 *6 10<br>"L" Level Output<br>Total Current 10<br>*2*4 | 101.2                 | 1 pin<br>(When N-ch Open drain                                                                                              | V <sub>DD</sub> ≧3.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                   | - | 8 * <sup>3</sup> | mA |
|                                                                                     | 1011                  | output selected)                                                                                                            | V <sub>DD</sub> ≧2.6V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                   | - | 3 * <sup>3</sup> |    |
|                                                                                     | IOL3                  | "Sum of P00 to P07"<br>or<br>"Sum of P17, P20 to P23,<br>P62 to P63"<br>(When N-ch Open drain<br>Output selected, Duty≦50%) | V <sub>DD</sub> ≧3.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                   | - | 40               |    |
|                                                                                     |                       |                                                                                                                             | V <sub>DD</sub> ≧2.6V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                   | - | 15               |    |
|                                                                                     |                       | Sum of all pins (When N-ch<br>Open drain Output selected,<br>Duty≦50%)                                                      | V <sub>DD</sub> ≧2.6V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |   | 20               |    |
| Output Leak<br>(P00)<br>(P01 to P07)                                                | ЮОН                   | VOH=V <sub>DD</sub> (When H                                                                                                 | iZ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   | - | +1               |    |
| (P17)<br>(P20 to P23)<br>(P62 to P63)                                               | IOOL                  | VOL=Vss(When HiZ)                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1* <sup>5</sup>    | - | -                | μα |

\*1: This current value guarantees the device normal operation if it flows from V<sub>DDIO\_MCU</sub> pin to output pin.

\*2: This current value guarantees the device normal operation if it flows from output pin to Vss pin.

\*3: Do not exceed the total output current.

\*<sup>4</sup>: This is the output current when Duty  $\leq$  50%.

On the condition of Duty>50%, the output current is calculated as the following formula,

Total output current of pins = IOL3 x 50/n (When Duty is n%)

<Example of calculation>

When IOL3=100mA, n=80%,

Total output current of pins = IOL3 x 50/80=62.5mA

The current that can be flowed to 1 pin is the same, and follows IOL1, IOL2.

It is impossible to flow the current more than Absolute Maximum Ratings.

\*<sup>5</sup> : If current flows from internal side of LSI to pin, minus sign is written.

Absolute current value is the maximum value.

 $\label{eq:linear} Example:-1mA \ means \ the \ maximum \ 1mA \ current \ flows \ from \ LSI \ pin.$ 

\*6: It is condition to satisfy VOH1, VOL1, VOL2.

| ltom                                                                                                     | Currente e l | Condition                              |                         | Standard           |                         |      |   |
|----------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|-------------------------|--------------------|-------------------------|------|---|
| Item                                                                                                     | Symbol       | Condition                              | Min.                    | Тур.               | Max.                    | Unit |   |
| Input Current1                                                                                           | IIH1         | VIH1=V <sub>DD</sub>                   | -                       | -                  | 1                       |      |   |
| (RESET_N)                                                                                                | IIL1         | VIL1=V <sub>SS</sub>                   | <b>-1</b> <sup>*1</sup> | -                  | -                       | μA   |   |
|                                                                                                          | IIL2         | VIL2=V <sub>SS</sub> (When Pull-UP)*2  | -1500 <sup>*1</sup>     | -300 <sup>*1</sup> | -20 <sup>*1</sup>       |      |   |
| Input Current 2                                                                                          | V/IIL2       | VIL2=Vss(When Pull-UP)*2               | 3.7                     | 10                 | 80                      | kΩ   |   |
| (P00/TEST0)                                                                                              | IIH2Z        | VIH2=V <sub>DD</sub> (When HiZ)        | -                       | -                  | 1                       |      |   |
|                                                                                                          | IIL2Z        | VIL2=V <sub>SS</sub> (When HiZ)        | -1* <sup>1</sup>        | -                  | -                       | uА   |   |
| Input Current 3                                                                                          | IIL3         | $VIL1=V_{SS}(When Pull-UP)^{*2}$       | -250 <sup>*1</sup>      | -30 <sup>*1</sup>  | -2 <sup>*1</sup>        |      |   |
| (P01-P07)                                                                                                | V/IIL3       | $VIL1{=}V_{SS}(When\ Pull{-}UP)^{*_2}$ | 22                      | 100                | 800                     | kΩ   |   |
| (P17)<br>(P20-P23)                                                                                       | IIH3Z        | VIH1=V <sub>DD</sub> (When HiZ)        | -                       | -                  | 1                       |      |   |
| (P62-P63)<br>Input Current 4<br>(PI00-PI01)                                                              | IIL3Z        | VIL1=V <sub>SS</sub> (When HiZ)        | -1 <sup>*1</sup>        | -                  | -                       | μA   |   |
|                                                                                                          | IIH4         | VIH1=V <sub>DD</sub>                   | -                       | -                  | 1                       |      |   |
|                                                                                                          | IIL4         | VIL1=V <sub>SS</sub>                   | -1 <sup>*1</sup>        | -                  | -                       |      |   |
| Input Voltage 1<br>(RESET_N)<br>(P01-P07)<br>(P17)<br>(P20-P23)<br>(P62-P63)<br>(P100-P101)              | VIH1         | -                                      | 0.7<br>xVdd             | -                  | V <sub>DD</sub>         |      |   |
|                                                                                                          | VIL1         | -                                      | 0                       | -                  | 0.3<br>xV <sub>DD</sub> | V    | 5 |
| Input Voltage 2                                                                                          | VIH2         | -                                      | 0.7<br>xV <sub>DD</sub> | -                  | V <sub>DD</sub>         |      |   |
| (P00/TEST0)                                                                                              | VIL2         | -                                      | 0                       | -                  | 0.25<br>xVdd            |      |   |
| Pin Capacitor<br>(RESET_N)<br>(P00/TEST0)<br>(P01-P07)<br>(P17)<br>(P20-P23)<br>(P62-P63)<br>(P100-P101) | CPIN         | f = 10kHz<br>Ta = +25°C                | -                       | -                  | 10                      | pF   | - |

•Input, Output Pins Characteristics 3

( $V_{DDIO\_MCU}$ =2.6 to 3.6V,  $V_{SS}$ =0V, Ta=-40 to +85 °C if not defined specifically.)

\*1: If current flows from internal side of LSI to pin, minus sign is written. Absolute current value is the maximum value.

Example:-1mA means the maximum 1mA current flows from LSI pin.

\*2: Typ. value is a condition of VDDIO\_MCU =3.0V. Max. value is a condition of VDDIO\_MCU =2.6V, Min.value VDDIO\_MCU =3.6V.

## $\circ Synchronous$ Serial Port Characteristics Slave Mode

|                        | $_{\rm IO_MCU}=2.6$ to 3.6V, | V <sub>SS</sub> =0V, Ta=- | -40 to +85 °C if 1 | not defined speci | fically.)         |      |
|------------------------|------------------------------|---------------------------|--------------------|-------------------|-------------------|------|
| Itom                   | Symbol                       | Condition                 |                    | Linit             |                   |      |
|                        | Symbol Condition             | Condition                 | Min.               | Тур.              | Max.              | Unit |
| SCLK Input Cycle       | tscyc                        | -                         | 1* <sup>2</sup>    | -                 | -                 | μs   |
| SCLK Input Pulse Width | t <sub>SW</sub>              | -                         | 0.5* <sup>3</sup>  | -                 | -                 | μs   |
| SOUT Output Delay Time | tsD                          | -                         | -                  | -                 | 100+<br>HSCLK*1×3 | ns   |
| SIN Input Setup Time   | tss                          | -                         | HSCLK*1×1          | -                 | -                 | ns   |
| SIN Input Hold Time    | t <sub>SH</sub>              | -                         | 80+<br>HSCLK*1×3   | -                 | -                 | ns   |

\*1: High speed clock frequency

\*2: More than HSCLK × 8 input cycle is neccesary.

 $^{\star3}$  : More than HSCLK  $\times\,4$  input cycle is neccesary.



Master Mode

| $(V_{DDIO_MCU}=2.6 \text{ to } 3.6V, V_{SS}=0V, Ta=-40 \text{ to } +85 ^{\circ}C \text{ if not defined specifically.}$ |                 |           |            |            |            |      |  |
|------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|------------|------------|------------|------|--|
| Itom                                                                                                                   | Symbol          | Condition | Standard   |            |            |      |  |
| Item                                                                                                                   |                 |           | Min.       | Тур.       | Max.       | Unit |  |
| SCLK Output Cycle                                                                                                      | tscyc           | -         | -          | SCLK*1     | -          | ns   |  |
| SCLK Output Pulse Width                                                                                                | tsw             | -         | SCLK*1×0.4 | SCLK*1×0.5 | SCLK*1×0.6 | ns   |  |
| SOUT Output Delay Time                                                                                                 | tsp             | -         | -          | -          | 100        | ns   |  |
| SIN Input Setup Time                                                                                                   | tss             | -         | 120        | -          | -          | ns   |  |
| SIN Input Hold Time                                                                                                    | t <sub>SH</sub> | -         | 80         | -          | -          | ns   |  |

\*1: Clock frequency that is selected by bit 12-8(SnCK4-0) of Synchronous Serial Port n Mode Register(SIOnMOD). (When V<sub>DDIO\_MCU</sub>≧2.6V:min250ns)



### 0I<sup>2</sup>C Bus Interface Characteristics

Standard Mode (100kbps)

| $(V_{DDIO_MCU}=2.6 \text{ to } 3.6V, V_{SS}=0V, Ta=-40 \text{ to } +85 ^{\circ}C \text{ if not defined specifically.})$ |                     |           |          |      |      |      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|----------|------|------|------|--|--|--|
| ltom                                                                                                                    | Sumbol              | Condition | Standard |      |      | 1.1  |  |  |  |
| llem                                                                                                                    | Symbol              | Condition | Min.     | Тур. | Max. | Unit |  |  |  |
| SCL Clock Frequency                                                                                                     | fsc∟                | -         | 0        | -    | 100  | kHz  |  |  |  |
| SCL Hold Time<br>(Start/Restart Condition)                                                                              | t <sub>HD:STA</sub> | -         | 4.0      | -    | -    | μs   |  |  |  |
| SCL"L" Level time                                                                                                       | t∟ow                | -         | 4.7      | -    | -    | μs   |  |  |  |
| SCL"H" Level Time                                                                                                       | t <sub>HIGH</sub>   | -         | 4.0      | -    | -    | μs   |  |  |  |
| SCL Setup Time<br>(Restart Condition)                                                                                   | tsu:sta             | -         | 4.7      | -    | -    | μs   |  |  |  |
| SDA Hold Time                                                                                                           | t <sub>HD:DAT</sub> | -         | 0        | -    | -    | μs   |  |  |  |
| SDA Setup Time                                                                                                          | tsu:dat             | -         | 0.25     | -    | -    | μs   |  |  |  |
| SDA Setup Time<br>(Stop Condition)                                                                                      | tsu:sto             | -         | 4.0      | -    | -    | μs   |  |  |  |
| Bus Free Time                                                                                                           | <b>t</b> BUF        | -         | 4.7      | -    | -    | μs   |  |  |  |

When it is used for I<sup>2</sup>C bus master, set I<sup>2</sup>C Master n Mode Register (I2MnMOD), I<sup>2</sup>C Bus 0 Mode Register (Master side) (I2UM0MOD) to conform to the above standard.


#### Fast Mode (400kbps)

|                                            | (V <sub>DDIO_MCU</sub> | =2.6 to 3.6V, $V_{SS} = 0V$ , Ta=-40 | to +85 °C | if not de | fined spe | cifically.) |
|--------------------------------------------|------------------------|--------------------------------------|-----------|-----------|-----------|-------------|
| ltom                                       | Symbol                 | Condition                            | Standa    |           | 1         | Lloit       |
| ltem                                       | Symbol                 | Symbol Condition                     |           | Тур.      | Max.      | Onit        |
| SCL Clock Frequency                        | fscL                   | -                                    | 0         | -         | 400       | kHz         |
| SCL Hold Time<br>(Start/Restart Condition) | t <sub>HD:STA</sub>    | -                                    | 0.6       | -         | -         | μs          |
| SCL"L" Level Time                          | tLOW                   | -                                    | 1.3       | -         | -         | μs          |
| SCL"H" Level Time                          | t <sub>HIGH</sub>      | -                                    | 0.6       | -         | -         | μs          |
| SCL Setup Time<br>(Restart Condition)      | tsu:sta                | -                                    | 0.6       | -         | -         | μs          |
| SDA Hold Time                              | thd:dat                | -                                    | 0         | -         | -         | μs          |
| SDA Setup Time                             | tsu:dat                | -                                    | 0.1       | -         | -         | μs          |
| SDA Setup Time<br>(Stop Condition)         | tsu:sto                | -                                    | 0.6       | -         | -         | μs          |
| Bus Free Time                              | <b>t</b> BUF           | -                                    | 1.3       | -         | -         | μs          |

When it is used for I<sup>2</sup>C bus master, set I<sup>2</sup>C Master n Mode Register (I2MnMOD), I<sup>2</sup>C Bus 0 Mode Register (Master side) (I2UM0MOD) to conform to the above standard.



1Mbps Mode

| (                                          | Vddio_mcu =         | 2.7 to 3.6V, $V_{SS} = 0V$ , Ta=-40 to | +85 °C it | f not defii | ned speci | fically.) |
|--------------------------------------------|---------------------|----------------------------------------|-----------|-------------|-----------|-----------|
| Itom                                       | Symbol              | Condition                              |           | Standard    |           | Linit     |
| nem                                        | Symbol Condition    |                                        | Min.      | Тур.        | Max.      | Unit      |
| SCL Clock Frequency                        | f <sub>SCL</sub>    | -                                      | 0         | -           | 1000      | kHz       |
| SCL Hold Time<br>(Start/Restart Condition) | thd:sta             | -                                      | 0.26      | -           | -         | μs        |
| SCL"L" Level Time                          | t <sub>LOW</sub>    | -                                      | 0.5       | -           | -         | μs        |
| SCL"H" Level Time                          | tнigн               | -                                      | 0.26      | -           | -         | μs        |
| SCL Setup Time<br>(Restart Condition)      | tsu:sta             | -                                      | 0.26      | -           | -         | μs        |
| SDA Hold Time                              | thd:dat             | -                                      | 0         | -           | -         | μs        |
| SDA Setup Time                             | t <sub>SU:DAT</sub> | -                                      | 0.1       | -           | -         | μs        |
| SDA Setup Time<br>(Stop Condition)         | t <sub>SU:STO</sub> | -                                      | 0.26      | -           | -         | μs        |
| Bus Free Time                              | <b>t</b> BUF        | -                                      | 0.5       | -           | -         | μs        |

When it is used for I<sup>2</sup>C bus master, set I<sup>2</sup>C Master n Mode Register (I2MnMOD), I<sup>2</sup>C Bus 0 Mode Register (Master side) (I2UM0MOD) to conform to the above standard.



n:0 to 1

## $\circ$ Reset Characteristics

| (VDDIO_MCU=2.6 to 3.6V, Vss=0V, Ta=-40 to +85 °C if not defined specifically.) |                      |           |      |          |        |       |  |
|--------------------------------------------------------------------------------|----------------------|-----------|------|----------|--------|-------|--|
| ltom                                                                           | Symbol               | Condition |      | Standard | الم ال | Linit |  |
| Item                                                                           | Symbol Condition     | Condition | Min. | Тур.     | Max.   | Unit  |  |
| Reset Enable Time                                                              | Prst                 | -         | 2    | -        | -      | ms    |  |
| P00"H" Level Setup Time                                                        | t <sub>SP00</sub>    | -         | 1    | -        | -      | ms    |  |
| P00"H"Level Hold Time <sup>*1</sup>                                            | t <sub>HP00</sub> *1 | -         | 1    | -        | -      | ms    |  |

\*1: It is the regulation without ISP mode. When ISP mode is used, refer to the timing of ISP mode of User's Manual "25.4 In-System Programing Function".



<sup>\*2</sup>: When Power on reset, the time is counted after V<sub>DDIO\_MCU</sub>=2.6V.

[Note]

If the pulse that is shorter than Reset Enable Time (PRST) is inputted into Reset pin, unexpected operation will be caused. Do not input short pulse than Reset Enable Time.

| oPower | Slope, | Power-on | Reset | Characteristics |
|--------|--------|----------|-------|-----------------|
|--------|--------|----------|-------|-----------------|

|                                                              | (Vss=0V, Ta=-40 to +85 °C if not defined specifically.) |                       |          |      |      |      |   |  |
|--------------------------------------------------------------|---------------------------------------------------------|-----------------------|----------|------|------|------|---|--|
| litere                                                       | Currents al                                             | Condition             | Standard |      |      | 1.1  |   |  |
| Item                                                         | Symbol                                                  | Condition             | Min.     | Тур. | Max. | Unit |   |  |
| Power Rising Slope                                           | S <sub>VR</sub>                                         | -                     | -        | -    | 60   | V/ms |   |  |
| Power Falling Slope                                          | Svf                                                     | -                     | -        | -    | 2    | V/ms |   |  |
| Power-on Reset Judgement                                     | VPORR                                                   | When Power-on Rising  | 1.47     | 1.57 | 1.80 | V    |   |  |
| Voltage                                                      | VPORF                                                   | When Power-on Falling | 1.33     | 1.49 | 1.58 | V    |   |  |
| Power-on Reset Minimum<br>Pulse Width                        | PPOR                                                    | -                     | 200      | -    | -    | μs   |   |  |
| Power-on Initial Voltage                                     | VINIT                                                   | When Power-on         | 1.8      | -    | -    | V    |   |  |
| CPU Operation Start time                                     |                                                         |                       |          |      |      |      |   |  |
| (Time between releasing<br>Reset and CPU Operation<br>Start) | tсри                                                    | -                     | 11       | 16   | -    | ms   | - |  |



[Note]

- If short pulse that is shorter than Power-on Reset response time is inputted into, there is a possibility that LSI is
- not reset and operated incorrectly. Prevent low power voltage by Bypass capacitors or reset by Reset input pin.
- Start High speed clock after V<sub>DDIO\_MCU</sub> voltage becomes within the operating voltage.

|                            |                   | (VDDIO_MCU=2. | 6 to 3.6V, Vss=0V, T | a=-40 to + | 85 °C if no | ot defined | specifically.) |
|----------------------------|-------------------|---------------|----------------------|------------|-------------|------------|----------------|
| 14                         |                   | Cor           | Condition Standard   |            |             | 11 14      |                |
| Item                       | Symbol            | VLS0LV*1      | Power Voltage        | Min.       | Тур.        | Max.       | Unit           |
|                            | VVLSR             | 0011          | Rising               | 3.86       | 4.06        | 4.26       |                |
|                            | VVLSF             | 00H           | Falling              | 3.84       | 4.00        | 4.16       |                |
|                            | V <sub>VLSR</sub> | 0411          | Rising               | 3.57       | 3.76        | 3.95       |                |
|                            | VVLSF             | UTH           | Falling              | 3.55       | 3.70        | 3.85       |                |
|                            | VVLSR             | 0011          | Rising               | 2.94       | 3.11        | 3.28       |                |
|                            | VVLSF             | 02H           | Falling              | 2.92       | 3.05        | 3.18       |                |
|                            | VVLSR             | 0211          | Rising               | 2.85       | 3.01        | 3.17       |                |
|                            | V <sub>VLSF</sub> | 030           | Falling              | 2.83       | 2.95        | 3.07       |                |
| -                          | V <sub>VLSR</sub> | 0411          | Rising               | 2.75       | 2.91        | 3.07       |                |
|                            | VVLSF             | 04⊓           | Falling              | 2.73       | 2.85        | 2.97       |                |
|                            | VVLSR             | 0511          | Rising               | 2.66       | 2.81        | 2.96       |                |
| VLS Judgement              | V <sub>VLSF</sub> | 05H           | Falling              | 2.64       | 2.75        | 2.86       | V              |
| Voltage*2                  | VVLSR             | 06H -         | Rising               | 2.56       | 2.71        | 2.86       | v              |
|                            | VVLSF             |               | Falling              | 2.54       | 2.65        | 2.76       |                |
|                            | VVLSR             | 0711          | Rising               | 2.46       | 2.61        | 2.76       |                |
|                            | VVLSF             | 07 11         | Falling              | 2.44       | 2.55        | 2.66       |                |
|                            | VVLSR             | 0011          | Rising               | 2.37       | 2.51        | 2.65       |                |
|                            | V <sub>VLSF</sub> | UOH           | Falling              | 2.35       | 2.45        | 2.55       |                |
|                            | Vvlsr             | 0011          | Rising               | 1.98       | 2.11        | 2.24       |                |
|                            | VVLSF             | 090           | Falling              | 1.96       | 2.05        | 2.14       |                |
|                            | V <sub>VLSR</sub> | 0.411         | Rising               | 1.89       | 2.01        | 2.13       |                |
|                            | V <sub>VLSF</sub> | UAH           | Falling              | 1.87       | 1.95        | 2.03       |                |
|                            | VVLSR             |               | Rising               | 1.79       | 1.91        | 2.03       |                |
|                            | VVLSF             | UBH           | Falling              | 1.77       | 1.85        | 1.93       |                |
| VLS Current<br>Consumption | Ivls              |               | -                    | -          | 50          | -          | nA             |

#### **OVLS Characteristics**

\*1: Bit3 to 0 of Voltage Level Supervisor Function 0 Level Register (VLS0LV)

\*2: Setting VLS0LV=0CH - 0FH of VLS Judgement Voltage is inhibited.

### oAnalog Comparator Characteristics

| (V <sub>DDIO_MCU</sub> =2.6 to 3.6V, | V <sub>SS</sub> =0V, T | a=-40 to +85 °C if not defined | l specifically.) |
|--------------------------------------|------------------------|--------------------------------|------------------|
|                                      |                        |                                |                  |

| Item                                          | Symbol            | Condition                              |      | Standard | Llnit                             |      |  |
|-----------------------------------------------|-------------------|----------------------------------------|------|----------|-----------------------------------|------|--|
| nem                                           | Symbol            | Condition                              | Min. | Тур.     | Max.                              | Unit |  |
| Comparator<br>In-Phase Input<br>Voltage Range | V <sub>CMR</sub>  | -                                      | 0.1  | -        | V <sub>DDIO_</sub><br>мсu<br>-1.5 | V    |  |
| Comparator Input<br>Offset                    | V <sub>CMOF</sub> | Ta=+25 °C, V <sub>DDIO_MCU</sub> =3.3V | -    | 5        | -                                 | mV   |  |
| Comparator<br>Reference<br>Voltage            | Vcmref            | -                                      | 0.75 | 0.8      | 0.85                              | V    |  |

| <ul> <li>Successive Approximati</li> </ul> | on Type A/D Converter |
|--------------------------------------------|-----------------------|
| 11                                         | <i>u</i> 1            |

|                               |                   | (V <sub>DDIO_MCU</sub> = $2.6$ to $3.6$ V, V <sub>SS</sub> = $0$ V, | Ta=-40 to +                | 85 °C if not | defined spec    | ifically.) |  |
|-------------------------------|-------------------|---------------------------------------------------------------------|----------------------------|--------------|-----------------|------------|--|
| ltom                          | Symbol            | Condition                                                           |                            | Standard     |                 | Linit      |  |
| liem                          | Symbol            | Condition                                                           | Min.                       | Тур.         | Max.            | Unit       |  |
| Resolution                    | <b>n</b> AD       | -                                                                   | -                          | -            | 10              | Bit        |  |
|                               |                   | 2.7V≦SA-ADC Ref Voltage <sup>*1</sup> ≦3.6V                         | -4                         | -            | 4               |            |  |
| late and                      |                   | 2.2V≦SA-ADC Ref Voltage <sup>*1</sup> <2.7V                         | -6                         | -            | 6               |            |  |
| Nonlinearity                  | INLAD             | 1.8V≦SA-ADC Ref Voltage <sup>*1</sup> <2.2V                         | -10                        | -            | 10              |            |  |
| Noninearity                   |                   | SA-ADC Ref Voltage = Internal Ref<br>Voltage(V <sub>REFI</sub> )    | -15                        | -            | 15              |            |  |
|                               | DNL <sub>AD</sub> | 2.7V≦SA-ADC Ref Voltage <sup>*1</sup> ≦3.6V                         | -3                         | -            | 3               | ISB        |  |
|                               |                   | 2.2V≦SA-ADC Ref Voltage *1<2.7V                                     | -5                         | -            | 5               | LSB        |  |
| Differential                  |                   | 1.8V≦SA-ADC Ref Voltage <sup>*1</sup> <2.2V                         | -9                         | -            | 9               |            |  |
| Noninearity                   |                   | SA-ADC Ref Voltage =Internal Ref<br>Voltage(V <sub>REFI</sub> )     | -14                        | -            | 14              |            |  |
| Zero Scale Error              | ZSE               | RI≦1kΩ                                                              | -6                         | -            | 6               |            |  |
| Full Scale Error              | FSE               | RI≦1kΩ                                                              | -6                         | -            | 6               |            |  |
| A/D Reference Voltage         | VREF              | -                                                                   | 1.8                        | -            | V <sub>DD</sub> |            |  |
| Internal Reference<br>Voltage | Vrefi             | -                                                                   | 1.5                        | 1.55         | 1.6             | V          |  |
| Conversion Time               | tCONV             | 2.2V≦V <sub>DD</sub> ≦3.6V                                          | 4.5 -                      |              | 427             | us         |  |
| Conversion Time               | CONV              | CONV                                                                | 1.8V≤V <sub>DD</sub> ≤3.6V | 18           | -               | 427        |  |

 $^{\star1}$ : It is the case that  $V_{DDIO\_MCU},\ P23/V_{REF}$  are selected as SA-ADC Reference Voltage.

Current flows to charge in capacitors during SA-ADC sampling. Set the output impedance of analog input resource to less than 1 k $\Omega$  for getting enough sampling result. It is recommended to implement about 0.1µF capacitor to reduce noise.



### $\circ D/A$ Converter Characteristics

| $(V_{DDIO_MCU}=2.6 \text{ to } 3.6 \text{V}, V_{SS}=0 \text{V}, T_a=-40 \text{ to } +85 ^{\circ}\text{C} \text{ if not defined specifically.})$ |                   |           |      |          |       |      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|------|----------|-------|------|--|
| Itom                                                                                                                                            | Symbol            | Condition |      | Standard | Lipit |      |  |
| Item                                                                                                                                            | Symbol            | Condition | Min. | Тур.     | Max.  | Unit |  |
| Resolution                                                                                                                                      | n <sub>DA</sub>   | -         | -    | -        | 8     | Bit  |  |
| Conversion Frequency                                                                                                                            | tc                | -         | 10   | -        | -     | μs   |  |
| Integral<br>Nonlinearity                                                                                                                        | INL <sub>DA</sub> | RL=4MΩ    | -2   | -        | 2     |      |  |
| Differential<br>Nonlinearity                                                                                                                    | DNL <sub>DA</sub> | RL=4MΩ    | -1   | -        | 1     | LOD  |  |
| Output Impedance                                                                                                                                | Ro                | -         | 3    | 6        | 9     | kΩ   |  |

## •Reference Voltage Output Characteristics

| $(V_{DDIO_MCU}=2.6 \text{ to } 3.6 \text{V}, V_{SS}=0 \text{V}, Ta=-40 \text{ to } +85 ^{\circ}\text{C} \text{ if not defined specifically.})$ |        |           |          |      |      |       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------|------|------|-------|--|--|
| ltom                                                                                                                                           | Symbol | Condition | Standard |      |      | Lloit |  |  |
| nem                                                                                                                                            | Symbol | Tibol     |          | Тур. | Max. | Unit  |  |  |
| Output Voltage Value                                                                                                                           | Vrefo  | -         | -        | 1.55 | -    | V     |  |  |
| Output Impedance                                                                                                                               | RVREFO | -         | -        | -    | 500  | kΩ    |  |  |

### $\circ$ Flash Memory Operation Condition

|                       |                       |                             |              |            | $(V_{SS}=0V)$ |
|-----------------------|-----------------------|-----------------------------|--------------|------------|---------------|
| Item                  | Symbol                | Condition                   |              | Standard   | Unit          |
| Operation Temperature | То                    | Data Area: Program/Erase    |              | -40 to +85 | °C            |
| (surroundings)        | Ta                    | Program Area: Program/Erase |              | 0 to +40   | °C            |
| Operation Voltage     | V <sub>DDIO_MCU</sub> | Program                     | n/Erase      | 2.6 to 3.6 | V             |
| Brogramming avela     | CEPD                  | Data                        | Area         | 10000      | timoo         |
| Flogramming cycle     | CEPP                  | Progra                      | m Area       | 100        | umes          |
|                       | Unit - Block Erase    | Diack France                | Program Area | 16K        | 5             |
|                       |                       | Data Area                   | All Areas    | В          |               |
| Erasing Unit          |                       | Conton Engag                | Program Area | 1K         | В             |
|                       |                       | Sector Erase                | Data Area    | 128        |               |
|                       | -                     | Block                       | Erase/       | 50         | me            |
|                       |                       | Sector                      | Erase        | 50         | 1115          |
| Programming Unit      | -                     | Progra                      | m Area       | 4          | в             |
|                       |                       | Data                        | Area         | 1          | В             |
| Brogromming Time(Max) | -                     | Progra                      | m Area       | 80         |               |
|                       | -                     | Data                        | Area         | 40         | μο            |
| Data Retention Years  | YDR                   | -                           | -            | 15         | Year          |

### •RF

#### **•Power Consumption**

#### Values are under the condition of the master clock frequency = 36 MHz (Typ.).

| Item       | Symbol   | Condition                                                          | Min. | Тур. (*2) | Max (*3)     | Unit |
|------------|----------|--------------------------------------------------------------------|------|-----------|--------------|------|
| Power IDD. | Idd_dslp | Deep Sleep mode<br>(Not retaining Registers, all function<br>halt) | -    | 0.1       | 14<br>(0.24) | μΑ   |
|            | Idd_slp1 | Sleep mode 1 (*4)                                                  | -    | 0.45      | 33<br>(2.3)  | μΑ   |
|            | Idd_idle | Idle state (*5)                                                    | -    | 1.0       | 1.2          | mA   |
| -          | Idd_rx   | RX state (*6) (*7)                                                 | -    | 13.5      | 16           | mA   |
|            | IDD_TX20 | TX state (20 mW) (*5) (*7) (*8)                                    | -    | 40        | 49           | mA   |
|            | Idd_xtal | Crystal oscillator circuit (*7)                                    | -    | 0.3       | 0.4          | mA   |

\*1 Power consumption is sum of current consumption of all power supply pins.

\*2 Typical value is a center value under the condition of VDDIO = 3.3 V,  $25 \degree$ C.

\*3 Value in parentheses indicates the maximum (reference) value at normal temperature.

\*4 The definition of each sleep state is shown in the following table.

| State        | Register | FIFO               | RC Osc. circuit state | Low clock timer |
|--------------|----------|--------------------|-----------------------|-----------------|
| Sleep mode 1 | Retain   | Retain RXFIFO only | OFF                   | -               |
| Sleep mode 2 | Retain   | Retain RXFIFO only | ON                    | ON              |

\*5 Indicates a current value under the following LSI conditions: FSK mode, 100 kbps, frequency 920 MHz, TCXO used, LOW\_RATE\_EN([CLK\_SET2:B0 0x03(0)]) = 0b1.

\*6 Indicates a current value under following LSI conditions: Sigfox mode, frequency:920MHz, TCXO used.

\*7 When using crystal oscillator, the operating current of crystal oscillator circuit is added to the power consumption except for the sleep and deep sleep modes.

\*8 It is the current of CW mode.

## oDC Characteristics

| Values are under the c | ondition of th | ne master clock | frequency | = 36 MHz (Typ.). |
|------------------------|----------------|-----------------|-----------|------------------|
|                        |                |                 |           |                  |

| Item                                                      | Symbol   | Condition                                                | Min.         | Standard | Max.         | Unit |
|-----------------------------------------------------------|----------|----------------------------------------------------------|--------------|----------|--------------|------|
| Voltage input high                                        | VIH1     | Digital input Pin                                        | Vddio x 0.75 | _        | Vddio        | V    |
| Voltage input low                                         | VIL1     | Digital input pin                                        | 0            | _        | Vddio x 0.18 | V    |
| Schmitt trigger<br>high-level decision<br>threshold value | VT+      | RESETN, SDI, SCLK, SCEN,<br>EXT_CLK, REGPDIN, GPIO1 pins | -            | 1.2      | Vddio x 0.75 | V    |
| Schmitt trigger<br>low-level decision<br>threshold value  | VT-      | RESETN、SDI、SCLK、SCEN、<br>EXT_CLK、REGPDIN、GPIO1pins       | Vddio x 0.18 | 0.8      | _            | V    |
| Input lookage current                                     | IIH1     | Digital input pin                                        | -1           | —        | 1            | μΑ   |
|                                                           | IIL1     | Digital input pin                                        | Ι            | 1        | μΑ           |      |
| Tri-state                                                 | IOZH     | Digital input pin                                        | -1           | _        | 1            | μΑ   |
| current                                                   | IOZL     | Digital input pin                                        | -1           | _        | 1            | μΑ   |
| Voltage output high                                       | VOH      | IOH=-4mA                                                 | Vddio x 0.78 |          | Vddio        | V    |
| Voltage output low                                        | VOL      | IOL=4mA                                                  | 0            | _        | 0.3          | V    |
| Regulator                                                 | MAIN_REG | REG_CORE pin<br>all states except SLEEP state            | 1.4          | 1.5      | 1.6          | V    |
| output voltage                                            | SUB_REG  | REG_CORE pin<br>Sleep state                              | 1.2          | 1.5      | 1.65         | V    |
|                                                           | CIN      | Input pin                                                | _            | 6        | _            | pF   |
| Innut canacitance                                         | COUT     | Output pin                                               | _            | 9        | _            | pF   |
| mput capacitance                                          | CRFIO    | RF I/O pin                                               | _            | 9        | _            | pF   |
|                                                           | CAI      | Analog input pin                                         | —            | 9        | —            | pF   |

### **ORF** Characteristics

The measurement point is at antenna end specified in the recommended circuits.

## [TX characteristics]

Values are under the condition of the master clock frequency = 36 MHz (Typ.).

#### 920MHz Band

| Item                    | Condition                                                                 | Min. | Standard (*1) | Max. | Unit |
|-------------------------|---------------------------------------------------------------------------|------|---------------|------|------|
| TX Power                | 20mW(13dBm) setting                                                       | 9    | 13            | 17   | dBm  |
| Spurious emission level | 13dBm, with LC trap circuit, 2 <sup>nd</sup> to 5 <sup>th</sup> Harmonics | -    | -             | -30  | dBm  |

(\*1) Typical value is a center value under the condition of VDDIO = 3.3 V,  $25 \degree \text{C}$ .

### [RX characteristics]

Values are under the condition of the master clock frequency = 36 MHz (Typ.). 920MHz Band

| Item                                      | Conc                                                                                              | lition                                     | Min. | Standard | Max. | Unit  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|------|----------|------|-------|
| Sensitivity (min)                         | 100kbps mode                                                                                      | Ta= -30 to +75°C                           | _    | -103     | -94  | dDm   |
|                                           | deviation                                                                                         | Ta= 15 to 30°C                             | _    | -103     | -96  | ubiii |
| Adjacent channel interference (*1)        | 400kHz spacing, Ta=25°C, 100kbps mode<br>Undesired wave: CW<br>2MHz offset, Ta=25°C, 100kbps mode |                                            | 20   | 37       | _    | dB    |
|                                           | 2MHz offset, Ta=25°C, 10                                                                          | —                                          | 52   | —        | dB   |       |
| KX Blocking (*1)                          | 10MHz offset, Ta=25°C, 100kbps mode                                                               |                                            | —    | 62       | —    | dB    |
| Minimum energy detection level (ED value) | RFmin in RSSI characteri<br>100kbps, Channel filter ba                                            | stics diagram (*2)<br>and = 200kHz setting | —    | -105     | -96  | dBm   |
| energy detection range                    | Dynamic range in RSS (*2)                                                                         | I characteristics diagram                  | 55   | 65       | _    | dB    |
| Spurious emission                         |                                                                                                   |                                            | _    | _        | -54  | dBm   |

\*1. The measurement conditions on the interference-related characteristics are as follows. Using the desired input level as [Level achieving BER = 1 % (= reference sensitivity) + 3 dB], the level achieving BER =

1 % is searched by varying the undesired wave level and defined as U/D [dB] = (Undesired wave level) - (Level achieving BER = 1 %).

\*2. The following diagram shows the RSSI characteristics.



#### oRC Oscillator Circuit Characteristics

ML7456N has 32 kHz clock generation function for timer. For details, please refer to "LSI state transition control/SLEEP setting" section.

| Item                        | Symbol | Condition      | Min. | Standard | Max. | Unit |
|-----------------------------|--------|----------------|------|----------|------|------|
| RCOSC oscillation frequency | Frcosc | After trimming | 27   | 32       | 38   | kHz  |
| RCOSC stable time           | Trcosc |                | _    | _        | 100  | ms   |

### **oSPI** Interface Characteristics

| Item                       | Symbol  | Condition | Min.  | Standard | Max. | Unit |
|----------------------------|---------|-----------|-------|----------|------|------|
| SCLK clock frequency       | FSCLK   | -         | 0.032 | 2        | 16   | MHz  |
| SPI clock input duty ratio | DSCLK   |           | 45    | 50       | 55   | %    |
| SCEN input setup time      | TSCENSU |           | 30    | -        | -    | ns   |
| SCEN input hold time       | TSCENH  |           | 30    | -        | -    | ns   |
| SCLK high pulse width      | Tsclkh  | Load      | 31    | -        | -    | ns   |
| SCLK low pulse width       | Tsclkl  | CL=20pF   | 31    | -        | -    | ns   |
| SDI input setup time       | Tsdisu  | Ĩ         | 5     | -        | -    | ns   |
| SDI input hold time        | Tsdih   |           | 15    | -        | -    | ns   |
| SCEN negate period         | TSCENNI |           | 200   | -        | -    | ns   |
| SDO output delay time      | TSDODLY |           | 0     | -        | 25   | ns   |

#### [Note]

All timing measurement conditions are  $V_{DDIO}$  \* 20 % level and  $V_{DDIO}$  \* 80 % level.



### oTX/RX Data Interface Characteristics

| Item                                 | Symbol   | Condition                   | Min.                                        | Standard | Max.                                        | Unit |
|--------------------------------------|----------|-----------------------------|---------------------------------------------|----------|---------------------------------------------|------|
| DIO input setup time                 | Tdisu    |                             | 1                                           | -        | -                                           | μs   |
| DIO input hold time                  | Tdih     |                             | 0                                           | -        | -                                           | ns   |
| DIO output hold time                 | Tdoh     |                             | 20                                          | -        | -                                           | ns   |
| DCLK frequency accuracy (*1)<br>(TX) | Fdclk_tx | Load capacitance<br>CL=20pF | Negative<br>clock<br>frequency<br>deviation | -        | Positive<br>clock<br>frequency<br>deviation | kHz  |
| DCLK frequency accuracy (*2)<br>(RX) | Fdclk_rx | 02 20pi                     | -30                                         | -        | +30                                         | %    |
| DCLK output duty ratio<br>(TX)       | Ddclk_tx |                             | 45                                          | -        | 55                                          | %    |
| DCLK output duty ratio (RX)          | DDCLK_RX |                             | 30                                          | -        | 70                                          | %    |

\*1 If there is no decimal point generated in the TX data rate setting calculation (see [TX\_RATE\_H: B1 0x02]), the maximum and minimum values of TX DCLK frequency become the master clock frequency deviation.

\*2 Max.and min.of RX DCLK frequency indicates jitter amount of recovered clock from RX signal upon synchronization established.

#### [Note]

All timing measurement conditions are VDDIO \* 20 % level and VDDIO \* 80 % level.



### Clock Output Characteristics

ML7456N has clock output function. DMON\_SET([MON\_CTRL: B3 0x27(3-0)]) and [GPIO\*\_CTRL: B0 0x28-0x2A] are used for control. Upon reset, clock is output through GPIO1 pin.

| Item                         | Symbol  | Condition   |                  | Min.   | Standard | Max.   | Unit |
|------------------------------|---------|-------------|------------------|--------|----------|--------|------|
| Clock output frequency       | Fclkout | Lood        |                  | 0.0088 | 3        | 36(*2) | MHz  |
|                              | D       | capacitance | 12MHz            | 33     | -        | 67     | %    |
| Clock output duty ratio (*1) | DCLKOUT | CL=20pF     | Other than above | 47     | 50       | 53     | %    |

\*1 Duty cycle is High:Low = 1:2, only when 8MHz is used. [CLK\_OUT: B0 0x03].

\*2 Indicates the frequency with the setting of LOW\_RATE\_EN([CLK\_SET2: B3 0x01(0)] = 0b0.

#### [Note]

All timing measurement conditions are VDDIO \* 20 % level and VDDIO \* 80 % level.



### Reset Characteristics (Internal Pins)

| Item                                                   | Symbol | Condition                        | Min. | Standard | Max. | Unit |
|--------------------------------------------------------|--------|----------------------------------|------|----------|------|------|
| RESETN release delay time (power on period)            | Trdl1  | All power pins<br>After Power On | 0.5  | -        | -    | ms   |
| RESETN pulse period<br>(start-up from VDDIO=0V)        | Trpw1  |                                  | 0.5  | -        | -    | ms   |
| RESETN pulse period 2 (*1)<br>(start-up from VDDIO≠0V) | Trpw2  |                                  | 0.5  | -        | -    | ms   |
| RESETN input delay time                                | Trdl2  | After VDDIO>1.8V                 | 1    | -        | -    | μs   |

#### [Note]

All timing measurement conditions are  $V_{DDIO} * 20$  % level and  $V_{DDIO} * 80$  % level.



(\*1) When starting from VDDIO  $\neq 0$  V, a pulse must be sent to RESETN after VDDIO exceeds 1.8 V.

(\*2) RESETN is a internal pin. MCU (Software) need to control the above timing.

### **ODeep Sleep Mode Characteristics**

| Item                           | Symbol | Condition | Min. | Standard | Max. | Unit |
|--------------------------------|--------|-----------|------|----------|------|------|
| REGPDIN rising edge delay time | Trpfd  | VDDIO="H" | 0    | -        | -    | μs   |
| REGPDIN assert time            | TRPASS | VDDIO="H" | 0.3  | -        | -    | ms   |
| RESETN input delay time        | Trefd  | VDDIO="H" | 0.5  | -        | -    | ms   |

[Note]

All timing measurement conditions are VDDIO \* 20 % level and VDDIO \* 80 % level.



(\*1) REGPDIN, RESETN is a internal pin in PKG. MCU (Software) need to control the above timing.

#### **•Power-on Characteristics**

| Item                     | Symbol | Condition                          | Min. | Standard | Max. | Unit |
|--------------------------|--------|------------------------------------|------|----------|------|------|
| Power-on time difference | Tpwon  | Power on state<br>(all power pins) | -    | -        | 5    | ms   |

#### [Note]

All timing measurement conditions are VDDIO \* 20 % level and VDDIO \* 80 % level.

|     | TPWON |           |
|-----|-------|-----------|
| VDD | 80%   | VDD Level |
|     |       | GND Level |

# ■Functional Description

∎MCU

### •CPU and Memory Space

ML62Q1532 has LAPIS Technology's original 16-bit CPU nX-U16/100 (A35 core), the multiplier/divider in the coprocessor, flash memory in the program memory space, and RAM and data flash in the data memory space. In addition, it has the built-in remap function that remaps a 4 Kbyte area in the program memory space.

# Reset Function

ML7456N has a function to reset the CPU, peripheral circuits and other hardware due to the causes described in Table 3-1. This chapter describes the system reset mode, reset input pin reset and power-on reset (POR). See reference chapters in Table 3-1 for other causes of resets. See Table 3-2 for the availability of resets for each cause.

| Table 3-1 | Reference   | for Details of | Causes | of Resets   |
|-----------|-------------|----------------|--------|-------------|
| 10010 0 1 | 11010101100 | Tor Dotano or  | 00000  | 01 1 100010 |

| Causa                                                                           | Reference                               |
|---------------------------------------------------------------------------------|-----------------------------------------|
| Cause                                                                           | (ML62Q1000 Series User's Manual)        |
| Reset input pin reset (pin reset)                                               | This chapter                            |
| Power-On Reset (POR)                                                            | This chapter                            |
| Watchdog timer (WDT) overflow reset                                             | Chapter 10 Watchdog Timer               |
| Watchdog timer (WDT) invalid clear reset                                        | Chapter 10 Watchdog Timer               |
| Voltage Level Supervisor reset (VLS0 reset)                                     | Chapter 22 Voltage Level Supervisor     |
| RAM parity error reset                                                          | Chapter 29 Safety Function              |
| Unused ROM area access reset                                                    | Chapter 29 Safety Function              |
| CPU reset by BRK instruction execution (when ELEVEL is 2 or higher)             | "nX-U16/100 Core Instruction<br>Manual" |
| Individual reset to the peripheral circuits(Block reset)                        | Chapter 4 Power Management              |
| One-time reset to the all peripheral circuits and port controller (SOFTR reset) | Chapter 4 Power Management              |

## oFeatures

Each reset can uniquely be managed depending on its cause as this function contains following features to identify the cause in an early stage.

- Reset status register (RSTAT) to indicate the cause of the reset
- Reset status register (SRSTAT) to indicate the cause of the safety function reset

In addition, it has the INITE flag function to detect abnormal start-up of the LSI.

## ∘ Configuration

Figure 3-1 shows the configuration of the reset generation circuit.



Figure 3-1 Configuration of Reset Generation Circuit

◦List of Pins

| Pin name | I/O | Function        |
|----------|-----|-----------------|
| RESET_N  | I   | Reset input pin |

### Power Management

ML62Q1532 has four power management modes to save the current consumption.

- HALT mode :Stop the CPU and peripherals continue to work.
- HALT-H mode :Stop the CPU, peripherals continue to work with low-speed clock only,
- forcely stop high-speed clock and forcely start the high-speed clock after releasing the mode.
- STOP mode : Stop the CPU, peripheral circuits, low-speed clock and high-speed clock.
- STOP-D mode : Stop the CPU, peripheral circuits, low-speed clock and high-speed clock.

Internal logic voltage(REG\_CORE\_MCU) is minimized to lower the current consumption.

## oFeatures

- Stop code acceptor qualifies for entering STOP mode and STOP-D mode
- Data of RAM and SFR are retained even in the STOP-D mode
- Clock supply is control-able peripheral by peripheral to reduce the current consumption, by block clock control registers
- Reset is control-able peripheral by peripheral by block reset control registers

# Configuration

Figure 4-1 shows the transition diagram of the operating state. The bit symbols in the figure are assigned to the standby control register (SBYCON).



Figure 4-1 Operating State Transition Diagram

### Interrupt

ML62Q1532 has the non-maskable interrupt, maskable interrupts and the software interrupt (SWI).

For details of each interrupt, see the corresponding Chapters.

See Chapter 29 "Safety Function" for the MCU status interrupt.

See "Table 1-4 Main Function List" for ML62Q1300 group, "Table 1-5 Main Function List" for

ML62Q1500/ML62Q1800 group and "Table 1-6 Main Function List" for ML62Q1700 group in the Chapter 1 to confirm the presence/absence of function in each product.

## oFeatures

- Master Interrupt Enable (MIE) flag enables or disables collectively the all maskable interrupts. For more details about MIE, see "nX-U16/100 Core Instruction Manual".
- Each maskable interrupt has the enable flag in the register IE0 to IE7.
- The occurrence of interrupt request is confirmable by checking the request flag in IRQ registers.
- The occurrence of interrupt is maskable by setting each request flag by the software in IRQ registers.
- Four interrupt levels are available for each maskable interrupt.

# Clock Generation Circuit

The clock generation circuit generates following kinds of clock and supplied them to the CPU or the peripheral circuits.

|                         | Table of Tolooks generated by the block generation chould |                                                             |  |  |  |
|-------------------------|-----------------------------------------------------------|-------------------------------------------------------------|--|--|--|
| Clock Name              | Symbol                                                    | Description                                                 |  |  |  |
| Low-speed clock         | LSCLK                                                     | Low speed clock for peripherals (32.768kHz)                 |  |  |  |
| Simplified RTC clock    | RTCCLK                                                    | Low speed clock for the simplified RTC (32.768kHz)          |  |  |  |
| High-speed clock        | HSCLK                                                     | High speed clock for peripherals (Max. 24MHz)               |  |  |  |
| CPU clock               | CPUCLK                                                    | CPU operating clock (32.768kHz or Max. 24MHz):              |  |  |  |
|                         |                                                           | The maximum frequency depends on the CPU operation mode(See |  |  |  |
|                         |                                                           | Table 6-2)                                                  |  |  |  |
| System clock            | SYSTEMCLK                                                 | System control clock:                                       |  |  |  |
| System clock            |                                                           | The frequency is the same as CPU clock.                     |  |  |  |
| Low-speed output clock  | OUTLSCLK                                                  | Low speed output from a general port (32.768kHz)            |  |  |  |
| High-speed output clock | OUTHSCLK                                                  | High speed output from a general port (Max. 12MHz)          |  |  |  |
| WDT clock               | WDTCLK                                                    | Clock for the watch dog timer (Approx 1kHz)                 |  |  |  |

Table 6-1 Clocks generated by the clock generation circuit

# oFeatures

- Low-speed clock generation circuit
  - Low-speed RC oscillation circuit
  - Adjustable to  $\pm 1\%$  by using the frequency adjustment function (V<sub>DDIO\_MCU</sub>  $\geq 2.6$ V)
  - A crystal resonator is connectable<sup>\*1</sup>
  - In case the low-speed crystal oscillation stopped, the clock is automatically switched to the low-speed RC oscillation (clock backup function).\*1
  - A low-speed external clock is available to input to XT1 pin<sup>\*1</sup>
  - The crystal oscillation clock and the low-speed external clock each is continuously supplied during the reset input pin reset.<sup>\*1</sup>
- Simplified RTC clock
  - Operating by the low-speed clock
- High-speed oscillation circuit
  - PLL oscillation mode (16 MHz or 24 MHz is choosable for the PLL reference frequency by the code option)
     High-speed clock wake-up time is choosable
- WDT clock
  - RC1K oscillation circuit
  - The RC1K clock or the 1.024 kHz divided from the LSCLK is choosable by the code option.

Table 6-2 shows relation of CPU operation mode and PLL oscillation reference frequency. The CPU operation mode and the PLL oscillation reference frequency are choosable by the code option

The CPU operation mode and the PLL oscillation reference frequency are choosable by the code option. See Chapter 26 "Code Option" for more details.

|  | PLL oscillation<br>reference frequency | Maximum operating frequency |              |       |  |  |
|--|----------------------------------------|-----------------------------|--------------|-------|--|--|
|  |                                        | SYSTE                       |              |       |  |  |
|  |                                        | Wait mode                   | No wait mode | HOULK |  |  |
|  | 24MHz                                  | 24MHz                       | 6MHz         | 24MHz |  |  |
|  | 16MHz                                  | 16MHz                       | 8MHz         | 16MHz |  |  |

Table 6-2 CPU operation mode and PLL oscillation reference frequency

## Configuration

Figure 6-1 shows the configuration of the clock generation circuit. Table 6-3 shows the list of operation clocks for each function.



| FHCKMOD | : High-speed clock mode register                         |
|---------|----------------------------------------------------------|
| FCON    | : Frequency control register                             |
| FHWUPT  | : High-speed clock wake-up time setting register         |
| LRCADJ  | : Low-speed RC oscillation frequency adjustment register |
| CBUINT* | : Clock backup interrupt register                        |

\*1: Available except for ML62Q1300 group

Figure 6-1 Configuration of Clock Generation Circuit

### [Note]

After the power-on or the system reset, LSCLK (32.768 kHz) is initially chosen as SYSTEMCLK.

| Function                         | System clock<br>or<br>CPU clock<br>SYSTEMCLK/<br>CPUCLK | Low-spee<br>d clock<br>LSCLK | Simplified RTC<br>clock<br>RTCCLK | High speed<br>clock<br>HSCLK | WDT clock<br>WDTCLK |
|----------------------------------|---------------------------------------------------------|------------------------------|-----------------------------------|------------------------------|---------------------|
| CPU                              | •                                                       | _                            | -                                 | —                            | _                   |
| RAM                              | •                                                       | —                            | -                                 | —                            | _                   |
| Watchdog timer                   | •                                                       | —                            | -                                 | —                            | •                   |
| External interrupt control       | •                                                       | ●* <sup>1</sup>              | -                                 | ●* <sup>1</sup>              | —                   |
| Low speed time base counter      | •                                                       | •                            | Ι                                 | —                            | _                   |
| 16-bit timer                     | •                                                       | •                            | Ι                                 | •                            | _                   |
| Functional timer                 | •                                                       | •                            | Ι                                 | •                            | _                   |
| Serial communication unit        | •                                                       | •                            | _                                 | •                            | _                   |
| I <sup>2</sup> C bus unit        | •                                                       | •                            | _                                 | •                            | _                   |
| I <sup>2</sup> C bus master      | •                                                       | _                            | Ι                                 | •                            | _                   |
| Buzzer                           | •                                                       | •                            | _                                 | _                            | _                   |
| SA type A/D converter            | •                                                       | •                            | _                                 | •                            | _                   |
| D/A converter                    | •                                                       | _                            | Ι                                 | _                            | _                   |
| Analog comparator                | •                                                       | ●* <sup>1</sup>              | _                                 | ●* <sup>1</sup>              | _                   |
| Voltage Level<br>Supervisor(VLS) | •                                                       | ●*1                          | _                                 | ● *1                         | _                   |
| Simplified RTC                   | •                                                       | _                            |                                   |                              | _                   |
| DMA controller                   | •                                                       | _                            | _                                 | _                            | _                   |
| CRC calculator                   | •                                                       | _                            | _                                 | _                            | _                   |
| Flash (BGO operation)            | •                                                       | —                            | _                                 | •                            | _                   |

Table 6-3 Operating clock list in each function

•: The clock is supplied -: The clock is Not supplied

\*1: The clock is supplied for start control or sampling

## oList of Pins

The output pins of the high-speed/low-speed clocks are assigned to the shared function of general purpose ports. For details of pin assignment and the shared function of general purpose ports, see the list of pins.

| Pin Name | I/O | Function                                                                     |
|----------|-----|------------------------------------------------------------------------------|
| OUTLSCLK | 0   | Low-speed clock output                                                       |
| OUTHSCLK | 0   | High-speed clock output                                                      |
| ХТ0      | I   | Low-speed crystal resonator connect pin                                      |
| XT1      | O/I | Low-speed crystal resonator connect pin / Low-speed external clock input pin |

# •Low Speed Time Base Counter

The low speed time base counter enables following functions.

- Generate periodical interrupt requests
- Output periodical pulse signals to the general ports
- Adjust the frequency of simplified RTC clock

# oFeatures

- Generate eight frequency (128Hz, 64Hz, 32Hz, 16Hz, 8Hz, 4Hz, 2Hz and 1Hz) of pulse signals by dividing the low-speed clock (LSCLK)
- Three interrupt requests can be chosen among eight periodical interrupt requests
- The 1Hz or 2Hz signal can be output from general ports
- An interrupt request (LTB0INT) can be used for a trigger event source of the Successive Approximation type A-D Converter.
- The clock frequency adjust function
  - Allows to adjust in a range approx.-488ppm to +488ppm with the resolution approx.0.119ppm.
  - Two confirmation methods with the low-speed clock or high-speed clock.
- The 1Hz or 2Hz signal is used for the simplified RTC clock

## $\circ$ Configuration

Figure 7-2 shows the configuration of the low speed time base counter on ML7456N.



| LTBADJ         | : | Low speed time base counter frequency adjustment register |
|----------------|---|-----------------------------------------------------------|
| T1HZ to T128HZ | : | Time base counter output signals                          |
| LTB2INT        | : | Low speed time base counter 2 interrupt request           |
| LTB1INT        | : | Low speed time base counter 1 interrupt request           |
| LTB0INT        | : | Low speed time base counter 0 interrupt request           |
| T1HZR to T4HZR | : | Simplified RTC time base counter output signals           |
|                |   |                                                           |

Figure 7-2 Configuration of Low Speed Time Base Counter

## oList of Pins

The output pins of the low speed time base counter are assigned to the shared function of genral purpose ports.

| Signal name | I/O | Function                                                                                        |  |
|-------------|-----|-------------------------------------------------------------------------------------------------|--|
| TBCOUT0     | 0   | The virtual frequency adjustment output signal or the low speed time base counter output signal |  |
| TBCOUT1     | 0   | Hz/2Hz clock for the Simplified RTC                                                             |  |

Table 7-1 shows the list of the general purpose ports and the register setting.

Table 7-1 Low speed time base counter function port and the register setting

| Pin Name | Shared Port |                          | Setting<br>Register | Setting Value |
|----------|-------------|--------------------------|---------------------|---------------|
|          | P01         | 6 <sup>th</sup> function | P0MOD1              | 0101_XXXX*1   |
| IBCOUTU  | P17         | 6 <sup>th</sup> function | P1MOD7              | 0101_XXXX*1   |
|          | P01         | 7 <sup>th</sup> function | P0MOD1              | 0110_XXXX*1   |
| IDCOUTT  | P20         | 6 <sup>th</sup> function | P2MOD0              | 0101_XXXX*1   |

\*1: XXXX determines the port output condition

| XXXX | Port output condition            |  |
|------|----------------------------------|--|
| 0010 | CMOS output                      |  |
| 1010 | Nch open drain (without pull-up) |  |
| 1111 | Nch open drain (with pull-up)    |  |

## •16-Bit Timer

The 16-bit timer enables following functions.

- Generate periodical interrupts in an arbitrary period
- Generate one shot interrupts in an arbitrary period
- Output pulse signals with an arbitrary frequency to the general ports
- Output one shot pulse signals to the general ports
- Count up the rising edges of the external input signal

ML62Q1532 equips 6 channels (n=0 to 6)16-bit timers.

## oFeatures

• Two timer modes and two operation modes are available

| Timer mode        | Operation mode                                                                                                     | Description                                                                                  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| 16-bit timer mode | Count-able to the max. 0xffff           Repeat mode         Repeat the specified operation until stop to software. |                                                                                              |  |  |  |
|                   | One shot mode                                                                                                      | Count-able to the max. 0xffff<br>Run the specified operation once and stop it.               |  |  |  |
| 8-bit timer mode  | Repeat mode                                                                                                        | Count-able to the max. 0xff<br>Repeat the specified operation until stop by the<br>software. |  |  |  |
|                   | One shot mode                                                                                                      | Count-able to the max. 0xff<br>Run the specified operation once and stop it.                 |  |  |  |

- One channel of 16-bit timer is configurable as two channels of 8-bit timer
- LSCLK or HSCLK can be chosen for the timer clock
- A timer clock, a divided time clock or an external input can be chosen for the count clock.
- A timer interrupt request is generated when the value of the timer counter register value coincides with that of the 16-bit timer n data register
- A port output is reversed when the value of the timer counter register value coincides with that of the 16-bit timer n data register
- The initial value of the port can be chosen by a register.
## ∘Configuration

Figure 8-1 shows configuration of the 16-bit timer and Figure 8-2 shows configuration of the 8-bit timer



Figure 8-1 Configuration of the timer in 16-bit timer mode



Figure 8-2 Configuration of the timer in 8-bit timer mode

| TMnINT                    | : 16-bit timer n interrupt request                                                                                                                   | TMHnTRG                   | : 16-bit timer n trigger                                                                                                                                            |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXTRG0                    | : EXI0 pin input (come through the noise f                                                                                                           | ilter of the extern       | al interrupt function)                                                                                                                                              |
| EXTRG1                    | : EXI1 pin input (come through the noise f                                                                                                           | ilter of the extern       | al interrupt function)                                                                                                                                              |
| TMHnD<br>TMHnDH<br>TMHnDL | <ul> <li>16-bit timer n data register</li> <li>16-bit timer n data register upper 8 bit</li> <li>16-bit timer n data register lower 8 bit</li> </ul> | TMHnC<br>TMHnCH<br>TMHnCL | <ul> <li>: 16-bit timer n counter register</li> <li>: 16-bit timer n counter register upper 8 bit</li> <li>: 16-bit timer n counter register lower 8 bit</li> </ul> |

#### [Note]

- When the 16-bit timer is used as two channels of 8-bit timer, the same clock settings and interrupts are applied.
- In the 8-bit timer mode, the TMHnOUT outputs the comparison result of the upper side ("TMHnDH" and "TMHnCH").
- Choose the 16-bit timer mode when using the 16-bit timer DMA request or SA-ADC trigger.

# ∘List of Pin

The I/O pins of the 16-bit timer are assigned to the shared function of the general ports.

| Pin name | I/O | Description                                                                    |  |
|----------|-----|--------------------------------------------------------------------------------|--|
| EXTRG0   | Ι   | External trigger input 0                                                       |  |
| EXTRG1   | I   | External trigger input 1                                                       |  |
|          | 0   | 16-bit timer channel n output                                                  |  |
|          | 0   | When used in an 8-bit timer, only the upper 8-bit timer can output the signal. |  |

#### Functional Timer

The Functional timer enables following functions in four operation modes (TIMER/CAPTURE/PWM1/PWM2).

ML62Q1532 equips 6 channels (n=0 to 5) Functional Timers.

#### TIMER mode:

In this mode, the Functional Timer generates pulse signals, levels of which are reversed in sync with the counter start and the counter overflow. Also, it generates the interrupt when the counter overflows.



#### CAPTURE mode:

In this mode, the Functional Timer stores the value of counter into FTnEA register at the rising edge of a trigger event, into FTnEB register at the falling edge of a trigger event.



#### PWM1 mode:

In this mode, the Functional Timer generates two types of PWM waveform that have the same cycle and the start timing.

The setting value of FTnEA register makes the duty of the positive phase output and the setting value of FTnEB register makes the duty of the negative phase output.



#### PWM2 mode:

In this mode, the Functional Timer generates the complimentary PWM waveform of which the positive phase output and the negative phase output works exclusively. The setting of FTnEA register makes the duty of the positive phase output. Also, a dead time can be configured by setting FTnDT register.



## Features

- The Timer/Capture/PWM functions using the 16-bit counter
- The count clock can apply the LSCLK/HSCLK divided by 1 to 128 and the external clock input
- The timer output signal can be switched (Positive logic or Negative logic)
- Generate a cyclic interrupt, a duty interrupt and a coincident interrupt with the setting value
- One-shot mode
- Start/stop/clear the timer by an external trigger input or a timer interrupt request(event triggers)
- Emergency stop and emergency stop interrupt by an external trigger input
- Two types of PWM output with the same cycle and different duties, and complementary PWM output with the dead time
- Input signal duty/cycle measurement by the capture function
- Chosen interrupt source can be notified
- DMA request signal can be used

## ∘ Configuration

Figure 9-1 shows the configuration of the FTM circuit.



Figure 9-1 Configuration of the Functional Timer

# ○List of Pins

The I/O pins of the Functional timer are assigned to the shared function of the general ports.

| Pin name  | I/O | Description                                     |  |
|-----------|-----|-------------------------------------------------|--|
| EXTRG0 to |     | External trigger 0 to 7 / External clock 0 to 7 |  |
| EXTRG7    | I   | External trigger 0 to 7 / External clock 0 to 7 |  |
| FTMnP     | 0   | Functional timer channel n output P             |  |
| FTMnN     | 0   | Functional timer channel n output N             |  |

(n=0 to 7)

## Watchdog Timer

The watchdog timer (WDT) is equipped with the following functions and can detect the runaway state of program or the undefined state of the CPU by generating an interrupt or reset when an abnormality occurs.

- If the counter is not cleared for more than a certain time period in program operation and overflows, the WDT interrupt is generated in the first overflow and the WDT reset in the second overflow (if the window function is disabled).
- If the counter is not cleared for more than a certain time period in program operation and overflow occurs, the WDT reset is generated in the first overflow (if the window function is enabled).
- If the counter is cleared in the unexpected time period, the WDT invalid clear reset is generated (if the window function is enabled).

The window function refers to the function through which "the time period during which WDT counter clear is enabled" = "the time period during which the window is opened" and

"the time period in which WDT counter clear is disabled" = "the time period in which the window is closed" can be set.



Figure10-1 Watchdog Timer Overview (With the Window Function Disabled)

## oFeatures

- Eight types of overflow periods can be chosen (7.8 ms, 15.6 ms, 31.3 ms, 62.5 ms, 125 ms, 500 ms, 2 s, or 8 s)
- Two types of use are available:
  - •Window function disabled mode

The WDT counter can always be cleared. The WDT interrupt is generated when the first counter overflow occurs, and the WDT reset is generated when the second counter overflow occurs.

·Window function enabled mode

The periods during which WDT counter clear is enabled and disabled respectively can be set. The WDT reset is generated when the first counter overflow occurs, and the WDT invalid clear reset is generated when the counter is cleared in the period during which WDT counter clear is disabled.

| Mada                     | Over      | WDT involid closer report |                           |
|--------------------------|-----------|---------------------------|---------------------------|
| Mode                     | First     | Second                    | VIDT IIIvaliu clear reset |
| Window function disabled | Interrupt | Reset                     | Window function disabled  |
| mode                     | ····••F · |                           | mode                      |
| Window function enabled  | Reset     | _                         | Window function enabled   |
| mode                     | Reset     | -                         | mode                      |

Table 10-1 Watchdog Timer Operation Modes

- The following items can be chosen by the code option. See the Chapter 26 "Code Option" for details of the code option.
  - ·Enabling/disabling the WDT timer operation
  - •Operation clock of the WDT counter (32 dividing of low-speed clock LSCLK, WDTCLK RC1K oscillation)

[Note]

- WDT is the function used to monitor the CPU runaway. Its function as an ordinary timer is not guaranteed.
- The watchdog timer is undetectable to all the abnormal operations. Even if the CPU loses control, the watchdog timer is undetectable to the abnormality in the operation state in which the WDT counter is cleared. It is recommended that the WDT counter is cleared at one place in the main loop of the program as a fail-safe.
- WDT can be operated based on the clock independent of the system clock by using RC1K oscillation for the WDTCLK, resulting in further improvement of safety. However, it is recommended to choose LSCLK if high accuracy of the frequency is required, since the RC1K oscillation is less accurate than the LSCLK.

## ∘Configuration

The following diagram shows the configuration of the watchdog timer.



| WDTCON | : Watchdog timer control register |
|--------|-----------------------------------|
| WDTMOD | : Watchdog timer mode register    |
| WDTMC  | : Watchdog timer counter register |
| WDTSTA | : Watchdog timer status register  |

Figure 10-2 Configuration of Watchdog Timer

# •Serial Communication Unit

ML62Q1532 has two types of the serial communication function.

- 8-bit/16-bit synchronous serial port (SSIO)
- Asynchronous serial interface UART (Universal Asynchronous Receiver Transmitter)

ML62Q1532 equips 2 channels Serial Communication Units.

## Features

Two serial communication modes are available. Table 11-2 shows features of the serial communication.

| Serial Communication mode             | Operation mode                                                                                             | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Synchronous Serial I/O Port<br>(SSIO) | •8-bit mode<br>•16-bit mode                                                                                | <ul> <li>Max. 2ch (Both SSIO and UART are unavailable to use in the same channel)</li> <li>Master mode / Slave mode</li> <li>MSB first / LSB first</li> <li>8bit / 16bit data length</li> <li>Self-test function using the master and slave modes.<br/>For the self-test functions, see "Safety Function."</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UART mode                             | <ul> <li>Half-duplex<br/>communication<br/>mode</li> <li>Full-duplex<br/>communication<br/>mode</li> </ul> | <ul> <li>5-bit/6-bit/7-bit/8-bit data length</li> <li>Odd parity/even parity/0 parity/1 parity/and no parity</li> <li>One stop bit/Two stop bits</li> <li>Positive logic/negative logic for communication logic</li> <li>MSB first / LSB first</li> <li>Wide range of communication speed <ul> <li>1bps to 4,800bps (Clock frequency is 32.768kHz)</li> <li>600bps to 3Mbps (Clock frequency is 24MHz)</li> <li>300bps to 2Mbps(Clock frequency is 16MHz)</li> </ul> </li> <li>Built-in baud rate generator for each channel</li> <li>Parity error flag, overrun error flag, framing error flag, transmission buffer status flag, reception buffer status flag</li> <li>Self-test function using transmission and reception</li> </ul> |

| Table 11 2 | Footuroo | of the | Sorial | Communication |
|------------|----------|--------|--------|---------------|
|            | realures | or the | Senai  | Communication |

## $\circ$ Configuration

Figure 11-1 shows configuration of the serial communication unit.



Figure 11-1 Configuration of the Serial Communication Unit

| SDnBUF             | : Serial communication unit n transmission/reception buffer          |
|--------------------|----------------------------------------------------------------------|
| SUnMOD             | : Serial communication unit n mode register                          |
| SUnCON             | : Serial communication unit n control register                       |
| SUnDLYL            | : Serial communication unit n transmission interval setting register |
| SIOnMOD            | : Synchronous serial port n mode register                            |
| SIOnSTAT           | : Synchronous serial port n status register                          |
| UAn0MOD, UAn1MOD   | : UARTn0 mode register, UARTn1 mode register                         |
| UAn0BRT, UAn1BRT   | : UARTn0 baud rate register, UARTn1 baud rate register               |
| UAn0STAT, UAn1STAT | : UARTn0 status register, UARTn1 status register                     |
| SIUn0INT           | : Serial communication unit n0 Interrupt                             |
| SIUn1INT           | : Serial communication unit n1 Interrupt                             |
| SIUnSIO_TXREQ      | : Serial communication unit n SSIO transmission DMA request          |
| SIUnSIO_RXREQ      | : Serial communication unit n SSIO reception DMA request             |
| SIUnUART_TXREQ     | : Serial communication unit n UART transmission DMA request          |
| SIUnUART RXREQ     | : Serial communication unit n UART reception DMA request             |

# oList of Pins

The I/O pins of the serial communication unit are assigned to the shared function of the general ports.

| Pin name | I/O | Description                                                              |  |
|----------|-----|--------------------------------------------------------------------------|--|
| SUn_RXD0 | I   | Full-duplex data input UART0 data input of serial communication unit n   |  |
| SUn_RXD1 | I   | UART1 data input of serial communication unit n                          |  |
| SUn_TXD0 | 0   | UART0 data output of serial communication unit n                         |  |
| SUn_TXD1 | 0   | Full-duplex data output UART1 data output of serial communication unit n |  |
| SUn_SCLK | I/O | SSIO synchronous clock input/output of serial communication unit n       |  |
| SUn_SOUT | 0   | SSIO transmission data output of serial communication unit n             |  |
| SUn_SIN  | I   | SSIO reception data input of serial communication unit n                 |  |

(n=0 to 1)

Table 11-3 (1) and (2) show the list of the general ports used for the serial communication unit and the register settings of the ports.

| Table 11-3(1) | Ports used for the serial communication unit and the register s | settings (l | JART) |
|---------------|-----------------------------------------------------------------|-------------|-------|
|               |                                                                 |             | - /   |

| Channel no. | Pin name | Shared port |                       | Setting<br>register | Setting value |
|-------------|----------|-------------|-----------------------|---------------------|---------------|
|             | SU0_TXD0 | P03         | 2 <sup>nd</sup> Func. | P0MOD3              | 0001_XXXX*2   |
|             | SU0_RXD0 | P02         | 2 <sup>nd</sup> Func. | P0MOD2              | 0001_XXXX*1   |
|             |          | P07         | 3 <sup>rd</sup> Func. | P0MOD7              | 0010_XXXX*1   |
| 0           |          | P17         | 3 <sup>rd</sup> Func. | P1MOD7              | 0010_XXXX*1   |
| 0           |          | P03         | 3 <sup>rd</sup> Func. | P0MOD3              | 0010_XXXX*2   |
|             | 500_1XD1 | P20         | 2 <sup>nd</sup> Func. | P2MOD0              | 0001_XXXX*2   |
|             |          | P07         | 2 <sup>nd</sup> Func. | P0MOD7              | 0001_XXXX*1   |
|             | 300_KAD1 | P17         | 2 <sup>nd</sup> Func. | P1MOD7              | 0001_XXXX*1   |
|             | SU1_TXD0 | P22         | 2 <sup>nd</sup> Func. | P2MOD2              | 0001_XXXX*2   |
| 1           | SU1_RXD0 | P21         | 2 <sup>nd</sup> Func. | P2MOD1              | 0001_XXXX*1   |
|             | SU1_TXD1 | P22         | 3 <sup>rd</sup> Func. | P2MOD2              | 0010_XXXX*2   |

\*1: "XXXX" determines the condition of the port input

|                        | XXXX | Condition of the port input |
|------------------------|------|-----------------------------|
|                        | 0001 | Input (without Pull-UP)     |
| 0101 Input (with Pull- |      | Input (with Pull-UP)        |

\*2: "XXXX" determines the condition of the port input

| XXXX                                         | Condition of the port output |
|----------------------------------------------|------------------------------|
| 0010                                         | CMOS output                  |
| 1010 Nch open drain output (without Pull-UP) |                              |
| 1111 Nch open drain output (with Pull-UP)    |                              |

| Table 11-3(2) Ports used in the serial communication unit and the register settings (SSI | Table 11-3(2) |
|------------------------------------------------------------------------------------------|---------------|
|------------------------------------------------------------------------------------------|---------------|

| Channel no. | Pin name | Shared port |                       | Setting<br>register | Setting value |
|-------------|----------|-------------|-----------------------|---------------------|---------------|
|             | SU0_SIN  | P02         | 2 <sup>nd</sup> Func. | P0MOD2              | 0001_XXXX*1   |
| 0           | SU0_SCLK | P04         | 2 <sup>nd</sup> Func. | P0MOD4              | 0001_XXXX*3   |
|             | SU0_SOUT | P03         | 2 <sup>nd</sup> Func. | P0MOD3              | 0001_XXXX*2   |
|             | SU1_SIN  | P21         | 2 <sup>nd</sup> Func. | P2MOD1              | 0001_XXXX*1   |
| 1           | SU1_SCLK | P23         | 2 <sup>nd</sup> Func. | P2MOD3              | 0001_XXXX*3   |
|             | SU1_SOUT | P22         | 2 <sup>nd</sup> Func. | P2MOD2              | 0001_XXXX*2   |

\*1: "XXXX" determines the condition of the port input

|               | XXXX         | Condition of the port                           |  |
|---------------|--------------|-------------------------------------------------|--|
| 0001          |              | Input (without Pull-UP)                         |  |
|               | 0101         | Input (with Pull-UP)                            |  |
| *2            | 2: "XXXX" de | termines the condition of the port output       |  |
|               | XXXX         | Condition of the port                           |  |
|               | 0010         | CMOS output                                     |  |
|               | 1010         | Nch open drain output (without Pull-UP)         |  |
|               | 1111         | Nch open drain output (with Pull-UP)            |  |
| *3: "XXXX" de |              | termines the condition of the port input/output |  |
|               | XXXX         | Condition of the port                           |  |
|               | 0010         | CMOS output (SSIO master mode)                  |  |
|               | 0001         | Input (SSIO slave mode)                         |  |

## Combination of SSIO port

SUn\_SIN, SUn\_SOUT and SUn\_SCLK are assigned to multiple general ports. Be sure to use the ports in following combinations.

|             |          | Port |           |           |  |
|-------------|----------|------|-----------|-----------|--|
| Combination | SUn_SIN* |      | SUn_SOUT* | SUn_SCLK* |  |
| 1           | 0        | P02  | P03       | P04       |  |
| 2           | 1        | P21  | P22       | P23       |  |

\*:n= Channel Number.

## oCombination of UART port

The pin assignment depends on the communication mode. See Table 11-4 in section 11.2.1 of [ML62Q1000 Series User's Manual] for details of the pin assignment.

#### •I<sup>2</sup>C Bus Unit

ML62Q1532 has one channel of  $I^2C$  bus unit that supports both master and slave function. Either of master or slave can be chosen to use and both functions of master and slave are unworkable at the same time.

## oFeatures

Table 12-2 shows the features of I<sup>2</sup>C bus unit.

| Table 12-2 | Features of I <sup>2</sup> C bus unit |
|------------|---------------------------------------|
|            |                                       |

| Function                  | Operation mode  | Features                                                                                                                                                                                                                                                                         |
|---------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Master function | <ul> <li>Communication speed: Standard mode (100 kbps), fast mode (400 kbps), and original standard 1 Mbps mode (1Mbps)</li> <li>Support clock stretch function for the Slave</li> <li>7-bit address format (only the master function supports 10-bit address format)</li> </ul> |
| I <sup>2</sup> C bus unit |                 | <ul> <li>Self-test function by reading transmitted data onto the I<sup>2</sup>C bus<br/>(Safety function)</li> </ul>                                                                                                                                                             |
|                           | Slave function  | <ul> <li>Communication speed: Standard mode (100 kbps), fast mode (400 kbps), and original standard 1 Mbps mode (1Mbps)</li> <li>Clock stretch function</li> <li>7-bit address format</li> <li>Wake-up from STOP mode by matching slave address</li> </ul>                       |

# $\circ$ Configuration

Figure 12-1 shows the configuration diagram of the I<sup>2</sup>C bus unit circuit.



Figure 12-1 Configuration of I<sup>2</sup>C Bus Unit

| I2CU0_SCL: | Serial Clock                                           |
|------------|--------------------------------------------------------|
| I2CU0_SDA: | Serial Data                                            |
| I2U0MSS:   | I <sup>2</sup> C bus unit n mode register              |
| I2UM0RD:   | I <sup>2</sup> C bus 0 receive register (master)       |
| I2UM0SA:   | I <sup>2</sup> C bus 0 slave address register (master) |
| I2UM0TD:   | I <sup>2</sup> C bus 0 transmit data register (master) |
| I2UM0CON:  | I <sup>2</sup> C bus 0 control register (master)       |
| I2UM0STR:  | I <sup>2</sup> C bus 0 status register (master)        |
| I2US0RD :  | I <sup>2</sup> C bus 0 receive register (slave)        |
| I2US0SA:   | I <sup>2</sup> C bus 0 slave address register (slave)  |
| I2US0TD:   | I <sup>2</sup> C bus 0 transmit data register (slave)  |
| I2US0CON:  | I <sup>2</sup> C bus 0 control register (slave)        |
| I2US0MD:   | I <sup>2</sup> C bus 0 mode register (slave)           |
| I2US0STR:  | I <sup>2</sup> C bus 0 status register (slave)         |
|            |                                                        |

# ○List of Pins

The I/O pins of the I<sup>2</sup>C bus unit are assigned to the shared function of the general ports.

| Pin name  | I/O | Description                               |  |
|-----------|-----|-------------------------------------------|--|
| I2CU0_SDA | I/O | I <sup>2</sup> C bus unit 0 data I/O pin  |  |
| I2CU0_SCL | I/O | I <sup>2</sup> C bus unit 0 clock I/O pin |  |

#### •Pin Setting

I2CU0\_SDA pin and I2CU0\_SCL pin are assigned to multiple general ports. Be sure to use the ports in following combinations.

| Pin name  | Combination 1 |  |
|-----------|---------------|--|
| I2CU0_SDA | P03           |  |
| I2CU0_SCL | P04           |  |

In addition to the mode setting of the shared function, choose "Enable Input, Enable Output, Nch open drain output and without pull-up" by setting following data to the port n mode register m (PnMODm).

| Port name | PnMODm | Combination | Setting data |
|-----------|--------|-------------|--------------|
| P03       | P0MOD3 | 1           | 0x3B         |

Table 12-3 I<sup>2</sup>C bus unit general port combinations

[Note]

- Use external pull-up resistors for SDA pin and SCL pin referring to the I<sup>2</sup>C bus specification. The internal
  pull-up resistors unsatisfy the I<sup>2</sup>C bus specification. See the data sheet for each product for the value of
  internal pull-up resistors.
- If powering off this LSI in the slave mode, it disables communications of other devices on the I<sup>2</sup>C bus.
   Keep this LSI powered on when it works as a slave mode until the master device is powered off.
- When using the master function, do not connect multiple master devices on the I<sup>2</sup>C bus.

## •I<sup>2</sup>C Bus Master

ML62Q1532 has two channels of I<sup>2</sup>C bus master that support only the master function on the I<sup>2</sup>C bus specification. This unit has the function of the I<sup>2</sup>C bus unit, described in Chapter 12, not containing the slave function and the low-speed clock (LSCLK) operation.

#### Features

Table 13-2 shows the features of  $I^2C$  bus master.

| Table 13-2 | Features | of I2C | hus | master |
|------------|----------|--------|-----|--------|
|            | realures |        | bus | master |

| Function                    | Operation mode | Features                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I <sup>2</sup> C bus master | Master mode    | <ul> <li>Communication speed: Standard mode (100 kbps), fast mode (400 kbps), and original standard 1 Mbps mode (1Mbps)</li> <li>Support clock stretch function for the Slave</li> <li>7-bit address format (only the master function supports 10-bit address format)</li> <li>Self-test function by reading transmitted data onto the I2C bus (Safety function)</li> </ul> |

# $\circ$ Configuration

Figure 13-1 shows the configuration diagram of the I<sup>2</sup>C bus master circuit.





| I2CMn_SCL: | Serial Clock                                     |
|------------|--------------------------------------------------|
| I2CMn_SDA: | Serial Data                                      |
| I2MnRD:    | I <sup>2</sup> C master n receive register       |
| I2MnSA:    | I <sup>2</sup> C master n slave address register |
| I2MnTD:    | I <sup>2</sup> C master n transmit data register |
| I2MnCON:   | I <sup>2</sup> C master n control register       |
| I2MnMOD:   | I <sup>2</sup> C master n mode register          |
| I2MnSTAT:  | I <sup>2</sup> C master n status register        |

# oList of Pins

The I/O pins of the I<sup>2</sup>C bus master are assigned to the shared function of the general ports.

| Pin name  | I/O | Function                                    |
|-----------|-----|---------------------------------------------|
| I2CMn_SDA | I/O | I <sup>2</sup> C bus master n data I/O pin  |
| I2CMn_SCL | I/O | I <sup>2</sup> C bus master n clock I/O pin |

## ∘Pin Setting

I2CMn\_SDA pin and I2CMn\_SCL pin are assigned to multiple general ports. Be sure to use the ports in following combinations.

| Pin name  | Combination 1 | Combination 2 |
|-----------|---------------|---------------|
| I2CM0_SDA | P06           | P22           |
| I2CM0_SCL | P07           | P23           |

In addition to the mode setting of the shared function, choose "Enable Input, Enable Output, Nch open drain output and without pull-up" by setting following data to the port n mode register m (PnMODm).

| Port name | PnMODm | Combination | Setting data |
|-----------|--------|-------------|--------------|
| P06       | P0MOD6 | 1           | 0x3B         |
| P07       | P0MOD7 | 1           | 0x3B         |
| P22       | P2MOD2 | 2           | 0x3B         |
| P23       | P2MOD3 | 2           | 0x3B         |

Table 13-3 I<sup>2</sup>C bus master general port combinations

#### [Note]

- Use external pull-up resistors for SDA pin and SCL pin referring to the I<sup>2</sup>C bus specification. The internal
  pull-up resistors unsatisfy the I<sup>2</sup>C bus specification. See the data sheet for each product for the value of
  internal pull-up resistors.
- Do not connect multiple master devices on the I<sup>2</sup>C bus.

# DMA Controller

ML62Q1532 has two channels of the Direct Memory Access Controller (DMAC), which enables to transfer data between SFR of peripheral circuits and the built-in RAM without the CPU operation.

Table 14-1 in the section 14.3.6 "DMA Transfer Target Block" of "ML62Q1000 Series User's Manual" shows available peripheral blocks to use as the DMA transfer source or destination.



SFR (Special Function Register)



#### [Note]

• Do not use the DMA controller and the Coprocessor (Hardware multiplier/divider) simultaneously.

## oFeatures

- Transfer unit : 8bit/16bit
- Transfer count : 1 to 1024 time
- Transfer cycle : 2 cycle (CPU operation has priority if the access is competed)
  - Transfer address : Fixed address / Increment address / Decrement address
- Transfer target : SFR/RAM → SFR/RAM (Transfer from/to Flash is not supported)
- Transfer request : Serial communication DMA request, SA-ADC DMA request, 16bit timer DMA request, Functional timer DMA request, External DMA request and the software DMA request
- Transfer priority : Channel 0 > Channel 1 (Channel 0 has higher priority)
- Interrupt : The DMA Controller interrupt occurs when the all transfers are completed.

## ∘ Configuration

Figure 14-2 shows the configuration of the DMA Control circuit.



| DCnMOD  | : DMA channel n transfer mode register                |
|---------|-------------------------------------------------------|
| DCnTN   | : DMA channel n transfer count register               |
| DCnSA   | : DMA channel n transfer source address register      |
| DCnDA   | : DMA channel n transfer destination address register |
| DCEN    | : DMA transfer enable register                        |
| DCnSTRG | : DMA channel n software request                      |
|         | (n = 0, 1)                                            |
|         |                                                       |

Figure 14-2 Configuration of DMA Controller Circuit

## Buzzer

The buzzer circuit generates a base signal in combination of 8 frequencies and 15 duties and outputs the signal in four modes.



The buzzer circuit outputs a positive phase pulse (BZ0P) and negative phase pulse (BZ0N). Also, for details of the clock used in the buzzer block (T8HZ, T1HZ), see "Low Speed Time Base Counter".

## oFeatures

- Four types of buzzer mode (Intermittent sound 1, Intermittent sound 2, Single sound and Continuous sound)
- Eight types of frequency (4.096 kHz to 293 Hz)
- 15 duties (1/16 to 15/16 = 6.25% to 93.75%)
- Only seven duties (1/8 to 7/8 = 12.5% to 87.5%) are available when the buzzer frequency is 4.096 kHz.
- The initial level (positive logic or negative logic) of the buzzer output pins can be chosen

## ∘ Configuration

Figure 15-2 shows the configuration of the buzzer circuit.



BZ0CON : Buzzer 0 control register

BZ0MOD : Buzzer 0 mode register

Figure 15-2 Configuration of Buzzer

## oList of Pins

The output pins of the buzzer signal are assigned to the shared function of the general port.

| Pin name | I/O | Function                       |
|----------|-----|--------------------------------|
| BZ0P     | 0   | Buzzer output (positive phase) |
| BZ0N     | 0   | Buzzer output (negative phase) |

Table 15-1 shows the list of the general ports used for the buzzer output and the register settings of the ports.

| Table 15-1 | Ports used for the buzzer and the register settings |
|------------|-----------------------------------------------------|
|            |                                                     |

| Pin name | Shared port |                       | Setting register | Setting value |
|----------|-------------|-----------------------|------------------|---------------|
| BZ0P     | P17         | 7 <sup>th</sup> Func. | P1MOD7           | 0110_XXXX     |
| BZ0N     | P20         | 7 <sup>th</sup> Func. | P2MOD0           | 0110_XXXX     |

"XXXX" determines the condition of the port output

| XXXX | Condition of the port output                |
|------|---------------------------------------------|
| 0010 | CMOS output                                 |
| 1010 | Nch open drain output (without the pull-up) |
| 1111 | Nch open drain output (with the pull-up)    |

## •Simplified RTC

ML62Q1532 has the simplified RTC (RTC: Real Time Clock).

The simplified RTC counts up from 00 minutes 00 seconds to 59 minutes 59 seconds in the unit of one second and also generates an interrupt request periodically.

For the interrupt enable/request flags, etc. described in this chapter, refer to Chapter "Interrupts".

#### oFeatures

- A desired periodical interrupt request can be chosen from among four types (0.5, 1, 30 and 60 seconds).
- A function to prevent erroneous writing to the simplified RTC minute/second counter included.
- The simplified RTC minute/second counter continues counting operation even when a reset (other than power-on reset) is generated.
- Counting operation is continued all the time, except when operating in the STOP/STOP-D mode.

## ∘Configuration

Figure 16-1 shows the configuration of simplified RTC.





| SRTCACP | : Simplified RTC acceptor                          |
|---------|----------------------------------------------------|
| SRTCMAS | : Simplified RTC minute/second counter             |
|         | SRTCMIN (minute counter), SRTCSEC (second counter) |
| SRTCCON | : Simplified RTC control register                  |
|         |                                                    |

# •General Purpose Port

The general purpose port is used as an input port or an output port.

The input and output are switchable on each pin. A general input port or output port shares a number of functions. See "List of Pins" or "Description of Pins" for more detail.

Two general input ports are shared with the crystal resonator connection pins.

The number of general ports is dependent of each product. See Table 17-1 "List of Pins".

#### •Features

- Input or output can be chosen in each pin
- Pull-up resistor can be chosen in each pin
- CMOS output or N-channel open drain output is can be chosen in each pin
- Direct driving LEDs is supported when the N-channel open drain output is chosen
- Carrier frequency output function
- Port output level test function

## $\circ$ Configuration

Figure 17-1 shows the configuration of the general purpose port.



| Figure 17-1          | Configuration of | General Pur | nose I/O port n |
|----------------------|------------------|-------------|-----------------|
| rigule i <i>r</i> -i | Configuration of | Ocherari u  |                 |

図 17-2 に汎用入力ポートの構成を示します。





List of Pins

| Table | 17-1 | List of | Pins |
|-------|------|---------|------|
|       |      |         |      |

| Pin<br>Name | Primary<br>Function                                                         |  |
|-------------|-----------------------------------------------------------------------------|--|
| PI00        | General purpose Input/<br>Crystal Oscillator Input                          |  |
| PI01        | General purpose Input/<br>Crystal Oscillator Input/<br>External Clock Input |  |
| P00         | General purpose<br>Input/Output                                             |  |
| P01         | General purpose<br>Input/Output /<br>DACOUT0                                |  |
| P02         | General purpose<br>Input/Output /EXI0                                       |  |
| P03         | General purpose<br>Input/Output /EXI1                                       |  |
| P04         | General purpose<br>Input/Output /EXI2                                       |  |
| P05         | General purpose<br>Input/Output                                             |  |
| P06         | General purpose<br>Input/Output                                             |  |
| P07         | General purpose<br>Input/Output                                             |  |
| P17         | General purpose<br>Input/Output /EXI3                                       |  |
| P20         | General purpose<br>Input/Output                                             |  |
| P21         | General purpose<br>Input/Output /EXI4                                       |  |
| P22         | General purpose<br>Input/Output                                             |  |
| P23         | General purpose<br>Input/Output /EXI5                                       |  |
| P62         | General purpose<br>Input/Output                                             |  |
| P63         | General purpose<br>Input/Output                                             |  |
#### •External Interrupt Function

The external interrupt function generates interrupts by signals input to the general ports.

The interrupt channel has each dedicated interrupt vector.

The number of general ports with the external interrupt function is dependent of each product. See Table 18-1 " Ports used for the external interrupt and the register settings".

#### •Features

- Maskable 6 interrupts
- Available to choose the interrupt mode: interrupt disabled mode, falling-edge interrupt mode, rising-edge interrupt mode
- Available to choose "with sampling" or "without sampling" for the input signal (the sampling clock is LSCLK or HSCLK)

## •Configuration

Figure 18-1 shows the configuration of the external interrupt function (EXI0 to EXI7)



Figure 18-1 Configuration of External Interrupt Function

[Note]

ML7456N does not equips P26/EXI6/EXTRG6 and P27/EXI7/EXTRG7.

## oList of Pins

External interrupt is assigned to the primary function of the general port.

| Pin name | I/O | Function                   |
|----------|-----|----------------------------|
| EXI0     | I   | External Interrupt Input 0 |
| EXI1     | I   | External Interrupt Input 1 |
| EXI2     | I   | External Interrupt Input 2 |
| EXI3     | I   | External Interrupt Input 3 |
| EXI4     | I   | External Interrupt Input 4 |
| EXI5     | I   | External Interrupt Input 5 |

Table 18-1 shows the list of the general ports used for the external interrupt and the register settings of the ports.

| Pin<br>name | Shared port |                     | Setting<br>register | Setting value           |
|-------------|-------------|---------------------|---------------------|-------------------------|
| EXI0        | P02         | Primary<br>Function | P0MOD2              | 0000_0X01 <sup>*1</sup> |
| EXI1        | P03         | Primary<br>Function | P0MOD3              | 0000_0X01 <sup>*1</sup> |
| EXI2        | P04         | Primary<br>Function | P0MOD4              | 0000_0X01 <sup>*1</sup> |
| EXI3        | P17         | Primary<br>Function | P1MOD7              | 0000_0X01 <sup>*1</sup> |
| EXI4        | P21         | Primary<br>Function | P2MOD1              | 0000_0X01 <sup>*1</sup> |
| EXI5        | P23         | Primary<br>Function | P2MOD3              | 0000_0X01 <sup>*1</sup> |

Table 18-1 Ports used for the external interrupt and the register settings

<sup>\*1</sup>: "X" of "01X1" determines the condition of the port input

| Х | Condition of the port input                  |
|---|----------------------------------------------|
| 0 | Input (without an internal pull-up resistor) |
| 1 | Input (with an internal pull-up resistor)    |

#### •CRC Calculator

ML7456N has the CRC (Cyclic Redundancy Check) generator that performs CRC calculation and generates the CRC data used for error detection in serial communications.

Also, the CRC generator has automatic CRC calculation mode to check data in program memory, available in HALT mode or HALT-H mode.



Figure 19-1 CRC generator overview

## oFeatures

- Manual CRC calculation mode Generates CRC data from data set in CRC calculation register by the software Calculation unit is 8bit
- Automatic CRC calculation mode Automatic CRC calculation by the hardware to check data in program memory in HALT or HALT-H mode and generates CRC data

Calculation unit is 32bit. The interrupt occurs when the arithmetic operation is completed

- Generator polynomial:  $X^{16}+X^{12}+X^5+1$
- MSB first or LSB first selectable

# ∘ Configuration

Figure 19-2 shows the configuration of the CRC generator.



CRCEAD : Automatic CRC Calculation End Address Setting Register

Figure 19-2 Configuration of CRC Generator

## Analog Comparator

The Analog Comparator enables to use following functions.

- Compare voltages input to the two pins
- Compare a voltage input to the one pin with the internal reference voltage (Approx. 0.8V)

ML7456N equips 2 channels analog comparator.

#### Features

- Comparable with external 2 voltage inputs.
- Comparable with external voltage input and internal reference voltage (approx. 0.8V).
- Three types of interrupt timing generated by the voltage comparison are available.
  - Rising edge of the comparison result
  - Falling edge of the comparison result
  - Rising edge and Falling edge of the comparison result
- The sampling with a clock is optional for the comparison result
  - HSCLK
  - LSCLK
  - 1/2 HSCLK to 1/64 HSCLK
    - 1/2 LSCLK to 1/64 HSCLK
- Last comparison result CMPnD(n=0,1) is retained when the analog comparator is stopped
- The analog comparator result output can be used as a trigger event source for the Functional Timer.

# $\circ$ Configuration

Figure 20-1 shows the configuration of the analog comparator (n=0 to 1).



| CMPnCON<br>CMPnMOD | : Comparator n control register                                              |
|--------------------|------------------------------------------------------------------------------|
| CMPnD              | : Analog Comparator n result                                                 |
| CMPnINT            | : Analog Comparator n Interrupt                                              |
| CMPnVREF           | : Reference voltage select setting                                           |
| CMP0TRG            | : Analog Comparator 0 output. Trigger event source for the Functional Timer. |

Figure 20-1 Configuration of Analog Comparator

# ◦List of Pins

The I/O pins of the Analog Comparator are assigned to the shared function of the general ports (n=0 to 1).

| Pin name | I/O | Function                                |
|----------|-----|-----------------------------------------|
| CMPnP    | I   | Analog comparator n non-inverting input |
| CMPnM    | I   | Analog comparator n inverting input     |

Table 20-2 shows the list of the general ports used for the Analog Comparator and the register settings of the ports.

| Pin name | Sha                       | ared port             | Setting<br>Register | Setting value |
|----------|---------------------------|-----------------------|---------------------|---------------|
| CMP0P    | P03 7 <sup>th</sup> Func. |                       | P0MOD3              | 0110_0000     |
| CMP0M    | P02                       | 7 <sup>th</sup> Func. | P0MOD2              | 0110_0000     |
| CMP1P    | P62                       | 7 <sup>th</sup> Func. | P6MOD2              | 0110_0000     |
| CMP1M    | P63 7 <sup>th</sup> Func. |                       | P6MOD3              | 0110_0000     |

Table 20-2 Ports used in the Analog Comparator and the register settings

[Note]

- When using the analog comparator, write "0" to the target PnmIE bit and PnmOE bit of port n mode registers (n=0 to 9, A, B, m=0 to 7) to set the general port to Hi-impedance, otherwise a shoot-through current may flow.
- An influence of the noise is reducible by preventing the switching of neighboring pins when the comparator enables.

## D/A Converter

ML62Q1532 has one channel 8-bit resolution D/A converter that converts digital input signals to analog signals.

### •Features

- 8-bit resolution
- R-2R ladder method
- Analog output voltage (DACOUT0/DACOUT1)
- Output voltage:  $V_{DDIO\_MCU} x$  (Setting value in the SFR)/256
- Output impedance: 6kΩ (Typ.)

# Configuration

Figure 21-1 shows the configuration of the D/A converter.



DACCON : D/A converter 0 control register

DACCODE : D/A converter 0 code register

DACCON1 : D/A converter 1 control register

DACCODE1 : D/A converter 1 code register



[Note] ML7456N equips only D/A converter 0.

## oList of Pins

The I/O pins of the D/A converter are assigned to the shared function of the general ports.

| Pin name | I/O | Function               |
|----------|-----|------------------------|
| DACOUT0  | 0   | D/A converter 0 output |

Table 21-2 shows the list of the general ports used for the D/A converter and the register settings of the ports.

| Channel no. | Pin name | Sha | ared port        | Setting<br>Register | Setting value |
|-------------|----------|-----|------------------|---------------------|---------------|
| 0           | DACOUT0  | P01 | Primary<br>Func. | P0MOD1              | 0000_0000     |

Table 21-2 Ports used in the D/A converter and the register settings

[Note]

- When using the D/A converter, write "0" to the target PnmIE bit and PnmOE bit of port n mode registers (n=0 to 9, A, B, m=0 to 7) to set the general port to Hi-impedance (input and output disabled), othewise a shoot-through current may flow.
- An infuluence of the noise is reduceable by preventing the switching of neighboring pins while the D/A conveter is operating.

ML7456N

# •Voltage Level Supervisor

ML62Q1532 has the Voltage Level Supervisor (VLS0) that detects whether the voltage level of  $V_{DD}$  is lower or higher than the specified threshold voltage.

#### ∘Features

- Accuracy: ±4 %
- Threshold voltage: Selectable from 12 values (1.85 to 4.00 V)
- Operation mode: Supervisor mode (continuous detection) or single mode (one detection)

| Mode            | Description                                                                                                                                                                                                                                            |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Detect the voltage level of V <sub>VDD_MCU</sub> only once.                                                                                                                                                                                            |
| Single mode 1   | The interrupt occurs after detecting the voltage of $V_{\text{DD}}$ , indicates the detection has been completed.                                                                                                                                      |
|                 | Detect the voltage level of $V_{VDD_MCU}$ only once.                                                                                                                                                                                                   |
| Single mode 2   | The interrupt occurs after detecting the voltage of $V_{\text{DD}}$ is lower than the threshold voltage, indicates the MCU is in the low voltage condition.                                                                                            |
| Supervisor mode | Detect continuously the voltage level of $V_{VDD\_MCU}$ , suitable for always detecting the low voltage level of $V_{VDD\_MCU}$ and generating the interrupt or reset. The interrupt or reset occurs according to the setting in the VLS0MOD register. |
|                 | The VLS0 reset function is available by choosing the supervisor mode.                                                                                                                                                                                  |

- Voltage level supervisor reset (VLS0 reset)
- Voltage level supervisor interrupt (VLS0 interrupt)
- Initialized by the power-on reset (POR) or pin reset

# $\circ$ Configuration

The voltage level supervisor (VLS0) consists of a comparator, a sampling control circuit, and a voltage level detection control circuit. Figure 22-1 shows the configuration of the VLS0.



- VLS0CON : Voltage level supervisor 0 control register
- VLS0MOD : Voltage level supervisor 0 mode register
- VLS0LV : Voltage level supervisor 0 level register
- VLS0SMP : Voltage level supervisor 0 sampling register



## Successive Approximation Type A/D Converter

ML62Q1532 has the Successive Approximation type A/D Converter (SA-ADC), converts an analog input level to a digital value.

The number of A/D Converter channels is dependent of the product specification. ML7456N equips 5 channels (n=0,1,2,3,11)

: 10bit

#### Features

- Resolution
- Conversion time : Min. 2.25µs/channel (conversion clock is 8MHz)
- Number of input channel : Max. 5ch
- Reference voltage: Voltage input from the VDD pin, Internal reference voltage(approx.1.55V) or External reference voltage(VREF pin)
- Sampling time can be chosen
- Consecutive scan conversion function for target channels
- Consecutive scan conversion with a specific interval time
- One conversion result register for each channel
- Upper /Lower limit is configurable for the conversion result, generates an interrupt
- A built-in temperature sensor usable for the low-speed RC oscillation adjustment
- A/D converter self-test function (full scale, zero scale, internal reference voltage)
- Following triggers is available to start the A/D conversion
  - 16-bit Timer 0 trigger (TMH0TRG)
    - 16-bit Timer 1 trigger (TMH1TRG)
    - Functional Timer 0 trigger (FTM0TRG)
    - Functional Timer 1 trigger (FTM1TRG)
    - Low-speed Time Base Counter interrupt (LTB0INT)

# $\circ$ Configuration

Figure 23-1 shows the configuration of SA-ADC.



Figure 23-1 Configuration of successive approximation type A/D Converter

# oList of Pins

The I/O pins of the Successive Approximation type A/D converter are assigned to the shared function of the general ports.

| Pin name         | I/O | Description                       |  |
|------------------|-----|-----------------------------------|--|
| Vddio_mcu        | -   | Positive power supply for SA-ADC  |  |
| Vss              | -   | Negative power supply for SA-ADC  |  |
| V <sub>REF</sub> | -   | Reference power supply for SA-ADC |  |
| AINO             | I   | SA-ADC channel 0 analog input     |  |
| AIN1             | I   | SA-ADC channel 1 analog input     |  |
| AIN2             | I   | SA-ADC channel 2 analog input     |  |
| AIN3             | I   | SA-ADC channel 3 analog input     |  |
| AIN11            | I   | SA-ADC channel 11 analog input    |  |

### Regulator

ML62Q1532 incorporates the regulator.

Figure 24-1 shows the general scheme of the regulator.

The regulator generates a constant internal logic voltage (REG\_CORE\_MCU) independent of the variation of  $V_{DDIO_MCU}$  (2.6 V to 3.6 V) using an amplifier for the low power consumption. The REG\_CORE\_MCU generated by the regulator is supplied to peripheral circuits such as the internal logic circuit, flash memory, RAM, and oscillation circuit. In order to stabilize the REG\_CORE\_MCU, connect the REG\_CORE\_MCU pin to V<sub>ss</sub> via a capacitor (1  $\mu$ F).



Figure 24-1 General Scheme of Regulator

oFeatures

| Mode                                     | REG_CORE_MCU voltage |
|------------------------------------------|----------------------|
| STOP mode                                | 1.55 V               |
| HALT mode                                | 1.55 V               |
| HALT-H mode                              | 1.55 V               |
| Program run mode                         | 1.55 V               |
| STOP-D mode                              | 1 1 \/               |
| (content of RAM and SFR can be retained) | 1.1 V                |

# ∘Configuration

Figure 24-2 shows the configuration of the internal power supply.



Figure 24-2 Internal Power Supply Configuration

ML7456N

# ∘List of Pins

In order to stabilize REG\_CORE\_MCU, connect the REG\_CORE\_MCU pin to V<sub>SS</sub> via a capacitor (1 µF).

| Pin name I/C   |  | Function                                         |  |
|----------------|--|--------------------------------------------------|--|
| REG_CORE_MCU - |  | Internal logic power supply (Internal generated) |  |
| Vrefo -        |  | Reference voltage output                         |  |

[Note]

- In order to improve the noise resistance, place the inter-power supply bypass capacitor (C<sub>ν</sub>) and the internal logic voltage (REG\_CORE\_MCU) capacitor (C<sub>L</sub>: 1 µF) in the vicinity of LSI on the user board using the shortest possible wiring without passing through via holes.
- The internal logic voltage (REG\_CORE\_MCU) is unavailable to use for an external device voltage.

### •Flash Memory

ML62Q1532 has the flash memory in the program memory space and data flash area. For details of the program memory space and data flash area, see Chapter 2 "CPU and Memory Space" of "ML62Q1000 Series User's Manual". The flash memory is programmable by following three ways.

• The ways of programming the flash memory

| Programming method                                            | Tool/Register/Communication                                                             | Reference Chapter<br>(ML62Q1000 Series<br>User's Manual) |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|
| Programming by the on-chip debug function                     | On-chip debug emulator or other flash programmers                                       | Chapter 28 "On chip<br>Debug function"                   |
| Self-Programming by using the special function register(SFR)  | Special Function Registers(SFRs) for<br>programming the flash memory                    | Section 25.3<br>"Self-programming"                       |
| Programming by the ISP<br>(In-System Programming)<br>function | UART communication with an external device 3 <sup>rd</sup> Party Flash programmers (*1) | Section 25.4<br>"ISP function"                           |

\*1: Contact the 3<sup>rd</sup> party manufacturers for details about the Flash programmer.

The specification of the program memory space and data flash of ML7456N is following.

#### • Program memory space and Data flash area Overview

| Product Namo       | Program memory space |                         | Data flash area                      |                           |
|--------------------|----------------------|-------------------------|--------------------------------------|---------------------------|
| FIGUUCI Name       | Size                 | Address                 | Size                                 | Address                   |
| ML7456N(ML62Q1532) | 64K Byte             | 0x0:0000 to<br>0x0:FFFF | 4K Byte<br>(128 Byte x 32<br>Sector) | 0x1F:0000 to<br>0x1F:0FFF |

• Program memory space and Data flash area Overview

| Item                                         |                      | Program memory space | Data flash area |  |
|----------------------------------------------|----------------------|----------------------|-----------------|--|
|                                              | Chip erase(ISP only) | All area             | All area        |  |
| Erasing and                                  | Block erase          | 16K Byte             | All area        |  |
| programming unit                             | Sector erase         | 1K Byte              | 128 Byte        |  |
|                                              | Programming          | 4 Byte (32bit)       | 1 Byte (8bit)   |  |
|                                              | Max. 50ms            |                      | Max. 50ms       |  |
| Erasing and programming time                 | Block erase          | Max. 50ms            |                 |  |
|                                              | Sector erase         |                      |                 |  |
|                                              | Max. 80µs            | Max. 80µs            | Max. 40µs       |  |
| Programming cycle                            |                      | 100 times            | 10,000 回        |  |
| Erasing and programming temperature          |                      | 0°C to +40°C         | -40°C to +85°C  |  |
| Background operation(BGO) function           |                      | -                    | Yes             |  |
| Erasing and programming completion Interrupt |                      | No                   | Yes             |  |

# ∘List of Pins

Programming by the ISP function uses the following pins.

| Signal name | I/O | Function                                                                                                 |
|-------------|-----|----------------------------------------------------------------------------------------------------------|
| RESET_N     | I   | Input signal for entering the ISP mode                                                                   |
| TEST0       | I/O | Input signal for entering the ISP mode and data input/output data in the single wired UART communication |

## •Code Option

The code option is used to choose the CPU operating mode, PLL reference frequency, watchdog timer operation clock, etc. depending on values written in the code option area of the program memory space.

The hardware automatically refers to data in the code option area when the microcontroller starts up due to one of system resets described below to set each function.

- Power-on reset
- Voltage Level Supervisor reset
- RESET\_N pin reset
- Watchdog timer (WDT) overflow reset
- Watchdog timer (WDT) invalid clear reset
- RAM parity error reset
- Unused ROM area access reset



Updated at power-on reset, or any other system reset

The code option area can be erased or programmed through the on-chip debug function, self-rewrite function of flash memory, or ISP function.

Figure 26-1 Code Option Overview

#### oFunction List

- Enabling or disabling the unused ROM area access reset
- Enabling or disabling the remapping function
- Watchdog timer operation clock (low-speed oscillation LSCLK/WDT oscillation)
- Enabling or disabling the watchdog timer operation
- PLL reference frequency (16 MHz or 24 MHz)
- CPU operation mode (wait mode or no-wait mode)
- The software remap or hardware remap is selectable for the remap function

## •On-Chip Debug Function

This function is used by connecting the host PC and LSI through the on-chip debug emulator (hereafter referred to as "On-chip emulator").

On-board debugging or programming is available by using the program development environment software (debugger) installed on the host PC.

## Features

- The following debug functions are provided using the debugger by connecting LSI and On-chip emulator
  - Emulation
    - Real time emulation
    - Single step emulation
  - Break
    - Hardware break point break (four points)
    - RAM data matching break
    - Sequential break
    - Trace overflow break
    - Stack overflow/underflow break
    - Unused ROM area access break
    - RAM parity error break
  - Trace
    - Branch trace
  - Real time watch
  - CPU resource display/change
    - Program memory reference/disassembly
    - RAM and SFR display/change
    - Register display/change in the CPU
  - Program download
    - Program download/read/erase to/from flash memory
    - Data write/read/erase to/from data flash
  - Peripheral circuit operation continue/stop control during break
    - Target peripheral circuits
      - External interrupt
      - Low-speed time base counter
      - 16-bit timer
      - Functional timer
      - Serial communication unit (synchronous serial port/UART)
      - I<sup>2</sup>C bus master
      - I<sup>2</sup>C bus unit (master/slave)
      - DMA controller
      - Buzzer
      - Analog module
        - (Analog comparator, successive approximation type A/D converter, voltage level supervisor (VLS))
- The following program download function is provided using the flash multi-writer by connecting LSI and On-chip emulator.
  - Program download
  - Erasing/Programming the program memory space
  - Erasing/Programming the data flash memory area

# $\circ$ Configuration

When using the on-chip debug function, two methods are available for power supply to LSI as described below:

- Use the 3.3 VOUT power supply (+3.3 V/100 mA) of On-chip emulator
- Use the power supply of the target system ( $V_{DDIO\_MCU}$ =2.6 V to 3.6 V)

# Using 3.3 VOUT Power Supply (+3.3 V/100 mA) of On-chip Emulator

Figure 28-1 shows a connection example when using the 3.3 VOUT power supply (+3.3 V/100 mA) of On-chip emulator.



\*1) Normal operation (reset IC, VDDIO MCU, etc.)

Figure 28-1 Connection Example When Using On-chip Emulator 3.3 VOUT Power Supply

### Using Power Supply of Target System (VDDIO\_MCU=2.6 V to 3.6 V)

Figure 28-2 shows a connection example when using the power supply (V<sub>DDIO\_MCU</sub>=2.6 V to 3.6 V) of the target system.



\*1) Normal operation (reset IC, V<sub>DDIO MCU</sub>, etc.)

Figure 28-2 Connection Example When Using Target System Power Supply

# ∘List of Pins

The following pins are used for the on-chip debug function.

| Signal name | I/O | Function                                   |
|-------------|-----|--------------------------------------------|
| RESET_N     | I   | Reset input                                |
| P00/TEST0   | I/O | On-chip debug function signal input/output |

# •Safety Function

ML62Q1532 has the safety functions to make a safe stop in case a failure is detected by executing the self-diagnosis software, available to support IEC60730/60335 Class B.

### oFeatures

• Safety Functions on the LSI

| Function Name                                    | Description                                                                                                                               | Control by SFR |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| RAM guard                                        | Protect from the miss-writing to the specified RAM area                                                                                   | Available      |
| SFR guard                                        | Protect from the miss-writing to the specified SFR                                                                                        | Available      |
| Successive approximation type A/D converter test | Successive approximation type AD converter test function                                                                                  | Available      |
| RAM parity error detection                       | RAM parity error check and generates a reset on error (enable/disable reset by SFR, with reset status flag and parity error flag)         | Available      |
| ROM unused area access reset                     | Make a reset in case the CPU executes an instruction in the unused area (enable/disable reset by the code option, with reset status flag) | -              |
| Clock mutual monitoring                          | Monitor to check whether the oscillation of the high-speed and low-speed clocks are normal                                                | Available      |
| CRC calculation                                  | Detect data error in the flash memory or data error in communications                                                                     | Available      |
| UART self-test function                          | Make the UART self-test                                                                                                                   | Available      |
| SSIO self-test function                          | Make the SSIO self-test                                                                                                                   | Available      |
| I <sup>2</sup> C self-test function              | Make the I <sup>2</sup> C self-test function                                                                                              | Available      |
| WDT counter read                                 | WDT counter read function                                                                                                                 | Available      |
| Port output level self-test<br>function          | General port self-test function                                                                                                           | Available      |
| Clock backup function and the self-test          | Switch automatically to the low-speed RC oscillation in case the low-speed crystal oscillation stopped                                    | Available      |
| MCU status interrupt                             | Control interrupts generated by RAM parity error, automatic CRC calculation completion, and data flash erase/program completion.          | Available      |

### ∎RF

#### Host Interface

#### Serial Peripheral Interface (SPI)

This LSI has a serial peripheral interface (hereafter referred to as SPI). This LSI has a SPI, which supports slave mode. Host MCU can read/write to the RF part registers and on-chip FIFO using MCU clock. Single access mode and burst access mode are also supported.

#### [Single access mode timing chart]

In write operation, data will be stored into internal register at rising edge of clock which is capturing D0 data. During write operation, if SCEN is set to "H", the control section will be reset. After the internal clock is stabilized, the data will be written into the register in synchronization with the internal clock.







[Burst access mode timing chart]

By maintaining SCEN line as "L", Burst access mode will be active. By setting SCEN line to "H", exiting from the burst access mode. During burst access mode, address will be automatically incremented. When SCEN line becomes "H" before Clock for D0 is input, data transaction will be aborted.

#### [Note]

If access destination is [WR\_TX\_FIFO: B0 0x7C] or [RD\_FIFO: B0 0x7F] register, address will not be incremented, allowing continuous access to the FIFO.

[Write]



[Read]



The LSI state can be changed by setting registers below.

| State transition command | Registers setting                               |
|--------------------------|-------------------------------------------------|
| TX_ON                    | SET_TRX ([RF_STATUS: B0 0x0B(3-0)]) = 0x9       |
| RX_ON                    | SET_TRX ([RF_STATUS: B0 0x0B(3-0)]) = 0x6       |
| TRX_OFF                  | SET_TRX ([RF_STATUS: B0 0x0B(3-0)]) = 0x8       |
| Force_TRX_OFF            | SET_TRX ([RF_STATUS: B0 0x0B(3-0)]) = 0x3       |
| SLEEP                    | $SLEEP_EN([SLEEP/WU_SET: B0 0x2D(0)]) = 0b1$    |
| VCO_CAL                  | VCO_CAL_START([VCO_CAL_START: B0 0x6F(0)])= 0b1 |

The LSI state can be changed autonomously (please refer to the following table.) If one of the following conditions is met, state is changed automatically according to the following table.

| Function                                              | Register                                    |
|-------------------------------------------------------|---------------------------------------------|
| Automatic TXON after FIFO write completion            | AUTO_TX_EN([RF_STATUS_CTRL: B0 0x0A(4)])    |
| Automatic TXON during FIFO write                      | FAST_TX_EN([RF_STATUS_CTRL: B0 0x0A(5)])    |
| RF state setting after packet transmission completion | TXDONE_MODE([RF_STATUS_CTRL: B0 0x0A(1-0)]) |
| RF state setting after packet reception completion    | RXDONE_MODE([RF_STATUS_CTRL: B0 0x0A(3-2)]) |
| Automatic RXON/TXON by Wake-up timer<br>function      | [SLEEP/WU_SET:B0 0x2D]                      |
| Automatic VCO calibration after recovering from SLEEP | AUTO_VCOCAL_EN([VCO_CAL_START: B0 0x6F(4)]) |
| Automatic SLEEP by Timer                              | [SLEEP/WU_SET: B0 0x2D]                     |
| Automatic SLEEP by high speed carrier checking mode   | FAST_DET_MODE_EN ([CCA_CTRL:B0 0x39(3)])    |
| Automatic TX_ON by high speed carrier checking mode   | CCADONE_MODE([ED_CTRL:B0 0x41(6)])          |
| Force_TRX_OFF after PLL unlock detection<br>during TX | PLL_LD_EN([PLL_LOCK_DETECT: B1 0x0B(7)])    |

Each LSI state transition control follows the state diagram shown below.

**OLSI State Transition Diagram** 



LSI state diagram

ML7456N

DEEP\_Sleep mode: Powers for all blocks except IO pins are turned off. Sleep mode: Main regulator and 36MHz oscillation circuits are turned off. But sub-regulator is turned-on. The following registers can be programmed to control SLEEP state.

| Function                               | Register                                   |
|----------------------------------------|--------------------------------------------|
| Power control                          | PDN_EN([SLEEP/WU_SET: B0 0x2D(1)])         |
| Wake-up setting                        | WAKEUP_EN([SLEEP/WU_SET: B0 0x2D(4)])      |
| Wake-up timer clock source setting     | WUT_CLK_SOURCE([SLEEP/WU_SET: B0 0x2D(2)]) |
| Internal RC oscillator circuit control | RC32K_EN ([CLK_SET2: B0 0x03(3)])          |

Setting method and internal state for DEEP\_SLEEP and various SLEEP modes are as follows:

| SLEEP<br>mode | Setting method                                                              | Main<br>regulator | Sub<br>regulator | 36MHz<br>oscillator<br>circuit | RC<br>oscillator<br>circuit | Low clock<br>timer | TX FIFO |
|---------------|-----------------------------------------------------------------------------|-------------------|------------------|--------------------------------|-----------------------------|--------------------|---------|
| DEEP<br>SLEEP | RESETN pin="L"<br>REGPDIN pin="H"                                           | OFF               | OFF              | OFF                            | OFF                         | OFF                | OFF     |
| SLEEP1        | [SLEEP/WU_SET: B0 0x2D(5-0)]<br>= 0b00_0111<br>[CLK_SET2: B0 0x03(3)] = 0b0 | OFF               | ON               | OFF                            | OFF                         | OFF                | OFF     |
| SLEEP2        | [SLEEP/WU_SET: B0 0x2D(5-0)]<br>= 0b11_0111<br>[CLK_SET2: B0 0x03(3)] = 0b1 | OFF               | ON               | OFF                            | ON                          | ON                 | OFF     |

Contents of registers are not kept during DEEP\_SLEEP. Contents of registers are kept during SLEEP1 and SLEEP2. However, in SLEEP1 and SLEEP2, contents of TX FIFO are not kept, because power to FIFO is turned off.

#### ○Notes to Set RF State

This LSI is able to change the RF state transition autonomously (without RF state transition commands by register settings), by issuing RF state transition commands from LSI. (please refer to "LSI state transition instruction"). If both timing of operation (autonomous state and state change from MCU command) overlapped, unintentional RF state may occur. Timing of autonomous state RF change is described in the following table. Care must be taken not to overlap the conditions.

| Function                                 | RF state change<br>(before => after)                                                                                              | RF state transition timing<br>(not from Host MCU command)                                                                         | Recommended process                                                                                                                                 |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatic TX                             | TRX_OFF/RX_ON =><br>TX_ON                                                                                                         | After TX data reception completion interrupt<br>occurs, {[TX_RATE_H/L: B1 0x02/03)] setting<br>value<br>* 2 / 36} [µs] period     | Perform a write access to<br>[RF_STATUS:B0 0x0B] after<br>RF state transition completion<br>interrupt occurs or GET_TRX                             |
| FAST_TX mode                             |                                                                                                                                   | After FIFO write access amount exceeds trigger<br>level + 1, {[RX_RATE1_H/L:B1 0x04/05]<br>setting value<br>* 5 / 36} [µs] period | ([RF_STATUS:B0 0x0B(7-4)])<br>has changed to the expected<br>state.                                                                                 |
| After TX completion<br>RF status setting | $\begin{array}{rl} TX_ON \Rightarrow TRX_OFF \\ \hline TX_ON \Rightarrow RX_ON \\ \hline TX_ON \Rightarrow SLEEP \end{array}$     | After TX completion interrupt occurs,<br>{[TX_RATE_H/L:B1 0x02/03] setting value<br>* 2 / 36} [μs] period                         |                                                                                                                                                     |
| After RX completion<br>RF status setting | $\begin{array}{c} RX\_ON \Rightarrow TRX\_OFF \\ \hline RX\_ON \Rightarrow TX\_ON \\ \hline RX\_ON \Rightarrow SLEEP \end{array}$ | After data RX completion interrupt occurs,<br>{[RX_RATE1_H/L:B1 0x04/05] setting value<br>* 2 / 36} [μs] period                   |                                                                                                                                                     |
| Wake-up timer                            | SLEEP => TX_ON<br>SLEEP => RX_ON                                                                                                  | After wake-up timer completion, low speed wake-up timer clock cycle duration                                                      |                                                                                                                                                     |
|                                          | SLEEP => VCO_CAL<br>=> TX_ON<br>SLEEP => VCO_CAL<br>=> RX_ON                                                                      | After wake-up timer completion interrupt<br>(INT[6]: group1),<br>before VCO calibration completion interrupt<br>(INT[1] group1).  | After a VCO calibration<br>completion interrupt occurs,<br>perform an access to<br>[RF_STATUS:B0 0x0B] and<br>BANK2.                                |
| Continuous operation<br>timer            | $\begin{array}{rl} TX\_ON \Rightarrow SLEEP \\ \hline RX\_ON \Rightarrow SLEEP \end{array}$                                       | After continuous operation timer completion, low speed wake-up timer clock cycle duration                                         | Perform a write access to<br>[RF_STATUS:B0 0x0B] after                                                                                              |
| High speed carrier checking              | RX_ON => SLEEP<br>RX_ON => TX_ON                                                                                                  | After CCA completion interrupt, 6.3 [µs] period.                                                                                  | <pre>KF state transition completion<br/>interrupt occurs or GET_TRX<br/>([RF_STATUS:B0 0x0B(7-4)])<br/>has changed to the expected<br/>state.</pre> |
| PLL unlock detection                     | TX_ON => TRX_OFF                                                                                                                  | After PLL unlock detection interrupt (INT[2] group1), 24 [µs] (*1) period.                                                        | 24 μs (*1) after the interrupt<br>occurs, perform a write access to<br>[RF_STATUS:B0 0x0B].                                                         |

(\*1) Depends on the ramp down time setting.

# Packet Handling Function

## Packet Format

ML7456N RF part supports Wireless M-Bus frame Format A/B, and Format C/D which is non Wireless M-Bus universal format. The following packet handling are supported in FIFO mode or DIO mode

- Preamble and SyncWord automatic insertion (TX)
- Preamble and SyncWord automatic detection (RX)
- Preamble and SyncWord automatic deletion (RX)
- CRC data insertion
- CRC check and error notification

- --- Common to DIO/FIFO mode
- --- Common to DIO/FIFO mode --- Common to DIO/FIFO mode
- --- FIFO mode only
- --- Common to DIO/FIFO mode

Packet format registers are as follows:

| Function                            | Register                                 |
|-------------------------------------|------------------------------------------|
| Packet format setting               | PKT_FORMAT([PKT_CTRL1: B0 0x04(1-0)])    |
| RX extended link layer mode disable | RX_EXTPKT_OFF([PKT_CTRL1: B0 0x04(3)])   |
| Data area bit order setting         | DAT_LF_EN([PKT_CTRL1: B0 0x04(4)])       |
| Length area bit order setting       | LEN_LF_EN([PKT_CTRL1: B0 0x04(5)])       |
| Extended link layer mode setting    | EXT_PKT_MODE([PKT_CTRL1: B0 0x04(7-6)])  |
|                                     | EXT_PKT_MODE2([DATA_SET2: B0 0x08(7-6)]) |
| Length field setting                | LENGTH_MODE([PKT_CTRL2: B0 0x05(1-0)])   |

Packet formats supported by ML7456N RF part are as follows.

### (1) Format A (Wireless M-Bus)

To use Format A, set PKT\_FÓRMAT([PKT\_CTRL1: B0 0x04(1-0)]) = 0b00. B0 0x04(1-0)]) = 0b00 Format A consists of 1<sup>st</sup> Block, 2<sup>nd</sup> Block and Optional Block(s). Each block has 2 bytes of CRC. "L-field" (1st byte of 1<sup>st</sup> Block ) indicates packet Length, which indicates the total byte count of data subsequent to C-field of the 1<sup>st</sup> Block excluding CRC and Postamble. In addition, the 2<sup>nd</sup> Block or Optional Block subsequent to the 1<sup>st</sup> Block is added according to the Length.

The following [] indicates register address [bank #, address].

|                                |                        | Manchester/3-out-of-6 applicable<br>[B0.0x07] |            |            |            |              |              |                 |                |                 |              |              |
|--------------------------------|------------------------|-----------------------------------------------|------------|------------|------------|--------------|--------------|-----------------|----------------|-----------------|--------------|--------------|
| MSB                            |                        | CRC applicable                                |            |            |            |              | C applicable |                 | CRC applicable |                 | LSB          |              |
| Preamble                       | Sync<br>Word           | 1st Block                                     |            |            |            |              | 2nd Block    |                 |                | Opt Block       |              | Postamble    |
|                                |                        | L<br>field                                    | C<br>field | M<br>field | A<br>field | CRC<br>field | CI<br>field  | Data<br>field   | CRC<br>field   | Data<br>field   | CRC<br>field | FUSIAITIDIE  |
| n*2<br>or more                 | 10/18/<br>32bit        | 1<br>byte                                     | 1<br>byte  | 2<br>byte  | 6<br>byte  | 2<br>byte    | 1<br>byte    | Max. 15<br>byte | 2<br>byte      | Max. 16<br>byte | 2<br>byte    | 0/2-8<br>bit |
| [B0 0x07]<br>[B0 0x42]         | [B0 0x08]<br>[B1 0x25- | <b>4</b><br>2E] \                             |            |            |            |              |              |                 |                |                 |              | [B0 0x44]    |
|                                |                        |                                               | (*3)       |            |            |              |              |                 |                |                 |              |              |
| TX: automatic<br>RX: automatic | c insertion            | [B0 0x05]<br>[B0 0x7A-7E]                     |            |            |            |              |              |                 |                |                 |              | Ē            |

I detection, deletion

\*1: Each mode of Wireless M-Bus has different minimum value of n.

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

\*4: Indicates DCLK/DIO output area at RXDIO\_CTRL [DIO\_SET: B0 0x0C(7-6)])=0b10)

#### Extended Link Layer Format

If "CI-field" (1st byte of  $2^{nd}$  Block ) is set to 0x8C/0x8D/0x8E/0x8F, Extended Link Layer Format is applied and the packet format is extended as follows.

#### (a) CI-field = 0x8C

If using the extended format upon TX, set EXT\_PKT\_MODE[PKT\_CTRL1: B0 0x04(7-6)]) = 0b01 and EXT\_PKT\_MODE2([DATA\_SET2: B0 0x08(7-6)]) = 0b00. If RX\_EXTPKT\_OFF([PKT\_CTRL1: B0 0x04(3)]) = 0b0 is set for RX, whether or not the RX packets are extended packet format is judged automatically and the RX process is carried out.

| Manchester/3-out-of-6 applicable                 |                        |                      |                |                   |             |              |             |                 |                | }               |              |              |
|--------------------------------------------------|------------------------|----------------------|----------------|-------------------|-------------|--------------|-------------|-----------------|----------------|-----------------|--------------|--------------|
| MSB                                              |                        |                      | CRC applicable |                   |             |              |             |                 | CRC applicable |                 | LSB          |              |
| Preamble                                         | Sync<br>Word           | 1st Block<br>(*1)    |                | Extended<br>Block |             |              |             | 2nd Block       |                | Opt Block       |              | Postamble    |
|                                                  |                        | L<br>field           | C-CRC<br>field | CI<br>field       | CC<br>field | ACC<br>field | CI<br>field | Data<br>field   | CRC<br>field   | Data<br>field   | CRC<br>field | T UStamble   |
| n*2<br>or more                                   | 10/18/<br>32bit        | 1<br>byte            | 11<br>byte     | 1<br>byte         | 1<br>byte   | 1<br>byte    | 1<br>byte   | Max. 12<br>byte | 2<br>byte      | Max. 16<br>byte | 2<br>byte    | 0/2-8<br>bit |
| [B0 0x07]<br>[B0 0x42]<br>[B0 0x43]              | [B0 0x08]<br>[B1 0x25- | (*2)                 |                |                   |             |              |             |                 |                | •               | (B0 0x44)    |              |
| TX: automatic<br>RX: automatic<br>detection, del | [B0 (<br>[B0 (         | )<br>0x05]<br>0x7A-7 | 'E]            |                   |             |              | (*4)        |                 |                |                 |              |              |

\*1: 1st Block is identical to normal Format A.

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

\*4: Indicates DCLK/DIO output area at RXDIO\_CTRL ([DIO\_SET: B0 0x0C(7-6)]) = 0b10.

(b) CI-field = 0x8D

If using the extended format upon TX, set EXT\_PKT\_MODE[PKT\_CTRL1: B0 0x04(7-6)]) = 0b10 and EXT\_PKT\_MODE2([DATA\_SET2: B0 0x08(7-6)]) = 0b00. If RX\_EXTPKT\_OFF([PKT\_CTRL1: B0 0x04(3)]) = 0b0 is set for RX, whether or not the RX packets are extended packet format is judged automatically and the RX process is carried out.



\*1: 1<sup>st</sup> Block is identical to normal Format A..

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

\*4: Indicates DCLK/DIO output area at RXDIO\_CTRL ([DIO\_SET: B0 0x0C(7-6)]) = 0b10.

(c) CI-field = 0x8E

If using the extended format upon TX, set EXT\_PKT\_MODE[PKT\_CTRL1: B0 0x04(7-6)]) = 0b00 and EXT\_PKT\_MODE2([DATA\_SET2: B0 0x08(7-6)]) = 0b01. If RX\_EXTPKT\_OFF([PKT\_CTRL1: B0 0x04(3)]) = 0b0 is set for RX, whether or not the RX packets are extended packet format is judged automatically and the RX process is carried out.

| Manchester/3-out-of-6 applicable                                                       |                        |                     |                |                   |                        |             |                |              |                 |              | I            |
|----------------------------------------------------------------------------------------|------------------------|---------------------|----------------|-------------------|------------------------|-------------|----------------|--------------|-----------------|--------------|--------------|
| [B0 0x07]                                                                              |                        |                     |                |                   |                        |             |                |              |                 |              |              |
|                                                                                        |                        | <b></b>             | CRC ap         | plicable          |                        |             | CRC applicable | ]            |                 |              |              |
| MSB                                                                                    |                        |                     | [`             |                   |                        | ŗ           |                |              |                 | LSB          |              |
| Preamble                                                                               | Sync<br>Word           | 1st B<br>(*′        | Block<br>1)    | E                 | xtended<br>Block       |             | 2nd Block      |              | Opt Block       |              | Postamble    |
|                                                                                        |                        | L<br>field          | C-CRC<br>field | CI<br>field       | CC/ACC/M<br>2/A2 field | CI<br>field | Data<br>field  | CRC<br>field | Data<br>field   | CRC<br>field | 1 Ostambie   |
| n*2<br>or more                                                                         | 10/18/<br>32bit        | 1<br>byte           | 11<br>byte     | 1 10<br>byte byte |                        | 1<br>byte   | Max. 4<br>byte | 2<br>byte    | Max. 16<br>byte | 2<br>byte    | 0/2-8<br>bit |
| [B0 0x07]<br>[B0 0x42]                                                                 | [B0 0x08]<br>[B1 0x25- | <b>4 →</b><br>2E] \ |                | (*2)              |                        |             |                |              | <b>←</b> (*2)   |              | (B0 0x44)    |
| [B0 0x43]                                                                              |                        |                     | (*3)           |                   |                        |             |                |              |                 |              |              |
| TX: automatic insertion [B0 0x05]<br>RX: automatic [B0 0x7A-7E]<br>detection, deletion |                        |                     |                |                   |                        |             |                |              |                 |              |              |

\*1: 1st Block is identical to normal Format A.

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

\*4: Indicates DCLK/DIO output area at RXDIO\_CTRL ([DIO\_SET: B0 0x0C(7-6)]) = 0b10.
# (d) CI-field = 0x8F

If using the extended format upon TX, set EXT\_PKT\_MODE[PKT\_CTRL1: B0 0x04(7-6)]) = 0b00 and EXT\_PKT\_MODE2([DATA\_SET2: B0 0x08(7-6)]) = 0b10. If RX\_EXTPKT\_OFF([PKT\_CTRL1: B0 0x04(3)]) = 0b0 is set for RX, whether or not the RX packets are extended packet format is judged automatically and the RX process is carried out.



\*1: 1<sup>st</sup> Block is identical to normal Format A..

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

#### (2) Format B (Wireless M-Bus)

To use Format B, set PKT\_FORMAT([PKT\_CTRL1: B0 0x04(1-0)]) = 0b01.

Format B consists of 1st Block, 2nd Block or Optional Block. Each block after 2nd Block has 2 bytes of CRC. "L-field" (1st byte of 1<sup>st</sup> Block) indicates packet Length, which indicates the total byte count of data from C-field to final CRC data of the 1<sup>st</sup> Block. In addition, the 2<sup>nd</sup> Block or Optional Block subsequent to the 1<sup>st</sup> Block is added according to the Length.

The following [] indicates register address [bank #, address].



\*1: Each mode of Wireless M-Bus has different minimum value of n.

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

# Extended Link Layer Format

If "CI-field" (1st byte of  $2^{nd}$  Block ) is set to 0x8C/0x8D/0x8E/0x8F, Extended Link Layer Format is applied and the packet format is extended as follows.

#### (a) CI-field = 0x8C

If using the extended format upon TX, set EXT\_PKT\_MODE[PKT\_CTRL1: B0 0x04(7-6)]) = 0b01 and EXT\_PKT\_MODE2([DATA\_SET2: B0 0x08(7-6)]) = 0b00. If RX\_EXTPKT\_OFF([PKT\_CTRL1: B0 0x04(3)]) = 0b0 is set for RX, whether or not the RX packets are extended packet format is judged automatically and the RX process is carried out.

|                                                                                        |                        | Manchester/3-out-of-6 applicable → |             |                 |              |             |               |                  |               | I                |            |               |
|----------------------------------------------------------------------------------------|------------------------|------------------------------------|-------------|-----------------|--------------|-------------|---------------|------------------|---------------|------------------|------------|---------------|
|                                                                                        |                        |                                    |             |                 |              |             | [B0 0x        | .07]             |               |                  |            |               |
|                                                                                        |                        |                                    |             | C               | RC app       | olicable    |               |                  |               | CRC applicable   |            |               |
| MSB                                                                                    |                        |                                    |             | _               |              |             |               | ľ                |               |                  |            | LSB           |
| Preamble Sync<br>Word                                                                  | 1st B<br>(*            | Block<br>1)                        | E           | xtende<br>Block | ed           |             | 2nd Block     |                  | Opt Block     |                  | Postamble  |               |
|                                                                                        | L<br>field             | C-A<br>field                       | CI<br>field | CC<br>field     | ACC<br>field | CI<br>field | Data<br>field | CRC<br>field     | Data<br>field | CRC<br>field     | 1 Ostamble |               |
| n*2<br>or more                                                                         | 10/18/<br>32bit        | 1<br>byte                          | 9<br>byte   | 1<br>byte       | 1<br>byte    | 1<br>byte   | 1<br>byte     | Max. 112<br>byte | 2<br>byte     | Max. 126<br>byte | 2<br>byte  | 2 to 8<br>bit |
| [B0 0x07] [B0 0x42] [B0 0x43]                                                          | [B0 0x08]<br>[B1 0x25- | 2E]                                | 4           | •               | (*2)         |             |               |                  |               | (*2)             |            | (B0 0x44)     |
| <                                                                                      | (*3)                   |                                    |             |                 |              |             |               |                  |               |                  |            |               |
| TX: automatic insertion [B0 0x05]<br>RX: automatic [B0 0x7A-7E]<br>detection, deletion |                        |                                    |             |                 |              |             |               |                  |               |                  |            |               |

\*1: 1<sup>st</sup> Block is identical to normal Format B..

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

#### (b) CI-field = 0x8D

If using the extended format upon TX, set EXT\_PKT\_MODE[PKT\_CTRL1: B0 0x04(7-6)]) = 0b10 and EXT\_PKT\_MODE2([DATA\_SET2: B0 0x08(7-6)]) = 0b00. If RX\_EXTPKT\_OFF([PKT\_CTRL1: B0 0x04(3)]) = 0b0 is set for RX, whether or not the RX packets are extended packet format is judged automatically and the RX process is carried out.

| Manchester/3-out-of-6 applicable |                 |              |              |             |             |                 |             |              | I           |                  |              |                  |              |               |
|----------------------------------|-----------------|--------------|--------------|-------------|-------------|-----------------|-------------|--------------|-------------|------------------|--------------|------------------|--------------|---------------|
|                                  |                 |              |              |             |             |                 | [B0         | 0x07]        |             |                  |              |                  |              |               |
|                                  |                 | ←            | С            | RC app      | licable     |                 |             |              | CRC a       | pplicable        | С            | RC applicable    | ÷            |               |
| MSB                              | MSB             |              |              |             |             |                 |             |              |             |                  | LSB          |                  |              |               |
| Sync                             | Sync            | 1st B<br>(*′ | Block<br>1)  |             | E>          | ktende<br>Block | b           |              | 21          | nd Block         |              | Opt Blo          | vck          | Postamble     |
| Freamble                         | Word            | L<br>field   | C-A<br>field | CI<br>field | CC<br>field | ACC<br>field    | SN<br>field | CRC<br>field | Cl<br>field | Data<br>field    | CRC<br>field | Data<br>field    | CRC<br>field | TOStamble     |
| n*2<br>or more                   | 10/18/<br>32bit | 1<br>byte    | 9<br>byte    | 1<br>byte   | 1<br>byte   | 1<br>byte       | 4<br>byte   | 2<br>byte    | 1<br>byte   | Max. 106<br>byte | 2<br>byte    | Max. 126<br>byte | 2<br>byte    | 2 to 8<br>bit |
| [B0 0x07] [B0 0x08]              |                 |              | ◀            |             | (*2)        |                 |             |              | <b></b> (*  | 2)               |              | (*2)             | <b>A</b>     | (B0 0x44)     |
| [B0 0x43]                        | /               | <b>-</b>     |              |             |             |                 | (           | (*3)         |             |                  |              | <b>&gt;</b>      |              |               |
| TX: automati<br>RX: automati     | [B0 (           | )<br>0x05]   | · - 1        |             |             |                 |             | (*4)         |             |                  |              |                  | -            |               |
| detection, de                    | letion          | [R0 (        | [B0 0x7A-7E] |             |             |                 |             |              |             |                  |              |                  |              |               |

\*1: 1<sup>st</sup> Block is identical to normal Format B.

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

#### (c) CI-field = 0x8E

If using the extended format upon TX, set EXT\_PKT\_MODE[PKT\_CTRL1: B0 0x04(7-6)]) = 0b00 and EXT\_PKT\_MODE2([DATA\_SET2: B0 0x08(7-6)]) = 0b01. If RX\_EXTPKT\_OFF([PKT\_CTRL1: B0 0x04(3)]) = 0b0 is set for RX, whether or not the RX packets are extended packet format is judged automatically and the RX process is carried out.

|                                                                                            | Manchester/3-out-of-6 applicable |              |             |                        |               |               |                  |               | I                |            |               |
|--------------------------------------------------------------------------------------------|----------------------------------|--------------|-------------|------------------------|---------------|---------------|------------------|---------------|------------------|------------|---------------|
|                                                                                            |                                  |              |             |                        |               | [B0 0x        | :07]             |               |                  |            |               |
|                                                                                            |                                  | •            |             | C                      | RC applicable |               |                  |               | CRC applicable   |            |               |
| MSB                                                                                        |                                  |              |             | _                      |               |               |                  |               |                  |            | LSB           |
| Preamble Sync<br>Word                                                                      | 1st B<br>(*′                     | Block<br>1)  | E           | xtended<br>Block       |               | 2nd Block     |                  | Opt Block     |                  | Postamble  |               |
|                                                                                            | L<br>field                       | C-A<br>field | CI<br>field | CC/ACC/M<br>2/A2 field | CI<br>field   | Data<br>field | CRC<br>field     | Data<br>field | CRC<br>field     | T UStamble |               |
| n*2<br>or more                                                                             | 10/18/<br>32bit                  | 1<br>byte    | 9<br>byte   | 1<br>byte              | 10<br>byte    | 1<br>byte     | Max. 104<br>byte | 2<br>byte     | Max. 126<br>byte | 2<br>byte  | 2 to 8<br>bit |
| [B0 0x07] [B0 0x42] [B0 0x43]                                                              | (B0 0x08)<br>[B1 0x25-           | 2E]          | ▲           | (*2)                   |               |               |                  |               | (*2)             |            | (B0 0x44)     |
| <ul> <li>TX: automatic</li> </ul>                                                          | insertion                        | <u>الم</u>   | (*3)        |                        |               |               |                  |               |                  |            |               |
| RX: automatic insertion   [B0 0x05]<br>RX: automatic   [B0 0x7A-7E]<br>detection, deletion |                                  |              |             |                        |               |               |                  |               |                  |            |               |

\*1: 1<sup>st</sup> Block is identical to normal Format B..

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

(d) CI-field = 0x8F

If using the extended format upon TX, set EXT\_PKT\_MODE[PKT\_CTRL1: B0 0x04(7-6)]) = 0b00 and EXT\_PKT\_MODE2([DATA\_SET2: B0 0x08(7-6)]) = 0b10. If RX\_EXTPKT\_OFF([PKT\_CTRL1: B0 0x04(3)]) = 0b0 is set for RX, whether or not the RX packets are extended packet format is judged automatically and the RX process is carried out.

|                                                  |                         | •                    |                                  |                           | Manchester/3-out- | of-6 app<br>0x071 | olicable        |              |                  |               |               |           |
|--------------------------------------------------|-------------------------|----------------------|----------------------------------|---------------------------|-------------------|-------------------|-----------------|--------------|------------------|---------------|---------------|-----------|
| MSB                                              |                         | •                    | С                                | RC app                    | licable           |                   | ÇRC ap          | oplicable ►  | С                | RC applicable |               | LSB       |
| Sync                                             |                         | 1st B<br>(*′         | 1st Block Extended<br>(*1) Block |                           |                   |                   | 2nd Block       |              |                  | Opt Block     |               | Postamble |
| Word                                             | L<br>field              | C-A<br>field         | CI<br>field                      | CC/ACC/M2/A2/<br>SN field | CRC<br>field      | CI<br>field       | Data<br>field   | CRC<br>field | Data<br>field    | CRC<br>field  | TOStamble     |           |
| n*2<br>or more                                   | 10/18/<br>32bit         | 1<br>byte            | 9 1 14<br>e byte byte byte       |                           | 2<br>byte         | 1<br>byte         | Max. 98<br>byte | 2<br>byte    | Max. 126<br>byte | 2<br>byte     | 2 to 8<br>bit |           |
| [B0 0x07]<br>[B0 0x42]                           | (B0 0x08]<br>[B1 0x25-2 | <b>↓</b><br>2E] \    |                                  |                           |                   |                   | • (*            | 2)           |                  | (*2)          |               | (B0 0x44) |
| [B0 0x43]                                        | (*3)                    |                      |                                  |                           |                   |                   |                 | ]<br>        |                  |               |               |           |
| TX: automatic<br>RX: automatic<br>detection, del | [B0 (<br>[B0 (          | \<br>)x05]<br>)x7A-7 | 'E]                              |                           |                   | (*4)              |                 |              |                  |               |               |           |

\*1: 1<sup>st</sup> Block is identical to normal Format B..

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

(3) Format C (non-Wireless M-Bus, general purpose format)

To use Format C, set PKT\_FORMAT([PKT\_CTRL1: B0 0x04(1-0)]) = 0b10.

Format C consists of 1<sup>st</sup> Block only, which has 2 bytes of CRC. "L-field" (first one or two bytes of 1<sup>st</sup> Block) indicates packet Length, which indicates the total byte count from Data-field to final CRC data. Data Whitening function is supported.

The following [] indicates register address [bank #, address].



\*1: Preamble length (n) is can be set to arbitrary value.

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

(4) Format D (non-Wireless M-Bus, general purpose format)

To use Format D, set PKT\_FORMAT([PKT\_CTRL1: B0 0x04(1-0)]) = 0b11. B0 0x04(1-0)]) = 0b11. Format D consists of 1<sup>st</sup> Block only, which starts with Data field followed by CRC-field (selectable from 0/1/2 bytes). "L-field" indicates the total byte count from Data-field to final CRC data and is set by [TX\_PKT\_LENGTH: B0 0x7A/0x7B] or [RX\_PKT\_LENGTH: B0 0x7D/0x7E].

The following [] indicates register address [bank #, address].

|                                                  |                           | Manchester/3-out-of-6 applicable [B0 0x07] |                 |              |  |  |  |  |
|--------------------------------------------------|---------------------------|--------------------------------------------|-----------------|--------------|--|--|--|--|
|                                                  |                           | Whitening applicable [B0 0x08]             |                 |              |  |  |  |  |
|                                                  |                           | CRC applicable                             |                 |              |  |  |  |  |
| MSB                                              |                           |                                            |                 | LSB          |  |  |  |  |
| Sync                                             |                           | 1st Block                                  |                 | Doctombio    |  |  |  |  |
| Word                                             | Word                      | Data<br>field                              | CRC<br>field    |              |  |  |  |  |
| n*2<br>or more                                   | Max.<br>32bit             | Max. 2047<br>byte                          | 0/1/2/4<br>byte | 0/2-8<br>bit |  |  |  |  |
|                                                  |                           |                                            |                 |              |  |  |  |  |
| [B0 0x07]<br>[B0 0x42]                           | [B0 0x08]<br>[B1 0x25     | 2E] (*2)                                   | [B0 0x05]       | [B0 0x44]    |  |  |  |  |
| [B0 0x43]                                        |                           | (*3)                                       |                 |              |  |  |  |  |
| TX: automatic<br>RX: automatic<br>detection, del | c insertion<br>c<br>etion | (*4)                                       |                 |              |  |  |  |  |

\*1: Preamble length (n) is can be set to arbitrary value.

\*2: Indicates TX FIFO data storage area upon TX.

\*3: Indicates RX FIFO data storage area upon RX.

## oCRC Function

ML7456N RF part has CRC32,CRC16 and CRC8 function. CRC is calculated and appended to TX data. CRC is checked for RX data. The following modes are used for automatic CRC function. In addition, they can be set using the registers shown in the following table.

- FIFO mode --- RXDIO\_CTRL ([DIO\_SET: B0 0x0C(7-6)]) = 0b00
- DIO mode --- RXDIO\_CTRL ([DIO\_SET: B0 0x0C(7-6)]) = 0b11

| Function                         | Register                              |
|----------------------------------|---------------------------------------|
| TX CRC setting                   | TX_CRC_EN([PKT_CTRL2: B0 0x05(2)])    |
| RX CRC setting                   | RX_CRC_EN([PKT_CTRL2: B0 0x05(3)])    |
| CRC length setting               | CRC_LEN([PKT_CTRL2: B0 0x05(5-4)])    |
| CRC complement value OFF setting | CRC_COMP_OFF([PKT_CTRL2: B0 0x05(6)]) |
| CRC polynomial setting           | [CRC_POLY3/2/1/0: B1 0x16/17/18/19]   |
| CRC error status                 | [CRC_ERR_H/M/L: B0 0x13/14/15]        |
| CRC length setting 2 enable      | CRC_LEN2_EN([CRC_ERR_H: B0 0x13(7)])  |
| CRC length setting 2             | CRC_LEN2([CRC_ERR_H: B0 0x13(6-5)])   |

Any CRC polynomials for CRC32/CRC16/CRC8 can be specified. Reset value is as follows:

CRC16 polynomial =  $x^{16} + x^{13} + x^{12} + x^{11} + x^{10} + x^8 + x^6 + x^5 + x^2 + 1$  (reset value)

\* CRC result data can be inverted by CRC complement value OFF setting.

CRC data will be generated by the following circuits. By programming [CRC\_POLY3/2/1/0] registers, any CRC polynomials can be supported. Generated CRC will be transferred from the left most bit (S15). If the CRC function is used for data shorter than CRC length (3-byte data of CRC32 only), data 0s will be added before performing CRC calculation. CRC check result is indicated in [CRC\_ERR\_H/M/L] registers. Unlike Format C, Format A/B can include multiple CRC-fields in one packet. For multiple CRC-fields, the CRC check result closest to L-field will be indicated in CRC\_ERR[0] ([CRC\_ERR\_L:B0 0x15(0)]). Subsequent bit will be indicated in CRC\_ERR from MSB in sequence.



: Exclusive OR

Example: CRC generation circuits

General polynomial can be programmed by below [CRC\_POLY3/2/1/0] register setting. CRC length can be set by CRC\_LEN.

|       | CDC astronomial                                                                           | [CRC_POLY3/2/1/0] |           |           |           |  |
|-------|-------------------------------------------------------------------------------------------|-------------------|-----------|-----------|-----------|--|
|       | CRC polynomial                                                                            | (B1 0x16)         | (B1 0x17) | (B1 0x18) | (B1 0x19) |  |
| CRC8  | $x^8 + x^2 + x + 1$                                                                       | 0x00              | 0x00      | 0x00      | 0x03      |  |
| CRC16 | $x^{16} + x^{12} + x^5 + 1$                                                               | 0x00              | 0x00      | 0x08      | 0x10      |  |
|       | $x^{16} + x^{15} + x^2 + 1$                                                               | 0x00              | 0x00      | 0x40      | 0x02      |  |
|       | $x^{16} + x^{13} + x^{12} + x^{11} + x^{10} + x^8 + x^6 + x^5 + x^2 + 1$                  | 0x00              | 0x00      | 0x1E      | 0xB2      |  |
| CRC32 | $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5$ | $0_{\rm w}02$     | 060       | 095       | 0DD       |  |
|       | $+ x^4 + x^2 + x + 1$                                                                     | 0X02              | 0x00      | UXOE      | UXDB      |  |

In addition, for ML7456N RF part, CRC length for CRC calculation and CRC length for appending to packets (upon TX) or checking (upon RX) can be set individually. To do this, use CRC\_LEN2\_EN, CRC\_LEN2, and CRC\_LEN for setting.

| CRC length for calculating CRC | CRC length for<br>appending or checking<br>CRC | CRC_LEN2_EN<br>(B0 0x13) | CRC_LEN2<br>(B0 0x13) | CRC_LEN<br>(B0 0x05) |
|--------------------------------|------------------------------------------------|--------------------------|-----------------------|----------------------|
| CRC8                           | CRC8                                           | 0                        | -                     | 0b00                 |
| CDC14                          | CRC8                                           | 1                        | 0b01                  | 0b00                 |
| CRC10                          | CRC16                                          | 0                        | -                     | 0b01                 |
|                                | CRC8                                           | 1                        | 0b10                  | 0b00                 |
| CRC32                          | CRC16                                          | 1                        | 0b10                  | 0b01                 |
|                                | CRC32                                          | 0                        | -                     | 0b10                 |

However, when different CRC lengths are set for calculating CRC and for appending to packets (upon TX) or checking (upon RX), "CRC length for calculating CRC" must be longer than or equal to "CRC length for appending to packets (upon TX) or checking (upon RX)."

## oData Whitening Function

ML7456N RF part supports the Data Whitening function. In packet format A/B, data succeeding C-field is the target area for Whitening. In packet format C, data succeeding Data-field is the target area for Whitening. Data generated by the following 9-bit pseudo random noise sequence (PN9) generation circuit will be XORed with TX data (encoded in 3-out-of-6 coding) before transmission and transmitted. Initialization value of the PN9 generation circuit shift register can be set by [WHT\_INIT\_H/L: B1 0x64/65] registers. PN9 polynomial can be set to any polynomial by [WHT\_CFG: B1 0x66]. B1 0x66], any polynomial can be programmed.

- Data Whitening setting enable
- · Data Whitening initialization value
- Whitening polynomial

- : WHT\_SET ([DATA\_SET2: B0 0x08(0)])
- : [WHT\_INIT\_H/L: B1 0x64/65]
- : [WHT\_CFG: B1 0x66]

When [WHT\_CFG: B1 0x66(0)] is set to 0b1, the polynomial setting function feeds back the shift register S1 output to XOR. In a similar way, when [WHT\_CFG: B1 0x66(1)] is set to 0b1, it feeds back the shift register S2 output to XOR, and [WHT\_CFG: B1 0x66(7-2)] also has a similar function. Two or more bits can be also set to 0b1. Therefore any type of PN9 polynomial can be programmed.



\* () : Exclusive OR

Whitening data generation circuits (Polynomial:  $x^9 + x^5 + 1$ )

The relation ship between General PN9 polynomial and [WHT\_CFG] settings are as follows.

| PN9 polynomial  | [WHT_CFG: B1 0x66] |  |  |  |  |
|-----------------|--------------------|--|--|--|--|
| $x^9 + x^4 + 1$ | 0x08               |  |  |  |  |
| $x^9 + x^5 + 1$ | 0x10               |  |  |  |  |

# SyncWord Detection function

This LSI supports automatic SyncWord recognition function. By having two sets of SyncWord pattern storage area, it is possible to detect two different packet format (Format A/B) which are defined by Wireless M-Bus. (For details, please refer to Wireless M-BUS standard) Receiving packet format is indicated by SW\_DET\_RSLT([STM\_STATE:B0 0x77(5)]). In addition, when Two SyncWords waiting setting is set for Format C/D, it is possible to wait for two SyncWords. but detected result is not indicated.

## 1) TX

SyncWord pattern defined by SYNCWORD\_SEL ([DATA\_SET2: B0 0x08(4)]) will be selected. SyncWord length for TX is defined by SYNC\_WORD\_LEN ([SYNC\_WORD\_LEN: B1 0x25(5-0)]). Data of each SyncWord pattern of the defined SyncWord length will be transmitted from higher bit.

| SYNCWORD_SEL | TX SyncWord pattern                        |  |  |  |  |  |
|--------------|--------------------------------------------|--|--|--|--|--|
| 0            | SYNCWORD1_SET[31:0]                        |  |  |  |  |  |
| 0            | ([SYNCWORD1_SET3/2/1/0: B1 0x27/28/29/2A]) |  |  |  |  |  |
| 1            | SYNCWORD2_SET[31:0]                        |  |  |  |  |  |
| I            | ([SYNCWORD2_SET3/2/1/0: B1 0x2B/2C/2D/2E]) |  |  |  |  |  |

### Example) SyncWord pattern and SyncWord length

If the following registers are programmed, 18 bits of SYNCWORD1\_SET [17:0] will be transmitted from higher bit sequentially.

[SYNC\_WORD\_LEN: B1 0x25]=0x12

SyncWord pattern defined by SYNCWORD\_SEL ([DATA\_SET2: B0 0x08(4)]) will be selected. B0 0x08(4)]) = 0b0

If the following registers are programmed, 24 bits of SYNCWORD2\_SET [23:0] will be transmitted from higher bit sequentially.

[SYNC\_WORD\_LEN: B1 0x25]=0x18

SyncWord pattern defined by SYNCWORD\_SEL ([DATA\_SET2: B0 0x08(4)]) will be selected. B0 0x08(4)]) = 0b1

## 2)RX

By setting SYNCWORD\_SEL and 2SW\_DET\_EN ([DATA\_SET2: B0 0x08(5)]), one pattern waiting or two patterns waiting can be selected as shown in the following table. Packet format automatic detection is valid only when 2SW\_DET\_EN = 0b1 and Format A/B is selected. Packet format automatic detection result for two patterns waiting is indicated in SW\_DET\_RSLT[STM\_STATE: B0 0x77(5)]. B0 0x77(5)].

| 2SW_DET_<br>EN | SYNCWORD_<br>SEL | SyncWord pattern during<br>sync detection  | SyncWord<br>detection<br>operation | Automatic<br>packet<br>format<br>detection | Data process after SyncWord                                                                                                                                                                  |
|----------------|------------------|--------------------------------------------|------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0              | 0                | SYNCWORD_SET1[31:0]                        | Waiting for<br>1 pattern           | No                                         | Process according to each Format setting                                                                                                                                                     |
| 0              | 1                | SYNCWORD_SET2[31:0]                        | Waiting for<br>1 pattern           | No                                         | Process according to each Format setting                                                                                                                                                     |
| 1              | -                | SYNCWORD_SET1[31:0]<br>SYNCWORD_SET2[31:0] | Waiting for 2 patterns             | Supported                                  | [Format A or Format B setting]<br>If matched with SYNCWORD1_SET,<br>process as Format A. If matched with<br>SYNCWORD2_SET, process as Format B.<br>[Format C setting]<br>Process as Format C |

Length of SyncWord pattern referred to at detection can be defined by SYNC\_WORD\_LEN ([SYNC\_WORD\_LEN: B1 0x25(5-0)]). In this case, SyncWord pattern of the SyncWord length from the lowest bit of SYNCWORD1\_SET or SYNCWORD2\_SET will be the reference pattern.

Example) SyncWord length

If the following registers are set, 18 bits of SYNCWORD1\_SET[17:0] or SYNCWORD2\_SET[17:0] will be the reference pattern for the SyncWord detection. Higher bits (bit31-18) are not checked. [SYNC\_WORD\_LEN: B1 0x25]=0x12 [SYNC\_WORD\_EN: B1 0x26]=0x0F

32bit SyncWord pattern can be controlled by enabling/disabling by each 8bit, when receiving SyncWord. The following table describes enable/disable control and SyncWord pattern. However, note that when the SyncWord length setting is outside the range of bits for enable/disable control, the expected SyncWord detection is unavailable.

| [SYNC_WORD_EN]        | 5        | SYNCWOR | D*_SET |       |                                                                                 |
|-----------------------|----------|---------|--------|-------|---------------------------------------------------------------------------------|
| Register<br>(B1 0x26) | [31:24]  | [23:16] | [15:8] | [7:0] | SyncWord detection operation                                                    |
| 0000                  |          |         |        |       | Prohibited                                                                      |
| 0001                  | D.C.(*1) |         |        | ON    | Only [7:0] are valid.<br>Upon [7:0] detection, SyncWord detection.              |
| 0010                  | D.       | C.      | ON     | D.C.  | Only [15:8] are valid.<br>Upon [7:0] detection, SyncWord detection.             |
| 0011                  | D.       | C.      | ON     | ON    | Only [15:0] are valid.<br>Upon [7:0] detection, SyncWord detection.             |
| 0100                  | D.C.     | ON      | D.     | C.    | Only [23:16] are valid.<br>Upon [7:0] detection, SyncWord detection.            |
| 0101                  | D.C.     | ON      | D.C.   | ON    | Only [23:16] and [7:0] are valid.<br>Upon [7:0] detection, SyncWord detection.  |
| 0110                  | D.C.     | ON      | ON     | D.C.  | Only [23:8] are valid.<br>Upon [7:0] detection, SyncWord detection.             |
| 0111                  | D.C.     | ON ON   |        | ON    | Only [23:0] are valid.<br>Upon [7:0] detection, SyncWord detection.             |
| 1000                  | ON       |         | D.C.   |       | Only [31:24] are valid.<br>Upon [7:0] detection, SyncWord detection.            |
| 1001                  | ON       | D.0     | С.     | ON    | Only [31:24] and [7:0] are valid.<br>Upon [7:0] detection, SyncWord detection.  |
| 1010                  | ON       | D.C.    | ON     | D.C.  | Only [31:24] and [15:8] are valid.<br>Upon [7:0] detection, SyncWord detection. |
| 1011                  | ON       | D.C.    | ON     | ON    | Only [31:24] and [15:0] are valid.<br>Upon [7:0] detection, SyncWord detection. |
| 1100                  | ON       | ON      | D.     | C.    | [31:16] are valid.<br>Upon [7:0] detection, SyncWord detection.                 |
| 1101                  | ON       | ON      | D.C.   | ON    | Only [31:16] and [7:0] are valid.<br>Upon [7:0] detection, SyncWord detection.  |
| 1110                  | ON       | ON      | ON     | D.C.  | [31:8] are valid.<br>Upon [7:0] detection, SyncWord detection.                  |
| 1111                  | ON       | ON      | ON     | ON    | Whole [31:0] are valid.<br>Upon [7:0] detection, SyncWord detection.            |

\*1: D.C. stands for Don't Care.

\*2: Preamble pattern connecting with SyncWord can be added to the SyncWord detection conditions in addition to SyncWord pattern. To include preamble pattern, set RXPR\_LEN([SYNC\_CONDITION1: B0 0x45(5:0)]).

## **•Field Check Function**

ML7456N RF part has a function for comparing the 9 bytes following C-field (Format A/B) or 9 bytes following Data-field (Format C) in a receiving packet and notifying through an interrupt when matching or not matching (field check function). Field check can be possible with the following register setting. The Field check function is enabled only in FIFO mode for discriminating L-field (RXDIO\_CTRL[DIO\_SET: B0 0x0C(7-6)] = 0b00) and data output mode 2 of DIO mode (RXDIO\_CTRL[DIO\_SET: B0 0x0C(7-6)]=0b11).

| Function                                 | Register                     |
|------------------------------------------|------------------------------|
| RX data process setting when Field check | [C_CHECK_CTRL: B0 0x1B(7)]   |
| unmatched                                |                              |
| Field check interrupt setting            | [C_CHECK_CTRL: B0 0x1B(6)]   |
| C-field detection enable setting         | [C_CHECK_CTRL: B0 0x1B(4-0)] |
| M-field detection enable setting         | [M_CHECK_CTRL: B0 0x1C(3-0)] |
| A-field detection enable setting         | [A_CHECK_CTRL: B0 0x1D(5-0)] |
| C-field code setting                     | [C_FIELD_CODE1: B0 0x1E]     |
|                                          | [C_FIELD_CODE2: B0 0x1F]     |
|                                          | [C_FIELD_CODE3: B0 0x20]     |
|                                          | [C_FIELD_CODE4: B0 0x21]     |
|                                          | [C_FIELD_CODE5: B0 0x22]     |
| M-field code setting                     | [M_FIELD_CODE1: B0 0x23]     |
|                                          | [M_FIELD_CODE2: B0 0x24]     |
|                                          | [M_FIELD_CODE3: B0 0x25]     |
|                                          | [M_FIELD_CODE4: B0 0x26]     |
| A-field code setting                     | [A_FIELD_CODE1: B0 0x27]     |
|                                          | [A_FIELD_CODE2: B0 0x28]     |
|                                          | [A_FIELD_CODE3: B0 0x29]     |
|                                          | [A_FIELD_CODE4: B0 0x2A]     |
|                                          | [A_FIELD_CODE5: B0 0x2B]     |
|                                          | [A_FIELD_CODE6: B0 0x2C]     |

The following describes the relation between each comparison code and incoming RX data.

#### [Format A/B(Wireless M-Bus)]

Field check can be controlled by setting disabled/enabled for each comparison code (1byte). If all specified Field data (C-field/M-field/A-field) are matched, Field checking matching will be notified. However, if C-field data and C\_FIELD\_CODE5 are matched, even if other Field data (M-field/A-field) are not matched, Field check result will be notified as "match".



| Check field      | Comparison code                   | Conditions for match                          |
|------------------|-----------------------------------|-----------------------------------------------|
| C-field          | C_FIELD_CODE1 or C_FIELD_CODE2 or | Matches when one of the five comparison codes |
|                  | C_FIELD_CODE3 or C_FIELD_CODE4 or | matches.                                      |
|                  | C_FIELD_CODE5                     |                                               |
| M-field 1st byte | M_FIELD_CODE1 or                  | Matches when one of the two comparison codes  |
|                  | M_FIELD_CODE2                     | matches.                                      |
| M-field 2nd byte | M_FIELD_CODE3 or                  | Matches when one of the two comparison codes  |
|                  | M_FIELD_CODE4                     | matches.                                      |
| A-field          | A FIELD CODE1/2/3/4/5/6           | Matches when the comparison code matches.     |

[Format C]

Field check can be controlled by setting disabled/enabled for each comparison code (1byte). If all the Data-field data satisfy the matching conditions shown in the following table, the Field check result will be notified as matching. However, if the 1st byte of Data-field matches with C\_FIELD\_CODE5, the Field check result will be notified as matching even when other Field data (from 2nd byte to 9th byte of Data-field) do not match.



| Check field         | Comparison code                   | Conditions for match                          |
|---------------------|-----------------------------------|-----------------------------------------------|
| Data-field 1st byte | C_FIELD_CODE1 or C_FIELD_CODE2 or | Matches when one of the five comparison codes |
|                     | C_FIELD_CODE3 or C_FIELD_CODE4 or | matches.                                      |
|                     | C_FIELD_CODE5                     |                                               |
| Data-field 2nd byte | M_FIELD_CODE1 or                  | Matches when one of the two comparison codes  |
|                     | M_FIELD_CODE2                     | matches.                                      |
| Data-field 3rd byte | M_FIELD_CODE3 or                  | Matches when one of the two comparison codes  |
|                     | M_FIELD_CODE4                     | matches.                                      |
| Data-field 4th byte | A_FIELD_CODE1                     | Matches when the comparison code matches.     |
| Data-field 5th byte | A_FIELD_CODE2                     | Matches when the comparison code matches.     |
| Data-field 6th byte | A_FIELD_CODE3                     | Matches when the comparison code matches.     |
| Data-field 7th byte | A_FIELD_CODE4                     | Matches when the comparison code matches.     |
| Data-field 8th byte | A_FIELD_CODE5                     | Matches when the comparison code matches.     |
| Data-field 9th byte | A_FIELD_CODE6                     | Matches when the comparison code matches.     |

#### [Format D]

Field check can be controlled by setting disabled/enabled for each comparison code (1byte). If all the Data-field data satisfy the matching conditions shown in the following table, the Field check result will be notified as matching. However, if the 1st byte of Data-field matches with C\_FIELD\_CODE5, the Field check result will be notified as matching even when other Field data (from 2nd byte to 9th byte of Data-field) do not match.



| Check field         | Comparison code                   | Conditions for match                          |
|---------------------|-----------------------------------|-----------------------------------------------|
| Data-field 1st byte | C_FIELD_CODE1 or C_FIELD_CODE2 or | Matches when one of the five comparison codes |
|                     | C_FIELD_CODE3 or C_FIELD_CODE4 or | matches.                                      |
|                     | C_FIELD_CODE5                     |                                               |
| Data-field 2nd byte | M_FIELD_CODE1 or                  | Matches when one of the two comparison codes  |
|                     | M_FIELD_CODE2                     | matches.                                      |
| Data-field 3rd byte | M_FIELD_CODE3 or                  | Matches when one of the two comparison codes  |
|                     | M_FIELD_CODE4                     | matches.                                      |
| Data-field 4th byte | A_FIELD_CODE1                     | Matches when the comparison code matches.     |
| Data-field 5th byte | A_FIELD_CODE2                     | Matches when the comparison code matches.     |
| Data-field 6th byte | A_FIELD_CODE3                     | Matches when the comparison code matches.     |
| Data-field 7th byte | A_FIELD_CODE4                     | Matches when the comparison code matches.     |
| Data-field 8th byte | A_FIELD_CODE5                     | Matches when the comparison code matches.     |
| Data-field 9th byte | A_FIELD_CODE6                     | Matches when the comparison code matches.     |

#### •Packet processing as a result of Field checking

By setting CA\_RXD\_CLR ([C\_CHECK\_CTRL: B0 0x1B(7)]) = 0b1, if the result of Field check is unmatched, the data packet will be aborted and the state will become the next packet reception waiting state.

•Storing number of unmatched packets

Unmatched packets can be counted up to 2047 packets and results are indicated in [ADDR\_CHK\_CTR\_H: B1 0x62] and [ADDR\_CHK\_CTR\_L: B1 0x63]. This count value can be cleared by STATE\_CLR4([STATE\_CLR: B0 0x16(4)]).

•FIFO Control Function

ML7456N RF part has on-chip TX\_FIFO(64Byte) and RX\_FIFO(64Byte). As TX/RX\_FIFO do not support multiple packets, packet should be processed one by one. If RX FIFO keeps RX packet and next RX packet is received, RX FIFO will be overwritten. It applies to TX FIFO as well.

When receiving, RX data is stored in FIFO (byte by byte) and the host MCU will read RX data through SPI. When transmitting, host MCU write TX data to TX\_FIFO through SPI and transmitting through RF.

Writing or reading to/from FIFO is through SPI with burst access. The data is written to [WR\_TX\_FIFO: B0 0x7C] register on TX, read from [RD\_FIFO: B0 0x7F] register on RX. Continuous access to the FIFO increments internal FIFO counter automatically and data is saved or output. If FIFO access is suspended during write or read operation, address will be kept until the packet process is completed. Therefore, when resuming FIFO access, next data will be resumed from the suspended address.

FIFO control register are as follows:

| Function                             | Register                     |
|--------------------------------------|------------------------------|
| TX FIFO Full level setting           | [TXFIFO_THRH: B0 0x17]       |
| TX FIFO Empty level setting          | [TXFIFO_THRL: B0 0x18]       |
| RX FIFO Full level setting           | [RXFIFO_THRH: B0 0x19]       |
| RX FIFO Empty level setting          | [RXFIFO_THRL: B0 0x1A]       |
| FIFO readout setting                 | [FIFO_SET: B0 0x78]          |
| RX FIFO data usage status indication | [RX_FIFO_LAST: B0 0x79]      |
| TX packet Length setting             | [TX_PKT_LEN_H/L: B0 0x7A/7B] |
| RX packet Length setting             | [RX_PKT_LEN_H/L: B0 0x7D/7E] |
| TX FIFO                              | [WR_TX_FIFO: B0 0x7C]        |
| FIFO read                            | [RD_FIFO: B0 0x7F]           |

TX – RX procedure using FIFO are as follows:

[TX]

(a) TX L-filed value is set to [TX\_PKT\_LEN\_H: B0 0x7A], [TX\_PKT\_LEN\_L: B0 0x7B]. If Length is 1 byte, [TX\_PKT\_LEN\_L] register will be transmitted.

Length setting can be set by LENGTH\_MODE([PKT\_CTRL: B0 0x05(1-0)]).

(b) TX data is written to FIFO.

[Note]

1. If TX data write sequence is aborted during transmission, [STATE\_CLR: B0 0x16] (TX FIFO clear) must be issued. Otherwise data pointer which manages data in the LSI keeps the status, preventing the proper FIFO process of the next packet.

For example, when an interrupt notification of TX FIFO access error ([INT\_SOURCE\_GRP3: B0 0x0F(4)]) is received, the TX data write sequence may be aborted. This interrupt can be generated when FIFO overrun (for example, data is written to TX FIFO when there is no available space in it) or underrun (for example, a transmission is attempted when FIFO is empty) occurs.

- 2. If the next writing sequence is performed when one packet data is stored, FIFO is overwritten.
- 3. Depending on the packet format, TX data Length value is different.

Format A: Data length excluding the Length and CRC areas is set as the Length value. Format B: Data length excluding the Length area is set as the Length value. Format C: Data length excluding the Length area is set as the Length value. Format D: Data length from Data-field to CRC-field is set as the Length value.

# [RX]

- (1) Format A/B/C
  - (a) Read the L-field value (Length) from [RX\_PKT\_LEN\_H: B0 0x7D], [RX\_PKT\_LEN\_L: B0 0x7E].
    (b) Read RX data from FIFO.
    When reading from RX FIFO, set FIFO\_R\_SEL([FIFO\_SET: B0 0x78(0)]) = 0b0. B0 0x78(0)]) to 0b0. If FIFO\_R\_SEL=0b1, TX\_FIFO will be selected.
    - Data usage value of RX FIFO is indicated by [RX\_FIFO\_LAST: B0 0x79] register.
- (2) Format D
  - (a) Set the data length (Length value) to  $[RX_PKT_LEN_H: B0\ 0x7D]$ ,  $[RX_PKT_LEN_L: B0\ 0x7E]$ .
  - (b) Read RX data from FIFO.
    When reading from RX FIFO, set FIFO\_R\_SEL([FIFO\_SET: B0 0x78(0)]) = 0b0. B0 0x78(0)]) to 0b0. If FIFO\_R\_SEL=0b1, TX\_FIFO will be selected.
    Data usage value of RX FIFO is indicated by [RX\_FIFO\_LAST: B0 0x79] register.

- 1. If reading RX data is terminated before reading all data, RX FIFO clear ([STATE\_CLR: B0 0x16]) must be issued. Otherwise data pointer which manages data in the LSI keeps the status, preventing the proper FIFO process of the next packet.
- If 1 packet data is kept in the RX\_FIFO, next RX data will be overwritten. Read all the necessary RX data before receiving the next packet. Incidentally, to detect the next packet being received even though all the data has not been read, the SyncWord detection interrupt (INT[13](INT\_SOURCE\_GRP2: B0 0x0E(5))) can be used.
- Control FIFO so that FIFO overrun and underrun do not occur. There are following methods for controlling FIFO so that FIFO overrun and underrun do not occur. (a) Read RX FIFO usage ([RX\_FIFO\_LAST: B0 0x79]) and read that amount of data from FIFO.
  - (a) Read RX FIFO disage ([RXFIFO\_THRH: B0 0x19]), and read that allount of data from FIFO.
     (b) Set the Full level of RX FIFO ([RXFIFO\_THRH: B0 0x19]), and after a FIFO-Full interrupt (INT[5](INT\_SOURCE\_GRP1: B0 0x0D(5))) is generated, read data from FIFO up to the amount equivalent to the Full level of RX FIFO.

IF TX/RX packet is larger than FIFO size, FIFO access can be controlled easily by FIFO-Full trigger or FIFO-Empty trigger.

#### (1) TX FIFO usage notification function

This function is to notice TX\_FIFO usage to the MCU using interrupt (SINTN). If the TX FIFO usage (un-transmitted data) exceeds the threshold (FULL level) set by [TXFIFO\_THRH: B0 0x17], an interrupt will occur to notify about it. Also, if ML7456N RF part transmits data and the TX FIFO usage decreases under the threshold (EMPTY level) set by [TXFIFO\_THRL: B0 0x18], an interrupt will occur to notify about it. Interrupt signal (SINTN) can be output from GPIO\* or EXT\_CLK pin. For output settings, refer to [GPIO0\_CTRL: B0 0x4E], [GPIO1\_CTRL: B0 0x4F], [GPIO2\_CTRL: B0 0x50], [GPIO3\_CTRL: B0 0x51], [EXTCLK\_CTRL: B0 0x52].



- 1. Do not set the notification levels of [TXFIFO\_THRH] and [TXFIFO\_THRL] to the same value. Set them as satisfying the condition [TXFIFO\_THRH] > [TXFIFO\_THRL].
- 2. The Full detection state in LSI is cleared at Full trigger ([TXFIFO\_THRH])>FIFO usage, allowing the next Full trigger to be detected. Note that the above clear condition may be met during FIFO write, and the Full trigger may be detected, depending on the timing of reading TX data (PHY) and FIFO write through SPI. To avoid such a case, disable the trigger level setting after the Full trigger is detected, and enable it again after the FIFO write is completed.
- 3. The Empty detection state of the inside of the LSI is cleared when the FIFO usage becomes larger than or equal to the Empty trigger ([TXFIFO\_THRL]). After that, the next Empty trigger can be detected. Note that the above clear condition may be met during FIFO write, and the Empty trigger may be detected, depending on the timing of reading TX data (PHY) and FIFO write through SPI. To avoid such a case, make the trigger level setting disabled after the Empty trigger is detected, and make it enabled again after the FIFO write is completed.

# (2) RX FIFO usage notification function

This function is to notify TX FIFO unread data amount (FIFO usage amount) by using interrupt (SINTN) to the MCU. When the RX FIFO usage (un-read) exceeds the threshold set by [RXFIFO\_THRH: B0 0x19] (FULL level), an interrupt will occur to notify about it. Also, after MCU reads RX data and un-read data amount of RX FIFO (FIFO usage) decreases under the threshold set by [RXFIFO\_THRL: B0 0x1A] (EMPTY level), an interrupt will occur to notify about it. Interrupt signal (SINTN) can be output from GPIO\* or EXT\_CLK pin. For output settings, refer to [GPIO0\_CTRL: B0 0x4E], [GPIO1\_CTRL: B0 0x4F], [GPIO2\_CTRL: B0 0x50], [GPIO3\_CTRL: B0 0x51], [EXTCLK\_CTRL: B0 0x52].



- 1. Do not set the notification levels of [RXFIFO\_THRH] and [RXFIFO\_THRL] to the same value. Set them as satisfying the condition [RXFIFO\_THRH] > [RXFIFO\_THRL].
- 2. The internal Full detection state is cleared at Full trigger ([RXFIFO\_THRH])>FIFO usage, allowing the next Full trigger to be detected. Note that the above clear condition may be met during FIFO read, and the Full trigger may be detected, depending on the timing of writing RX data (PHY) and FIFO read through SPI. To avoid such a case, make the trigger level setting disabled after the Full trigger is detected, and make it enabled again after the FIFO read is completed.
- 3. The internal Empty detection state is cleared when the FIFO usage becomes larger than or equal to the Empty trigger ([RXFIFO\_THRL]). After that, the next Empty trigger can be detected. Note that the above clear condition may be met during FIFO read, and the Empty trigger may be detected, depending on the timing of writing RX data (PHY) and FIFO read through SPI. To avoid such a case, make the trigger level setting disabled after the Empty trigger is detected, and make it enabled again after the FIFO read is completed.
- 4. This function is valid during data receiving. FIFO-Empty interrupt does not occur after RX completion.

# •DIO Function

Using GPIO0-3, EXT\_CLK or SDI/SDO pins, TX/RX data can be input/output. Output pins are controlled by [GPIO\*\_CTRL: B0 0x4E/0x4F/0x50/0x51], [EXTCLK\_CTRL: B0 0x52], and [SPI/EXT\_PA\_CTRL: B0 0x53]. Data format for TX/RX are as follows:

TX --- TX data (NRZ or Manchester/3-out-of-6coding) will be input.

RX --- pre-decoded RX data or decoded RX data will be output. (Selectable by [DIO\_SET: B0 0x0C])

DIO function registers are as follows:

| Function                         | Register                |
|----------------------------------|-------------------------|
| DIO RX data output start setting | [DIO_SET: B0 0x0C(0)]   |
| DIO RX completion setting        | [DIO_SET: B0 0x0C(2)]   |
| TX DIO mode setting              | [DIO_SET: B0 0x0C(5-4)] |
| RX DIO mode setting              | [DIO_SET: B0 0x0C(7-6)] |

(1) In case of using GPIO\*, EXT\_CLK pins

If GPIO0-3 pins are used for input/output of TX/RX data, DCLK/DIO should be controlled as follow. (below DIO/DCLK vertical line part indicate output or input period)

#### [TX]

(a) Continuous input mode

Set TXDIO\_CTRL([DIO\_SET: B0 0x0C(5-4)]) to 0b01.

After TX\_ON, the TX clock is output. At falling edge of the TX clock, TX data is input from the DIO pin. TX data must be encoded data.



\* For details of timing, please refer to the "TX" in the "Timing Chart".

(b) Data input mode

#### Set TXDIO\_CTRL([DIO\_SET: B0 0x0C(5-4)]) to 0b10.

After TX\_ON, the TX clock is output from data input timing after SyncWord. At falling edge of the TX clock, TX data is input from the DIO pin. TX data must be encoded data. Preamble and SyncWords generated automatically according to the registers setting.

| TX_ON                 | [               |          |          |            |                 |
|-----------------------|-----------------|----------|----------|------------|-----------------|
| TX data               | $ \rightarrow $ | Preamble | SyncWord | Data-field |                 |
| DIO(GPIO0-3,EXT_CLK)  |                 |          |          |            |                 |
| DCLK(GPIO0-3,EXT_CLK) |                 |          |          |            |                 |
| TX O                  | N comp          | nand     |          |            | ſ               |
| 11.0                  | 1, 201111       |          |          |            | TRX_OFF command |

Preamble can be set by PB\_PAT([DATA\_SET1: B0 0x07(7)], TXPR\_LEN([TXPR\_LEN\_H/L: B0 0x42/43]). Also, SyncWord can be set by SYNCWORD\_SEL([DATA\_SET2: B0 0x08(4)]), SYNCWORD\_LEN([SYNC\_WORD\_LEN: B1 0x25]), SYNC\_WORD\_EN\*([SYNC\_WORD\_EN: B1 0x26), SYNCWORD1\_SET([SYNCWORD1\_SET3/2/1/0: B1 0x27/28/29/2A]) and SYNCWORD2\_SET([SYNCWORD2\_SET3/2/1/0: B1 0x2B/2C/2D/2E]).

## [RX]

- (a) Continuous output mode
  - When RXDIO\_CTRL([DIO\_SET: B0 0x0C(7-6)]) = 0b01

After RX\_ON, the RX clock is output continuously. RX data (demodulated data) is output from the DIO output pin at falling edge of the RX clock. RX data is not buffered in FIFO.



#### (b) Data output mode 1

Set RXDIO\_CTRL([DIO\_SET: B0 0x0C(7-6)]) to 0b10.

After SyncWord detection, RX data is buffered in RX FIFO. RX data buffering will continue until RX sync signal (SYNC) becomes "L". By RX data output setting DIO\_START([DIO\_SET: B0 0x0C(0)]), the buffered RX data will be output from the first byte through the DIO interface (DIO/DCLK) (RX data is output at falling edge of the RX clock). However, when RX data output setting is done after 64-byte time, data will be overwritten from the first byte. If all buffered data is output until SYNC becomes "L", RX completion interrupt (INT[8] group 2) will be generated. After RX completion, ready to receive next packet.



- 1. RX data buffering in RX\_FIFO is byte by byte access. DIO\_START should be issued after 1 byte access time upon SyncWord detection.
- 2. This mode does not process L-field. Field checking function is not supported.

With this setting, when DIO\_START is issued before SyncWord detection, data is not buffered in FIFO and RX data/clock is output after SyncWord detection. In order to complete RX before SYNC becomes L, set DIO RX completion setting (DIO\_RX\_COMPLETE([DIO\_SET: B0 0x0C(2)])). After DIO\_RX\_COMPLETE setting, ready to receive the next packet.



(c) Data output mode 2

```
Set RXDIO_CTRL([DIO_SET: B0 0x0C(7-6)]) to 0b11.
```

Only Data-field of RX data is buffered in FIFO. RX data of the amount of Length indicated by L-field is buffered in FIFO. By the RX data output setting (DIO\_START([DIO\_SET: B0 0x0C(0)])), buffered RX data is output from the first byte through the DIO interface (DIO/DCLK). However, when RX data output setting is done after 64-byte time, data will be overwritten from the first byte. If all data indicated by L-field is output, RX completion interrupt (INT[8] group2) will be generated. After RX completion, ready to receive next packet. Received Length information is indicated in [RX\_PKT\_LEN\_H/L: B0 0x7D/7E]. This mode supports field check function.



[Note]

1. RX data buffering in RX\_FIFO is byte by byte access. DIO\_START should be issued after elapsed time from SyncWord detection to L-field length + over 1byte access time.

(2) In case of using SDI/SDO pin (sharing with SPI interface)

When the SPI interface (SDI/SDO) is used to input/output TX/RX data, DCLK/DIO are controlled as follows. (below DIO/DCLK vertical line part indicate output or input period) For the operation of LSI about each DIO mode, please refer to the previous chapter "(1) In case of using GPIO\*, EXT\_CLK pins".

### [TX]

- (a) Continuous input mode
  - Set TXDIO\_CTRL([DIO\_SET: B0 0x0C(5-4)]) to 0b01.

After a TX\_ON command is issued ( $[RF_STATUS: B0 0x0B(3-0)] = 0x9$ ), TX clock is output from the SDO pin while SCEN is H. Input TX data from the SDI pin. After TRX\_OFF( $[RF_STATUS: B0 0x0B(3-0)] = 0x8$ ) command is issued, input/output of TX data/clock will be disabled. In addition, even during DCLK output, if SCEN becomes L, the TX clock output will stop (SPI access has priority).

| TX_ON     |                                  |
|-----------|----------------------------------|
| TX data   | Preamble X SyncWord X Data-field |
| SCEN      |                                  |
| DIO(SDI)  |                                  |
| DCLK(SDO) |                                  |
|           | ↑                                |
|           | TX_ON command                    |
|           | TKX_OFF command                  |

## (b) Data input mode

Set TXDIO\_CTRL([DIO\_SET: B0 0x0C(5-4)]) to 0b10.

After a TX\_ON command is issued ( $[RF_STATUS: B0 0x0B(3-0)] = 0x9$ ), TX clock is output from the SDO pin while SCEN is H. Input TX data from the SDI pin. After TRX\_OFF is issued (SET\_TRX[3:0] ( $[RF_STATUS: B0 0x0B(3-0)]$ )=0x8), TX data/clock input/output are invalid. In addition, even during TX clock output, if SCEN becomes L, the TX clock output will stop (SPI access has priority).

| TXON      |               |          |            |            |                 |
|-----------|---------------|----------|------------|------------|-----------------|
| TX data   |               | Preamble | X SyncWord | Data-field | <b>&gt;</b>     |
| SCEN      | ٦             |          |            |            |                 |
| DIO(SDI)  |               |          |            |            |                 |
| DCLK(SDO) |               |          |            |            |                 |
|           | TX_ON command |          |            |            | TRX_OFF command |

[Note]

If SPI access is attempted during packet transmission, SPI access has a higher priority while the TX operation is continuing, thus TX data error can be expected. Do not attempt access SPI before TX completion.

#### [RX]

(a) Continuous output mode When RXDIO\_CTRL([DIO\_SET: B0 0x0C(7-6)]) = 0b01

After RX\_ON command is issued (([RF\_STATUS: B0 0x0B(3-0)] = 0x6), RX clock is output from the SDO pin and RX data is output from the SDI pin while SCEN is H. After TRX\_OFF issuing, DCLK/DIO output will stop. In addition, even during RX data/clock output, if SCEN becomes L, the RX data/clock output will stop (SPI access has priority).



[Note]

During packet reception, if SPI access is attempted by the host, RX data error can be expected. At this time, reception data is not output causing missing bits, so do not conduct SPI access until reception is completed.

(b) Data output mode 1 or data output mode 2

Set RXDIO\_CTRL([DIO\_SET: B0 0x0C(7-6)]) to 0b10/11.

After RX\_ON command is issued ( $[RF_STATUS: B0 0x0B(3-0)] = 0x6$ ), RX clock is output from the SDO pin and RX data is output from the SDI pin while SCEN is H. After TRX\_OFF issuing, DCLK/DIO output will stop. In addition, even during RX data/clock output, if SCEN becomes L, the RX data/clock output will stop (SPI access has priority).



[Note]

During packet reception, if SPI access is attempted by the host, RX data error can be expected. At this time, reception data is not output causing missing bits, so do not conduct SPI access until reception is completed.

#### (3) DCLK output method

The DCLK output method depends on the DIO mode setting.

(a) Data output mode 2 (RXDIO\_CTRL([DIO\_SET: 0x0C(7-6)]) = 0b11)
 In this mode, decoded data is output. The DCLK output section in an output interval varies depending on the encoding method. DCLK output section is as follows.



- (b) Mode other than (a) (RX continuous output mode/data output mode 1, TX continuous input mode/data input mode) In this mode, undecoded data is input or output. DCLK is output continuously. It does not depend on the encoding method.
- TX continuous input mode or RX continuous mode

TX Data input mode / RX Data output mode 1

| DCLK    |           | www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.ww |
|---------|-----------|----------------------------------------------------------------------------------------------------------------|
| 1 cycle | t → [bps] |                                                                                                                |
| ·       |           | (*) The number of cycle per 1 byte<br>NRZ : 8 cycle                                                            |

DCLK

ł 1 cycle=1/data rate[bps] TX: SyncWord final 2 bits TX timing (\*) The number of cycle per 1 byte RX: DIO\_START command NRZ : 8 cycle

Manchester : 16 cycles 3 out of 6 : 12 cycle

Manchester : 16 cycles 3 out of 6 : 12 cycle

# •FEC (Forward Error Correction) Function

This LSI is equipped with FEC and interleaver complying with IEEE802.15.4g.

FEC registers are as follows:

| Function           | Register                           |  |
|--------------------|------------------------------------|--|
| FEC setting        | FEC_EN([FEC_CTRL: B6 0x02(0)])     |  |
| FEC scheme setting | FEC_SCHEME([FEC_CTRL: B6 0x02(1)]) |  |
| Interleave setting | INTLV_EN([FEC_CTRL: B6 0x02(2)])   |  |

- 1. To use the FEC function, use it with the following settings.
  - (a) Set TX data encoding mode setting (TX\_DEC\_SCHEME([DATA\_SET1: B0 0x07(1-0)])) and RX data encoding mode setting (RX\_DEC\_SCHEME([DATA\_SET1: B0 0x07(3-2)])) to NRZ.
  - (b)Use Format C (PKT\_FORMAT([PKT\_CTRL1: B0 0x04(1-0)]) = 0b10) as the packet format.
  - (c) Set the Length field length setting to 2-byte mode (LENGTH\_MODE([PKT\_CTRL2: B0 0x05(1-0)]) = 0b01).
- 2. When receiving data undergone Whitening, enable the Whitening setting (WHT\_SET([DATA\_SET2: B0 0x08(0)]) = 0b1) before receiving.

# •Timer Function

# ∘Wake-up Timer

ML7456N RF part has automatic wake-up function using wake-up timer. The following operations are possible by using wake-up timer.

- Upon timer completion, automatically wake-up from SLEEP state. Operation after wake-up can be selected from state changes to RX\_ON state and TX\_ON state by WAKEUP\_MODE([SLEEP/WU\_SET: B0 0x2D(6)]).
- By setting WUT\_1SHOT\_MODE[SLEEP/WU\_SET] B0 0x2D(7)]), repetitive wake-up operations (interval operation) or a single operation (one-shot operation) can be selected.
- In interval operation, if RX\_ON /TX\_ON state is caused by wake-up timer, continuous operation timer is in operation..
- After moving to the RX\_ON state by the wake-up timer, when the continuous operation timer is completed, move to the SLEEP state automatically. However, if SyncWord is detected before timer completion, RX\_ON state will be maintained. In this case, ML7406 does not go back to the SLEEP state automatically. SLEEP setting (SLEEP\_EN ([SLEEP/WU\_SET: B0 0x2D(0)]) = 0b1) is necessary to go back to the SLEEP state. However if RXDONE\_ MODE[1:0]([RF\_STATUS\_CTRL:B0 0x0A(3-2)]) =0b11, after RX completion, move to SLEEP state automatically. The timing to determine whether or not to continue RX after continuous operation timer completion is selectable from SyncWord detection, Field check detection, and synchronization detection by RCV\_CONT\_SEL([M\_CHECK\_CTRL: B0 0x1C(5:4)]).
- After moving to the TX\_ON state by the wake-up timer, automatic return to the SLEEP state is not made even when the continuous operation timer is completed. To enter the SLEEP state after the completion of TX operation, configure the SLEEP setting (SLEEP\_EN ([SLEEP/WU\_SET: B0 0x2D(0)])=0b1).
- After wake-up by combining with high speed carrier checking mode, CCA is automatically performed, if IDLE is detected, able to move to SLEEP state immediately. For details, please refer to the "(3) high speed carrier detection mode".
- By setting WUT\_CLK\_SOURCE ([SLEEP/WU\_SET:B0 0x2D(2)]), the clock source for wake-up timer can be selected from EXT\_CLK pin or on-chip RC OSC circuit.

Wake-up interval, wake-up timer interval and continuous operation timer can be calculated in the following formula.

Wake-up interval [s] = Wake-up timer interval [s] + Continuous operation timer [s]

Wake-up timer interval [s] = Wake-up timer clock cycle \* Division setting ([WUT\_CLK\_SET: B0 0x2E(3-0)]) \* (Wake-up timer interval setting ([WUT\_INTERVAL\_H/L: B0 0x2F/0x30]) + 1)

Continuous operation timer [s] = Wake-up timer clock cycle \* Division setting ([WUT\_CLK\_SET: B0 0x2E(7-4)]) \* (Continuous operation timer operating time setting ([WU\_DURATION: B0 0x31]) - 1)

- 1. When set to move to TX\_ON after wake-up, if the continuous operation timer is completed during TX, it is judged as TX in progress and TX continues. After TX is completed, RF state transition is performed according to TXDONE\_MODE([RF\_STATUS\_CTRL: B0 0x0A(1-0)]) setting.
- WUDT\_CLK\_SET ([WUT\_CLK\_SET: B0 0x2E(7-4)]) and WUT\_CLK\_SET ([WUT\_CLK\_SET: B0 0x2E(3-0)]) of dividing setting can be set independently. When using the continuous operation timer, set the same setting to WUDT\_CLK\_SET and WUT\_CLK\_SET.
- 3. The minimum setting for wake-up timer setting interval ([WUT\_INTERVAL\_H/L: B0 0x2F/0x30]) is 0x02. The minimum setting for continuous operation timer operating time setting ([WU\_DURATION: B0 0x31]) is 0x01. Note that continuous operation timer operating time setting should be set so that the timer completion is occurred after a notification of a clock stabilization completion interrupt (INT[0]([INT\_SOURCE\_GRP1: B0 0x0D(0)])) caused by wake-up.
- 4. Since SyncWord detection is not conducted during reception of DIO mode set to RXDIO\_CTRL([DIO\_SET: B0 0x0C(7-6)]) = 0b01, after continuous operation timer is completed, the state moves to the SLEEP state forcibly. Note that the SyncWord detection is not issued when in DIO mode with RXDIO\_CTRL([DIO\_SET: B0 0x0C(7-6)])=0b01. Therefore, when continuous operation timer completed, forcibly move to SLEEP state.
- 5. ML7456N RF part automatically moves to the SLEEP state by timer operation, and if the SLEEP state transition and a SPI access occurs at the same time, the SPI access will become invalid. Please take some measure so that SLEEP state transition and SPI access do not happen at the same time.

# (1) Interval operation

#### (a) RX

After wake-up, RX\_ON state. If continuous operation timer completed before SyncWord detection, automatically return to SLEEP state. If SyncWord detected, continue RX\_ON. After RX completion, continue operation defined by RXDONE\_MODE[1:0] ([RF\_STATUS\_CTRL: B0 0x0A(3-2)]). In addition, the state can be moved to the SLEEP state by setting SLEEP\_EN(SLLEP/WU\_SET:B0 0x2D(0)] = 0b1.





(b) TX

After wake-up, TX\_ON state. After TX completion, operate according to TXDONE\_MODE[1:0] ([RF\_STATUS\_CTRL: B0 0x0A(1-0)]). Even when the continuous operation timer is completed, a return to the SLEEP state is not made. Therefore, set SLEEP\_EN(SLLEP/WU\_SET:B0 0x2D(0)] = 0b1 after completion of TX operation to enter the SLEEP state.

When [SLEEPWU\_SET: B0 0x2D(6-4)] = 0b111 is set



# (2) One-shot operation

### (a) RX

After wake-up timer completion, move to RX\_ON state. And continue RX\_ON state. Move to SLEEP state by SLEEP command. Since wake-up timer setting interval ([WUT\_INTERVAL\_H/L: B0 0x2F/0x30]) is maintained, after a SLEEP command is issued, the one-shot operation will restart. Clear the wake-up interrupt ([INT\_SOURCE\_GRP1: B0 0x0D(6)]) before moving to the SLEEP state. If RX completed during RX\_ON, continue operation defined by RXDONE\_ MODE[1:0] ([RF\_STATUS\_CTRL: B0 0x0A(3-2)]). Same manner in TX\_ON state.

When [SLEEP/WU\_SET: B0 0x2D(7-4)] = 0b1001 is set



(3) Combination with high speed carrier detection

(a) Interval operation

After wake-up timer completion, move to RX\_ON state. And perform CCA to check carrier. If no carrier is detected, automatically move to SLEEP state. If carrier detected, maintaining RX\_ON state and perform SyncWord detection. If continuous operation timer completed before SyncWord detection, automatically move to SLEEP state. And If SyncWord detected, continue RX\_ON state state.

[SLEEP/WU\_SET: B0 0x2D(7-4)]=0b0011 When FAST\_DET\_MODE\_EN([CCA\_CTRL: B0 0x39(3)]) = 0b1 is set



## (b) One-shot operation

After wake-up timer completion, move to RX\_ON state. And perform CCA to check carrier. If no carrier is detected, automatically move to SLEEP state. In case of no carrier detection, if periodic waking up at wake-up timer interval is necessary, clear the wake-up interrupt ([INT\_SOURCE\_GRP1: B0 0x0D(6)]) before moving to the SLEEP state. If carrier is detected, continue RX state. Able to go back to SLEEP by setting SLEEP parameters.





## •General Purpose Timer

This LSI has general purpose timer. 2 channels of timer are able to function independently. Clock sources, timer setting can be programmed independently. This timer uses 1-shot operation. When timer is completed, General purpose timer 1 interrupt (INT[22] group3) or General purpose timer 2 interrupt (INT[23] group3) will be generated.

General timer interval can be programmed as the following formula.

General purpose timer interval [sec] = general purpose timer clock cycle \* Division setting ([GT\_CLK\_SET: B0 0x33]) \* After general purpose timer interval setting ([GT1\_TIMER: B0 0x35]) B0 0x34] or [GT2\_TIMER: B0 0x35])

By setting GT2/1\_CLK\_SOURCE [GT\_SET: B0 0x32(5,1)], the clock source for general purpose timer is selectable from wake-up timer clock and 2 MHz.

# • Frequency Setting Function

# oChannel Frequency Setting

Maximum 256 channel frequencies can be set (CH#0 to CH#255). The setting of TX/RX frequencies can be performed by the following registers.

| Frequency            |    | Register                                                            |
|----------------------|----|---------------------------------------------------------------------|
| CH#0 frequency       | TV | [TXFREQ_I: B1 0x1B], [TXFREQ_FH: B1 0x1C], [TXFREQ_FM: B1 0x1D] and |
|                      | 17 | [TXFREQ_FL: B1 0x1E]                                                |
|                      | DV | [RXFREQ_I: B1 0x1F], [RXFREQ_FH: B1 0x20], [RXFREQ_FM: B1 0x21] and |
|                      | КА | [RXFREQ_FL: B1 0x22]                                                |
| Channel spaci        | ng | [CH_SPACE_H: B1 0x23] and [CH_SPACE_L: B1 0x24]                     |
| Channel setting      |    | [CH_SET: B0 0x09]                                                   |
| PLL dividing setting |    | [PLL_DIV_SET: B1 0x1A]                                              |

## [Channel frequency setting]

Using above registers, channel frequency is defined as following formula.



[Channel frequency allocation image]



Set the PLL dividing setting according to the RF frequency (for each frequency band) as shown below.

| PLL dividing setting<br>[PLL DIV SET: B1 0x1A] |                |  |
|------------------------------------------------|----------------|--|
| 315 to 510 MHz band                            | 900 MHz band   |  |
| 0x02                                           | 0x00           |  |
| (divided by 2)                                 | (divided by 1) |  |

### [Note]

(1) The channel frequency to be selected must meet the following conditions. If the following conditions cannot be met, please change channel #0 frequency or use other channels. If this formula cannot be met, expected frequency is not functional or PLL may not be locked.

F<sub>MCK1</sub>: Master clock frequency

 $N_{div} = 1,2$ 

 $(F_{MCK1}*n + 1 \text{ MHz}) / N_{div} \le Used channel frequency \le (F_{MCK1}*(n+1) - 1 \text{ MHz}) / N_{div} * n = integer$ 



(Example of calculating Range (a) shown above)

For 1 division mode (N\_div = 1), master clock 36 MHz, n = 25 (36 MHz x 25 + 1) MHz  $\leq$  Channel frequency to be used  $\leq$  (36 MHz x (25 + 1) - 1) => 901 MHz  $\leq$  Channel frequency to be used  $\leq$  935 MHz

(2) CH#0 frequency and channel interval settings may have error. Therefore, channel frequency has frequency error indicated by the following formula.

Channel frequency error [Hz] = CH#0 frequency error [Hz] + Channel interval setting error [Hz] \* Channel setting

When changing "channel frequency" by setting "channel setting" without "CH#0 frequency" change, the "channel frequency error" will become larger than by setting both "CH#0 frequency" and "channel setting". If the "channel frequency error" becomes larger, please change "CH#0 frequency".

(3) If the 26-bit channel frequency ( = CH#0 frequency + Channel spacing x Channel setting) setting value (integer and decimal parts, refer to "Channel #0 frequency setting") exceeds the maximum value 0x3FF\_FFFF, the expected channel frequency is not achieved. Take this maximum value into account when deciding the channel #0 frequency, channel interval, and channel setting.

#### (1) Channel #0 frequency setting

TX frequency can be set by [TXFREQ\_I: B1 0x1B], [TXFREQ\_FH: B1 0x1C], [TXFREQ\_FM: B1 0x1D] and [TXFREQ\_FL: B1 0x1E], and RX frequency can be set by [RXFREQ\_I: B1 0x1F], [RXFREQ\_FH: B1 0x20], [RXFREQ\_FM: B1 0x21] and [RXFREQ\_FL: B1 0x22].

Refer to "Channel Frequency Setting" for Ndiv.

Channel #0 frequency setting value can be calculated using the following formula.

$$I = \frac{f_{rf}}{f_{ref} / N_{div}} \quad \text{(Integer part)}$$
$$F = \left\{ \frac{f_{rf}}{f_{ref} / N_{div}} - I \right\} \cdot 2^{20} \quad \text{(Integer part)}$$

Where

 $\begin{array}{ll} f_{rf} & : \mbox{Channel $\#0$ frequency} \\ f_{ref} & : \mbox{PLL reference frequency (= master clock frequency: $F_{MCK1}$)} \\ I & : \mbox{Integer part of frequency setting} \\ F & : \mbox{Fractional part of frequency setting} \\ N_{div} & : \mbox{Division setting (1 or 2)} \end{array}$ 

*I* (hex) is set to [TXFREQ\_I: B1 0x1B] and [RXFREQ\_I: B1 0x1F]. Also, F (hex) is set to the following registers. For TX, set [TXFREQ\_FH: B1 0x1C], [TXFREQ\_FM: B1 0x1D] and [TXFREQ\_FL: B1 0x1E] in this order from MSB. For RX, set [RXFREQ\_FH: B1 0x20], [RXFREQ\_FM: B1 0x21] and [RXFREQ\_FL: B1 0x22] in this order from MSB.

Frequency error  $f_{err}$  is calculated as follows :

$$f_{err} = \left\{ I + \frac{F}{2^{20}} \right\} \cdot \left( f_{ref} / N_{div} \right) - f_{rf}$$

[Example] When setting TX CH#0 frequency  $f_{rf}$  to 920 MHz (master clock 36 MHz, Ndiv = 1), following calculations are performed.

$$I = \frac{920MHz}{(36MHz/1)} \text{ (Integer part)} = 25(0x19)$$
$$F = \left\{\frac{920MHz}{(36MHz/1)} - 25\right\} \cdot 2^{20} \text{ (Integer part)} = 582542(0x8E38E)$$

$$\begin{array}{ll} [TXFREQ\_I: B1 0x1B] = & 0x19 \\ [TXFREQ\_FH: B1 0x1C] = & 0x08 \\ [TXFREQ\_FM: B1 0x1D] = & 0xE3 \\ [TXFREQ\_FL: B1 0x1E] = & 0x8E \end{array}$$

Frequency error  $f_{err}$  is calculated as follows:  $f_{err} = \left\{ 25 + \frac{582542}{2^{20}} \right\} \cdot (36MHz/1) - 920MHz = 0Hz$ 

#### (2) Channel space setting

Channel space can be set by [CH\_SPACE\_H: B1 0x23] and [CH\_SPACE\_L: B1 0x24]. Convert the channel space calculated by the following formula into hexadecimal value and set it to [CH\_SPACE\_H: B1 0x23] and [CH\_SPACE\_L: B1 0x24] in this order from MSB.

Channel space is from the center frequency of given channel to adjacent channel center frequency.

Refer to "Channel Frequency Setting" for Ndiv.

The setting values of [CH\_SPACE\_H: B1 0x23] and [CH\_SPACE\_L: B1 0x24] are obtained by the following formula.

$$CH\_SPACE = \left\{\frac{f_{sp}}{f_{ref} / N_{div}}\right\} \cdot 2^{20} \text{ (Integer part)}$$

Where,

CH\_SPACE : Channel space setting

 $f_{sp}$  : Channel space [MHz]

 $f_{ref}$ : PLL reference frequency ( = master clock frequency: F<sub>MCK1</sub>)

 $N_{div}$ : Division setting (1 or 2)

[Example] When setting channel space to 400 kHz (master clock 36 MHz, Ndiv = 1), following calculation is performed.

$$CH \_SPACE = \left\{ \frac{0.4MHz}{36MHz/1} \right\} \cdot 2^{20} \text{ (Integer part)} = 11650(0x2D82)$$

[CH\_SPACE\_H: B1 0x23] = 0x2D [CH\_SPACE\_L: B1 0x24] = 0x82

## **IF** Frequency Setting

IF frequency is set by [IF\_FREQ: B0 0x61]. See the following table for the IF frequency for each IF frequency setting value. These can be set separately for the normal receiving mode and during CCA.

| IF_FREQ([IF_FREQ: B0 0x61(2-0)]<br>IF_FREQ_CCA([IF_FREQ: B0 0x61(6-4)] | IF frequency (*1) |  |
|------------------------------------------------------------------------|-------------------|--|
| 0b000                                                                  | 225kHz            |  |
| 0b001                                                                  | 150kHz            |  |
| 0b010                                                                  | Prohibited        |  |
| 0b011                                                                  | 112.5kHz          |  |
| 0b100                                                                  | Prohibited        |  |
| 0b101                                                                  | 75kHz             |  |
| 0b110                                                                  | 180kHz            |  |
| 0b111                                                                  | 0kHz              |  |

(\*1) These IF frequency values are for a master clock of 36MHz. When using another frequency as master clock, the IF frequency varies depending on the amount of frequency change from 36 MHz.

# Modulation Function

# ○ FSK Modulation

To use FSK modulation, set MOD\_TYPE([MOD\_CTRL: B6 0x01(1-0)]) = 0b00.

(1) GFSK modulation setting

To use GFSK mode, GFSK\_EN([DATA\_SET1: B0 0x07(4)])=0b1 should be set. In GFSK modulation, frequency deviation can be set by [GFSK\_DEV\_H: B1 0x30] and [GFSK\_DEV\_L: B1 0x31] registers, and the filter coefficient of Gaussian filter can be set by [FSK\_DEV0\_H/ GFIL0: B1 0x32] to [FSK\_DEV3\_H: B1 0x38] registers. 2FSK/4FSK can be selected by FSK\_SEL[DATA\_SET2: B0 0x08(5)].

Refer to "Channel Frequency Setting" for Ndiv.

(a) GFSK frequency deviation setting

F\_DEV value can be calculated as the following formula:

$$F_{DEV} = \left\{ \frac{f_{dev}}{f_{ref} / N_{div}} \right\} \cdot 2^{20} \text{ (Integer part)}$$

Where,

 $f_{dev}$  : Frequency deviation [Hz]

 $f_{ref}$ : PLL reference frequency ( = master clock frequency: F<sub>MCK1</sub>)

 $N_{div}$ : Division setting (1 or 2)

In 4GFSK mode, the value of maximum frequency deviation should be specified.

[Example] When setting frequency deviation to 50 kHz, the setting value for the case of  $f_{REF} = 36$  MHz and  $N_{div} = 1$  is calculated as follows.  $F_DEV = \{0.05 \text{ MHz} \div (36 \text{ MHz}/1)\} \times 2^{20} \text{ (integer value)} = 1456 \text{ (0x05B0)}$ Here, [GFSK\_FDEV\_H/L: B1 0x30/31] should be set as below:

[GFSK\_DEV\_H: B1 0x30] = 0x05 [GFSK\_DEV\_L: B1 0x31] = 0xB0

(b) Gaussian filter setting

GFSK mode can be set by GFSK\_EN([DATA\_SET1: B0 0x07(4)])=0b1. The BT value of the Gaussian filter can be set by the following registers.

Here is the relationship between the BT value and the register setting.

| Register                    | BT value |      |
|-----------------------------|----------|------|
|                             | 0.5      | 1.0  |
| [FSK_DEV0_H/GFIL0: B1 0x32] | 0x24     | 0x00 |
| [FSK_DEV0_L/GFIL1: B1 0x33] | 0xD6     | 0x00 |
| [FSK_DEV1_H/GFIL2: B1 0x34] | 0x19     | 0x02 |
| [FSK_DEV1_L/GFIL3: B1 0x35] | 0x29     | 0x0C |
| [FSK_DEV2_H/GFIL4: B1 0x36] | 0x3A     | 0x31 |
| [FSK_DEV2_L/GFIL5: B1 0x37] | 0x48     | 0x74 |
| [FSK_DEV3_H/GFIL6: B1 0x38] | 0x4C     | 0x9A |

[Note]

GFSK filter coefficient setting register and FSK frequency deviation setting register are common. In GFSK mode, filter coefficient applies to this register. In FSK mode, frequency deviation applies to this register.
#### (2) FSK modulation setting

FSK mode can be set by GFSK\_EN([DATA\_SET1: B0 0x07(4)])=0b0. Also, fine frequency deviation can be set by [FSK\_DEV0\_H/GFIL0: B1 0x32] - [FSK\_DEV4\_L: B1 0x3B]. By adjusting the setting value of [FSK\_TIM\_ADJ4: B1 0x3C] - [FSK\_TIM\_ADJ0: B1 0x40], FSK timing can be fine tuned. 2FSK/4FSK can be selected by FSK\_SEL[DATA\_SET2: B0 0x08(5)].





| Frequency deviation setting |                                        |            |                         | Time setting |               |         |              |
|-----------------------------|----------------------------------------|------------|-------------------------|--------------|---------------|---------|--------------|
| Symbol                      | Register name                          | Address    | Function                | Symbol       | Register name | Address | Function     |
| i                           | FSK_FDEV0_H/GFIL0<br>FSK_FDEV0_L/GFIL1 | B1 0x32/33 |                         | (a)          | FSK_TIM_ADJ4  | B1 0x3C |              |
| ii                          | FSK_FDEV1_H/GFIL2<br>FSK_FDEV1_L/GFIL3 | B1 0x34/35 | Frequency               | (b)          | FSK_TIM_ADJ3  | B1 0x3D | Modulation   |
| iii                         | FSK_FDEV2_H/GFIL4<br>FSK_FDEV2_L/GFIL5 | B1 0x36/37 | deviation<br>approx. 34 | (c)          | FSK_TIM_ADJ2  | B1 0x3E | 4 MHz/12 MHz |
| iv                          | FSK_FDEV3_H/GFIL6<br>FSK_FDEV3_L       | B1 0x38/39 | (Hz)                    | (d)          | FSK_TIM_ADJ1  | B1 0x3F | (*1)         |
| v                           | FSK_FDEV4_H<br>FSK_FDEV4_L             | B1 0x3A/3B |                         | (e)          | FSK_TIM_ADJ0  | B1 0x40 |              |

(\*1) Modulation timing resolution can be switched by FSK\_CLK\_SET ([FSK\_CTRL: B1 0x2F(0)]).

#### [Note]

GFSK filter coefficient setting register and FSK frequency deviation setting register are common. In GFSK mode, filter coefficient applies to this register. In FSK mode, frequency deviation applies to this register.





- (\*1) The mapping of the data (00/101/0/11) for each frequency deviation (1st to 4th) can be changed by [4FSK\_DATA\_MAP: B1 0x40].
- (\*2) If the frequency is changed by 2 levels such as from 1st to 3rd frequency deviation, the amount of the frequency change is 2 times as much as i to v. If the frequency is changed by 3 levels such as from 1st to 4th frequency deviation, the amount of the frequency change is 3 times as much as i to v.

The table below indicates the frequency deviation setting. The parameter of calculation formula is the register bit name.

| Frequency deviation setting |                       |                        |                     |  |  |  |
|-----------------------------|-----------------------|------------------------|---------------------|--|--|--|
| Symbol                      | Formula               | Address                |                     |  |  |  |
| i                           | FSK_FDEV4 - FSK_FDEV3 | B1 0x3A/3B, B1 0x38/39 |                     |  |  |  |
| ii                          | FSK_FDEV4 - FSK_FDEV2 | B1 0x3A/3B, B1 0x36/37 | Frequency deviation |  |  |  |
| iii                         | FSK_FDEV4 - FSK_FDEV1 | B1 0x3A/3B, B1 0x34/35 | approx 34 (Hz)      |  |  |  |
| iv                          | FSK_FDEV4 - FSK_FDEV0 | B1 0x3A/3B, B1 0x32/33 | approx. 54 (112)    |  |  |  |
| v                           | FSK_FDEV4             | B1 0x3A/3B             |                     |  |  |  |

| Time setting |               |         |                      |  |  |
|--------------|---------------|---------|----------------------|--|--|
| Symbol       | Register name | Address | Function             |  |  |
| (a)          | FSK_TIM_ADJ4  | B1 0x3C | Modulation timing    |  |  |
| (b)          | FSK_TIM_ADJ3  | B1 0x3D | A MHz/12 MHz counter |  |  |
| (c)          | FSK_TIM_ADJ2  | B1 0x3E | value                |  |  |
| (d)          | FSK_TIM_ADJ1  | B1 0x3F | (*1)                 |  |  |
| (e)          | FSK_TIM_ADJ0  | B1 0x40 |                      |  |  |

(\*1) Modulation timing resolution can be switched by FSK\_CLK\_SET ([FSK\_CTRL: B1 0x2F(0)]).

[Note]

GFSK filter coefficient setting register and FSK frequency deviation setting register are common. In GFSK mode, filter coefficient applies to this register. In FSK mode, frequency deviation applies to this register.

#### **OBPSK Modulation**

This LSI is equipped with the following two methods for BPSK modulation.

- · Phase switching method
  - Switch the phase of carrier signal between 0 and 180 ° according to TX data.
- Frequency control method

Control the frequency of carrier signal according to TX data to switch the phase.



BPSK modulation waveform (PA output image) Modulation is performed through phase switching and PA (amplitude) control.

The following registers need to be set for BPSK method/PA control setting. For the setting value, use the value specified in "Initialization Table".

|                         |                                 | BPSK method  |              |  |
|-------------------------|---------------------------------|--------------|--------------|--|
| Bit name                | Address                         | Phase        | Phase        |  |
|                         |                                 | switching    | switching    |  |
| MOD_TYPE[1:0]           | [MOD_CTRL: B6 0x01(1-0)]        | ✓ (0b01)     | ✓ (0b01)     |  |
| BPSK_PLL_CTRL           | [BPSK_PLL_CTRL: B0 0x7B(0)]     | ✓ (0b0)      | ✓ (0b1)      |  |
| GFSK_EN                 | [DATA_SET1: B0 0x07(4)]         | ✓ (0b1)      | ✓ (0b1)      |  |
| BPSK_P_CLKEL            | [BPSK_PLL_CTRL: B6 0x7B(1)]     | -            | $\checkmark$ |  |
| DDSV D STADTI10.01      | [BPSK_P_START_H/L: B6           |              | 1            |  |
| BFSK_F_START[10.0]      | 0x7C(2-0)/7D(7-0)]              | -            | •            |  |
| PDSK D HOLD[11:0]       | [BPSK_P_HOLD_H/L: B6            |              | 1            |  |
| BFSK_F_HOLD[11.0]       | 0x7E(3-0)/7F(7-0)]              | -            | -            |  |
| BPSK_STEP_EN            | [BPSK_STEP_CTRL:B10 0x01(4)]    | ✓ (0b1)      | ✓ (0b1)      |  |
| BPSK_STEP_SEL           | [BPSK_STEP_CTRL:B10 0x01(5)]    | $\checkmark$ | $\checkmark$ |  |
| BPSK_CLK_SEL            | [BPSK_STEP_CTRL:B10 0x01(6)]    | ✓            | ✓            |  |
|                         | [BPSK_STEP_CTRL:B10 0x01(0)]    |              |              |  |
| BPSK_CLK_SET[8:0]       | [BPSK_STEP_CLK_SET:B10          | $\checkmark$ | $\checkmark$ |  |
|                         | 0x02(7-0)]                      |              |              |  |
|                         | [BPSK_STEP_SET0:B10 0x04(3-0)]  |              |              |  |
|                         | [BPSK_STEP_SET0:B10 0x04(7-4)]  | ,            |              |  |
| STEP0[3:0]-STEP119[3:0] |                                 | ✓            | $\checkmark$ |  |
|                         | [BPSK_STEP_SET59:B10 0x3F(3-0)] |              |              |  |
|                         | [BPSK STEP SET59:B10 0x3F(7-4)] |              |              |  |

FEDL7456N-05

To suppress harmonics generated at the time of phase/frequency switching, TX power control is performed by PA before and after phase/frequency switching. The PA controls shown in the following table are available for the above two methods:

(a) Common PA power down/up setting

(b) Individual PA power down/up setting

(a) Common PA power down/up setting (BPSK\_STEP\_SEL([BPSK\_STEP\_CTLR: B10 0x01(5)]) = 0b1)
Power/cord



(b) Individual PA power down/up setting (BPSK\_STEP\_SEL([BPSK\_STEP\_CTLR: B10 0x01(5)]) = 0b0) Power/cord



| TI COIIIIO   | related registers in Dr | bit modulation are a                                                                              | 310110 W.S.          |         |
|--------------|-------------------------|---------------------------------------------------------------------------------------------------|----------------------|---------|
| Symbol       | Bit name                | Address                                                                                           | Function             | Remarks |
| S0           | STEP0[3:0]              | [B10 0x04(3-0)]                                                                                   | BPSK step control 0  |         |
| S1           | STEP1[3:0]              | [B10 0x04(7-4)]                                                                                   | BPSK step control 1  |         |
| S2           | STEP2[3:0]              | [B10 0x05(3-0)]                                                                                   | BPSK step control 2  |         |
| S3           | STEP3[3:0]              | [B10 0x05(7-4)]                                                                                   | BPSK step control 3  |         |
| S4           | STEP4[3:0]              | [B10 0x06(3-0)]                                                                                   | BPSK step control 4  |         |
| S5           | STEP5[3:0]              | [B10 0x06(7-4)]                                                                                   | BPSK step control 5  |         |
| S6           | STEP6[3:0]              | [B10 0x07(3-0)]                                                                                   | BPSK step control 6  |         |
| S7           | STEP7[3:0]              | [B10 0x07(7-4)]                                                                                   | BPSK step control 7  |         |
| S8           | STEP8[3:0]              | [B10 0x08(3-0)]                                                                                   | BPSK step control 8  |         |
| S9           | STEP9[3:0]              | [B10 0x08(7-4)]                                                                                   | BPSK step control 9  |         |
| S10          | STEP10[3:0]             | [B10 0x09(3-0)]                                                                                   | BPSK step control 10 |         |
| S11          | STEP11[3:0]             | [B10 0x09(7-4)]                                                                                   | BPSK step control 11 |         |
| S12          | STEP12[3:0]             | [B10 0x0A(3-0)]                                                                                   | BPSK step control 12 |         |
| S13          | STEP13[3:0]             | [B10 0x0A(7-4)]                                                                                   | BPSK step control 13 |         |
| S14          | STEP14[3:0]             | [B10 0x0B(3-0)]                                                                                   | BPSK step control 14 |         |
| S15          | STEP15[3:0]             | [B10 0x0B(7-4)]                                                                                   | BPSK step control 15 |         |
| S16          | STEP16[3:0]             | [B10 0x0C(3-0)]                                                                                   | BPSK step control 16 |         |
| S17          | STEP17[3:0]             | [B10 0x0C(7-4)]                                                                                   | BPSK step control 17 |         |
| S18          | STEP18[3:0]             | [B10 0x0D(3-0)]                                                                                   | BPSK step control 18 |         |
| S19          | STEP19[3:0]             | [B10 0x0D(7-4)]                                                                                   | BPSK step control 19 |         |
| S20          | STEP20[3:0]             | [B10 0x0E(3-0)]                                                                                   | BPSK step control 20 |         |
| S21          | STEP21[3:0]             | [B10 0x0E(7-4)]                                                                                   | BPSK step control 21 |         |
| S22          | STEP22[3:0]             | [B10 0x0F(3-0)]                                                                                   | BPSK step control 22 |         |
| S23          | STEP23[3:0]             | [B10 0x0F(7-4)]                                                                                   | BPSK step control 23 |         |
| S24          | STEP24[3:0]             | [B10 0x10(3-0)]                                                                                   | BPSK step control 24 |         |
| S25          | STEP25[3:0]             | [B10 0x10(7-4)]                                                                                   | BPSK step control 25 |         |
| S26          | STEP26[3:0]             | $[B10\ 0x11(3-0)]$                                                                                | BPSK step control 26 |         |
| S27          | STEP27[3:0]             | [B10 0x11(7-4)]                                                                                   | BPSK step control 27 |         |
| S28          | STEP28[3:0]             | [B10 0x12(3-0)]                                                                                   | BPSK step control 28 |         |
| S29          | STEP29[3:0]             | [B10 0x12(7-4)]                                                                                   | BPSK step control 29 |         |
| S30<br>521   | STEP30[3:0]             | $[B10\ 0x13(3-0)]$                                                                                | BPSK step control 30 |         |
| 531          | STEP31[3:0]             | [B10 0x13(7-4)]                                                                                   | BPSK step control 31 |         |
| <u>832</u>   | STEP32[3:0]             | $[B10\ 0x14(3-0)]$                                                                                | BPSK step control 32 |         |
| 533          | STEP33[3:0]             | [B10 0x14(7-4)] $[D10 0x15(2,0)]$                                                                 | BPSK step control 33 |         |
| 534          | STEP34[3:0]             | [B10 0x13(3-0)] $[B10 0x15(7-4)]$                                                                 | BPSK step control 34 |         |
| \$35<br>\$26 | STEP35[5:0]             | $\begin{bmatrix} B10 \ 0x13(7-4) \end{bmatrix}$ $\begin{bmatrix} P10 \ 0x16(2 \ 0) \end{bmatrix}$ | BPSK step control 35 |         |
| \$37         | STED 30[5.0]            | [B10.0x16(7.4)]                                                                                   | BISK step control 30 |         |
| \$38         | STEP38[3:0]             | [B10.0x10(7-4)] $[B10.0x17(3-0)]$                                                                 | BISK step control 38 |         |
| \$30         | STEP30[3:0]             | [B10.0x17(3-0)] $[B10.0x17(7-4)]$                                                                 | BISK step control 30 |         |
| \$40         | STEP40[3:0]             | [B10.0x18(3-0)]                                                                                   | BPSK step control 40 |         |
| S41          | STEP41[3:0]             | [B10 0x18(7-4)]                                                                                   | BPSK step control 41 |         |
| S42          | STEP42[3:0]             | [B10 0x10(7 - 1)] $[B10 0x19(3 - 0)]$                                                             | BPSK step control 42 |         |
| S43          | STEP43[3:0]             | $[B10\ 0x19(7-4)]$                                                                                | BPSK step control 43 |         |
| S44          | STEP44[3:0]             | [B10.0x1A(3-0)]                                                                                   | BPSK step control 44 |         |
| S45          | STEP45[3:0]             | [B10 0x1A(7-4)]                                                                                   | BPSK step control 45 |         |
| S46          | STEP46[3:0]             | [B10 0x1B(3-0)]                                                                                   | BPSK step control 46 |         |
| S47          | STEP47[3.0]             | [B10 0x1B(7-4)]                                                                                   | BPSK step control 47 |         |
| S48          | STEP48[3:0]             | [B10 0x1C(3-0)]                                                                                   | BPSK step control 48 |         |
| S49          | STEP49[3:0]             | [B10 0x1C(7-4)]                                                                                   | BPSK step control 49 |         |
| S50          | STEP50[3:0]             | [B10 0x1D(3-0)]                                                                                   | BPSK step control 50 |         |
| \$51         | STEP51[3:0]             | [B10 0x1D(7-4)]                                                                                   | BPSK step control 51 |         |
| S52          | STEP52[3:0]             | [B10 0x1E(3-0)]                                                                                   | BPSK step control 52 |         |
| S53          | STEP53[3:0]             | [B10 0x1E(7-4)]                                                                                   | BPSK step control 53 |         |
|              | L J                     |                                                                                                   | 1                    | 1       |

PA control related registers in BPSK modulation are as follows:

#### PA control register list (continued)

| Symbol | Bit name     | Address         | Function              | Remarks |
|--------|--------------|-----------------|-----------------------|---------|
| S54    | STEP54[3:0]  | [B10 0x1F(3-0)] | BPSK step control 54  |         |
| S55    | STEP55[3:0]  | [B10 0x1F(7-4)] | BPSK step control 55  |         |
| S56    | STEP56[3:0]  | [B10 0x20(3-0)] | BPSK step control 56  |         |
| S57    | STEP57[3:0]  | [B10 0x20(7-4)] | BPSK step control 57  |         |
| S58    | STEP58[3:0]  | [B10 0x21(3-0)] | BPSK step control 58  |         |
| S59    | STEP59[3:0]  | [B10 0x21(7-4)] | BPSK step control 59  |         |
| S60    | STEP60[3:0]  | [B10 0x22(3-0)] | BPSK step control 60  |         |
| S61    | STEP61[3:0]  | [B10 0x22(7-4)] | BPSK step control 61  |         |
| S62    | STEP62[3:0]  | [B10 0x23(3-0)] | BPSK step control 62  |         |
| S63    | STEP63[3:0]  | [B10 0x23(7-4)] | BPSK step control 63  |         |
| S64    | STEP64[3:0]  | [B10 0x24(3-0)] | BPSK step control 64  |         |
| S65    | STEP65[3:0]  | [B10 0x24(7-4)] | BPSK step control 65  |         |
| S66    | STEP66[3:0]  | [B10 0x25(3-0)] | BPSK step control 66  |         |
| S67    | STEP67[3:0]  | [B10 0x25(7-4)] | BPSK step control 67  |         |
| S68    | STEP68[3:0]  | [B10 0x26(3-0)] | BPSK step control 68  |         |
| S69    | STEP69[3:0]  | [B10 0x26(7-4)] | BPSK step control 69  |         |
| S70    | STEP70[3:0]  | [B10 0x27(3-0)] | BPSK step control 70  |         |
| S71    | STEP71[3:0]  | [B10 0x27(7-4)] | BPSK step control 71  |         |
| S72    | STEP72[3:0]  | [B10 0x28(3-0)] | BPSK step control 72  |         |
| S73    | STEP73[3:0]  | [B10 0x28(7-4)] | BPSK step control 73  |         |
| S74    | STEP74[3:0]  | [B10 0x29(3-0)] | BPSK step control 74  |         |
| S75    | STEP75[3:0]  | [B10 0x29(7-4)] | BPSK step control 75  |         |
| S76    | STEP76[3:0]  | [B10 0x2A(3-0)] | BPSK step control 76  |         |
| S77    | STEP77[3:0]  | [B10 0x2A(7-4)] | BPSK step control 77  |         |
| S78    | STEP78[3:0]  | [B10 0x2B(3-0)] | BPSK step control 78  |         |
| S79    | STEP79[3:0]  | [B10 0x2B(7-4)] | BPSK step control 79  |         |
| S80    | STEP80[3:0]  | [B10 0x2C(3-0)] | BPSK step control 80  |         |
| S81    | STEP81[3:0]  | [B10 0x2C(7-4)] | BPSK step control 81  |         |
| S82    | STEP82[3:0]  | [B10 0x2D(3-0)] | BPSK step control 82  |         |
| S83    | STEP83[3:0]  | [B10 0x2D(7-4)] | BPSK step control 83  |         |
| S84    | STEP84[3:0]  | [B10 0x2E(3-0)] | BPSK step control 84  |         |
| S85    | STEP85[3:0]  | [B10 0x2E(7-4)] | BPSK step control 85  |         |
| S86    | STEP86[3:0]  | [B10 0x2F(3-0)] | BPSK step control 86  |         |
| S87    | STEP87[3:0]  | [B10 0x2F(7-4)] | BPSK step control 87  |         |
| S88    | STEP88[3:0]  | [B10 0x30(3-0)] | BPSK step control 88  |         |
| S89    | STEP89[3:0]  | [B10 0x30(7-4)] | BPSK step control 89  |         |
| S90    | STEP90[3:0]  | [B10 0x31(3-0)] | BPSK step control 90  |         |
| S91    | STEP91[3:0]  | [B10 0x31(7-4)] | BPSK step control 91  |         |
| S92    | STEP92[3:0]  | [B10 0x32(3-0)] | BPSK step control 92  |         |
| S93    | STEP93[3:0]  | [B10 0x32(7-4)] | BPSK step control 93  |         |
| S94    | STEP94[3:0]  | [B10 0x33(3-0)] | BPSK step control 94  |         |
| S95    | STEP95[3:0]  | [B10 0x33(7-4)] | BPSK step control 95  |         |
| S96    | STEP96[3:0]  | [B10 0x34(3-0)] | BPSK step control 96  |         |
| S97    | STEP97[3:0]  | [B10 0x34(7-4)] | BPSK step control 97  |         |
| S98    | STEP98[3:0]  | [B10 0x35(3-0)] | BPSK step control 98  |         |
| S99    | STEP99[3:0]  | [B10 0x35(7-4)] | BPSK step control 99  |         |
| S100   | STEP100[3:0] | [B10 0x36(3-0)] | BPSK step control 100 |         |
| S101   | STEP101[3:0] | [B10 0x36(7-4)] | BPSK step control 101 |         |
| S102   | STEP102[3:0] | [B10 0x37(3-0)] | BPSK step control 102 |         |
| S103   | STEP103[3:0] | [B10 0x37(7-4)] | BPSK step control 103 |         |
| S104   | STEP104[3:0] | [B10 0x38(3-0)] | BPSK step control 104 |         |
| S105   | STEP105[3:0] | [B10 0x38(7-4)] | BPSK step control 105 |         |
| S106   | STEP106[3:0] | [B10 0x39(3-0)] | BPSK step control 106 |         |
| 1      |              |                 |                       |         |

# ML7456N

| Symbol | Bit name          | Address                       | Function                                                                                                                | Remarks                                                                                                   |
|--------|-------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| S107   | STEP107[3:0]      | [B10 0x39(7-4)]               | BPSK step control 107                                                                                                   |                                                                                                           |
| S108   | STEP108[3:0]      | [B10 0x3A(3-0)]               | BPSK step control 108                                                                                                   |                                                                                                           |
| S109   | STEP109[3:0]      | [B10 0x3A(7-4)]               | BPSK step control 109                                                                                                   |                                                                                                           |
| S110   | STEP110[3:0]      | [B10 0x3B(3-0)]               | BPSK step control 110                                                                                                   |                                                                                                           |
| S111   | STEP111[3:0]      | [B10 0x3B(7-4)]               | BPSK step control 111                                                                                                   |                                                                                                           |
| S112   | STEP112[3:0]      | [B10 0x3C(3-0)]               | BPSK step control 112                                                                                                   |                                                                                                           |
| S113   | STEP113[3:0]      | [B10 0x3C(7-4)]               | BPSK step control 113                                                                                                   |                                                                                                           |
| S114   | STEP114[3:0]      | [B10 0x3D(3-0)]               | BPSK step control 114                                                                                                   |                                                                                                           |
| S115   | STEP115[3:0]      | [B10 0x3D(7-4)]               | BPSK step control 115                                                                                                   |                                                                                                           |
| S116   | STEP116[3:0]      | [B10 0x3E(3-0)]               | BPSK step control 116                                                                                                   |                                                                                                           |
| S117   | STEP117[3:0]      | [B10 0x3E(7-4)]               | BPSK step control 117                                                                                                   |                                                                                                           |
| S118   | STEP118[3:0]      | [B10 0x3F(3-0)]               | BPSK step control 118                                                                                                   |                                                                                                           |
| S119   | STEP119[3:0]      | [B10 0x3F(7-4)]               | BPSK step control 119                                                                                                   |                                                                                                           |
| Т      | BPSK_STEP_CLK_SEL | [B10 0x01(5)]                 | Step control clock selection setting<br>0: Master clock frequency / 2 (18 MHz)<br>1: Master clock frequency / 4 (9 MHz) | Step control clock cycle T =<br>Clock cycle for step control<br>x Step control clock<br>selection setting |
|        | CLK_SET[8:0]      | [B0 0x02(0),<br>B0 0x03(7-0)] | Step control clock cycle setting                                                                                        |                                                                                                           |
| L      | PA_REG_ADJ[8:0]   | [B0 0x67(0),<br>B0 68(7:0)]   | PA regulator output voltage adjustment setting                                                                          |                                                                                                           |

#### PA control register list (continued)

# •RX Related Function

# •AFC Function

This LSI part supports AFC function in RX. Frequency deviation (max $\pm$ 20ppm) between remote device and local device can be compensated by this function. Using this function, stable RX sensitivity and interference blocking performance can be achieved. This function can be enabled by setting AFC\_EN([AFC/GC\_CTRL: B1 0x15(7)])=0b1. Note that the AFC function used to compensate local signals does not work when the spread spectrum function is used.

# • Energy Detection Value (ED value) Acquisition Function

This LSI supports the function to indicate the received signal strength indicator (RSSI) as the energy detection value (ED value). ED value acquisition can be enabled by setting ED\_CALC\_EN ([ED\_CTRL: B0 0x41(7)])=0b1. As soon as a transition is made to RX\_ON state, acquisition of ED value starts automatically.

While in RX\_ON state, the ED value is constantly updated. ED value is not RSSI value at given timing, but average values. A number of average times can be specified by ED\_AVG([ED\_CTRL: B0 0x41(2-0)]). During diversity operation, this can be set by 2DIV\_ED\_AVG([2DIV\_MODE: B1 0x48(2-0)]). As soon as ED value is acquired for the number of average processing, ED\_DONE([ED\_CTRL: B0 0x41(4)]) is set to "1" and ED\_VALUE([ED\_RSLT: B0 0x3A]) will be updated.

ED\_DONE bit will be cleared if one of the following conditions is met.

- (a) Antenna is switched.
- (b) Gain is switched.
- (c) Once stopping ED value acquisition and then resume it.

Timing from ED value starting point to ED value acquisition is calculated as below formula. ED value average time = Average interval  $(16\mu s)$  \* ED value number of average times

The timing example is as follows:

[Condition] ED\_AVG[2:0]=0b011 (ED value 8 times average) [ED\_CTRL: B0 0x41(2-0)]

| ED value calculation<br>execution flag<br>(Internal signal) |     | Average interval (16 μs)<br>←──→                |                                        |
|-------------------------------------------------------------|-----|-------------------------------------------------|----------------------------------------|
| RSSI value<br>(Internal signal)                             | X   | RSSI1 RSSI2 RSSI3 RSSI4 RSSI5 RSSI6 RSSI7 RSSI8 |                                        |
|                                                             |     | Compensation<br>and averaging                   |                                        |
| ED_VALUE<br>[ED_RSLT: B0 0x3A]                              |     | INVALID                                         | ED X ED X ED X<br>1-8 X 2-9 X 3-10 X   |
| _                                                           |     | ED value averaging period (16 μs x 8 = 128 μs)  | Constantly update by<br>moving average |
| ED_DONE<br>([ED_CTRL:B0 0x41(4)                             | )]) | <br>                                            |                                        |

# • Programmable Channel Filter Bandwidth Function

Channel filter bandwidth can be set by CHFIL\_BW\_ADJ([CHFIL\_BW: B0 0x54(6-0)]), CHFIL\_WIDE\_SET([CHFIL\_BW: B0 0x54(7)]) and CHFIL\_BW\_OPTION([CHFIL\_BW\_OPTION: B0 0x6B]). The relationship between the setting value and the channel filter bandwidth is expressed by the following formula.

Channel filter bandwidth [Hz] = {Master clock frequency [Hz] \* (CHFIL\_WIDE\_SET + 1)} / {CHFIL\_BW\_ADJ \* 180} \* Magnification setting (CHFIL\_BW\_OPTION)

See the following table for the channel filter bandwidth for each setting value. Channel filter bandwidth can be set separately for the normal receiving mode and during CCA. For the channel filter bandwidth during CCA, the setting values of CHFIL\_BW\_ADJ\_CCA([CHFIL\_BW\_CCA: B0 0x6A(6-0)]) and CHFIL\_WIDE\_SET\_CCA([CHFIL\_BW\_CCA: B0 0x6A(7)]) will be applied.

| CHFIL_BW_ADJ<br>[dec] | Channel filter bandwidth<br>[kHz] | CHFIL_BW_ADJ<br>[dec] | Channel filter bandwidth<br>[kHz] |
|-----------------------|-----------------------------------|-----------------------|-----------------------------------|
| 0                     | Prohibited                        | 16                    | 12.5                              |
| 1                     | 200                               | 17                    | 11.8                              |
| 2                     | 100                               | 18                    | 11.1                              |
| 3                     | 66.7                              | 19                    | 10.5                              |
| 4                     | 50                                | 20                    | 10                                |
| 5                     | 40                                | 21                    | 9.5                               |
| 6                     | 33.3                              | 22                    | 9.1                               |
| 7                     | 28.6                              | 23                    | 8.7                               |
| 8                     | 25                                | 24                    | 8.3                               |
| 9                     | 22.2                              | 25                    | 8                                 |
| 10                    | 20                                | 26                    | 7.7                               |
| 11                    | 18.2                              | 27                    | 7.4                               |
| 12                    | 16.7                              | 28                    | 7.1                               |
| 13                    | 15.4                              | •••                   | • • •                             |
| 14                    | 14.3                              | 126                   | 1.59                              |
| 15                    | 13.3                              | 127                   | 1.57                              |

#### (1) For the case of CHFIL WIDE SET = 0b0 and CHFIL BW OPTION = 0b000

#### (2) For the case of CHFIL\_WIDE\_SET = 0b1 and CHFIL\_BW\_OPTION = 0b000

| CHFIL_BW_ADJ | Channel filter bandwidth | CHFIL_BW_ADJ | Channel filter bandwidth |
|--------------|--------------------------|--------------|--------------------------|
| [dec]        | [kHz]                    | [dec]        | [kHz]                    |
| 0            | Prohibited               | 16           | 25                       |
| 1            | 400                      | 17           | 23.5                     |
| 2            | 200                      | 18           | 22.2                     |
| 3            | 133.3                    | 19           | 21.1                     |
| 4            | 100                      | 20           | 20                       |
| 5            | 80                       | 21           | 19                       |
| 6            | 66.7                     | 22           | 18.2                     |
| 7            | 57.1                     | 23           | 17.4                     |
| 8            | 50                       | 24           | 16.7                     |
| 9            | 44.4                     | 25           | 16                       |
| 10           | 40                       | 26           | 15.4                     |
| 11           | 36.4                     | 27           | 14.8                     |
| 12           | 33.3                     | 28           | 14.3                     |
| 13           | 30.8                     | •••          | •••                      |
| 14           | 28.6                     | 126          | 3.18                     |
| 15           | 26.7                     | 127          | 3.14                     |

The channel filter bandwidth needs to be optimized according to the data rate and the maximum frequency deviation.

#### **Oiversity Function**

This LSI supports two antenna diversity function.

While in 2DIV\_EN([2DIV\_CTRL: B0 0x48(0)])=0b1 setting, as soon as RX\_ON is set, the diversity mode will start. When diversity mode is started, and upon RX data detection, each ED value will be acquired by switching two antennas. And then antenna with higher ED value will be selected automatically. As diversity uses preamble data for ED value acquisition, longer preamble length is desirable. If preamble is too short, accurate ED values may not be obtained.

The timing diagrams are shown below.



ED value obtained by Diversity ([ANT1\_ED: B0 0x4A] or [ANT2\_ED: B0 0x4B]) and Diversity antenna result ([2DIV\_RSLT: B0 0x49(1-0)]) are updated and overwritten when SyncWord is detected.

The number of detection performed during the ED value calculation is specified by 2DIV\_ED\_AVG([2DIV\_MODE: B1 0x48(2:0)]).

Time resolution of search times ([SEARCH\_TIME1] and [SEARCH\_TIME2]) can be specified by SEARCH\_TIME\_SET([2DIV\_SEARCH1: B1 0x49(7)]).

When Diversity search completion interrupt INT[10] ([INT\_SOURCE\_GRP2: B0 0x0E(2)]) is cleared, the ED value obtained by Diversity ([ANT1\_ED: B0 0x4A]) or [ANT2\_ED: B0 0x4B]) and Diversity antenna result ([2DIV\_RSLT: B0 0x49(1-0)]) are cleared to zero.

[Note]

When an incorrect diversity completion is caused by erroneous detection, ML7456N RF part re-executes antenna search automatically. However, when a desired wave is received during the period from the completion of diversity search caused by erroneous detection to the determination of erroneous detection, the obtained ED value ([ANT1\_ED: B0 0x4A]) or [ANT2\_ED: B0 0x4B]) shows a low ED value different from the input level of desired wave.

The occurrence of this event can be checked by reading out the ED value, which is displayed by [ED\_RSLT: B0 0x41], after the occurrence of SyncWord detection interrupt of desired wave INT[13] ([INT\_SOURCE\_GRP2: B0 0x0E(5)]).

(1) Antenna switching function

Using [2DIV\_CTRL: B0 0x48], [ANT\_CTRL: B0 0x4C] and [EXT\_PA\_CTRL: B0 0x53], TX-RX signal selection (TRX\_SW), antenna switching signal (ANT\_SW), and external PA control signal (DCNT) can be controlled.

Two types of antenna switches (SPDT switch/DPDT switch) can be controlled by [2DIV\_CTRL: B0 0x48(3-1)] and [ANT\_CTRL: B0 0x4C]). The relationship between the output status of ANT\_SW and TRX\_SW pins during each antenna switch control and [2DIV\_CTRL: B0 0x48(2-1)] is indicated below.

# (a) When DPDT switch is used

Set 2PORT\_SW([2DIV\_CTRL: B0 0x48(1)]) = 0b1 and ANT\_CTRL1([2DIV\_CTRL: B0 0x48(5)]) = 0b0. ANT\_SW and TRX\_SW are output as follows during IDLE, TX, and RX states

(default setting): INV\_TRX\_SW([2DIV\_CTRL: B0 0x48(2)])=0b1, polarities of ANT\_SW and TRX\_SW are reversed.

| TX/RX state | INV_TRX_SW([2DIV_CTRL:<br>B0 0x48(2)])=0<br>(default setting) |        | INV_TRX_SW([2DIV_CTRL:<br>B0 0x48(2)])=1<br>(reversed polarity) |        | Description                                                                                                                                                                                                                 |
|-------------|---------------------------------------------------------------|--------|-----------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | ANT_SW                                                        | TRX_SW | ANT_SW                                                          | TRX_SW |                                                                                                                                                                                                                             |
| Idle        | Н                                                             | L      | L                                                               | Н      | Idle state                                                                                                                                                                                                                  |
| TX          | L                                                             | Н      | Н                                                               | L      | TX state                                                                                                                                                                                                                    |
| RX          | Н                                                             | L      | L                                                               | Н      | This is the initial state when Diversity disable<br>is set to 0b0 ([2DIV_CTRL: B0<br>0x48(0)]=0b0) and at the start of Diversity<br>when Diversity is enabled ([2DIV_CTRL: B0<br>0x48(0)]=0b1).                             |
|             | L/H                                                           | H/L    | H/L                                                             | L/H    | If diversity enable is set ([2DIV_CTRL: B0<br>0x48(0)]=0b1), (ANT_SW=H, TRX_SW=L)<br>and (ANT_SW=L, TRX_SW=H) are<br>switched alternately during search. When the<br>diversity is complete, it is fixed to either<br>state. |

#### (b) When SPDT switch is used

2PORT\_SW([2DIV\_CTRL: B0 0x48(1)])=0b0. ANT\_SW and TRX\_SW are output as follows during IDLE, TX, and RX states (default setting): INV\_TRX\_SW([2DIV\_CTRL: B0 0x48(2)])=0b1, polarity of TRX\_SW is reversed

| TX/RX state | INV_TRX_SW<br>B0 0x48<br>(defaul<br>ANT_SW | ([2DIV_CTRL:<br>3(2)])=0<br>t setting)<br>TRX_SW | INV_TRX_SW([2DIV_CTRL:<br>B0 0x48(2)])=1<br>(reversed polarity) |   | Description                                                                                                                                                                                                              |
|-------------|--------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Idle        | L                                          | L                                                | L                                                               | H | Idle state                                                                                                                                                                                                               |
| TX          | L                                          | Н                                                | L                                                               | L | TX state                                                                                                                                                                                                                 |
| RX          | L                                          | L                                                | L                                                               | Н | This is the initial state when Diversity disable<br>is set to 0b0 ([2DIV_CTRL: B0<br>0x48(0)]=0b0) and at the start of Diversity<br>when Diversity is enabled ([2DIV_CTRL: B0<br>0x48(0)]=0b1).                          |
|             | H/L                                        | L                                                | H/L                                                             | Н | If diversity enable is set ([2DIV_CTRL: B0<br>0x48(0)]=0b1), (ANT_SW=H, TRX_SW=L)<br>and (ANT_SW=L, TRX_SW=H) are<br>switched alternately during search. When the<br>diversity is complete, it is fixed to either state. |

By setting INV\_ANT\_SW([2DIV\_CTRL: B0 0x48(3)])=0b1 and ANT\_CTRL1([2DIV\_CTRL: B0 0x48(5)])=0b1 to the above default setting, the polarity of ANT\_SW pin will be reversed.

| TX/RX<br>state | INV_ANT_SW<br>B0 0x48<br>ANT_CTRL1(<br>B0 0x48<br>(default | ([2DIV_CTRL:<br>3(3)])=0<br>[2DIV_CTRL:<br>3(5)])=0<br>setting) | INV_ANT_SW([2DIV_CTRL:<br>B0 0x48(3)])=1<br>ANT_CTRL1([2DIV_CTRL:<br>B0 0x48(5)])=1 |        | Description                                                                                                                                                                                                                 |
|----------------|------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | ANT_SW                                                     | TRX_SW                                                          | ANT_SW                                                                              | TRX_SW |                                                                                                                                                                                                                             |
| Idle           | L                                                          | L                                                               | Н                                                                                   | L      | Idle state                                                                                                                                                                                                                  |
| TX             | L                                                          | Н                                                               | Н                                                                                   | Н      | TX state                                                                                                                                                                                                                    |
| RX             | L                                                          | L                                                               | Н                                                                                   | L      | This is the initial state when Diversity<br>disable is set to 0b0 ([2DIV_CTRL: B0<br>0x48(0)]=0b0) and at the start of Diversity<br>when Diversity is enabled ([2DIV_CTRL:<br>B0 0x48(0)]=0b1).                             |
|                | H/L                                                        | L                                                               | L/H                                                                                 | L      | If diversity enable is set ([2DIV_CTRL: B0<br>0x48(0)]=0b1), (ANT_SW=H,<br>TRX_SW=L) and (ANT_SW=L,<br>TRX_SW=H) are switched alternately<br>during search. When the diversity is<br>complete, it is fixed to either state. |

#### (2) Antenna switch forced setting

By using [ANT\_CTRL: B0 0x4C] register, ANT\_SW pin output status can be set forcibly.

TX: By setting TX\_ANT\_EN([ANT\_CTRL: B0 0x4C(0)])=0b1, the setting value of TX\_ANT([ANT\_CTRL: B0 0x4C(1)]) will be output.

RX: By setting RX\_ANT\_EN([ANT\_CTRL: B0 0x4C(4)])=0b1, the setting value of RX\_ANT([ANT\_CTRL: B0 0x4C(5)]) will be output.

However, when output is defined forcibly by [GPIO\*\_CTRL: B0 0x4E - 0x51] registers, [GPIO\*\_CTRL:B0 0x4E - 0x51] register settings have higher priority.

Antenna switching control signals can also be used as follows.

[Example 1] Using one DPDT switch 2PORT\_SW([2DIV\_CTRL: B0 0x48(1)]) to 0b1.



(\*) By allocating one more GPIO to an external PA, it becomes possible to control both DPDT SW and the external PA. (\*) External circuits between LNA\_P/PA\_OUT pin and antenna switch (DPDT#1) are omitted in this example.

[Example 2] Using two SPDT switches 2PORT\_SW([2DIV\_CTRL: B0 0x48(1)]) to 0b0.



(\*) By allocating one more GPIO to an external PA, it becomes possible to control both DPDT SW and the external PA. (\*) External circuits between LNA\_P/PA\_OUT pin and antenna switch (SPDT#2) are omitted in this example.

# •CCA (Clear Channel Assessment) Function

This LSI supports CCA function. CCA is a function that receives frequency channels and makes a judgment whether the specified frequency channel is busy or idle. This LSI supports Normal mode, Continuous mode and IDLE detection mode. These modes can be set as follows:

# [CCA mode setting]

|                 | [CCA_CTRL: B0 0x39] |                   |                    |  |
|-----------------|---------------------|-------------------|--------------------|--|
|                 | Bit4 (CCA_EN)       | Bit5 (CCA_CPU_EN) | Bit6 (CCA_IDLE_EN) |  |
| Normal mode     | 0b1                 | 0b0               | 0b0                |  |
| Continuous mode | 0b1                 | 0b1               | 0b0                |  |
| IDLE detection  | 0b1                 | 0b0               | 0b1                |  |
| mode            |                     |                   |                    |  |

# (1) Normal mode

Normal mode determines IDLE or BUSY. When CCA\_EN(CCA\_CTRL: B0 0x39(4)]) = 0b1, CCA\_CPU\_EN(CCA\_CTRL: B0 0x39(5)]) = 0b0, and CCA\_IDLE\_EN(CCA\_CTRL: B0 0x39(6)]) = 0b0, CCA (normal mode) is executed by RX\_ON. CCA judgment is based on the comparison of the average ED value displayed by the [ED\_RSLT: B0 0x3A] register with the CCA threshold set by the [CCA\_LVL: B0 0x37] register. If the average ED value displayed by [ED\_RSLT: B0 0x39] exceeds the CCA threshold, it is determined as BUSY, and CCA\_RSLT[1:0] ([CCA\_CTRL: B0 0x39(1-0)]) is set to 0b01. If the average ED value continues to be smaller than the CCA threshold for the IDLE detection period set by IDLE\_WAIT[9:0] of [IDLE\_WAIT\_L: B0 0x3C] and [IDLE\_WAIT\_H: B0 0x3B])], it is determined as IDLE, and CCA\_RSLT[1:0] is set to 0b00. For the detailed operation of IDLE\_WAIT[9:0], please refer to "IDLE detection for long time period".

If "BUSY" or "IDLE" state is detected, CCA completion interrupt (INT[18] of group 3) is generated, and CCA\_EN bit is cleared to 0b0 automatically.

Upon clearing CCA completion interrupt, CCA\_RSLT[1:0] is reset to 0b00. Therefore, CCA\_RSLT[1:0] should be read before clearing CCA completion interrupt.

If the ED value exceeds the value set by [CCA\_IGNORE\_LVL: B0 0x36], IDLE determination is not performed as long as the target ED value is included in the averaging target range. At this time, if the average ED value is larger than [CCA\_LVL: B0 0x37], it is determined as BUSY, and CCA is completed. However, if the average ED value is smaller than [CCA\_LVL: B0 0x37], IDLE determination is not performed, and 0b11 is displayed in CCA\_RSLT[1:0] ([CCA\_CTRL: B0 0x39(1-0)]). In this case, CCA continues until BUSY determination is made or IDLE determination is made after the target ED value is excluded from the averaging target range. For the detailed operation for the case where the ED value exceeds [CCA\_IGNORE\_LVL: B0 0x36], please refer to "IDLE determination exclusion under strong signal input".

Time from CCA command issue to CCA completion is in the formula below.

[IDLE detection] CCA execution time = (ED value average times + IDLE\_WAIT setting) x Average interval (16 us)

[BUSY detection] CCA execution time = ED value average times x Average interval (16 us)

\* The above formulas do not take the IDLE detection exclusion by [CCA\_IGNORE\_LVL: B0 0x36] into account. Set [CCA\_IGNORE\_LVL: B0 0x36] in a way so that the relationship of [CCA\_IGNORE\_LVL:B0 0x36] >= [CCA\_LVL: B0 0x37] is maintained. B0 0x36], please refer to "IDLE determination exclusion under strong signal input".

The following is timing chart for normal mode.

[Condition]

ED\_AVG[2:0]=0b011 (ED value 8 times average) [ED\_CTRL: B0 0x41(2-0)] IDLE\_WAIT[9:0]=0b00\_0000\_0000 (IDLE detection time 0 μs) [IDLE\_WAIT\_L: B0 0x3C], [IDLE\_WAIT\_H: B0 0x3B(1-0)]

[IDLE detection case]

| CCA_EN                                   | 20(4)]                |    |                                                                                                     |                      |
|------------------------------------------|-----------------------|----|-----------------------------------------------------------------------------------------------------|----------------------|
| [CCA_CIKL: B0 0                          | X <u>39(4)]</u>       |    |                                                                                                     | <br>                 |
|                                          | interval (16 µs)      |    |                                                                                                     | ,<br>,<br>,          |
|                                          | l←→ĺ                  |    | ED value average period (16 µs*8 =128 µs)                                                           |                      |
| ED value<br>(Internal signal)            | Х Х́                  | X  | ED0 X ED1 X ED2 X ED3 X X ED5 X ED6 X ED7                                                           | X X                  |
|                                          |                       |    | Averaging                                                                                           | <br> <br> <br>       |
| Average ED value<br>Select ED value disp | played in             |    |                                                                                                     | ED (0-7)             |
| [ED_RSLT: B0 0x3                         | A]                    |    |                                                                                                     | < CCA_LVL<br>B0 0x37 |
| CCA_RSLT[1:0]<br>[CCA_CTRL: B0 0>        | 39(1-0)]              |    | 0b10 (determination on-going)                                                                       | 0b00 (IDLE)          |
|                                          |                       |    |                                                                                                     | *                    |
|                                          |                       |    |                                                                                                     |                      |
| INT[18]                                  | $D_{0} = 0 + 0 = (2)$ |    | 1<br>1<br>1                                                                                         | IDLE_WAIT[9:0]       |
| [INI_SOURCE_ORPS:                        | BUUXUF(2)             |    |                                                                                                     | IDLE detection for   |
|                                          |                       |    | CCA execution period (Min.128 µs)                                                                   | longer period.       |
|                                          |                       |    |                                                                                                     |                      |
| [BUSY result cas                         | sel                   |    |                                                                                                     |                      |
|                                          | ]                     |    |                                                                                                     |                      |
| CCA_EN<br>[CCA_CTRL: B0 0                | x39(4)]               |    |                                                                                                     |                      |
|                                          | Average               |    |                                                                                                     |                      |
|                                          | interval              |    | ED value average period (16 μs*8 =128 μs)                                                           | <br>                 |
| FD value                                 |                       |    |                                                                                                     |                      |
| (internal signal)                        | <u> </u>              | Ň, | $ED0 \bigwedge ED1 \bigwedge ED2 \bigwedge ED3 \bigwedge \bigwedge ED5 \bigwedge ED6 \bigwedge ED7$ | <u> </u>             |
|                                          |                       |    | Averaging                                                                                           | 1                    |
| Average ED value<br>Select ED value di   | snlaved in            |    |                                                                                                     | ED (0-7)             |
| [ED_RSLT: B0 0x3                         | A]                    |    |                                                                                                     | > CCA LVL            |
|                                          |                       |    |                                                                                                     | B0 0x37              |
| CCA_RSLT[1:0]                            | 20(1.0)]              |    | 0b10 (determination on-going)                                                                       | 0b01 (BUSY)          |
| <u>[CCA_CTRL: B0 0</u> ;                 | \$39(1-0)]            |    |                                                                                                     | ц.                   |
|                                          |                       |    |                                                                                                     | $\sim$               |
| INT[18]                                  |                       |    |                                                                                                     | IDLE_WAIT[9:0]       |
| [INT_SOURCE_GRP3:                        | B0 0x0F(2)]           |    |                                                                                                     | should be set, for   |
| _                                        |                       |    | CCA execution period (Min.128 µs)                                                                   | longer period.       |

(2) Continuous mode

Continuous mode continues CCA until terminated by the host CPU. When CCA\_EN(CCA\_CTRL: B0 0x39(4)]) = 0b1, CCA\_CPU\_EN(CCA\_CTRL: B0 0x39(5)]) = 0b1, and CCA\_IDLE\_EN(CCA\_CTRL: B0 0x39(6)]) = 0b0, CCA (continuous mode) is executed by RX\_ON.

As with the normal mode, CCA judgment is based on the comparison of the average ED value displayed by the [ED\_RSLT: B0 0x3A] register with the CCA threshold set by the [CCA\_LVL: B0 0x37] register. If the average ED value displayed by ED\_VALUE ([ED\_RSLT:B0 0x3A]) exceeds the CCA threshold, it is determined as "BUSY, and CCA\_RSLT[1:0] is set to 0b01. If the average ED value continues to be smaller than the CCA threshold for the IDLE detection period set by IDLE\_WAIT[9:0] of [IDLE\_WAIT\_L:B0 0x3C] and [IDLE\_WAIT\_H: B0 0x3B(1-0)], it is determined as IDLE, and CCA\_RSLT[1:0] is set to 0b00. For the detailed operation of IDLE\_WAIT[9:0], please refer to "IDLE detection for long time period".

If the ED value exceeds the value set by [CCA\_IGNORE\_LVL: B0 0x36], IDLE determination is not performed as long as the target ED value is included in the averaging target range. At this time, if the average ED value is larger than [CCA\_LVL: B0 0x37], it is determined as BUSY, and CCA\_RSLT[1:0] is set to 0b01. However, if the average ED value is smaller than [CCA\_LVL: B0 0x37], IDLE determination is not performed, and CCA\_RSLT[1:0] is set to 0b11. For the detailed operation for the case where the ED value exceeds [CCA\_IGNORE\_LVL: B0 0x36], please refer to "IDLE determination exclusion under strong signal input".

The continuous mode does not stop the operation even when BUSY or IDLE is detected. CCA operation continues until 0b1 is set to CCA\_STOP ([CCA\_CTRL: B0 0x39(7)]). The result is updated every time the ED value is acquired. At this time, CCA completion interrupt INT[18]([INT\_SOURCE\_GRP2:B0 0x0F(2)]) will not be generated.

The following is timing chart for continuous mode.

[Condition]

ED\_AVG[2:0]=0b011 (ED value 8 times average) [ED\_CTRL: B0 0x41(2-0)] IDLE\_WAIT[9:0]=0b00\_0000\_0000 (IDLE detection time 0 μs) [IDLE\_WAIT\_L: B0 0x3C], [IDLE\_WAIT\_H: B0 0x3B(1-0)]

[BUSY to IDLE transition, terminated with CCA\_STOP]

|                                                                        |                                                                                               | After CCA_S<br>and CCA_CP<br>CCA_STOP                       | STOP is issued, CCA_EN<br>PU_EN are cleared, and<br>bit is automatically cleared                                   |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| CCA_EN<br>[CCA_CTRL: B0 0x39(4)]                                       |                                                                                               |                                                             | ٦/                                                                                                                 |
| CCA_STOP<br>[CCA_CTRL:B0 0x39]                                         |                                                                                               |                                                             |                                                                                                                    |
| Average interval<br>(16 μs)                                            | ED value average period (128                                                                  | ; μs)                                                       |                                                                                                                    |
| ED value<br>(internal signal)                                          | ED0 X X ED7 X ED8 X X                                                                         | ED28 X X ED50 X                                             | X                                                                                                                  |
|                                                                        | Averaging                                                                                     |                                                             |                                                                                                                    |
| Average ED value<br>Select ED value displayed in<br>[ED_RSLT: B0 0x3A] | INVALID $\begin{pmatrix} ED \\ (0-7) \end{pmatrix} \begin{pmatrix} ED \\ (1-8) \end{pmatrix}$ | X ED X X                                                    | ED<br>(43-50)                                                                                                      |
|                                                                        | >                                                                                             | CCA_LVL<br>B0 0x37                                          | < CCA_LVLB0<br>0x37                                                                                                |
| CCA_RSLT[1:0]<br>[CCA_CTRL: B0 0x39(1 <u>-0)]</u>                      | 0b10 (determination 0b(<br>on-going) 0b(                                                      | 01 (BUSY)                                                   | 0b00 (IDLE)                                                                                                        |
| INT[18]<br>[INT_SOURCE_GRP3: B <u>0 0x0F(2)]</u>                       | Interrupt not g                                                                               | enerated                                                    | <ul> <li>IDLE_WAIT[9:0]</li> <li>should be set, for</li> <li>IDLE detection for</li> <li>longer period.</li> </ul> |
| ED_DONE<br>[ED_CTRL: B0 0x41(4)]                                       | When th<br>ED_DO                                                                              | e ED value is acquired eight<br>NE=1. (8 times averaging se | t time,<br>etting)                                                                                                 |

(3) IDLE detection mode

strong signal input".

IDLE detection mode continues CCA until IDLE detection. When CCA EN(CCA CTRL: B0 0x39(4))=0b1, CCA\_CPU\_EN(CCA\_CTRL: B0 0x39(5)])=0b0, and CCA\_IDLE\_EN(CCA\_CTRL: B0 0x39(6)])=0b1 are set, CCA (IDLE detection mode) is executed by RX\_ON. As with the normal mode, CCA judgment is based on the comparison of the average ED value displayed by the [ED RSLT: B0 0x3A] register with the CCA threshold set by the [CCA\_LVL: B0 0x37] register. If the average ED value exceeds the CCA threshold, it is determined as BUSY, and CCA\_RSLT[1:0] ([CCA\_CTRL: B0 0x39(1-0)]) is set to 0b01. If the average ED value continues to be smaller than the CCA threshold for the IDLE detection period set by IDLE WAIT[9:0] of [IDLE\_WAIT\_L] and [IDLE\_WAIT\_H]: B0 0x3B,0x3C], it is determined as "IDLE", and CCA\_RSLT[1:0] is set to 0b00. For the detailed operation of IDLE\_WAIT[9:0], please refer to "IDLE detection for long time period". In IDLE detection mode, CCA completion interrupt INT[18]([INT\_SOURCE\_GRP3: B0 0x0F(2)]) is generated only when IDLE is detected. B0 0x0F(2)]) is generated. Also, when CCA is executed by CCA EN setting, CCA EN(CCA CTRL: B0 0x39(4)]) and CCA\_IDLE\_EN(CCA\_CTRL: B0 0x39(6)]) are cleared to 0b0 automatically. In IDLE detection mode, CCA completion interrupt INT[18]([INT SOURCE GRP3: B0 0x0F(2)]) is not generated while BUSY is detected, and continues to detect IDLE. When CCA completion interrupt INT[18]([INT\_SOURCE\_GRP3: B0 0x0F(2)]) is cleared, CCA\_RSLT[1:0]([CCA\_CTRL: B0 0x39(1-0)]) is reset to 0b00. Therefore, CCA\_RSLT[1:0] should be read before CCA completion interrupt INT[18]([INT SOURCE GRP3: B0 0x0F(2)]) is cleared. If the ED value exceeds [CCA IGNORE LVL: B0 0x36], IDLE determination is not performed as long as the target ED value is included in the averaging target range. IDLE determination is not performed also when the average ED value is smaller than [CCA LVL: B0 0x37]. In this case, 0b11 is displayed in CCA RSLT[1:0], and CCA is continued until IDLE determination is made after the target ED value is excluded from the averaging target range. For the detailed operation for the case where the ED value exceeds [CCA\_IGNORE\_LVL: B0 0x36], please refer to "IDLE determination exclusion under

The following is the timing diagram of IDLE detection.

[Upon BUSY detection, continue CCA and IDLE detection case]

[Condition]

ED\_AVG[2:0]=0b011 (ED value 8 times average) [ED\_CTRL: B0 0x41(2-0)] IDLE\_WAIT[9:0]=0b00\_0000\_0000 (IDLE detection time 0 μs) [IDLE\_WAIT\_L: B0 0x3C], [IDLE\_WAIT\_H: B0 0x3B(1-0)]



(4) IDLE determination exclusion under strong signal input

If acquired ED value exceeds the value set by [CCA\_IGNORE\_LVL: B0 0x36], IDLE determination is not performed as long as the given ED value is included in the averaging target range. If the average ED value including this strong ED value displayed by [ED\_RSLT: B0 0x39] exceeds the CCA threshold set by [CCA\_LVL: B0 0x37], it is determined as "carrier detected (BUSY)", and CCA\_RSLT[1:0] ([CCA\_CTRL: B0 0x39(1-0)]) is set to 0b01. Also, if this average ED value is equal to or smaller than the CCA threshold, it is determined as "CCA evaluation on-going (ED value excluded from CCA judgment acquired)", and CCA\_RSLT[1:0] is set to 0b11.

Even if the moving average of the ED value is equal to or smaller than [CCA\_LVL: B0 0x37], IDLE determination is not made when the ED value to be moving-averaged contains a value larger than [CCA\_IGNORE\_LVL: B0 0x36]. In this case, CCA\_RSLT[1:0] indicates 0b11 (on-going), and CCA operation continues until IDLE or BUSY is determined (until IDLE is determined in the IDLE detection mode, or CCA\_STOP([CCA\_CTRL: B0 0x39(7)]) is issued in the continuous mode). If the moving average of the ED value exceeds [CCA\_LVL: B0 0x37], BUSY is determined immediately regardless of the comparison result of [CCA\_IGNORE\_LVL: B0 0x36].

[Note]

CCA completion interrupt is notified of only when CCA result is judged as IDLE or BUSY. Therefore, if data whose ED value exceeds CCA\_IGNORE\_LVL is input intermittently, neither "IDLE" or "BUSY" can be determined and CCA may continues.

[ED value acquisition under strong signal input]



The following is the timing diagram when ED value under strong signal input was acquired.

[During IDLE\_WAIT counting, detected strong signal input. After the given signal is out of averaging target, IDLE detection case]

# [Condition]<br/>CCA modeNormal modeED\_AVG[2:0]=0b011 (ED value 8 times average)[ED\_CTRL: B0 0x41(2-0)]IDLE\_WAIT[9:0]=0b00\_0000\_0111 (IDLE detection time 112 μs)[IDLE\_WAIT\_L: B0 0x3C], [IDLE\_WAIT\_H: B0<br/>0x3B(1-0)]

|                                        | ED value > CCA_IG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GNORE_LVL                          |                                                                                  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------|
| \ <b>-</b>                             | ED value < CCA_IGNORE_LVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ED value < CCA_IGNORE_L            | VL                                                                               |
| ED value<br>(internal signal)          | . X ED7 X ED8 X X ED13 X ED14 X EI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D15 $\chi$ $\chi$ ED21 $\chi$ ED22 | X ED29 X                                                                         |
| Average ED value                       | Average ED value < CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | When ave<br>CA_LVL / "BUSY"        | is determined immediately                                                        |
| Select ED value I<br>displayed in      | NVALID $\begin{pmatrix} ED \\ (0-7) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) \\ (1-8) $ | (4-14) $(8-15)$ $(-14)$ $(14-21)$  | ED ED (15-22) (22-29)                                                            |
| [ED_RSLT: B0 0x3A]                     | ED value > CO<br>detection and r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CA_IGNORE_LVL<br>reset             | Resumed counting because<br>strong signal input went out of<br>averaging target. |
| CCA_PROG[9:0]<br>[CCA_PROG_L/H:        | X0x0001 X X0x0006 X 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x0000                              | V V 0x0007                                                                       |
| B0x3E,B0x3D]                           | Due to strong signal input in the average target,<br>Average < CCA_LEVEL does not indicate<br>IDLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /                                  | CCA_RSLT is maintained<br>until IDLE/BUSY                                        |
| CCA_RSLT[1:0]<br>[CCA_CTRL: B0 0x39(1- | 0)] 0b10 (determination on-going)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b11 (determination on-going)       | 0b00 (IDLE)                                                                      |
| INT[18]<br>[INT_SOURCE_GRP3: B0        | CCA_RSLT[1:0]=0b11 does not ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | enerate interrupt.                 |                                                                                  |

(5) IDLE detection for long time period

To perform CCA IDLE detection for a long time, it can be set by IDLE\_WAIT [9:0] of [IDLE\_WAIT\_L:B0 0x3C] and [IDLE\_WAIT\_H: B0 0x3B(1-0)].

Using IDLE\_WAIT [9:0] of [IDLE\_WAIT\_L:B0 0x3C] and [IDLE\_WAIT\_H: B0 0x3B(1-0)], it is possible to detect IDLE longer than the average period (128 µs for eight times of averaging process with 16 µs average interval). This function counts how many times the state where the moving average of ED value becomes equal to or smaller than [CCA\_LVL: B0 0x37] is continued, and it makes IDLE determination when the count reaches or exceeds IDLE\_WAIT [9:0]. Even when this function is used, when the moving average of ED value exceeds [CCA\_LVL: B0 0x37], BUSY is determined immediately without waiting for the duration of time set by IDLE\_WAIT [9:0].

The following timing diagram is IDLE detection setting IDLE\_WAIT[9:0].

[ED value 8 times average IDLE detection case]

| [Condition]                                                 |                                          |
|-------------------------------------------------------------|------------------------------------------|
| CCA mode                                                    | Normal mode                              |
| ED_AVG[2:0]=0b011 (ED value 8 times average)                | [ED_CTRL: B0 0x41(2-0)]                  |
| IDLE_WAIT[9:0] = 0b00_0000_0011 (IDLE detection time 48 μs) | [IDLE_WAIT_L: B0 0x3C], [IDLE_WAIT_H: B0 |
|                                                             | 0x3B(1-0)]                               |

| CCA_EN<br>[CCA_CTRL: B0 0x39(4                | )]                                     |                                  |                                                                                                 |        |
|-----------------------------------------------|----------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------|--------|
| ED value                                      | Average interval<br>(16 μs)<br>↓ ↓ ↓ ↓ | ED value average period (128 µs) | IDLE determination time (48 μs)                                                                 | γ      |
| (Internal signal)                             |                                        | A Avera                          | // // // //<br>                                                                                 |        |
| Average ED value<br>Select ED value displayed | l in                                   | INVALID                          | $ \begin{array}{c c}     ED \\     (1-8) \\     (2-9) \\     (3-10) \\     (4-11) \end{array} $ | )      |
| [ED_RSLT: B0 0x3A]                            |                                        |                                  | < CCA_LVL<br>B0 0x37                                                                            |        |
| IDLE_WAIT[9:0]<br>[IDLE_WAIT_H/L:B0           |                                        | 0x000                            | X 0x001 X 0x002 X 0x003                                                                         |        |
| CCA_RSLT[1:0]                                 |                                        |                                  |                                                                                                 |        |
| [CCA_CTRL: B0 0x39(1-                         | 0)]                                    | 0610 (determination on-going)    |                                                                                                 | (IDLE) |
| INT[18]<br>[INT_SOURCE_GRP3: B0 0x0F(2)]      |                                        | IDLE_WAIT start                  |                                                                                                 |        |
|                                               |                                        |                                  |                                                                                                 |        |

CCA execution period (Min.128  $\mu$ s+48  $\mu$ s = 176  $\mu$ s)

When average ED value < CCA\_LVL continues for three times of average interval period (48  $\mu$ s), then IDLE is determined.

# ML7456N

[ED value single average IDLE detection case]

| [Condition]<br>CCA mode<br>ED_AVG[2:0]=0b000 (ED v<br>IDLE_WAIT[9:0] = 0b00_0                                    | value 1 times average)<br>000_1110 (IDLE detection     | Normal mode<br>[ED_CTRL: B0 0x41(2-0)]<br>[IDLE_WAIT_L: B0 0x3C], [<br>0x3B(1-0)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IDLE_WAIT_H: B0                                                |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| CCA_EN<br>[CCA_CTRL: B0 0x39(4)]                                                                                 | Average interval<br>(16 μs)                            | IDI E detection period (224 up)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]                                                              |
| ED value<br>(Internal signal)                                                                                    |                                                        | ED0 X ED1 X ED2 X ED3 X X ED13 X ED14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |
| Average ED value<br>Select ED value displayed in<br>[ED_RSLT: B0 0x3A]<br>IDLE_WAIT[9:0]<br>[IDLE_WAIT_L1B0 0x3C | INVAL<br>If IDLE_WAIT = 0x000,<br>IDLE detection here. | D ED V ED V ED V V ED V ED (1) $(1)$ $(2)$ $(1)$ $(12)$ $(13)$ $(13)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2$ | ED<br>(14)                                                     |
| [IDLE_WAIT_H]B0 0x3B<br>CCA_RSLT[1:0]<br>[CCA_CTRL: B0 0x39(1-0)]                                                |                                                        | 0b10 (determination on-going)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0b00 (IDLE)                                                    |
| INT[18]<br>[INT_SOURCE_GRP3: B0 0x(                                                                              | )F(2)]                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |
|                                                                                                                  |                                                        | CCA execution period (Min.16 $\mu$ s + 224 $\mu$ s = 240 $\mu$ s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H \<br>Because average ED value <<br>CCA LVL continued for the |

CCA\_LVL continued for the duration of 14 times of the average interval period, IDLE is determined. (6) CCA operation during diversity

(a) CCA operation during diversity search

During diversity search, if CCA command is issued, diversity search will be terminated and CCA will start. Upon CCA starting, antenna is fixed to the reset value (\*1), and is maintained until the next diversity search is conducted. However, if antenna specification function ([ANT\_CTRL: B0 0x4C(5-4)]) is enabled, it is fixed to the antenna which was specified by the register function. After CCA completion, diversity search will be resumed. \*1: The setting is described in the upper most section of "RX" of each table in "Function Description Diversity Function ANT\_SW/TRX\_SW Setting".

| If R.<br>spec<br>If R.             | X_ANT_EN = 0b1, switch to the antenna<br>fied by RX_ANT.<br>X_ANT_EN=0b0. ANT1 is default antenna. | After               | CCA completion, diversity search is re | esumed |
|------------------------------------|----------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|--------|
| ANT_SW                             |                                                                                                    | ļ                   |                                        |        |
| CCA_EN<br>[CCA_CTRL: B0 0x39(4)]   |                                                                                                    |                     |                                        |        |
| CCA_DONE<br>[INT_SOURCE_GRP3: B0 0 | x0F(2)]                                                                                            | <br> <br> <br> <br> |                                        |        |
|                                    | Diversity Search                                                                                   | CCA                 | Diversity Search                       |        |
|                                    |                                                                                                    | 1                   | 1                                      |        |

[Note]

During CCA operation, RX operation is performed at the same time. Even if CCA completion interrupt is not generated, SyncWord detection interrupt ([INT\_SOURCE\_GRP2: B0 0x0E(5)]), FIFO-Full trigger interrupt ([INT\_SOURCE\_GRP1: B0 0x0D(5)]), RX completion interrupt ([INT\_SOURCE\_GRP3: B0 0x0E(0)]), and CRC detection error interrupt ([INT\_SOURCE\_GRP3: B0 0x0E(1)]) may be generated.

For details of diversity function, please refer to "Diversity Function".

(b) Operation when CCA is executed before RX\_ON during diversity ON

If diversity ON setting and CCA operation setting are enabled before RX\_ON state, CCA will start without the diversity search operation after RX\_ON state transition. After CCA completion, diversity search will be performed.



(7) CCA threshold setting

CCA threshold value, defined by [CCA\_LVL: B0 0x37] register, should be set by considering the desired input level (ED value), variations (IC components variation, temperature fluctuation), and other losses (antenna, matching circuits, etc.). Relationship between input level and ED value are described in the following formula.

[2.4 k/4.8 kbps]

ED value = 255/80 \* (120 + Input level [dBm] - Variation - Other loss)

In order to validate whether CCA threshold is optimized or not, CCA should be executed to confirm the level changing from IDLE to BUSY, every time input level is changed.

# TX Related Function

#### •Ramp Control Function

Ramp control function reduces the spurious emissions at the time of transmission startup and stop time. Ramp control can be performed by the following registers.

| Setting                                    | Register                                |
|--------------------------------------------|-----------------------------------------|
| Ramp control counter increment setting     | RAMP_INC([RAMP_CTRL1: B3 0x41(1-0)])    |
| Ramp control reference clock cycle setting | RAMP_CLK_STEP([RAMP_CTRL1: B3 0x41(2)]) |
| Ramp-up time setting                       | RAMP_CLK_SET_R([RAMP_CTRL2: B3 0x42])   |
| Ramp-down time setting                     | RAMP_CLK_SET_F([RAMP_CTRL3: B3 0x43])   |

Ramp-up time and ramp-down time can be calculated by the following formulas.

Ramp-up time [s] = Ramp control reference clock cycle setting (RAMP\_CLK\_STEP([RAMP\_CTRL1: B3 0x41(2)]))\*

Ramp-up time setting (RAMP\_CLK\_SET\_R[6:0]([RAMP\_CTRL2: B3 0x42(6-0)]))} \* Maximum amplitude setting (PA\_REG\_ADJ[8:0]([PA\_REG\_ADJ\_H: B0 0x67(0), PA\_REG\_ADJ\_L: B0 0x68(7-0)])) / Ramp control counter increment setting (RAMP\_INC[1:0]([RAMP\_CTRL1: B3 0x41(1-0)]))

Ramp-down time [s] = Ramp control reference clock cycle setting (RAMP\_CLK\_STEP([RAMP\_CTRL1: B3 0x41(2)])) \* Ramp-down time setting (RAMP\_CLK\_SET\_F[6:0]([RAMP\_CTRL3: B3 0x43(6-0)]))} \* Maximum amplitude setting (PA\_REG\_ADJ[8:0]([PA\_REG\_ADJ\_H: B0 0x67(0), PA\_REG\_ADJ\_L:B0 0x68(7-0)])) / Ramp control counter increment setting (RAMP\_INC[1:0]([RAMP\_CTRL1: B3 0x41(1-0)]))



In the reset, maximum setting or Sigfox setting state (PA output power + 13 dBm), the ramp-up and -down times (example) will be as follows:

| Setting register                                                          | Reset state<br>(min.) | Sigfox setting | Maximum setting |
|---------------------------------------------------------------------------|-----------------------|----------------|-----------------|
| RAMP_INC[1:0] ([RAMP_CTRL1: B3 0x41(1-0)])                                | 0x0                   | 0x0            | 0x0             |
| RAMP_CLK_STEP ([RAMP_CTRL1: B3 0x41(2)])                                  | 0x0                   | 0x1            | 0x1             |
| RAMP_CLK_SET_R[6:0] ([RAMP_CTRL2: B3<br>0x42(6-0)])                       | 0x01                  | 0x3F           | 0x7F            |
| RAMP_CLK_SET_F[6:0] ([RAMP_CTRL3: B3<br>0x43(6-0)])                       | 0x01                  | 0x3F           | 0x7F            |
| PA_REG_ADJ[8:0]([PA_REG_ADJ_H: B0 0x67(0),<br>PA_REG_ADJ_L:B0 0x68(7-0)]) | 0x0E4                 | 0x0E4          | 0x0E4           |
| Ramp-up/down time                                                         | 17.7us                | 17.8ms         | 25.7ms          |

# Other Functions

•Data Rate Setting Function

(1) Data rate change setting

ML7456N RF part supports various TX/RX data rate setting defined by the following registers.

TX ... [TX\_RATE\_H: B1 0x02] and [TX\_RATE\_L: B1 0x03]

RX ... [RX\_RATE1\_H: B1 0x04], [RX\_RATE1\_L: B1 0x05] and [RX\_RATE2: B1 0x06]

TX/RX data rate can be defined in the following formula.

[TX]

TX data rate [bps] = round (Master clock frequency [Hz] / 10/ [TX\_RATE])

The following table shows the recommended value for each data rate. By setting TX\_DRATE([DRATE\_SET: B0 0x06(3-0)], following register setting values are automatically set to [TX\_RATE\_H: B1 0x02] and [TX\_RATE\_L: B1 0x03].

| TX data rate [kbps] | [TX_RATE_H][TX_RATE_L]  | Data rate deviation |
|---------------------|-------------------------|---------------------|
|                     | setting value (decimal) | [%] *1              |
| 1.2                 | 3000                    | 0.00                |
| 2.4                 | 1500                    | 0.00                |
| 4.8                 | 750                     | 0.00                |
| 9.6                 | 375                     | 0.00                |
| 10.0                | 360                     | 0.00                |
| 19.2                | 188                     | -0.27               |
| 15.0                | 240                     | 0.00                |
| 32.768              | 110                     | -0.12               |
| 50                  | 72                      | 0.00                |
| 100                 | 36                      | 0.00                |

\*1 Data rate deviation is assumption that frequency deviation of master clock is 0ppm.

If the data rate deviation becomes large by using the transmission data rate calculated by the formula above, the data rate deviation can be reduced by using [TX\_RATE2\_H: B1 0x7C] and [TX\_RATE2\_L: B1 0x7D].

| TX_RATE2[13:0] = round [[ {1/data rate (bps)} –            |  |
|------------------------------------------------------------|--|
| {1 / (Master clock frequency (Hz) / TX_RATE[11:0]) x 9}] / |  |
| <pre>{1 / Master clock frequency (Hz)}]</pre>              |  |

[RX]

#### RX data rate [bps] = round ({Master clock frequency [Hz] / N} / {[RX\_RATE1] \* [RX\_RATE2])}) \* When N=1(LOW\_RATE\_EN=0b0) When N=2(LOW\_RATE\_EN=0b1)

The following table shows the recommended value for each data rate (when LOW\_RATE\_EN([CLK\_SET2: B0 0x03(0)])=0b1 is set). By setting RX\_DRATE([DRATE\_SET: B0 0x06(7-4)]), following register setting values are automatically set to [RX\_RATE1\_H: B1 0x04], [RX\_RATE1\_L: B1 0x05], and [RX\_RATE2: B1 0x06].

| RX data rate [kbps] | [RX_RATE1_H][RX_RATE1_L]<br>setting value (decimal) | [RX_RATE2]<br>setting value (decimal) |
|---------------------|-----------------------------------------------------|---------------------------------------|
| 1.2                 | 120                                                 | 125                                   |
| 2.4                 | 60                                                  | 125                                   |
| 4.8                 | 30                                                  | 125                                   |
| 9.6                 | 15                                                  | 125                                   |
| 10.0                | 15                                                  | 120                                   |
| 19.2                | 8                                                   | 117                                   |
| 15.0                | 12                                                  | 100                                   |
| 20                  | 9                                                   | 100                                   |
| 32.768              | 5                                                   | 110                                   |
| 40                  | 5                                                   | 90                                    |
| 50                  | 3                                                   | 120                                   |
| 100                 | 2                                                   | 90                                    |

[Note]

1. When LOW\_RATE\_EN([CLK\_SET2: B0 0x03(0)])=0b0 is set, the RX data rate should be calculated by the formula above. It should be noted that when LOW\_RATE\_EN=0b0 is set, even if TX/RX data rate setting register ([DRATE\_SET: B0 0x06]) is set, the optimum values are not set to [RX\_RATE1\_H: B1 0x04], [RX\_RATE1\_L: B1 0x05], and [RX\_RATE2: B1 0x06] automatically.

#### (2) Other register settings associate with data rate change

When the data rate is changed, registers should be changed according to the Initialization table.

[Note]

1. Please change data rate setting in TRX\_OFF state.

# Interrupt Generation Function

This LSI supports interrupt generation function. When interrupt occurs, interrupt notification signal (SINTN) becomes "L" to notify interrupt to the host MCU. Interrupt events are categorized into three groups: [INT\_SOURCE\_GRP1: B0 0x0D], and [INT\_SOURCE\_GRP2: B0 0x0E], and [INT\_SOURCE\_GRP3: B0 0x0F]. Each interrupt event can be masked by [INT\_EN\_GRP1: B0 0x10], and [INT\_EN\_GRP2: B0 0x11], and [INT\_EN\_GRP3: B0 0x12]. Interrupt signal (SINTN) can be output from GPIO\* or EXT\_CLK pin. For output settings, refer to [GPIO1\_CTRL: B0 0x4E], [GPIO1\_CTRL: B0 0x4F], [GPIO2\_CTRL: B0 0x50], [GPIO3\_CTRL: B0 0x51] and [EXTCLK\_CTRL: B0 0x52].

[Note]

If any single unmasked interrupt event occurs, SINTN maintains Low.

#### (1) Interrupt events table

Each interrupt event is described below table.

| Register        | Interrupt name | Function                                              |
|-----------------|----------------|-------------------------------------------------------|
|                 | INT[0]         | Clock stabilization completion interrupt              |
|                 | INT[1]         | VCO calibration completion interrupt or               |
|                 |                | Fuse access completion interrupt or                   |
|                 |                | IQ adjustment completion interrupt                    |
|                 | INT[2]         | PLL unlock interrupt/                                 |
| INT_SOURCE_GRP1 |                | Out of VCO adjusting voltage range detected interrupt |
|                 | INT[3]         | RF state transition completion interrupt              |
|                 | INT[4]         | FIFO-Empty interrupt                                  |
|                 | INT[5]         | FIFO-Full interrupt                                   |
|                 | INT[6]         | Wake-up timer completion interrupt                    |
|                 | INT[7]         | Clock calibration completion interrupt                |
|                 | INT[8]         | RX completion interrupt                               |
|                 | INT[9]         | CRC error interrupt                                   |
|                 | INT[10]        | Diversity search completion interrupt                 |
| INT_SOURCE_GRP2 | INT[11]        | RX Length error interrupt                             |
|                 | INT[12]        | Reserved                                              |
|                 | INT[13]        | SyncWord detection interrupt                          |
|                 | INT[14]        | Field checking interrupt                              |
|                 | INT[15]        | Sync error interrupt                                  |
|                 | INT[16]        | TX completion interrupt                               |
|                 | INT[17]        | TX Data request accept completion interrupt           |
|                 | INT[18]        | CCA completion interrupt                              |
| INT SOUDCE CDD2 | INT[19]        | TX Length error interrupt                             |
| INT_SOURCE_GRP3 | INT[20]        | TX FIFO access error interrupt                        |
|                 | INT[21]        | Reserved                                              |
|                 | INT[22]        | General purpose timer 1 interrupt                     |
|                 | INT[23]        | General purpose timer 2 interrupt                     |

# (2) Interrupt generation timing

In each interrupt generation, timing from reference point to interrupt generation (notification) is described in the following table. Timeout procedure for interrupt notification waiting is also described below.

[Note]

- (1) The following table shows values at 100 kbps. For any symbol rate, replace the value described as symbol time with the symbol period in the following table.
- (2) The following table uses the following format for TX/RX data.

| 10 byte  | 2 byte   | 1 byte | 24 byte   | 2 byte |
|----------|----------|--------|-----------|--------|
| Preamble | SyncWord | Length | User data | CRC    |

(3) Even when an interrupt notification is set to OFF, ML7456N RF part internally holds the interrupt. When the interrupt notification setting is then changed from OFF to ON without clearing the interrupt, it will be notified. When the interrupt occurs, it is recommended that interrupt should be cleared after turning off the interrupt notification.

| In      | nterrupt notificati | ion           | Reference point            | Timing from reference point to interrupt generation                   |
|---------|---------------------|---------------|----------------------------|-----------------------------------------------------------------------|
| DIFFICI |                     | L C           |                            | or interrupt generation timing                                        |
| INT[0]  | Clock               | In case of    | RESETN release             | 300 to 500 µs                                                         |
|         | stabilization       | crystal       | (upon power-up)            | 200 (                                                                 |
|         | completion          | oscillator    | EXIT From SLEEP            | 300 to 500 µs                                                         |
|         |                     | circuits      | (recovered from<br>SI FED) |                                                                       |
|         |                     | TCYO          | TCXO EN setting            | 10 to 500 us                                                          |
|         |                     | used          | (upon power-up)            | 10 το 500 μs                                                          |
|         |                     | useu          | Exit from SI FFP           | 10 to 500 us                                                          |
|         |                     |               | (recovered from            | 10 10 500 μs                                                          |
|         |                     |               | SLEEP)                     |                                                                       |
| INT[1]  | VCO calibrati       | on            | VCO calibration            | 9ms                                                                   |
|         | completed           |               | start                      |                                                                       |
| INT[2]  | PLL unlock de       | etection      | -                          | (TX) during TX after PA_ON                                            |
|         |                     |               |                            | (RX) during RX after RX enable.                                       |
|         | Out of VCO a        | djusting      | -                          | (TX) PA_ON rise                                                       |
|         | voltage range       | detected      |                            | (RX) RX enable rise                                                   |
| INT[3]  | RF state trans      | ition         | TX_ON command              | (IDLE) 143 µs                                                         |
|         | completion          |               |                            | (RX) 24 µs                                                            |
|         |                     |               | RX_ON command              | (At IDLE) 118µs                                                       |
|         |                     |               | TDV OFF                    | (TX) 25μs                                                             |
|         |                     |               | TRX_OFF                    | $(1X) 24\mu s$                                                        |
|         |                     |               | Command                    | (KA) 5 µ8                                                             |
|         |                     |               | Force_IKA_OFF              | $(1X) 24\mu s$<br>(PX) 5 ug                                           |
|         | EIEO EMDTA          | 7             | TV ON command              | $(\mathbf{RA}) = \mathbf{\mu}\mathbf{S}$                              |
| 1111[4] | THO-ENT T           | L             | TX_ON command<br>(TX)      | (NRZ encoding)                                                        |
|         |                     |               | (*1)                       | RF wake-up (210 us)+(preamble to 22nd Data byte) $x10$ (bit time) –   |
|         |                     |               | (1)                        | 3010  us                                                              |
|         |                     |               | -(RX)                      | By FIFO read, FIFO usage is under trigger level                       |
| INT[5]  | FIFO-FULL           |               | -(TX)                      | By FIFO write, FIFO usage exceed trigger level                        |
|         |                     |               | SyncWord                   | Full trigger level is set to 0x05.                                    |
|         |                     |               | detection                  | (NRZ encoding)                                                        |
|         |                     |               | (RX)                       | 500 μs (5-byte data x 10 μs (bit time))                               |
| INT[6]  | Wake-up time        | er completion | SLEEP setting              | Wake-up timer is completed.                                           |
|         |                     |               |                            | For details, please refer to the "Wake-up timer".                     |
| INT[7]  | Clock calibrat      | ion           | Calibration start          | Calibration timer is completed.                                       |
|         | completion          |               |                            | For details, please refer to "Low Speed Clock Shift Detection         |
|         |                     |               |                            | Function"".                                                           |
| INT[8]  | Data reception      | n completion  | SyncWord                   | When the length of L-field is 1 byte, and NRZ encoding is used, after |
|         |                     |               | detection                  | 2160 µs                                                               |
|         |                     |               |                            | (L-field length (8 bit)x10(symbol time)=80 µs, data length            |
|         |                     |               |                            | ((Data to CRC: bit)x10(symbol time)=2080 µs))                         |
| INT[9]  | CRC error           |               | SyncWord                   | (Format A/B) each RX CRC block calculation completion                 |
|         |                     |               | detection                  | (Format C) RX completion                                              |
| INT[10] | Diversity sear      | ch completion | -                          | SyncWord detection during diversity enable setting                    |

| In      | terrupt notification    | Reference point | Timing from reference point to interrupt generation<br>or interrupt generation timing                                             |
|---------|-------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|
| INT[11] | RX Length error         | SvncWord        | 80 us(L-field 1 byte)                                                                                                             |
|         | e e e                   | detection       | 160 μs(L-field 2 byte)                                                                                                            |
| INT[12] | Reserved                | -               | -                                                                                                                                 |
| INT[13] | SyncWord detection      | -               | SyncWord detection                                                                                                                |
| INT[14] | Field check             | -               | Match or mismatch detected in Field check                                                                                         |
| INT[15] | Sync error              | -               | During RX after SyncWord detection, out-of-sync detected.<br>(When RXDIO_CTRL([DIO_SET: B0 0x0C(7-6)]) is set to 0b00 or<br>0b11) |
| INT[16] | Data transmission       | TX_ON command   | RF wake-up+[TX data+3](bit)                                                                                                       |
|         | completion              | (*1)            | =210µs+315 bit x 10µs (bit time)=3360µs                                                                                           |
| INT[17] | TX Data request accept  | -               | After full length data is written to the TX_FIFO.                                                                                 |
|         | completion              |                 | (It is considered as transmitting when using FIFO trigger to write                                                                |
|         |                         |                 | additional data in FAST_TX mode)                                                                                                  |
| INT[18] | CCA completion          | CCA execution   | (1)Normal mode                                                                                                                    |
|         |                         | start           | (ED value average times + IDLE_WAIT setting) x Average period                                                                     |
|         |                         |                 | (2) IDLE detection mode                                                                                                           |
|         |                         |                 | • IDLE detection                                                                                                                  |
|         |                         |                 | (ED value average times + IDLE_WAIT setting) x Average period                                                                     |
|         |                         |                 | • BUSY detection                                                                                                                  |
|         |                         |                 | ED value average times x Average interval                                                                                         |
|         |                         |                 | Average interval is 16 µs.                                                                                                        |
| INT[19] | TX Length error         | -               | When setting Length for [TX_PKT_LEN_H/L: B0 0x7A/0x7B]                                                                            |
| INT[20] | TX FIFO access error    | -               | (1) When data was written when there was no free space on FIFO                                                                    |
|         |                         |                 | (2) When additional data was written to FIFO, overflow occurred                                                                   |
|         |                         |                 | (3) When there was no more data to transmit during transmission                                                                   |
| INT[21] | Reserved                | -               | -                                                                                                                                 |
| INT[22] | General purpose timer 1 | Timer start     | General purpose timer 1 completion                                                                                                |
|         |                         |                 | General purpose timer clock cycle * Division setting [GT_CLK_SET:                                                                 |
|         |                         |                 | B0 0x33] * B0 0x33]) *                                                                                                            |
|         |                         |                 | After general purpose timer interval setting ([GT1_TIMER: B0 0x34])                                                               |
| INT[23] | General purpose timer 2 | Timer start     | General purpose timer 2 completion                                                                                                |
|         | completion              |                 | General purpose timer clock cycle * Division setting [GT_CLK_SET:                                                                 |
|         |                         |                 | B0 0x33] * B0 0x33]) *                                                                                                            |
|         |                         | 1               | After general purpose timer interval setting ([GT2_TIMER: B0 0x35])                                                               |

(\*1) Before issuing TX\_ON, writing full-length TX data to the TX\_FIFO.

# (2) Clearing interrupt conditions

|          | Interrupt notification            | Recommended clearing timing for interrupts            |
|----------|-----------------------------------|-------------------------------------------------------|
| INT[0]   | CLK stabilization completion      |                                                       |
| INT[1]   | VCO calibration completion        |                                                       |
|          | Out of VCO adjusting voltage      |                                                       |
|          | range detected                    |                                                       |
| INT[2]   | PLL unlock detection              |                                                       |
| INT[3]   | RF state transition completion    |                                                       |
| INT[4]   | FIFO-EMPTY                        | Clear before the next EMPTY trigger generation timing |
| INT[5]   | FIFO-FULL                         | Clear before the next FULL trigger generation timing  |
| INT[6]   | Wake-up timer completion          |                                                       |
| INT[7]   | Clock calibration                 |                                                       |
| INT[8]   | Data reception completion         | Clear before the next packet reception                |
| INT[9]   | CRC error                         | Clear before the next packet reception                |
| INT[10]  | Diversity search completion       | After interrupt generated                             |
| INT[11]  | RX Length error                   |                                                       |
| INT[12]  | Reserved                          |                                                       |
| INT[13]  | SyncWord detection                |                                                       |
| INT[14]  | Field check                       |                                                       |
| INT[15]  | Sync error                        |                                                       |
| INT[16/] | Data transmission completion      | Clear before the next packet transmission             |
| INT[17]  | TX Data request accept completion | Clear before the next packet reception                |
| INT[18]  | CCA completion                    | Clear before the next CCA execution                   |
|          |                                   | (Note) clearing interrupt erase CCA result as well.   |
| INT[19]  | TX Length error                   |                                                       |
| INT[20]  | TX FIFO access error              | Clear before the next packet transmission             |
| INT[21]  | Reserved                          |                                                       |
| INT[22]  | General purpose timer 1           |                                                       |
| INT[23]  | General purpose timer 2           |                                                       |
|          | completion                        |                                                       |

#### •Low Speed Clock Shift Detection Function

This LSI has low speed shift detection function to compensate inaccurate clock generated by RC oscillator (external clock or internal RC oscillation circuits). By detecting frequency shift of the wake up timer, host can set wake-up timer parameters which taking frequency shift into consideration. More accurate timer operation is possible by considering the offset of wake-up timer clock frequency detected by this function and adjusting the wake-up timer interval setting ([WUT\_INTERVAL\_H/L: B0 0x2F/0x30]) or continuous operation timer interval setting ([WU\_DURATION: B0 0x31]).

| Setting                                              | Register                                      |
|------------------------------------------------------|-----------------------------------------------|
| Frequency shift detection<br>clock frequency setting | [CLK_CAL_SET: B0 0x70]                        |
| Calibration time                                     | [CLK_CAL_TIME: B0 0x71]                       |
| Clock calibration result value                       | [CLK_CAL_H: B0 0x72] and [CLK_CAL_L: B0 0x73] |

This function counts the low speed clock cycle for wake-up timer using the accurate and high speed internal clock, and the count result is displayed in the [CLK\_CAL\_H/L: B0 0x72/0x73] register. Above setting and count numbers are as follows:

High speed clock counter = {Wakeup timer clock cycle[SLEEP/WU\_SET:B0 0x2D(2)] \* Clock calibration time setting ([CLK\_CAL\_TIME:B0 0x71(5-0)]) / {Master clock cycle (36 MHz) / Clock division setting ([CLK\_CAL\_SET: B0 0x70(7-4)])}

Clock calibration time is as follows:

Clock calibration time[sec] = Wakeup timer clock cycle \* Clock calibration time setting

[Wake-up timer correction example]

Assuming no division in the internal high speed clock, calibration time set to 10 cycles, wake-up timer set to 1000(0x3E8) Condition: Wake-up timer clock frequency = 32.768 kHz

> Detection clock division setting CLK\_CAL\_DIV[3:0] ([CLK\_CAL\_SET: B0 0x70(7-4)])= 0b0000 Calibration time setting [CLK\_CAL\_TIME] = 0x0A Wake-up timer setting [WUT\_INTERVAL:B0 0x2F,30] = 0x03E8(1000)

Ideal high speed clock count is as follows:

High speed clock count = (1/32.768 kHz) \* 10 / (1/36 MHz)= 10986(0x2AEA)

```
If getting [CLK_CAL_H/L:B0 0x72,73] = 0x2A03 (10755)
```

Counter difference = 10755 - 10986 = -231

Frequency shift =  $1/[\{1/32.768 \text{ kHz} + (-231) / 10 * 1/36 \text{ MHz}\}] - 32.768 \text{ kHz} = 703.78 \text{ Hz}$ 

Then finding wake-up timer clock frequency accuracy is +2.18% higher. And the compensation vale (C) is calculated as below:

C= Wake-up timer interval([WUT\_INTERVAL\_H/L:B0 0x2F,30]) \* frequency shift / 32.768 = 1000 \* 703.78Hz / 32.768kHz = 21

Therefore, setting wale-up timer setting value = 1000 + 21 = 1021 = 0x03FD enables to achieve more accurate timer interval timing that was supposed to be set at 32.768 kHz.

ML7456N

[Note]

- 1. If calibration time is too short or if high speed counter is divided into low speed clock, calibration may not be accurate.
- 2. When the master clock is 36 MHz, setting [CLK\_CAL\_TIME: B0 0x71] = 0x3F exceeds the upper limit of clock calibration result display value ([CLK\_CAL\_H/L: B0 0x72/73]). Set a value of 0x3E or smaller.

# ■Application Circuits Example



Please refer to the Design Guide in details.
## ■Package Dimensions



Remarks for surface mount type package

The surface mount type package is very sensitive to heat generated in the reflow process, moisture absorption during storage, etc. Therefore, when considering the reflow mounting process, please contact our sales office about the product name, package name, number of pins, package code, desired mounting conditions (reflow method, temperature, number of processes), storage conditions, etc.

## ■Revision History

|              |              | Page     |          |                                                                                                             |
|--------------|--------------|----------|----------|-------------------------------------------------------------------------------------------------------------|
| Document No. | Release date | Before   | After    | Revision description                                                                                        |
|              |              | revision | revision |                                                                                                             |
| FEDL7456N-01 | 2022.07.04   | -        | -        | Initial release                                                                                             |
| FEDL7456N-02 | 2022.09.12   | 46       | 46       | [Electrical Characteristics]-[RF]-[RF Characteristics] modified sensitivity                                 |
| FEDL7456N-03 | 2022.10.26   | 5        | 5        | [Features] modified channel number of Functional timer and 16bit General timers                             |
|              |              | 7        | 7        | [Features] modified RX currnet cunsumption                                                                  |
|              |              | 40       | 40       | [Electrical Characteristics]-[MCU]-[Analog Comparator Characteristics]<br>changed condition of input offset |
|              |              | 41       | 41       | [Electrical Characteristics]-[MCU]-[Successive Approximation Type A/D Converter] modified condition         |
|              |              | 43       | 43       | [Electrical Characteristics]-[RF]-[Power Consumption] modified RX state                                     |
| FEDL7456N-04 | 2023.11.1    | 1        | 1        | Add application                                                                                             |
|              |              | 1        | 1        | Add Product Name                                                                                            |
|              |              | 218      | 218      | The description of [Note] has been updated.                                                                 |
| FEDL7456N-05 | 2024.1.10    | 218      | 218      | The description of [Note] has been updated.                                                                 |

(Note) Changes and corrections of writing errors/expressions are not included.

## Notes

1) When using LAPIS Technology Products, refer to the latest product information and ensure that usage conditions (absolute maximum ratings<sup>\*1</sup>, recommended operating conditions, etc.) are within the ranges specified. LAPIS Technology disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of LAPIS Technology Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of LAPIS Technology Products, please take safety at your own risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures.

\*1: Absolute maximum ratings: a limit value that must not be exceeded even momentarily.

- 2) The Products specified in this document are not designed to be radiation tolerant.
- 3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits for mass production. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related information.
- 4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology or any third party with respect to LAPIS Technology Products or the information contained in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and application examples, etc.). Therefore, LAPIS Technology shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) LAPIS Technology intends our Products to be used in a way indicated in this document. Please be sure to contact a ROHM sales office if you consider the use of our Products in different way from original use indicated in this document. For use of our Products in medical systems, please be sure to contact a LAPIS Technology representative and must obtain written agreement. Do not use our Products in applications which may directly cause injuries to human life, and which require extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us without our prior written consent.
- 6) All information contained in this document is subject to change for the purpose of improvement, etc. without any prior notice. Before purchasing or using LAPIS Technology Products, please confirm the latest information with a ROHM sales office. LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document, however, LAPIS Technology shall have no responsibility for any damages, expenses or losses arising from inaccuracy or errors of such information.
- Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. LAPIS Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 8) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 9) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or LAPIS Technology's Products.
- 10) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.

(Note) "LAPIS Technology" as used in this document means LAPIS Technology Co., Ltd.

Copyright 2021-2024 LAPIS Technology Co., Ltd.